特高压交直流输电与特高压电气设备
特高压交直流输电与特高压电气设备培训知识
特高压交直流输电与特高压电气设备培训知识1. 特高压交直流输电简介特高压交直流输电是指采用特高压输电技术,通过直流或交流方式进行电力传输的一种方式。
与传统的输电方式相比,特高压交直流输电具有输电损耗小、输电距离远、占地面积小等优势,被广泛应用于电力传输领域。
特高压交直流输电的实现离不开特高压电气设备的支持与配合。
2. 特高压电气设备概述特高压电气设备是指用于特高压输电系统中的各种电气设备,包括变压器、断路器、隔离开关、母线、电缆等。
这些设备在特高压输电系统中发挥着重要的作用,保障电力传输的稳定性、安全性和可靠性。
2.1 变压器特高压变压器是特高压输电系统中的核心设备之一。
它起到将输电线路上的电能进行变压和调节的作用,实现电能的高效传输和分配。
特高压变压器具有额定电压高、容量大、工作稳定等特点,是特高压输电系统中不可或缺的设备。
2.2 断路器和隔离开关特高压断路器和隔离开关是特高压输电线路中的重要保护装置。
断路器主要用于短路故障的处理,隔离开关则用于将线路切断,以便进行维护和检修工作。
特高压断路器和隔离开关的设计和制造要求严格,能够在高电压、大电流环境下工作,确保系统的安全运行。
2.3 母线和电缆特高压输电系统中的母线和电缆用于将变电站产生的电能输送到各个负载点。
母线是一种金属导体,承担着电能传输的任务;电缆则是一种绝缘导体,用于将电能从母线输送到负载点。
特高压输电系统中的母线和电缆需要具备良好的导电性能和绝缘性能,以保证电能的传输效果和质量。
3. 特高压交直流输电技术培训为了提高特高压交直流输电技术的应用水平,必须进行相关的培训工作,在电力行业中培养专业人才。
特高压交直流输电技术培训主要包括以下几个方面的知识和技能:3.1 特高压交直流输电基础知识特高压交直流输电基础知识包括特高压输电系统的工作原理、输电线路的结构和组成、特高压电气设备的分类和功能等内容。
学员需要了解特高压交直流输电的基本概念和原理,掌握特高压电气设备的基本知识。
特高压电网的技术特性
特高压电网的技术特性我国特高压电网包括特高压交流输电和特高压直流输电两种形式,交流为1000kV;直流为±800kV。
根据我国未来电力流向和负荷中心分布的特点以及特高压交流输电和特高压直流输电的特点,在我国特高压电网建设中,将以1000kV交流特高压输电为主形成国家特高压骨干网架,以实现各大区域电网的同步强联网;±800kV特高压直流输电,则主要用于远距离,中间无落点、无电压支持的大功率输电工程。
特高压电网的系统特性主要反映在技术特点、输电能力和稳定性三个方面。
1000kV交流输电中间可落点,具有电网功能,输电容量大,覆盖范围广,节省输电线路走廊,有功功率损耗与输电功率的比值小;1000kV交流输电能力取决于各线路两端的短路容量比和输电线路距离,输电稳定性主要取决于运行点的功角大小。
±800kV特高压直流输电中间不落点,可将大量电力直送大负荷中心,输电容量大、输电距离长、节省输电线路走廊,有功功率损耗与输送功率的比值大,其输电稳定性取决于受端电网的结构。
一、关键技术分析1、特高压系统中的过电压电力系统的过电压是指由于内部故障、开关操作或遭受雷击,而造成瞬时或持续时间较长的高于电网额定允许电压并可能导致电气装置损坏的电压升高。
我国特高压系统具有线路距离长、输送容量大;各地电网差异性大;部分特高压线路可能经过高海拔或重污秽地区等特点。
这些都使得过电压问题成为特高压系统设计中的重要问题之一。
表3-1为国外特高压系统的过电压水平情况。
目前我国尚无特高压过电压的标准,为了便于研究,经过反复计算和比较,并吸取其他国家的经验,初步建议下列的绝缘水平,作为进一步研究的参考和依据。
1) 工频过电压:限制在1.3p.u.以下(持续时间≤5s),在个别情况下线路侧短时(持续时间≤0.35s)允许在1.4p.u.以下。
2) 相对地统计操作过电压(出现概率为2%的操作过电压):对于变电站、开关站设备应限制在1.6p.u以下。
特高压输电技术简介
特高压输电技术简介一.特高压输电技术特高压(ultra high voltage) 电网是指交流1000kV、直流正负800kV及以上电压等级的输电网络。
特高压交流输电技术的研究始于60年代后半期。
当时西方工业国家的电力工业处在快速增长时期,美国、前苏联、意大利、加拿大、德国、日本、瑞典等国家根据本国的经济增长和电力需求预测,都制定了本国发展特高压的计划。
美国、前苏联、日本、意大利均建设了特高压试验站和试验线段,专门研究特高压输变电技术及相关输变电设备。
前苏联从70年代末开始进行1150kV输电工程的建设。
1985年建成埃基巴斯图兹-科克切塔夫-库斯坦奈特高压线路,全长900km,按1150kV电压投入运行,至1994年已建成特高压线路全长2634km。
运行情况表明:所采用的线路和变电站的结构基本合理。
特高压变压器、电抗器、断路器等重大设备经受了各种运行条件的考验,自投运后一直运行正常。
在1991年,由于前苏联解体和经济衰退,电力需求明显不足,导致特高压线路降压至500kV运行。
日本是世界上第二个采用交流百万伏级电压等级输电的国家。
为满足沿海大型原子能电站送电到负荷中心的需要并最大程度地节省线路走廊,日本从1973年开始特高压输电的研究,不仅因为特高压系统的输电能力是500kV系统的4~5倍,而且可解决500kV系统短路电流过大难以开断的问题。
对于输电电压的选择,日本在800kV至1500kV之间进行了技术比较研究,通过各方面的综合比较,选定1000kV作为特高压系统的标称电压。
目前已建成全长426km的东京外环特高压输电线路。
为保证特高压系统的可靠运行,日本建设了盐原、赤城两个特高压试验研究基地,运行情况良好,证明特高压输变电设备可满足系统的可靠运行。
国外的试验及实际工程运行结果表明:在特高压输电技术上不存在难以解决的技术难题,输电技术和输电设备的科研成果可满足和适应工程需要。
只要有市场需要,特高压输电工程可随时启动。
特高压交流与特高压直流输电技术特点对比分析
特高压交流与特高压直流输电技术特点对比分析1 特高压交流输电的技术特点(1)特高压交流输电中间可以落点,具有电网功能,可以根据电源分布、负荷布点、输送电力、电力交换实际需要构成国家特高压骨干网架。
特高压交流电网明显的优点是:输电能力大(每提高一个电压等级,在满足短路电流不超标的前提下,电网输送功率的分区控制规模可以提高两倍以上,见表附-1)、覆盖范围广(可以覆盖全国范围)、网损小(铜耗与电压平方成反比;为了降低地面场强、减少电晕损耗,特高压交流线路一般采用八分裂导线,导线电流密度一般选择0.5~0.6A/2mm 左右)、节省架线走廊(如果都按照自然功率输送同等容量的电力1000万千瓦,采用500kV 交流输电,需要8~10回;采用1000kV 交流输电,仅需要2回,可以明显减少输电走廊,如果采用同塔双回,将进一步节省输电走廊,这对寸土寸金的长三角地区是很有意义的)。
特高压交流电网适合电力市场运营体制。
适应随着时间推移“西电东送、南北互补”电力流的变化。
附表-1短路电流控制水平及相应的系统分区控制规模(2)随着电网发展装机容量增加,等值转动惯量加大,电网同步功率系数逐步加强(设功角特性曲线的最大值为M P ,运行点功角为0δ,则同步功率系数为功角特性曲线上运行点功率的微分,0δCOS P P M S =,0δ越小,S P 越大,同步能力越强),交流同步电网的同步能力得到较充分利用。
同步电网结构越坚强,送受端电网的概念越模糊,如欧洲电网那样普遍密集型电网结构,功角稳定问题不突出,电压稳定问题上升为主要稳定问题。
法国联合电网1978年“12.19”大面积停电事故剖析:这次事故损失负荷29GW,约占当时全法国负荷75%,停电8.5小时,少送电1亿kWh。
造成这次大面积停电事故的主要原因是:低温造成系统负荷大量增加,系统无功备用容量不足,导致系统电压崩溃。
当时法国气温比往年同期低5~7℃,负荷水平比预计多1.2~1.3GW。
高压直流输电技术在特高压输电中的应用
高压直流输电技术在特高压输电中的应用随着电力需求的不断增长以及可再生能源的快速发展,特高压输电技术越来越成为解决能源传输难题的重要手段。
而其中,高压直流输电技术则因其具有较大的输电功率、较远的传输距离和较小的损耗等优势而备受关注。
本文将探讨高压直流输电技术在特高压输电中的应用。
一、高压直流输电技术的基本原理高压直流(High Voltage Direct Current,简称HVDC)输电技术是指利用直流电流进行能量传输的一种输电方式。
与交流输电相比,HVDC技术具有以下优势:首先,HVDC输电系统中的直流电流不会遭受交流电损耗,因此损耗相对较小;其次,HVDC可以实现双向输电,即使在电站出现故障时,也能够将电流倒送回电网,从而保证电力稳定供应;此外,HVDC技术还可以通过增加输电电压,实现长距离的电力传输。
在HVDC输电系统中,主要包括换流站、输电线路和换流器等关键设备。
换流站起到将交流电能转换为直流电能的作用,同时它还能够将直流电能反向转换为交流电能,从而实现电力的双向传输。
输电线路则用于传输直流电能,其中直流电压达到极高水平,这就是所谓的特高压输电。
二、高压直流输电技术在特高压输电中的应用案例1. 青藏特高压直流工程青藏特高压直流工程是我国电力系统中的一项旗舰工程,该工程采用特高压直流输电技术,将青海、甘肃、宁夏等内陆地区的清洁能源输送到东海沿线的江苏、上海等发电集中地区。
该工程的特点是输电距离较长,同时输电功率也相对较大。
通过采用HVDC技术,青藏特高压直流工程在输电损耗上实现了较大的节约,并极大提升了电力系统的可靠性。
2. 某国特高压直流示范工程某国特高压直流示范工程是该国电力系统中的一项重要工程,该工程采用特高压直流输电技术,连接该国东北地区的火力发电厂与南方地区的大型工业城市。
该工程采用了高压直流输电技术,将大量电力从东北输送到南方,有效缓解了南方电力供应压力。
同时,该工程还采用了光伏发电技术,使得该国的可再生能源得以更好地利用。
特高压直流输电技术现状及在我国的应用前景
近年来,特高压直流输电技术取得了丰硕的研究成果。在理论成果方面,研 究者们针对特高压直流输电系统的运行特性、稳定性分析、优化控制等方面进行 了深入探讨,提出了一系列新的理论和方法。在应用实践方面,特高压直流输电 技术已经在国内外多条电力工程中得到了广泛应用,如中国的三峡工程、巴西的 美丽山二期工程等,取得了良好的运行效果和社会效益。
特高压直流输电技术现状及在我国 的应用前景
目录
01 一、特高压直流输电 技术现状
02
二、特高压直流输电 技术特点
03
三、特高压直流输电 技术应用前景
04 四、特高压直流输电 技术在我国的应用
05 五、结论
06 参考内容
随着全球能源结构的调整和电力市场的不断发展,特高压直流输电技术成为 了电力行业的重要研究方向。特高压直流输电具有输电距离远、容量大、损耗低 等特点,对于实现能源资源的优化配置和能源供应的安全性、可靠性具有重要意 义。本次演示将介绍特高压直流输电技术的现状及在我国的应用前景。
二、特高压直流输电技术特点
特高压直流输电技术具有以下特点:
1、输电距离远:特高压直流输电的电压等级较高,一般为1000kV及以上, 使得电能能够远距离传输,大大扩展了电力系统的覆盖范围。
2、容量大:特高压直流输电工程的输送容量较大,一般在1000万至2000万 千瓦之间,甚至更高,使得大规模能源资源的优化配置成为可能。
1、能源传输:特高压直流输电技术的远距离输送特点使得不同地区的能源 资源能够得到优化配置。例如,可将中西部地区的丰富能源通过特高压直流输电 线路输送到东部地区,满足东部地区经济社会发展的紧急救援:在自然灾害或其他紧急情况下,特高压直流输电技术可以迅 速恢复受灾地区的电力供应。例如,通过特高压直流输电线路向受灾地区输送电 力资源,保障灾区人民的基本生活需求和应急救援工作的正常进行。
特高压交、直流输电的适用场合及其技术比较
4下 2017年 第12期(总第566期)CHINESE & FOREIGN ENTREPRENEURS133Technology and Management 【科技与管理】特高压输电技术具有远距离、大容量、低损耗、节约土地占用和经济性等特点。
因此,特高压输电技术可以满足当今社会对于电力日益增长的需求,既可以满足电力需求,又可以保证在运输过程中把损失降到最低。
特高压输电技术主要分为两种,一种是特高压交流输电技术,另一种是特高压直流输电技术。
一、特高压输电技术的含义特高压输电就是用高于1000kV 德尔电压进行远距离输送电力。
这种方法分为特高压直流输电和特高压交流输电。
当前,对特高压交流输电技术的研究主要集中在线路参数特性和传输能力、稳定性、经济性以及绝缘与过电压、电晕及工频电磁场等方面。
主要存在的技术问题就是稳定性问题以及如何最大程度减少费用。
特高压直流输电是指±800kV(±750kV)及以上电压等级的直流输电及相关技术。
特高压直流输电的主要特点是输送容量大、输电距离远,电压高,可用于电力系统非同步联网。
二、国内外特高压输电技术现状我国的特高压输电技术起步比较晚,所以技术水平并不高。
我国是从1986年开始立项研究交流特高压输电技术。
“八五”期间又开展了“特高压外绝缘特性初步研究”,对长间隙放电的饱和性能进行了分析和探讨,对实际结构布置下导线与塔体的间隙放电进行了试验研究。
1994年在武汉高压研究所建成了我国第一条百万伏级特高压输电研究线段。
自此我国特高压输电技术的研究进入正轨,进入21世纪之后,特高压输电技术得到很大提高,但是仍然存在一些难以解决的技术问题,比如如何将输送过程中电力损失降到最低,如何降低工程施工的难度。
美国的一些电力公司及意大利电力公司也分别于20世纪70年代建成了1000~1500kV 试验线路。
此外,美、前苏联、日、意、加等国还建成了相应的研究特高压输电的试验室、试验场,并对特高压输电可能产生的许多问题如过电压、可听噪声、无线电干扰、生态环境影响等进行了大量的研究,并取得了相当多的成果,可以说对1200kV 以下电压的科研工作已基本完成。
特高压直流输电概述
12
Байду номын сангаас
±1000kV特高压直流
• 我国电网发展需要 • 西藏、金沙江、新疆煤电向华中、华东送
电; • 俄罗斯、蒙古电源向东北、华北送电。 • 输电距离达 2023 - 3000km
• ±1000kV特高压直流技术研究 • 第一类课题 可行性研究 08.01 – 09.12 • 第二类课题 工程设计基础性技术研究 13
• 我国±800kV特高压直流输电工程已进入实 行阶段:
11
向上工程进展
• 23年12月17日,首台±800kV特高压高压端换流变 成功通过所有型式试验。突破了特高压技术瓶颈。
• 23年12月18日,电网企业召开向上特高压直流输 电示范工程线路施工协议签字暨全线动工动员大 会。
• 工程两端换流站、4个长江大跨越工程、18个一般 线路施工标段已所有动工建设。确定2023年终直 流线路全线基本架通。2023年3月具有带电条件, 2023年双极建成投运。
±1000kV直流输电第 一类课题
• 1. 技术经济可行性研究 • 2. 安全稳定性研究 • 3. 主回路参数及主设备参数研究 • 4. 电磁环境可行性研究 • 5. 大件设备运送条件和运送方式研究
14
±1000kV直流输电第 二类课题
• 1. 过电压及绝缘配合研究 • 2. 换流变压器关键技术研究 • 3. 穿墙套管关键技术研究 • 4. 无功配置研究 • 5. 直流线路电磁环境研究 • 6. 换流站电磁环境研究 • 7. 空气间隙冲击放电特性及海拔修正研究 • 8. 设备污秽外绝缘特性研究 • 9. 设备电晕特性研究 • 10. 交直流输电线平行架设对直流系统旳影响研究
特高压交直流输电的优缺点对比
特高压交直流输电的优缺点对比一、直流输电技术的优点1.经济方面:(1)线路造价低。
对于架空输电线,交流用三根导线,而直流一般用两根,采用大地或海水作回路时只要一根,能节省大量的线路建设费用。
对于电缆,由于绝缘介质的直流强度远高于交流强度,如通常的油浸纸电缆,直流的允许工作电压约为交流的3倍,直流电缆的投资少得多。
(2)年电能损失小。
直流架空输电线只用两根,导线电阻损耗比交流输电小;没有感抗和容抗的无功损耗;没有集肤效应,导线的截面利用充分。
另外,直流架空线路的“空间电荷效应”使其电晕损耗和无线电干扰都比交流线路小。
所以,直流架空输电线路在线路建设初投资和年运行费用上均较交流经济。
2.技术方面:(1)不存在系统稳定问题,可实现电网的非同期互联。
由此可见,在一定输电电压下,交流输电容许输送功率和距离受到网络结构和参数的限制,还须采取提高稳定性的措施,增加了费用。
而用直流输电系统连接两个交流系统,由于直流线路没有电抗,不存在上述稳定问题。
因此,直流输电的输送容量和距离不受同步运行稳定性的限制,还可连接两个不同频率的系统,实现非同期联网,提高系统的稳定性。
(2)限制短路电流。
如用交流输电线连接两个交流系统,短路容量增大,甚至需要更换断路器或增设限流装置。
然而用直流输电线路连接两个交流系统,直流系统的“定电流控制’,将快速把短路电流限制在额定功率附近,短路容量不因互联而增大。
(3)调节快速,运行可靠。
直流输电通过可控硅换流器能快速调整有功功率,实现“潮流翻转”(功率流动方向的改变),在正常时能保证稳定输出,在事故情况下,可实现健全系统对故障系统的紧急支援,也能实现振荡阻尼和次同步振荡的抑制。
在交直流线路并列运行时,如果交流线路发生短路,可短暂增大直流输送功率以减少发电机转子加速,提高系统的可靠性。
(4)没有电容充电电流。
直流线路稳态时无电容电流,沿线电压分布平稳,无空、轻载时交流长线受端及中部发生电压异常升高的现象,也不需要并联电抗补偿。
特高压直流输电技术
交流系统互联或者配电网增容时,作为 限制短路容量的措施之一;
配合新能源输电。
32
三、特高压直流输电技术应用与实践
(一)直流工程建设选择 (二)我国特高压直流技术实践成就
33
(一)直流工程建设选择
直流工程要因地制宜:
不同电压等级、不同频率的两个交流系统联网,或者两个弱交 流系统联网,推荐直流工程(背靠背)。
1888年三相交流电的出现是电工技术发展的一个重要里程碑,交流电 网建设得到迅速发展,并很快占据了主导地位。
能方便而又经济地升高或降低电压,使远距离输电成为可能。 三相交流发电机和电动机结构简单,价格低,容量又可设计得很大。 三相交流电气设备效率高,运行维护简单。
4
(一)直流输电的兴起
交流输电在发展过程中也遇到了问题,
5
(二)直流输电的发展
瑞典哥特兰岛直流工程是世 界上首个商用高压直流输电 工程,直流电压100kV、功率 20MW。
高压直流输 电技术 三相交流变 压器 特高压直流 输电技术
直流发电机
电磁感应 定律
汞弧阀
晶闸管阀
1831年
1870年
1891年
1954年
2010年
6
(二)直流输电的发展
汞弧阀
制造技术复杂、价格昂 贵、逆弧故障率高、可 靠性较低、运行维护不 便
临沂 重庆
绍兴 泰州 武汉 新余 成都
±800 ±800
±800 ±800 ±800 ±800 ±1100
760 760
760 760 760 760 1050
1200 2300
2000 1600 1450 1400 2687
22
二、直流输电技术基本原理
特高压交直流输电与超高压交直流输电的比较
特高压交直流输电与超高压交直流输电的比较作者:黎志山来源:《城市建设理论研究》2013年第24期摘要:随着交直流输电工程的应用,远距离、跨区域输电已经实现,特高压建设的速度加快。
文章将首先对国家大力建设特高压电网的原因进行分析,然后介绍特高压和超高压的概念,对特高压输电以及超高压输电进行对比。
关键词:特高压输电;超高压输电;交直流输电中图分类号: TF351 文献标识码: A 文章编号:现阶段,我国的电网骨干架实行的是500kV的交流、±500kV的直流,电力输送的能力以及电力输送的规模受到限制。
从我国的实际情况考虑,负荷受端电网比较密集,开辟新的输电线路存在较大的难度,负荷受端电流短路的情况比较突出,实行长距离送电会产生较大的电力损耗。
笔者将主要对特高压输电以及超高压输电进行对比,分析两者存在的差异,以便作为参考。
一、分析国家大力建设特高压电网的原因近几年来,我国电源发展的速度比较快,但是电网的建设相对落后,输电能力有待加强,电源的发展和电网的发展不协调。
在当前情况下,500kV跨区同步的电网之间的联系较为薄弱,输电的能力受到一定的限制,大型电网不能发挥出它的优越性,跨区域的电网对电力的补偿明显不够,现有的电网在远距离和大容量输电方面存在不足,需要引入特高压电网进行输电。
二、特高压和超高压的概念根据电压的不同,交流输电电压主要分为三种:第一,高压;第二,超高压;第三,特高压。
超高压简称EHV,国际上定义的电压范围是330 kV~1000 kV,特高压简称UHV,电压为1000 kV,特高压直流简称UH-VDC,电压为±600 kV以上。
从我国的实际情况来看,超高压分为三个层次:第一,330 kV;第二,500 kV;第三,750 kV。
特高压交流为1000kV电压,特高压直流为±800kV电压。
在特高压电网建成之后,我国的电网骨干架将变成交流输电网1000kV、直流系统±800kV电压,可以和各级输配电网相互协调,使电网的结构变得更加清晰。
特高压交流和直流输电技术的比较
特高压交流和直流输电技术的比较特高压交流输电技术主要特点(1)特高压交流输电中间可以有落点,具有网络功能,可以根据电源分布、负荷布点、输送电力、电力交换等实际需要构成国家特高压骨干网架。
特高压交流电网的突出优点是:输电能力大、覆盖范围广、网损小、输电走廊明显减少,能灵活适合电力市场运营的要求。
(2)采用特高压实现联网,坚强的特高压交流同步电网中线路两端的功角差一般可控制在20°及以下。
因此,交流同步电网越坚强,同步能力越大、电网的功角稳定性越好。
(3)特高压交流线路产生的充电无功功率约为500千伏的5倍,为了抑制工频过电压,线路须装设并联电抗器。
当线路输送功率变化,送、受端无功将发生大的变化。
如果受端电网的无功功率分层分区平衡不合适,特别是动态无功备用容量不足,在严重工况和严重故障条件下,电压稳定可能成为主要的稳定问题。
(4)适时引入1000千伏特高压输电,可为直流多馈入的受端电网提供坚强的电压和无功支撑,有利于从根本上解决500千伏短路电流超标和输电能力低的问题。
特高压直流输电技术主要特点(1)特高压直流输电系统中间不落点,可点对点、大功率、远距离直接将电力送往负荷中心。
在送受关系明确的情况下,采用特高压直流输电,实现交直流并联输电或异步联网,电网结构比较松散、清晰。
(2)特高压直流输电可以减少或避免大量过网潮流,按照送受两端运行方式变化而改变潮流。
特高压直流输电系统的潮流方向和大小均能方便地进行控制。
(3)特高压直流输电的电压高、输送容量大、线路走廊窄,适合大功率、远距离输电。
(4)在交直流并联输电的情况下,利用直流有功功率调制,可以有效抑制与其并列的交流线路的功率振荡,包括区域性低频振荡,明显提高交流的瞬时、动态稳定性能。
(5)大功率直流输电,当发生直流系统闭锁时,两端交流系统将承受大的功率冲击。
高压直流输电与特高压交流输电的比较
高压直流输电与特高压交流输电的比较摘要综述了高压直流输电与特高压交流输电的应用现状,对二者的优缺点进行了比较研究,并预测了这两种输电技术在我国的发展前景。
0 引言我国电网的特点是能源资源与经济发展地理分布极不均衡,必须发展长距离、大容量电能传输技术,采用新的或更高一级电压等级,实现西南水电东送和华北火电南送。
目前国内外的研究集中在高压直流(HVDC)和特高压交流(UHV)输电技术。
本文试就这两种技术的应用现状、优缺点进行比较,并预计这两种技术在我国的发展前景。
1 国内外高压直流与特高压交流输电的应用概况随着电力电子和计算机技术的迅速发展,直流输电技术日趋完善,在输送能力和送电距离上已可和特高压交流竞争。
多端直流输电技术也取得了一些运行经验:意大利到撒丁岛和柯西岛的三端直流输电工程于80年代投运;美国波士顿经加拿大魁北克到詹姆斯湾拉迪生的五段直流输电工程,全长1500 km,1992年全线建成投入五端。
到1996年底全世界已投运的直流输电工程有56个,输电容量达54.166 GW[1]。
我国的葛洲坝—上海500 kV双极联络直流输电工程1989年投运,额定容量为1 200 MW,输电距离为1 080 km。
天生桥—广州500 kV直流输电线路全长980 km,额定输送功率1 800 MW。
此外,三峡—华东两回直流输电方案已审定。
目前国外单个直流输电项目的输电容量正在逐步增加,表1为其中典型代表。
特高压交流输电技术的研究始于60年代后半期,前苏联从80年代开始建设西伯利亚—哈萨克斯坦—乌拉尔1 150 kV输电工程,输送容量为5 000 MW,全长2 500 km,从1985年起已有900 km线路按1 150 kV设计电压运行。
1988年日本开始建设福岛和柏崎—东京1 000 kV 400余km线路。
意大利也保持了几十km的无载线路作特高压输电研究。
美国AEP则在765 kV的基础上研究1 500 kV特高压输电技术。
特高压(1)
首条特高压电网奠基
直流方面,四川向家坝——上海±800千伏特高 压直流输电示范工程正在紧张施工中,这是目前规划 建设的世界上电压等级最高、输送距离最远、容量最 大的直流输电工程。 国家电网公司在2010年8月12日首度公布,到 2015年建成华北、华东、华中(“三华”)特高压电 网,形成“三纵三横一环网”。 同日,国家电网宣布世界上运行电压最高的1000 千伏晋东南—南阳—荆门特高压交流试验示范工程已 通过国家验收,这标志着特高压已不再是“试验”和 “示范”阶段,后续工程的核准和建设进程有望加快。
特高压输电的特点
输送容量大; 送电距离长; 线路损耗低; 节约土地资源; 工程投资省; 联网能力强;
特高压输电线路参数特性
输电线路的基本电气参数是电阻(R)、电抗(X)、电纳 (B)和电导(G)。他们决定了输电线路和电网的特性。对于超 高压、特高压的输电线路来说,电阻主要影响线路的功率损耗。电 导代表绝缘子的泄露电阻和电晕损失,也要影响功率损耗。泄露和 电晕功率的损耗与电阻功率损耗相比,通常要小的多,一般在稳态 分析时,可忽略不计。 超高压、特高压输电线路的电感式决定电网潮流,即有功和无 功分布的主要因素,影响输电线路的电压降落和电力系统的稳定性 能。 超高压、特高压输电线的线间电容和线对地电容与电容器板间 建立的电容式类似的。线路电容在交流电压作用下使线路产生交流 充电和放点电流,称为电容电流。输电线的电容电流不仅影响电线 的电压降落,而且也影响电线的电压降落,而且也影响输电效率和 电力系统的有功和无功分布。
电气0822班 44号 赵敏
特高压电网简介
在我国,特高压电网是指交流1000千伏及以上 和直流正负800千伏以上的输电网络。特高压能大大 提升我国电网的输送能力。据国家电网公司提供的数 据显示,一回路特高压直流电网可以送600万千瓦 电量,相当于现有500千伏直流电网的5到6倍, 而且送电距离也是后者的2到3倍,因此效率大大提 高。此外,据国家电网公司测算,输送同样功率的电 量,如果采用特高压线路输电可以比采用500千伏 超高压线路节省60%的土地资源。
我国发展特高压直流输电中一些问题的探讨
我国发展特高压直流输电中一些问题的探讨一、本文概述随着我国电力需求的持续增长和能源结构的优化调整,特高压直流输电技术在我国电力系统中的地位日益凸显。
特高压直流输电以其输电容量大、输电距离远、线路走廊占地少、调节速度快等独特优势,在跨区电网互联、大型能源基地电力外送、远距离大容量输电等方面发挥着不可替代的作用。
然而,在我国特高压直流输电技术的发展过程中,也面临着一些问题和挑战,如设备研发与制造、系统运行与控制、环境保护与土地利用、经济效益与社会影响等。
本文旨在探讨我国发展特高压直流输电中遇到的一些问题,分析其原因,并提出相应的解决方案和建议,以期为我国特高压直流输电技术的可持续发展提供有益的参考。
二、特高压直流输电技术概述特高压直流输电(UHVDC)技术,作为当今电力输送领域的尖端科技,指的是使用电压等级在±800kV及以上的直流输电技术。
该技术以其输电容量大、输电距离远、线路走廊占地少、调节速度快、运行灵活等诸多优势,在全球能源互联网构建和我国大规模能源基地电力外送中发挥着不可或缺的作用。
特高压直流输电技术的基本原理是利用换流站将交流电转换为直流电进行输送,到达接收端后再通过换流站将直流电转换回交流电。
这种转换过程有效减少了输电过程中的能量损耗,提高了输电效率。
特高压直流输电还具有独立的调节能力,可以快速响应系统的功率变化,提高电力系统的稳定性。
在我国,特高压直流输电技术的发展和应用已经取得了显著成果。
多个特高压直流输电工程已经建成投运,形成了大规模的电力外送通道,有力支撑了我国能源结构的优化和清洁能源的大规模开发利用。
特高压直流输电技术的发展也带动了相关设备制造、施工安装、运行维护等产业链的发展,为我国电力工业的进步做出了重要贡献。
然而,特高压直流输电技术的发展也面临一些挑战和问题。
例如,特高压直流输电系统的运行和控制技术复杂,对设备性能和运行维护水平要求极高。
特高压直流输电工程的建设和运营需要大量的资金投入,对电力企业的经济实力和风险管理能力提出了更高要求。
特高压交、直流输电的适用场合及其技术比较
特高压交、直流输电的适用场合及其技术比较摘要:电在日常生活中起着重要的作用,随着其需求量越来越大,需要不断对电力系统等进行改善,以确保电能的合理利用和稳定运输,可以在电力系统中使用特高压技术,来帮助输送电,因此,本文重点概述了特高压电技术在我国的应用以及这两种技术的优缺点。
关键词:特高压交直流输电技术比较一、概述特高压技术在电力运输中起着重要的作用,在运输过程中可以调节电阻,减轻电流等造成的电力负荷,因此,该技术被普遍应用。
本文重点概述了该技术的使用范围和优缺点,有助于为新技术的创新提供借鉴作用。
二、特高压交、直流输电技术的应用(一)特高压交流输电的适用场合该技术在我国广泛应用于水利发电,如西电东送工程等,利用该技术可以避免沿途中的地势险峻等问题,同时,有利于节约成本,降低电能损耗;应用于国家电网建设中,在大型水利、输电工程中应用该技术有利于减轻电能损耗,能最大限度的满足我国的供电需求。
(二)特高压直流输电的适用场合在我国应用于各种直流工程建设,如溪浙工程,是迄今为止世界上输送容量最大的直流输电工程,可以实现社会效益的最大化,因此,国家应该大力推进该技术的使用。
三、高压直流输电与特高压交流输电技术的优缺点比较(一)高压直流输电技术的优缺点该技术在经济上的优点:(1)总体造价低,相较于其他线路,该技术在成本上较低,因为其装置简单,线路一般由两根接电线组成,在应用时只用其中一根,因此,节约了大量电力资源,从而节约了更多成本。
(2)使用过程中电能损耗较小,与其他线路相比,在电力资源运输中损耗较小,可以充分发挥电能的作用,保证电能的稳定运输,另外,电力干扰也较小,因此,更有利于节约资源,节能环保。
该技术在技术方面的优点:(1)该技术可以改变以前电路系统中的存在的问题,保证电路运输过程中的电能的传递,同时能降低电能的损耗,该技术可以提高线路的稳定性,使其不受周围恶劣环境的影响,如暴雨天气等,可能会对电路系统造成损害。
特高压
特高压输电系统及其关键技术摘要从世界范围看,特高压输电技术将长期发展。
根据中国电网的发展趋势,特高压电网将由1000kV级交流输电系统和±800kV级直流系统组成。
根据特高压交流和直流2种输电方式不同的技术经济特性,比较分析了两者的适用场合,并对特高压输电线路的防雷保护、可靠性、稳定性、电磁环境、绝缘子选型和交直流配合等技术问题,分别展开比较。
得出主要结论:特高压交流主要定位于近距离大容量输电和更高一级电压等级的网架建设,特高压直流主要定位于送受关系明确的远距离大容量输电以及部分大区、省网之间的互联;特高压直流的正极性导线比负极性导线更易遭受雷害;应避免出现由一个大电厂通过数回特高压交流线路集中送至同一地区的情况,也要重视包含多回特高压和超高压直流线路的“多馈入直流输电系统”的安全稳定问题;建议中国特高压输电线路优先采用大吨位、高强度的合成绝缘子,并采用由数片玻璃防污绝缘子和合成绝缘子构成的组合绝缘子方式,避免合成绝缘子芯棒碳化脆断的事故发生。
关键词:特高压交流,特高压直流,电磁环境,绝缘子,交直流配合。
一、综述(国内外)中国发展特高压技术的必要性特高压是世界上最先进的输电技术。
交流输电电压一般分为高压、超高压和特高压。
国际上,高压(HV)通常指35-220kV电压。
超高压(EHV)通常指330kV 及以上、1000kV以下的电压。
特高压(UHV)定义为1000kV及以上电压。
而对于直流输电而言,高压直流(HVDC)通常指的是±600kV及以下的直流输电电压,±800kV(±750kV)以上的电压称为特高压直流(UHVDC)。
我国发展特高压输电指的是在现有500kV交流和±500kV直流之上采用更高一级的电压等级输电技术,包括1000kV级交流特高压和±800kV级直流特高压两部分,简称国家特高压骨干电网。
特高压输电是在超高压输电的基础上发展的,其目的仍是继续提高输电能力,实现大功率的中、远距离输电,以及实现远距离的电力系统互联,建成联合电力系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
能否采用750kV作为500kV电网的更高一级电压等级?
7
特高压交直流输电
(三)特高压输电的特点
1.输送容量大 一回1000千伏特高压输电线路的送电能力接近500万 千瓦,约为500千伏输电线路(88.5)的五倍左右。 ±800千伏直流特高压(4kA)输电能力可达到640万千 瓦,是±500千伏高压直流(3kA)的2.1倍,是±620千伏 高压直流的1.7倍。
3
特高压交直流输电
• (一)开展特高压电网建设的紧迫性 ‒ 我国能源资源赋存和电力负荷分布极不均衡的状 况,西电东送,南北互供,全国联网势在必行 。 ‒ 采用特高压输电有利于实现电力资源在较大范围 优化配置,有利于节省线路走廊和节约土地资源 ,有利于节省电网建设投资和运行费用,有利于 减少煤电对环境污染的影响。
8
特高压交直流输电
(三)特高压输电的特点
2.送电距离长
在输送相同功率的情况下,1000千伏特高压输 电线路的最远送电距离约为500千伏线路的四倍。 采用±800千伏直流输电技术使得超远距离的送电 成为可能,经济输电距离可以达到2500公里及以上。
9
特高压交直流输电
(三)特高压输电的特点 3.线路损耗低
13
特高压交直流输电
(三)特高压输电的特点
特高压电网具备长距离、大容量和低损耗的送电能 力,代表着当今输电技术的最高水平,是符合我国国 情的输电方式和未来电网的发展方向。
14
输电线路的II形等值电路
15
16
• 分裂导线的直径从0.8 m到1.2m,同时保持子导线 数和相间距离不变,输电线输电能力增加10%左右 ;子导线数从6增加到12,同时保持分裂导线直径 和相间距离不变,输电能力可增加5%左右;相间距 离从25m减少到15m,其他保持不变,输电能力可 增加12%以上。总体来看,调整分裂导线3个参数 在合理的范围,输电能力可增加大约25%。
4
由于近年来我国电源超常发展,电网建设严重滞后,输电能 力不足,电网与电源发展不协调的矛盾十分突出。
• 现有500千伏跨区同步互联电网联系薄弱,输电能力 严重不足,大电网的优越性难以发挥。 • 区域电网之间水火互济和跨流域补偿能力明显不足。 • 现有电网难以满足远距离、大容量输电的需要。
5
特高压交直流输电
11
特高压交直流输电
(三)特高压输电的特点 5.工程投资省 采用特高压输电技术,可以节省大量导线和铁塔材 料,从而降低建设成本。根据有关设计部门的计算, 1000千伏交流输电方案的单位输送容量综合造价约为 500千伏输电方案的73%,节省工程投资效益显著。另 外,采用特高压输电可减少线路回数及设备数量,有 利于提高供电可靠性,降低运行费用。
2
引言
• 2008年底我国装机容量达7.9亿千瓦,全年发电量达34268 亿kW· h,仅次于美国居世界第二,成为世界电力生产和 消费大国,但是人均装机容量和人均用电量较世界平均水 平都低 。 • 电力系统是一个知识密集型行业,科学技术在电力行业中 的重要性就显得尤为突出。目前电力系统正朝着大电网、 特高压、大机组、高自动化方向发展。 • 国家电网公司制定了“一特四大”能源战略,即特高压电 网、大煤电、大水电、大核电、大可再生能源基地。 • 2009年5月21日,国家电网公司在“2009特高压输电技术 国际会议”上提出了“建设坚强的智能电网”战略举措。
相邻两个电压等级的级差如何确定?
一般认为,超高压电网更高一级电压标称值应高于现有电网最高 电压1倍及以上。这样,输电容量可提高4倍以上,不但能与现 有电网电压配合,而且为今后新的更高电压的发展,留有合理 的配合空间,做到简化网络结构,减少重复容量,便于潮流控 制,减少线路损耗,有利于安全稳定运行。
第四章 特高压交直流输电
与特高压电气设备
引言
• 电力工业起源于19世纪后期,世界上第一台火力 发电机组是1875年建于巴黎北火车站的直流发电 机,用于照明供电。1879年,美国旧金山实验电 厂开始发电,这是世界上最早出售电力的电厂。 而我国电力工业的发展几乎和国际同步,我国也 在1882年建成第一座发电厂。目前我们国家的电 力技术无论是电压等级、机组容量还是设备制造 方面相对发达国家来说基本持平,甚至在某些技 术领域,如特高压与智能电网,还走在世界前列 。
在导线总截面、输送容量均相同的情况下,1000千伏交流 线路的电阻损耗是500千伏交流线路的四分之一。 ±800千伏直流线路的 电阻损耗是±500千伏 直流线路的39%,是 ±620千伏直流线路的 60%。
10
特高压交直流输电
(三)特高压输电的特点 4.节约土地资源
特高压交流:同塔双回和猫头塔单回线路的走廊宽度分别为75 米和81米,单位走廊输送能力分别为13.3万千瓦/米和6.2万千瓦/ 米,约为同类型500千伏线路的三倍。 特高压直流:±800千伏、640万千 瓦直流输电方案的线路走廊约76米, 单位走廊宽度输送容量为8.4万千瓦 /米,是±500千伏、300万千瓦方案 的1.29倍,±620千伏、380万千瓦 方案的1.37倍。
12
特高压交直流输电
(三)特高压输电的特点 6.联网能力强
通过交流特高压同步联网,大幅度缩短电网间的电气距离,加 强电气联系,提高稳定水平,充分发挥大电网互联的水火互济、 错峰、跨流域互补、减少系统装机备用容量等各种联网效益。 利用特高压联网,增强网间功率交换能力,可以在更大范围内 优化能源资源配置方式,有利于改善电网结构,分层分区布局, 从根本上解决短路电流超标等问题。
(二)特高压输电的定义
交流输电电压一般分高压、超高压和特高压。国际上, 高压(HV)通常指35~220千伏电压。超高压(EHV)通 常指330千伏及以上、1000千伏以下的电压。特高压(UHV) 定义为1000千伏及以上电压。高压直流(HVDC)通常指 的是±600千伏及以下的直流输电电压,±600千伏以上的 电压称为特高压直流(UHVDC)。 就我国而言,交流高压电网指的是110千伏和220千伏电 网;超高压电网指的是330千伏、500千伏和750千伏电网。 特高压电网指的是1000千伏电网;高压直流指±500千伏及 以下直流系统,特高压直流指±800千伏直流系统。