阵列信号处理的基本知识
阵列信号处理技术
动通信的用户很多,一方面通过空间不同位置进行区分,另 一方面通过不同的编码等方法实现多用户和大容量。 现代超分辨技术,使系统能够分辨空间和时间上都很靠 近的信号。
概括起来说:
波束的控制和管理
时间和空间信号的高分辨 五、主要研究内容 1、阵列构形研究 均匀直线阵、平面阵、元阵、随机阵、共形阵。 2、波束形成和超分辨新方法的研究(不是热点)
军用雷达:
火炮雷动:炮位侦校雷达、炮瞄雷达
战场侦察雷达:(坦克、直升机等目标的检测与识别)
步兵侦察雷达:
空中警戒雷达:(对空监视雷达) 机载雷达气象雷达: 天气预报、人工降雨)
探地雷达: (探测地下管道,检查高速公路施工质量,
接收信号
X T = [ x1 , x 2 , L , x N ]
(2.1.1)
方向图形成网络: W = [ w1 , w 2 , L , w N ]
(2.1.2)
(形成最优权 和系统输出)
y(t ) = W T X = X T W
(2.1.3)
自适应处理器: ( 例如MVDR:Minimum Variance Distortionless Response) 求解约束性问题:
0 ≤ t ≤ T
(2.2.5)
所需信号和噪声的矢量可以表达为:
s1 (t ) S (t ) = 2 M s N (t )
n1 (t ) n (t ) = 2 M n N (t )
0 ≤ t ≤ T
所需信号分量可精确已知,粗略近视已知,或仅在统计意 义上已知。
3、理想的传播模型
3、应用性研究(热点)
在一个具体的领域或工程项目上,如何应用这些理论和
方法,实际系统的误差很大,比如阵列通道之间的性能差异, 频率特性,阵列传感器的位置误差等情况下的一些理论算法 和性能。
课件2:阵列信号处理数学基础
谱定理,也就是矩阵A的特征值分解定理,其中Λ diag( , , , ), E
1
2
n
[e ,e , ,e ]是由特征向量构成的酉矩阵。
1
2
n
•9
一、代数基础
Kronecker积
定义:p q矩阵A和m n矩阵B的Kronecker积记作A B,它是一个 pm qn矩阵,定义为
a B
11
x
(t)
s (t)e K
jwom ( i )
n
(t)
m
i1 i
m
s (t)为入射到阵列的第i个源信号 i
( )为第m个阵元相对参考点的时延
m
i
n (t)为第m个阵元的加性噪声 m
X (t) [x (t), x (t),, x (t)]T
1
2
M
矩阵表示接收信号 N (t) [n (t), n (t),, n (t)]T
f
f
Khatri Rao积具有如下一些性质:
A⊙(B⊙C) (A⊙B)⊙C
(A B)⊙C A⊙C B⊙C
A⊙B B⊙ A
•12
一、代数基础
Hadamard积
矩阵A 和B IJ IJ的Hadamard积定义为
向量化
a b 11 11
A B a b21 21
a bI1 I1
ab 12 12
1
2
t1 ,t2
E{n(t )nT (t )} 0
1
2
Outline
一、矩阵代数相关知识 二、信源和噪声模型 三、阵列天线统计模型 四、阵列响应矢量/矩阵 五、阵列协方差矩阵的特征值分解 六、信源数估计方法
•19
阵列信号处理(知识点)
信号子空间:设N 元阵接收p 个信源,则其信号模型为:()()()()1piiii x t s t a N t θ==+∑在无噪声条件下,()()()()()12,,,P x t span a a a θθθ∈称()()()()12,,,P span a a a θθθ为信号子空间,是N 维线性空间中的P 维子空间,记为P N S 。
P N S 的正交补空间称为噪声子空间,记为N P N N -。
正交投影设子空间m S R ∈,如果线性变换P 满足,()1),,,2),,,0m mx R Px S x S Px x x R y S x Px y ∀∈∈∀∈=∀∈∀∈-=且则称线性变换P 为正交投影。
导向矢量、阵列流形设N 元阵接收p 个信源,则其信号模型为:()()()()1piiii x t s t a N t θ==+∑,其中矢量()i ia θ称为导向矢量,当改变空间角θ,使其在空间扫描,所形成的矩阵称为阵列流形,用符号A 表示,即(){|(0,2)}a A θθπ=∈波束形成波束形成(空域滤波)技术与时间滤波相类似,是对采样数据作加权求和,以增强特定方向信号的功率,即()()()()HHy t W X t s t W a θ==,通过加权系数W 实现对θ的选择。
最大似然已知一组服从某概率模型()f X θ的样本集12,,,N X X X ,其中θ为参数集合,使条件概率()12,,,N f X X X θ最大的参数θ估计称为最大似然估计。
不同几何形态的阵列的阵列流形矢量计算问题假设有P 个信源,N 元阵列,则先建立阵列的几何模型求第i 个信源的导向矢量()i i a θ 选择阵元中的一个作为第一阵元,其导向矢量()1[1]i a θ=然后根据阵列的几何模型求得其他各阵元与第一阵元之间的波程差n ∆,则确定其导向矢量()2jn i a eπλθ∆=最后形成N 元阵的阵列流形矢量()11221N j j N Pe A e πλπλθ-∆∆⨯⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦ 例如各向同性的NxM 元矩形阵,阵元间隔为半个波长,当信源与阵列共面时:首先建立阵列几何模型:对于第m 行、第n 列的阵元,其与第1行、第1列阵元之间的波程差为(1)sin()(1)cos()mn i i n d m d θθ∆=---故:()1122(sin()cos())22((1)sin()(1)cos())11N j j d j j d N M NM P NM Pe e A e e ππθθλλππθθλλθ-∆-∆---⨯⨯⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦而当信源与阵列不共面时: 首先将信源投影到阵列平面然后建立阵列模型对于第m 行、第n 列的阵元,其与第1行、第1列阵元之间的波程差为[(1)sin()(1)cos()]sin()mn i i i n d m d θθϕ∆=-+-故:()1122(sin()cos())cos()22((1)sin()(1)cos())cos()11N j j d j j d N M NM P NM Pe e A e e ππθθϕλλππθθϕλλθ-∆-∆---⨯⨯⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦线性约束最小方差准则(LCMV )的自适应波束形成算法: 对于信号模型:()()()0X t s t a J N θ=++, 波束形成输出:()()()()0()H H H yt W X t s t W a W J N θ==++LCMV 准则实际上是使()0HW a θ为一个固定值的条件下,求取使得()HWJ N +方差最小的W 作为最有权值,即:()0min .H X W HW R Ws t W a Fθ⎧⎪⎨⎪=⎩,其中F 为常数利用拉格朗日乘子法可解得:()10X opt W R a μθ-=当取1F =时,则()()11H X a R a μθθ-=,μ的取值不影响SNR 和方向图。
阵列信号处理全.ppt
▪平面阵
图1.5
▪立体阵
图1.6
b. 参数化数据模型
假设N元阵分布于二维平面上,阵 元位置为:
rl xl , yl ,l 1,2, , N
一平面波与阵面共面,传播方向矢
量为: 1 cos ,sin T
c
y
r
x 图1.7:二维阵列
几何结构
阵元
l 接收信号为:xl
t s rl,t
滤波:增强信噪比 获取信号特征:信号源数目 传输方向(定位)及波形 分辨多个信号源
定义:
➢传感器——能感应空间传播信号并且能以某 种形式传输的功能装置
➢传感器阵列(sensors array)——由一组传感 器分布于空间不同的位置构成
由于空间传播波携带信号是空间位置和时
间的四维函数,所以:
连续:面天线
波动方程的任意解可以分解为无穷多个“单频”
解的迭加(传播方向和频率分量均任意)。
波动方程的单频解可以写成单变量的函数:
sr,t Aexp[ j(t kT r) Aexp[ j t T r ]
式中 k ,其大小等于传播速度的倒数,其方向与 传播方向相同,常称为慢速矢量(slowness vector)。
2. G.Strang,"Linear Algerbra and Its Applications", Academic Press,New York ,1976.(有中译本, 侯自新译,南开大学出版社,1990)
§2.1线性空间和希尔伯特空间
一、符号及定义
1. 符号
以后我们常用字母加低杆表示矢量和矩阵,
实际阵列
空间采样方式 虚拟阵列(合成阵列如SAR)
空时采样示意图如下:
第四章 阵列信号处理
通常信号的频带B比载波 ω 小很多,即s(t)变化 相对 ω 缓慢,则延时
1 c
r α <<
T
1 B
则可以认为 s (t − r α ) ≈ s (t ) 即信号包络 在各阵元上差异可忽略——窄带信号。
4.2 等距线阵与均匀圆阵
一、等距线阵 M个阵元等距排成一直线,阵元间距为d,到达波 的方向角定义为与阵列法线的夹角 θ ,称为波 达方向(DOA)。 在三维空间中还可以 θ θ 确定信源方位角 ψ
d
5
4
y
ψ
2
1
x
等距线阵(ULA)的方向向量
aULA (θ ) = [1, e = [1, e
−j 2π − j k d sin θ −j
,L, e
2π
− j k ( M −1) d sin θ T
]
λ
d sin θ
,L, e
λ
( M −1) d sin θ
]T
若有多个信源(p个),波达方向分别为 θ i (i − 1, L, p) 方向矩阵为
A = [a(θ1 ), a(θ 2 ),L, a(θ p )] = 1 ⎡ ⎢ e − j 2λπ d sin θ1 =⎢ ⎢ L ⎢ − j 2λπ ( M −1) d sin θ1 ⎣e ⎤ π − j 2λ d sin θ p ⎥ L e ⎥ ⎥ L L π − j 2λ ( M −1) d sin θ p ⎥ L e ⎦ L 1
θ
d sin θ
Vandermonde矩阵
阵列结构不允许其方向向量和空间角之间模糊, 等距线阵阵元间距不能大于 λ ,则可以保证 2 方向矩阵中各个列向量线性独立。 二、等距线阵的阵列响应与方向图 在单个信源情况下,阵列输出为各阵元信号的加 权和(不考虑噪声),
阵列信号处理(知识点)
信号子空间:设N 元阵接收p 个信源,则其信号模型为:()()()()1piiii x t s t a N t θ==+∑在无噪声条件下,()()()()()12,,,P x t span a a a θθθ∈L称()()()()12,,,P span a a a θθθL 为信号子空间,是N 维线性空间中的P 维子空间,记为P N S 。
P N S 的正交补空间称为噪声子空间,记为N P N N -。
正交投影设子空间m S R ∈,如果线性变换P 满足,()1),,,2),,,0m mx R Px S x S Px x x R y S x Px y ∀∈∈∀∈=∀∈∀∈-=且则称线性变换P 为正交投影。
导向矢量、阵列流形设N 元阵接收p 个信源,则其信号模型为:()()()()1piiii x t s t a N t θ==+∑,其中矢量()i ia θ称为导向矢量,当改变空间角θ,使其在空间扫描,所形成的矩阵称为阵列流形,用符号A 表示,即(){|(0,2)}a A θθπ=∈波束形成波束形成(空域滤波)技术与时间滤波相类似,是对采样数据作加权求和,以增强特定方向信号的功率,即()()()()HHy t W X t s t W a θ==,通过加权系数W 实现对θ的选择。
最大似然已知一组服从某概率模型()f X θ的样本集12,,,N X X X K ,其中θ为参数集合,使条件概率()12,,,N f X X X θK 最大的参数θ估计称为最大似然估计。
不同几何形态的阵列的阵列流形矢量计算问题假设有P 个信源,N 元阵列,则先建立阵列的几何模型求第i 个信源的导向矢量()i i a θ 选择阵元中的一个作为第一阵元,其导向矢量()1[1]i a θ=然后根据阵列的几何模型求得其他各阵元与第一阵元之间的波程差n ∆,则确定其导向矢量()2jn i a eπλθ∆=最后形成N 元阵的阵列流形矢量()11221N j j N Pe A e πλπλθ-∆∆⨯⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦M 例如各向同性的NxM 元矩形阵,阵元间隔为半个波长,当信源与阵列共面时:首先建立阵列几何模型:对于第m 行、第n 列的阵元,其与第1行、第1列阵元之间的波程差为(1)sin()(1)cos()mn i i n d m d θθ∆=---故:()1122(sin()cos())22((1)sin()(1)cos())11N j j d j j d N M NM P NM Pe e A e e ππθθλλππθθλλθ-∆-∆---⨯⨯⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦M M而当信源与阵列不共面时: 首先将信源投影到阵列平面然后建立阵列模型对于第m 行、第n 列的阵元,其与第1行、第1列阵元之间的波程差为[(1)sin()(1)cos()]sin()mn i i i n d m d θθϕ∆=-+-故:()1122(sin()cos())cos()22((1)sin()(1)cos())cos()11N j j d j j d N M NM P NM Pe e A e e ππθθϕλλππθθϕλλθ-∆-∆---⨯⨯⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦M M线性约束最小方差准则(LCMV )的自适应波束形成算法: 对于信号模型:()()()0X t s t a J N θ=++, 波束形成输出:()()()()0()H H H yt W X t s t W a W J N θ==++LCMV 准则实际上是使()0HW a θ为一个固定值的条件下,求取使得()HWJ N +方差最小的W 作为最有权值,即:()0min .H X W HW R Ws t W a Fθ⎧⎪⎨⎪=⎩,其中F 为常数利用拉格朗日乘子法可解得:()10X opt W R a μθ-=当取1F =时,则()()11H X a R a μθθ-=,μ的取值不影响SNR 和方向图。
阵列信号处理
阵列信号处理是信号处理的一个年青的分支,属于现代信号处理的重要研究内容之一,其应用范围很广,可用于雷达、声呐、通信、地震勘察、射电天文和医用成像等众多领域。
阵列信号处理是将一组传感器在空间的不同位置按一定规则布置形成的传感器阵列(尽管采用的传感器的类型可以不同,如天线、水听器、听地器、超声探头、X射线检测器,但是传感器的功能是相同的,它是连接信号处理器和感兴趣的空间纽带),用传感器阵列发射能量和(或)接收空间信号,获得信号源的观测数据并加以处理。
阵列信号处理的目的是从这些观测数据中提取信号的有用特征,获取信号源的属性等信息。
目前,阵列信号处理在雷达及移动通信等领域有着广泛而重要的应用。
在相控阵雷达体制中,自适应波束形成技术在抑制杂波干扰方面起着关键的作用。
在移动通信中,基于阵列信号处理的波达方向估计技术,使移动通信进入一个崭新的阶段。
本论文首先介绍阵列信号处理的基础知识。
在此基础上,着重讨论阵列波束形成技术,非理想线性阵列的雷达信号波达方向和多普勒频率估计,均匀圆形阵列的信号波达方向估计和复杂信号的波达方向及参数估计等四方面内容。
这些内容都是阵列信号处理领域的研究热点。
它们无论对阵列信号处理的理论发展还是实际应用,都有重要的意义。
目前,人们普遍关注在阵列响应矢量未知情况下,自适应波束形成问题,即盲自适应波束形成技术。
本文第一方面介绍了最基本的阵列波束形成方法,即最小均方误差波束形成器,线性约束最小方差波束形成器和基于特征空间的波束形成器(ESB)。
在此基础上,提出一个基于特征空间的盲自适应波束形成算法。
此算法首先根据高分辨波达方向估计方法,估计信号源的波达方向,然后以此方向形成约束导向矢量,进而计算出ESB波束形成算法的最优权矢量,最后,对期望目标形成笔状波束。
此算法能够有效地抑制信号的对消现象,并且能够应用于在波束中有多个期望信号的场合。
当阵列存在各种误差时,一般高分辨波达方向估计方法(如MUSIC)的估计性能严重下降。
阵列信号处理的基本知识分析
diag{g ej1 ,, g e } jM
1
M
阵元之间的互藕 有关因素:阵元之间的间距大小,系统工作 频段,采用的传感器类型等。 设所有阵元之间的藕合系数矩阵为C,则考 虑到阵元间互藕的阵列输出信号模型为:
x(t) CAs(t) n(t)
阵元位置 阵元测向的关键信息是空间信号入射到各阵 元的相对延迟相位,而这一相位依赖于阵元 之间的空间位置,阵元位置误差直接导致延 迟相位估计误差,从而影响信号参数估计。
信号参数估计(DOA,频率,极化参数,距离, 时延等): 谱估计方法(子空间方法,波束形成 方法),参数化方法(最大似然,基于子空间逼 近方法)。
Ref[1] H.krim and M.Viberg, Two decdees of array processing research: the parametric approach, IEEE signal processing Magazine, Vol.13, Vol.4, 1996. Ref.[2] D.H.Johnson, D.E.Dudgeon, Array signal processing, Prentice-Hall,1993. Ref.[3] IEE Proc. 1991. Ref.[4] Vaccaro, R.J, The past, present, and the future of underwater acoustic signal processing, IEEE Signal Processing Magazine, Vol.15 , No.4 , 1998.
-25
-30
-35
-40
-45
-50
-80 -60 -40 -20
0
20
声学阵列信号处理技术
声学阵列信号处理技术1.引言1.1 概述声学阵列信号处理技术是一种利用多个传感器将声音信号进行接收、处理和分析的技术。
声学阵列由多个微型麦克风组成,可以在不同位置同时接收远场声音信号,并通过信号处理算法来实现声音的定位、分离和增强等功能。
随着科技的不断发展,声学阵列信号处理技术在各个领域都得到了广泛的应用。
在语音识别领域,声学阵列可以提供清晰的语音输入,大大提高了语音识别的准确性和性能。
在通信领域,声学阵列可以提供更好的语音通话质量和降噪效果,改善了通信的可靠性和稳定性。
在音频处理领域,声学阵列可以实现音频信号的定位和分离,提供沉浸式音频体验。
此外,声学阵列还广泛应用于声纹识别、声波成像、无人驾驶等领域。
本文将对声学阵列信号处理技术进行详细的介绍和分析。
首先,我们将概述声学阵列信号处理技术的基本原理和工作流程。
接着,我们将详细讨论声学阵列的原理和应用。
最后,我们将对声学阵列信号处理技术进行总结,并展望其未来的发展方向。
通过本文的阅读,读者将能够了解声学阵列信号处理技术的基本概念和原理,以及其在不同领域中的应用和前景。
希望本文能够为相关领域的研究者和工程师提供一些有价值的参考和指导。
1.2 文章结构文章结构部分的内容可以包括以下内容:本文结构如下:第一部分为引言部分,主要对声学阵列信号处理技术进行基本介绍,包括概述、文章结构和目的。
第二部分是正文部分,分为两个小节。
2.1节主要概述了声学阵列信号处理技术的基本概念和原理,从信号采集、传输到处理的整个流程进行详细介绍,包括声学阵列的组成、工作原理以及信号处理算法等内容。
2.2节主要介绍了声学阵列技术的主要应用领域,包括音频信号处理、语音识别、声源定位等。
通过实际案例和应用场景的分析,展示了声学阵列信号处理技术在各个领域的重要性和应用前景。
第三部分为结论部分,总结了本文对声学阵列信号处理技术的概述和应用,强调了声学阵列技术在提高信号处理效果和拓展应用领域方面的优势,并展望了未来发展的方向和挑战。
阵列信号处理 psf 点扩散函数 反卷积
阵列信号处理中的点扩散函数(PSF)及反卷积一、引言在现代通信和雷达系统中,阵列信号处理扮演着举足轻重的角色。
阵列信号处理是指利用阵列几个接收器(天线或传感器)的信号,通过合理的处理方法,提高信号的接收性能。
其中,点扩散函数(PSF)和反卷积是阵列信号处理中的重要概念,对信号处理和系统性能的分析具有重要的意义。
二、点扩散函数(PSF)的定义和作用1. 点扩散函数(PSF)的定义点扩散函数(Point Spread Function)是指在给定系统下,点源信号经过系统传输后,其在接收端形成的响应函数。
它不仅包含了传输系统的影响,也反映了系统对信号的扩散程度和变形情况。
2. PSF在阵列信号处理中的作用在阵列信号处理中,PSF可以用来描述阵列接收器对来自空间不同方向的信号的响应和传输特性。
通过PSF分析,我们可以深入了解阵列接收器的特性,优化阵列的布局和参数设置,以提高目标信号的接收性能。
三、反卷积在阵列信号处理中的应用1. 反卷积的基本原理反卷积是指在接收端对接收到的信号进行处理,尝试去除或减弱信号经过传输过程中受到的扩散和变形影响,使得恢复的信号更加接近原始信号。
在阵列信号处理中,反卷积可以用来提高系统的分辨率和准确性,减小信号在传输过程中的误差和失真。
2. 反卷积在阵列信号处理中的应用通过反卷积的处理,我们可以在一定程度上弥补传输过程中的信号质量损失,并实现对目标信号的更加准确的采集和分析。
这对于通信系统的误码率控制、雷达目标识别和跟踪等方面具有重要的意义。
四、个人观点和总结在阵列信号处理中,点扩散函数(PSF)和反卷积是两个非常重要的概念,对于理解和优化阵列信号处理系统具有重要的意义。
通过对PSF和反卷积的深入研究和应用,我们可以更好地了解阵列接收器的特性,提高系统的性能和准确性。
我个人认为,未来随着通信技术和雷达技术的发展,PSF和反卷积的研究将会更加深入,为阵列信号处理领域带来更多的突破和创新。
阵列信号处理-1
n = −∞
∑A
∞
n
exp[ jnω 0 (t − α ⋅ x )]
(2.15) 由以上分析可以得到如下结论:传播的电 磁波 ,无论其信号是何种形式,均满足波 动方程。且任意方向传播的电磁波可同时 存在。
1 T An = ∫ s(u) exp(− jnω0u)du T 0
球面波波动方程: 球面波波动方程:
第一章
绪论
信号处理研究的内容
信号处理主要 研究方向
从复杂环境中 提取有用信号
由检测到的信号中 提取信息
信号处理的发展
起源于17世纪 50年代前期 分离元件 速度低 体积大 可靠性差
速度高 体积小 可靠性高
60年代后期 集成电路
信号处理的发展
信号处理前期
信号处理后期
时域信号处理 (一维)
图像处理
波束形成;
窗函数; 阵列的形成; 数字波束形成等;
阵列处理方法;
抗干扰; 超分辨;
空间目标参数的获取和估计; 两大类: 空间滤波; 空间谱估计;
阵列信号处理的主要目的: 1)增加信噪比 空间采样; 空间滤波; 2)利用阵列信号处理,对波源的个数、传播 方向、位置等参数进行估计。 3)对运动目标进行跟踪。
(2.1)
(2.2)
这里,J为电流密度: 2.3 进一步可推导出电磁波的波动方程表示式:
J = σE
∂ ∂ ∂ 1 ∂ E ( 2 + 2 + 2 )E = 2 2 ∂x ∂y ∂z c ∂t
2 2 2 2
2.4
假设波动方程的解为: 2.5 为计算方便,对这种形式的方程解作进一步的假 设,将解用指数形式表示:即 s ( x , y , z , t ) = A exp[ j (ω t − k x x − k y y − k z z )] 2.6 将其带入波动方程 (2.4)中,可以得到:
阵列信号处理1-2
2 2 T
+ W (t ) RXX (t )W (t )
T
(2.2.3 )
将上式对变量 W(t)求导数并使之等于零
ξ[W (t )] = 2rXd (t ) + 2RXX (t )W (t ) Wopt = RXX rXd
多径信号:有用信号经过多次反(散)射进入接收机的信号. 2,信号模型:
① 随机信号 例如:舰船发动机的噪声,推进器的噪声,未知的通信 信号,传感器热噪声,环境噪声,干扰信号,本质上都是随 机的.这些噪声都典型地来自大量独立微弱源的合成效应, 故应用统计学中心极限定理,可取合成噪声信号的数学模型 为高斯(Gauss)随机过程(通常是平稳高斯随机过程). 高斯信号的统计学性质特别有利于分析计算,因为高斯随机 过程的一阶矩和二阶矩给出了这种随机信号的全部信息特征. 来源:大量独立微弱源的合成效应.(未知的通信信号传感 器热噪声,环境噪声,干扰……等) 模型:Gauss平稳随机过程 参数:均值,方差
(2.1.1) (2.1.2) (2.1.3)
T 方向图形成网络: W = [ w1 , w 2 , L , w N ]
(形成最优权 和系统输出) 自适应处理器:
y (t ) = W T X = X T W
( 例如MVDR:Minimum Variance Distortionless Response) 求解约束性问题: min s.t
4,有利于多目标远距离的检测和跟踪 (Multiple targets detection and traction) 阵元数越多,天线孔径越大,波束及空间谱分辨率越高. 同时自由度增大.增加形成的主波束数量,实现对多目标的跟 踪.另一方面,也可以增加抑制干扰的数量. 三,自适应阵列信号处理的发展历史 自适应波束形成技术的研究主要在六十年代到七十年代, 到七十年代末已经基本成熟. 空间谱估计:主要是超/高分辨空间谱估计技术,从七 十年代到八十年代末期. 八十年代到九十年代,主要研究如何在实际系统中应用
天线阵列信号处理算法的设计与优化
天线阵列信号处理算法的设计与优化天线阵列作为一种重要的通信技术,已经得到广泛应用。
在无线通信、雷达探测、声纳等领域,天线阵列都有广泛的应用。
然而,在使用天线阵列进行通信时,信号处理算法的设计与优化是非常关键的。
本文将对天线阵列信号处理算法的设计与优化进行详细讨论。
一、天线阵列的基本原理首先,我们来介绍一下天线阵列的基本原理。
天线阵列由若干个天线单元组成,这些天线单元一般都是等距排列的。
天线阵列通过控制各个天线单元的电相位,可以实现对信号的波束形成和方向控制。
具体来说,通过对各个天线电相位的不同控制,可以使天线阵列对某一方向的信号增益最大化,而抑制其他方向上的信号。
这种信号处理的方式被称为波束形成。
二、天线阵列信号处理算法天线阵列信号处理算法分为两类:波束形成算法和信号源定位算法。
其中,波束形成算法包括线性波束形成算法、最小方差无失真响应算法、波束扫描算法等。
信号源定位算法包括波前束形成、相移阵列中的信号源定位等算法。
在实际使用中,通过对这些算法进行设计与实现,可以实现对不同类型的信号进行处理和优化。
1. 线性波束形成算法线性波束形成算法是一种基础的波束形成方法。
它的主要思想是通过对不同方向上信号进行滤波加权,从而形成所需的波束。
具体来说,设天线阵列接收到的信号为 x(t),则通过如下的加权计算得到波束形成后的信号 y(t):y(t)=w^Hx(t)其中,w为加权向量,^H为向量共轭转置操作符。
根据欧拉公式,w可以表示为:w=[1 e^(jφ) ... e^((N-1)jφ)]^T其中,φ为每个天线单元的电相位差,N为天线单元的数目。
线性波束形成算法简单易懂,但是存在一些缺陷,例如低噪声增益、信号干扰以及多径效应等。
因此,需要对算法进行优化。
2. 最小方差无失真响应算法最小方差无失真响应算法是一种对线性波束形成算法的优化。
这种算法通过解决线性波束形成算法中存在的缺陷问题,提高了信号处理算法的效率和精确性。
阵列信号处理 ARRAY
智能天线技术
波束成形
– 天线单元之间的间距小于半个波长 – 发射机和接收机必须预知方向 – 在蜂窝系统中通过形成的,窄波束减少干扰
从而增加复用系数,增加系统容量 – 通过天线增益,降低发射功率 – 通过空间滤波抑制可分离的空间干扰,抑制
时延扩展、减少瑞利衰落,对于衰落没有分 集增益。
阵列流形(1)
空间复用
利用空间散射信道,在各个收发天线对之间 形成多路独立的传输信道。
传输相同数据可以提高传输可靠性
传输不同的数据可以提高传输容量
Transmit
Receive
M elements
N elements
文章结构与框架
引言 MIMO—OFDM系统模型 自适应半盲波束形成算法
分布多天线阵
阵列信号处理的系统分类
有源系统 –具有发射传感器阵的系统
无源系统 –不具有发射传感器阵的系统
阵列信号处理主要研究什么
超分辨
在传感器阵列的物理孔径一定的条件下,通 过信号处理,获得比常规的波束形成器处理方
法高得多的空间分辨率。 自适应
如何能在复杂的干扰背景下最优地检测信号。
5、结论(2)
此外,这种算法充分利用了OFDM的导 频特性,波束形成器能自适应调整权矢 量,其更新方式与TDMA和CDMA相似, 所以本算法可直接用于有天线阵列基于 OFDM的第三代和以后的无线通信系统, 在多天线通信系统的矩阵信道估计和提 高天线增益方面有广泛的应用前景.
盲波束形成
早期的盲波束形成技术依赖方向估计 方向估计分为参数化方法和非参数化方
法两大类 非参数化方法是基于谱的方法
——以空间角为自变量分析到达波的空 间分布(空间谱)
阵列信号处理技术在雷达系统中的应用研究
阵列信号处理技术在雷达系统中的应用研究雷达系统作为一种重要的探测和监测工具,广泛应用于军事、民用航空以及气象等领域。
而阵列信号处理技术作为雷达系统中的关键技术之一,对于提高雷达系统的性能和功能起着至关重要的作用。
本文将探讨阵列信号处理技术在雷达系统中的应用研究,并对其优势和挑战进行分析。
一、阵列信号处理技术的基本原理阵列信号处理技术是基于阵列天线的工作原理和信号处理算法相结合的一种技术。
阵列天线由多个天线单元组成,通过对天线单元的控制和信号处理算法的优化,可以实现对信号的波束形成、干扰抑制和目标定位等功能。
在雷达系统中,阵列信号处理技术通过对接收到的多个天线单元的信号进行加权和相位控制,实现对目标信号的增强和干扰信号的抑制。
通过对不同天线单元接收到的信号进行相位调控,可以实现波束的形成,从而实现对目标信号的定位和跟踪。
同时,通过对不同天线单元接收到的信号进行加权处理,可以实现对干扰信号的抑制,提高雷达系统的抗干扰能力。
二、阵列信号处理技术在雷达系统中的应用1. 目标定位和跟踪阵列信号处理技术在雷达系统中的一个重要应用是目标定位和跟踪。
通过对接收到的信号进行相位调控,可以实现波束的形成,从而实现对目标信号的定位和跟踪。
相比传统的单天线系统,阵列信号处理技术可以提供更高的定位精度和跟踪灵敏度,使得雷达系统能够更准确地获取目标信息。
2. 干扰抑制雷达系统在实际应用中常常会受到各种干扰信号的影响,如多径效应、杂波干扰等。
阵列信号处理技术通过对不同天线单元接收到的信号进行加权处理,可以实现对干扰信号的抑制,提高雷达系统的抗干扰能力。
同时,通过优化信号处理算法,可以进一步提高干扰抑制的效果。
3. 多目标探测传统的雷达系统在探测多个目标时,常常需要进行时间分复用或频率分复用等技术,从而导致雷达系统的复杂度增加。
而阵列信号处理技术可以通过对接收到的多个天线单元的信号进行加权和相位调控,实现对多个目标的同时探测和定位,从而简化了雷达系统的设计和实现。
阵列信号处理某高校课程
医学成像中的阵列信号处理
总结词
医学成像中的阵列信号处理主要用于提高成像质量和诊断准确率。
详细描述
医学成像技术如超声成像、核磁共振成像等,利用不同频率的声波或电磁波获取人体内部结构的信息 。阵列信号处理技术可以对接收到的信号进行处理,实现图像增强、去噪和分辨率提升。阵列信号处 理在医学成像中能够提高成像质量和诊断准确率,对于医疗诊断和治疗具有重要意义。
阵列信号处理将进一步与其他 领域的技术融合,如机器学习 、人工智能等。通过跨域协同 ,可以实现更高效、更精准的 信号处理和分析。
随着传感器技术的发展,阵列 的构成和排列方式也将不断创 新。未来的阵列信号处理系统 将更加灵活、多样化和智能化 。
阵列信号处理技术的应用领域 将继续拓展,如智能感知、无 人系统、物联网等新兴领域。 通过与这些领域的交叉融合, 阵列信号处理将发挥更大的作 用和价值。
信号的波束形成
通过调整阵列天线接收信号的相位和幅度,实现信号的 波束形成,增强特定方向的信号强度。
阵列信号的传播特性
信号的空间传播
阵列信号在空间中传播时,会受到环境因素的影 响,如多径效应、阴影衰落等。
信号的方向特性
阵列信号的方向特性包括方向图、波束宽度、副 瓣电平等,这些特性决定了阵列对信号的接收和 定向发射能力。
05
课程总结与展望
课程总结
阵列信号处理的基本原理
阵列信号处理是一门研究如何通过多个传感器接收信号,并通过对这些信号的处理和分析,实现对信号源的定位、跟 踪和识别的学科。其基本原理包括信号的传播、阵列的几何排列、信号的波束形成等。
课程内容与学习目标
本课程介绍了阵列信号处理的基本概念、原理和方法,包括信号模型、阵列模型、信号参数估计、波束形成等。通过 学习,学生应能掌握阵列信号处理的基本理论和方法,并能够运用所学知识解决实际问题。
宽带阵列信号处理共118页
Music方法步骤: 由阵列数据 估计相关矩阵 对 作特征分解。 用 个大特征值对应的特征矢量构成 或用 个小特征值对应的特征矢量构成 用搜索矢量 向 作投影 计算谱峰: 谱峰与信号强度无关,只反映 与 的正交性。
1
2
3
4
5
6
ISM 算法步骤
ISM算法
仿真条件: 天线阵元数:8 信号中心频率:100MHz 带宽:40MHz 采样率:240MHz 观测时间:0.06827ms 离散频率数:44 信号方向: , SNR:5dB 频域快拍数:64
ISM 算法仿真
ISM算法
ISM算法仿真图
宽带阵列信号的空间谱估计来自MUSIC 与 ESPRIT 比较
MUSIC算法
利用信号和噪声 子空间的正交特性 分辨力高 估计精度高 总体性能优于ESPRIT算法
利用信号子空间的旋转不变特性 计算量小 不需要进行谱峰搜索 实时性好
ESPRIT算法
宽带超分辨估计算法
宽带阵列信号的空间谱估计
应用
涉及雷达、声纳、通信、地震勘探、射电天文以及医学诊断等多种国民经济和军事领域。
研究背景及意义
宽带信号
普遍存在
语音信号 地震信号 声纳信号
形式多样
跳频信号 扩频信号 线性调频 信号
优点
分辨率高 抗干扰能 力强 与背景噪 声相关性弱
军事应用
超宽带 高距离分辨率雷达
宽带阵列信号处理更加受到人们的关注,成为阵列信号处理的主要发展方向。
时,可以使聚焦误差最小。理想聚焦性能不可能达到。
改写上式
表示矩阵的奇异值。
考虑非理想情况,聚焦误差最小的准则
用搜索的方法可以很容易获得最优参考频率。
使用Matlab进行阵列信号处理的技巧与方法
使用Matlab进行阵列信号处理的技巧与方法引言:阵列信号处理是一种用于提取和增强阵列传感器接收到的信号的技术。
在现代通信、雷达、声音处理等领域中得到广泛应用。
Matlab作为一款功能强大的数学软件,提供了丰富的工具和函数,可用于实现阵列信号处理算法。
本文将介绍一些使用Matlab进行阵列信号处理的关键技巧和方法。
一、信号预处理在进行阵列信号处理之前,通常需要对接收到的信号进行预处理。
预处理的目的是降低噪声、增强信号和提取有用的信息。
Matlab提供了多种预处理函数和工具,如滤波、降噪和频谱分析等。
以下是一些常用的信号预处理方法:1.1 信号滤波滤波技术用于去除信号中的噪声和不需要的频率成分。
Matlab提供了丰富的滤波函数,如低通滤波、高通滤波和带通滤波等。
可以根据需求选择适当的滤波器,并使用滤波函数对信号进行滤波。
滤波后的信号可以更好地用于后续的信号处理。
1.2 降噪降噪是指去除信号中的噪声成分,使得信号更加清晰和有效。
Matlab提供了多种降噪方法,如小波降噪、信号平滑和中值滤波等。
可以根据噪声的特点选择适当的降噪方法,并使用相关函数实现降噪操作。
1.3 频谱分析频谱分析用于分析信号的频率成分和谱特性。
Matlab提供了多种频谱分析工具,如FFT、STFT和功率谱密度估计等。
可以使用这些工具对信号的频率特性进行分析,并可进一步提取感兴趣的频率成分。
二、阵列信号分离与波束形成阵列信号分离与波束形成是阵列信号处理的关键步骤。
在多传感器阵列中,通过对接收到的信号进行分析和处理,可以实现对不同源信号的分离和定位。
2.1 空间滤波空间滤波是阵列信号处理中的一种常用技术。
通过利用阵列传感器之间的空间差异,对接收到的信号进行滤波和分离。
Matlab提供了多种空间滤波函数和工具,如波束形成、最小方差无失真响应(MVDR)等。
可以根据阵列的布局和信号源的分布,选择适当的空间滤波方法,并使用相关函数实现。
2.2 目标定位目标定位是指在接收到的信号中确定源信号的方向和位置。
阵列信号处理读研
阵列信号处理读研一、引言随着信息技术的发展和智能设备的普及,信号处理在各个领域中扮演着重要的角色。
其中,阵列信号处理作为一种高级信号处理技术,具有广泛的应用前景。
因此,越来越多的人选择进行阵列信号处理相关研究,并选择读研深造。
本文将详细探讨阵列信号处理读研的相关内容。
二、阵列信号处理概述2.1 信号处理的基本概念信号处理是指对信号进行采集、转化、编码、解码等一系列操作的过程。
阵列信号处理则将信号处理与阵列技术相结合,通过利用多个传感器接收信号,并利用阵列中的几何结构对信号进行处理和分析。
2.2 阵列信号处理的应用领域阵列信号处理在许多领域中具有重要应用,例如无线通信、声音处理、雷达系统等。
通过阵列信号处理,信号的质量可以得到提高,对于特定目标的检测和定位等任务也更加高效准确。
三、阵列信号处理读研的意义3.1 学术研究意义阵列信号处理涉及到多个学科的知识,包括信号处理、数学、电子工程等。
通过读研,在相关领域进行深入研究,可以掌握先进的理论知识和实践技能,为学术研究做出贡献。
3.2 工程应用意义阵列信号处理在实际应用中有广泛的需求,例如在通信系统中,通过阵列信号处理技术可以提高信号的传输效率和抗干扰能力。
因此,通过读研,可以掌握阵列信号处理的相关原理和技术,为工程应用提供支持。
四、阵列信号处理读研的必备知识4.1 数学基础知识阵列信号处理涉及到许多数学知识,例如线性代数、概率论、信号与系统等。
在读研之前,有一定的数学基础是必要的,可以通过学习相关课程来打好基础。
4.2 信号处理基础知识阵列信号处理是在信号处理的基础上发展起来的,因此在读研之前,需要对信号处理的基本概念、方法和算法等有一定的了解。
可以通过学习相关课程或自学来掌握信号处理的基础知识。
4.3 电子工程知识阵列信号处理涉及到电子工程的相关知识,例如电路设计、电磁波传播等。
在读研之前,可以通过学习相关课程或进行实践操作来掌握电子工程的基本理论和实践技能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、应用领域的一些实例
仿真结果
方向图综合例子
0 -10 -20
Pattern (dB)
-30 -40 -50 -60 -70 -80
-80
-60
-40
-20 0 20 Angle of Arrival (deg.)
40
60
80
[-55 -35] [35 55]
5 0 -5 -10 -15
Pattern (dB)
阵元之间的互藕 有关因素:阵元之间的间距大小,系统工作 频段,采用的传感器类型等。 设所有阵元之间的藕合系数矩阵为C,则考 虑到阵元间互藕的阵列输出信号模型为:
x(t ) CAs (t ) n(t )
阵元位置 阵元测向的关键信息是空间信号入射到各阵 元的相对延迟相位,而这一相位依赖于阵元 之间的空间位置,阵元位置误差直接导致延 迟相位估计误差,从而影响信号参数估计。 阵列模糊 阵元间距大于 / 2 时,影响空间信号到达角 的可辨识性和确定性,需要解决阵列模糊问 题。
,, f ( )e
M
jk pM
]
T
阵元及通道幅相特性一致性 设第m个阵元对应信道的幅度和相位特性 为 g e ,则阵列响应系数将受此幅相特性加 权,即有:
jm m
x(t ) As (t ) n(t )
diag{g e ,, g e }
j1 jM 1 M
谢谢各位!
自适应波束形成(Beamforming,空域滤波) 实质是通过对各阵元(传感器)加权进行空域滤波 以到达对不同来向的信号进行增强或抑制的目的, 而且它可以根据信号环境的变化,来自适应的改 变各阵元的加权因子。 在理想的条件下,自适应波束形成可以有效的 抑制干扰而保留期望(有用)信号,从而使阵列的 输出信号干扰噪声比(SINR)达到最大。 三种准则:MVDR, MMSE, MSNR
]
T
s [s (t ),, s (t )] 为信号源矢量。
T
波传播的方向信息含于载波上,而不是复包络上, 即与波形无关(这与时域信号处理不同),空间信 息含于载波上,时域信息含于信号包络上。
对阵列及其通道的假设 阵元的方向性:
空间入射信号示意图
a( ) [ f ( )e
1
jk p1
时域滤波 频率响应 通带 阻带 频率选择
空域滤波 方向图 主瓣 旁瓣 方向选择
三、当前的一些研究热点和新技术
参数估计以及信号检测: 1. 非理想条件下稳健的参数估计方法和信号检测 (色噪声,非平稳信号环境,阵列存在系统误差 (包括互藕、幅相误差、位置误差))。 2. 快速算法(子空间跟踪与更新,权系数更新)。 3. 相干信号和宽带信号环境。 4. 低信噪必(弱信号)、短数据环境下的检测与估 计。 5. 新方法(MCMC,SMC(particle filter),SVB, Stochastic Resonance)。
阵列信号处理系统构成
接收形式: 多个传感器(阵元),声纳,天线。 常见的阵列几何结构:均匀线阵,非均匀 线阵,面阵中的均匀和非均匀圆阵,非均 匀L阵,十字阵等,共形阵(立体阵)。
多传感器阵列 多通道接收机 多通道同 步采集和模数转换 数据处理终端
阵列信号的应用领域 着重空间传输信号(电磁波、声波、地震冲 击波)的获取、处理与传输,应用于雷达、 声纳、导航、地震探测、 移动通信 (SDMA)、 生物医学等领域。阵列系统的 多信号处理能力、参数提取的高分辨、高 精度和抗干扰能力等优点,很大程度上都 依赖于适当的阵列信号处理算法。
波束形成:
1. Robust Beamforming(steering vector error, array error, coherent signals, Robust Capon beamforming) . 2. Array Pattern Synthesis. The problem of designing complex weights for individual array elements to achieve properties such as high directive gain or to spatially filter signals by their angle of arrival.
式中L为阵列最大口径,F和 为信号中心频率 和该频率对应的波长。 远场假设 即辐射源到阵列的距离远大于阵列的最大口 径,从而入射到阵列的信号波前可近似为平 面波前(d ).
L2
入射信号统计特性 空间入射信号平稳且各态历经,可以用时 间平均代替集合平均。一般还假定各入射 信号统计独立。 E{s(t ) s (t )} diag{ ,, } 噪声统计特性 空时白高斯噪声;色噪声环境下需要稳健 的算法。 E{n(t )n (t )} I
Circular array of 8 sensors, diameter d=1.29m, wavelength=0.77~ 1.5m, beam width=45, Fs=375k
一种基于高阶累积量的近场源距离、频率和方位联 合估计算法,电子学报,2005(to appear). Passive Near-Field Source Localization Method Using Higher Order ESPRIT, IEEE Trans. Antenna and Propagation, 2nd revision. Passive Near-Field Source Localization Method based on Spatial-Temporal Structure, IEE Proc. RSN, 1st revision.
阵列系统模型的假设
阵列信号数学模型 设P个空间信号入射到由M个阵元组成的阵 列,t时刻第m阵元的输出可以用矩阵表示 为: x (t ) a ( ) s (t ) n (t )
P m l 1 m l l m
s ( t ) 为第l个入射信号波前, a ( ) 为第m个 n (t ) 为阵元接收 阵元对该信号的响应系数,
-20 -25 -30 -35 -40 -45 -50 -80 -60 -40 -20 0 20 Angle of Arrival 40 60 80
波束形成例子
0 -10 -20
¼(dB) òÍ ½Ï ·
-30 -40 -50 -60 -70 -60
-40
-20
0 DOA(¶È)
20
40
60
实测数据的例子
阵列信号处理中的若干问 题与研究
主要内容
阵列信号处理的基本知识 阵列信号处理的主要内容 当前的一些研究热点和新技术 应用领域的一些实例
• 仿真结果 • 实测数据处理
一、阵列信号处理的基本知识
阵列信号处理系统构成 阵列系统模型假设
阵列信号数学模型 对阵列及其通道的假设 对信号和噪声的假设
H 2 2 s1 sP
H 2
信号数目 属于信号检测问题(AIC,MDL,etc),一般 假定先验已知。
二、阵列信号处理的主要内容
信号参数估计(DOA,频率,极化参数,距离, 时延等): 谱估计方法(子空间方法,波束形成 方法),参数化方法(最大似然,基于子空间逼 近方法)。
Ref[1] H.krim and M.Viberg, Two decdees of array processing research: the parametric approach, IEEE signal processing Magazine, Vol.13, Vol.4, 1996. Ref.[2] D.H.Johnson, D.E.Dudgeon, Array signal processing, Prentice-Hall,1993. Ref.[3] IEE Proc. 1991. Ref.[4] Vaccaro, R.J, The past, present, and the future of underwater acoustic signal processing, IEEE Signal Processing Magazine, Vol.15 , No.4 , 1998.
各通道同步采集假设 阵列接收信号需要进行采样和A/D变换 为数字信号后进入DSP处理器进行算法处 理。
Nyquist采样率
宽频段信号:采用欠采样率(空时欠采 样),需要解模糊算法。
对信号和噪声的假设
窄带假设 信号带宽远小于信号波前跨越阵列最大口径 所需要的时间的倒数,即有如下假设:
B L 1 F
l m m
加性噪声。
将整个阵列Leabharlann 输出信号写成矩阵形式为:x(t ) As(t ) n(t )
A [a( ),, a( )] 为阵列流行矩阵、空间信 号方向矢量、阵列响应矩阵。
1 P
a( ) [1 e
1 P
j 2 d sin /
,, e
j 2 ( M 1 ) d sin /