2014年高考三轮复习数学思想方法专题二 数形结合思想教师版
高三数学专题二 数形结合的思想方法课件
程不可解,不能独立求解每一个方程,把两个方程联系起
来,思考解题方法. [解析] 两个方程都可以变形:lgx=3-x, 10x=3-x, 设f(x)=10x,则f -1(x)=lgx,y=3-x, 且 x1,x2分别为两函数f(x)=10x, y= 3-x的图象交点的横坐标, 返回目录 f
-1(x)=lgx的图象与
种意识和能力.
[答案] D
返回目录
模拟训练
4. 已知 f(x) 是定义在 ( - 3,3) 上的奇函数 , 当 0<x<3 时 , f(x) 的图象如图所示,那么不等式 f(x)cosx<0 的解 集是
(
)
π π A.( 3, ) (0,1) ( ,3) 2 2 π π B.( ,1) (0,1) ( ,3) 2 2 C.( 3,1) (0,1) (1,3) π D.( 3, ) (0,1) (1,3) 2
坐标、等式或不等式等;“形”是数学研究中的图形形式,泛
指表示量与之对应的图形、几何意义等 . 数形结合,是把同一 数学问题在数量关系和空间形式这两个方面结合起来思考问题, 由形思数,由数思形,互相联想,达到互相转化并使问题得以 解决的数学思想. “数”和“形”是数学的两个最基本的研究对象,但在数 学早期发展史上,人们对数与形的研究是相对独立和隔离的, 从中发展出相对独立的代数学和几何学,直到解析几何学的建 立,通过坐标系才使数与形这两个对象完到直线①的距离为d, 则d
|1 4 t | 5 5 , 即5-t=±5.
∴tmin=0,tmax=10.
∴x-2y的最大值为10,故选D. [点评] 令t=f(x,y),从而构造出t的几何意义,这是解
决某些代数式问题的常用方法 .有许多的数学问题,从叙述过
(新课标版)备战高考数学二轮复习 思想3.3 数形结合思想教学案 文-人教版高三全册数学教学案
例
1.设定义域为
R
的函数
f
(x)
5|x1| 1, x
x2
4x
4,
0, x
0
若关于
x
的方程
f
2(x) (2m 1)
f
(x) m2
0有
7
个不同的实数解,则 m ( )
A.6
B.4 或 6
C.6 或 2
D.2
分析:首先方程 f 2 (x) (2m 1) f (x) m2 0 有 7 个不同的实数解,根据 f (x) 的解析式画出 f (x) 的图
x t 42 y 32 25 上,而点 P x1 ,y1 又在圆上,所以两圆有交点,根据两圆位置关系得 5 5 t 4 62 3 72 5 5 ,解得实数 t 的取值范围是.
专业.
.
x t 42 y 32 25 有公共点,所以 5 5 t 4 62 3 72 5 5 ,解得
.
思想 3.3 数形结合思想
数形结合的思想在每年的高考中都有所体现,它常用来研究方程根的情况,讨论函数的值域(最值)及求
变量的取值范围等.对这类内容的选择题、填空题,数形结合特别有效.数形结合的重点是研究“以形助
数”,借助各种函数的图象和方程的曲线为载体,考查数形结合的思想方法,在考题形式上,不但有小题,
2
2
∴当
x
1
时,g
x
取最小值
1
2e 2
,当
x
0
时,g
0
1,当
x
1
时,g
1
e
0
,直线
y
ax
a
2
恒过定点 (1,0) 且斜率为 a ,故 a g 0 1且 g 1 3e1 a a ,解得 3 a 1 .
高中数学高考二轮复习数形结合思想教案
第二讲数形结合思想对应学生用书P1291数形结合的含义(1)数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法.数形结合思想通过“以形助数,以数辅形”,使复杂问题简单化,抽象问题具体化,能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合.(2)数形结合包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数形之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.2数形结合的途径(1)通过坐标系“形题数解”借助于直角坐标系、复平面,可以将几何问题代数化.这一方法在解析几何中体现得相当充分(在高考中主要也是以解析几何作为知识载体来考查的).值得强调的是,“形题数解”时,通过辅助角引入三角函数也是常常运用的技巧(这是因为三角公式的使用,可以大大缩短代数推理).实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义.如等式(x -2)2+(y -1)2=4,表示坐标平面内以(2,1)为圆心,2为半径的圆.(2)通过转化构造“数题形解”许多代数结构都有着相对应的几何意义,据此,可以将数与形进行巧妙地转化.例如,将a (a >0)与距离互化;将a 2与面积互化,将a 2+b 2+ab =a 2+b 2-2|a ||b |cos θ(θ=60°或θ=120°)与余弦定理沟通;将a ≥b ≥c >0且b +c >a 中的a 、b 、c 与三角形的三边沟通;将有序实数对(或复数)和点沟通;将二元一次方程与直线、将二元二次方程与相应的圆锥曲线对应等等.这种代数结构向几何结构的转化常常表现为构造一个图形(平面的或立体的).另外,函数的图象也是实现数形转化的有效工具之一,正是基于此,函数思想和数形结合思想经常相互渗透,演绎出解题捷径.例1 已知函数f (x )=sin ⎝ ⎭⎪⎫2ωx +π3的相邻两条对称轴之间的距离为π4,将函数f (x )的图象向右平移π8个单位后,再将所有点的横坐标伸长为原来的2倍,得到g (x )的图象,若g (x )+k =0在x ∈⎣⎢⎡⎦⎥⎤0,π2有且只有一个实数根,则k 的取值范围是( )A.k ≤12B .-1≤k <-12 C.-12<k ≤12 D .-12<k ≤12或k =-1解析 因为f (x )相邻两条对称轴之间的距离为π4,结合三角函数的图象可知T 2=π4.又T =2π2ω=πω=π2,所以ω=2,f (x )=sin ⎝ ⎛⎭⎪⎫4x +π3. 将f (x )的图象向右平移π8个单位得到f (x )=sin ⎣⎢⎡⎦⎥⎤4⎝ ⎛⎭⎪⎫x -π8+π3=sin ⎝ ⎛⎭⎪⎫4x -π6,再将所有点的横坐标伸长为原来的2倍得到g (x )=sin ⎝ ⎛⎭⎪⎫2x -π6. 所以方程为sin ⎝ ⎛⎭⎪⎫2x -π6+k =0. 令2x -π6=t ,因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以-π6≤t ≤5π6. 若g (x )+k =0在x ∈⎣⎢⎡⎦⎥⎤0,π2有且只有一个实数根, 即g (t )=sin t 与y =-k 在⎣⎢⎡⎦⎥⎤-π6,5π6有且只有一个交点. 如图所示,由正弦函数的图象可知-12≤-k <12或-k =1,即-12<k ≤12或k =-1.利用数形结合求方程解应注意两点(1)讨论方程的解(或函数的零点)可构造两个函数,使问题转化为讨论两曲线的交点问题,但用此法讨论方程的解一定要注意图象的准确性、全面性,否则会得到错解.(2)正确作出两个函数的图象是解决此类问题的关键,数形结合应以快和准为原则而采用,不要刻意去数形结合.模拟演练1 已知函数f (x )满足f (x )+1=1f (x +1),当x ∈[0,1]时,f (x )=x ,若在区间(-1,1]上方程f (x )-mx -m =0有两个不同的实根,则实数m 的取值范围是( )A.⎣⎢⎡⎭⎪⎫0,12 B.⎣⎢⎡⎭⎪⎫12,+∞ C.⎣⎢⎡⎭⎪⎫0,13 D.⎝ ⎛⎦⎥⎤0,12 答案 D解析方程f (x )-mx -m =0有两个不同的实根等价于方程f (x )=m (x +1)有两个不同的实根,等价于直线y =m (x +1)与函数f (x )的图象有两个不同的交点.因为当x ∈(-1,0)时,x +1∈(0,1),所以f (x )+1=1f (x +1)=1x +1,所以f (x )=1x +1-1,所以f (x )=⎩⎨⎧ x ,x ∈[0,1]1x +1-1,x ∈(-1,0).在同一平面直角坐标系内作出直线y =m (x+1)与函数f (x ),x ∈(-1,1]的图象,由图象可知,当直线y =m (x +1)与函数f (x )的图象在区间(-1,1]上有两个不同的公共点时,实数m 的取值范围为⎝ ⎛⎦⎥⎤0,12.例2 (1)使log 2(-x )<x +1成立的x 的取值范围是________.(2)若不等式|x -2a |≥12x +a -1对x ∈R 恒成立,则a 的取值范围是________.。
高考数学专题复习(数形结合、分类讨论思想).doc
专题4 数形结合、分类讨论思想一.知识探究:1.数形结合作为一种重要的数学思想方法历年来一直是高考考察的重点之一。
数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。
所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。
数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。
数形结合的途径:(1)通过坐标系形题数解(2)通过转化构造数题形解 数形结合的原则:(1)等价性原则;(2)双向性原则;(3)简单性原则2.分类讨论是一种重要的数学思想方法,当问题的对象不能进行统一研究时,就需要对研究的对象进行分类,然后对每一类分别研究,给出每一类的结果,最终综合各类结果得到整个问题的解答。
分类原则:(1)对所讨论的全域分类要“即不重复,也不遗漏”(2)在同一次讨论中只能按所确定的一个标准进行(3)对多级讨论,应逐级进行,不能越级;二.命题趋势分类讨论思想是一种重要的数学思想,它在人的思维发展中有着重要的作用,因此在近几年的高考试题中,他都被列为一种重要的思维方法来考察。
分类讨论是每年高考必考的内容,预测对本专题的考察为:将有一道中档或中档偏上的试题,其求解思路直接依赖于分类讨论,特别关注以下方面:涉及指数、对数底的讨论,含参数的一元二次不等式、等比数列求和,由n S 求n a 等。
纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。
三.再现性题组1.集合A ={x||x|≤4,x ∈R},B ={x||x -3|≤a ,x ∈R},若A ⊇B ,那么a 的范围是( )。
A. 0≤a≤1B. a≤1C. a<1D. 0<a<1 对参数a 分a>0、a =0、a<0三种情况讨论,选B ;2. 若θ∈(0, π2),则lim n →∞cos sin cos sin n n n n θθθ+θ-的值为( )。
高考数学思想方法专题_第二讲数形结合思想
高考数学思想方法专题:第二讲数形结合思想【思想方法诠释】一、数形结合的思想所谓的数形结合,就是根据数学问题的条件和结论之间的在联系,既分析其代数含义,又揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决,数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。
数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从形的直观和数的严谨两方面思考问题,拓宽了解题思路,是数学的规律性与灵活性的有机结合.数形结合的实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.二、数形结合思想解决的问题常有以下几种:1.构建函数模型并结合其图象求参数的取值围;2.构建函数模型并结合其图象研究方程根的围;3.构建函数模型并结合其图象研究量与量之间的大小关系;4.构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;5.构建立体几何模型研究代数问题;6.构建解析几何中的斜率、截距、距离等模型研究最值问题;7.构建方程模型,求根的个数;8.研究图形的形状、位置关系、性质等。
三、数形结合思想是解答高考数学试题的一种常见方法与技巧,特别是在解选择题、填空题时发挥奇特功效,具体操作时,应注意以下几点:1.准确画出函数图象,注意函数的定义域;2.用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图)然后作出两个函数的图象,由图求解。
四、在运用数形结合思想分析问题和解决问题时,需做到以下四点:1.要清楚一些概念和运算的几何意义以及曲线的代数特征;2.要恰当设参,合理用参,建立关系,做好转化;3.要正确确定参数的取值围,以防重复和遗漏;4.精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,以便于问题求解。
数学思想方法——数形结合思想在高考中的应用
数学思想方法——数形结合思想在高考中的应用作者:段安文来源:《中学课程辅导·教师教育》 2014年第4期段安文(湖北省武汉睿升学校湖北武汉430000)【摘要】数形结合思想是中学数学中重要的数学思想方法之一,“形”和“数”是数学知识表现的两种重要形式。
通过对数形结合思想的诠释,分析其在高考中的重要地位,并通过实际例子说明数形结合思想在几类高考题型中的应用。
【关键词】数形结合思想高考试题函数与方程最值与取值范围【中图分类号】G633.6 【文献标识码】A【文章编号】1992-7711(2014)04-022-02一、数形结合的诠释数形本是相倚依,焉能分作两边飞,数缺形时少直觉,形少数时难入微。
数形结合百般好,隔离分家万事休。
集合代数统一体,永远联系膜分离。
——华罗庚诚如大师所言,数形相倚依,“数”准确而抽象,“形”形象而粗略,二者的结合沟通了数与形的联系,从而使得用数量的抽象特征来说明图形形象直观的事实,同时又用图形直观具体的特征来说明数量的抽象性质,这正是数形结合的本质所在。
二、数形结合在高考中的地位纵观2013年全国各地的高考试题,会发现,数形结合的思想在考试中占有着重举足轻重的地位。
兀论是从总分上看,数学150分,而运用数形结合思想解决题型的分数就占了一半甚至上可能更多;还足从题量上看,数形结合题型贯穿了整张试卷中的“选择题”、“填空题”、“简答题”。
三、数形结合在高考中的应用分析数形结合思想是解答高考数学试题的一种常用方法与技巧,特别是在解选择题、填空题时往往能发挥奇效,因此重视对有关数形结合题型的分析,将有助于提高解题的能力和速度。
下面仪就常见的两类问题进行浅析,希望引起更多读者对数形结合思想的重视。
类型一:函数与方程问题四、易错点警示1.所画图形(象)失真、残缺,易造成工作无效甚至给解题造成误导。
2.不善于将图形(象)转化为数(方程),通过数的运算(解方程)达到解决图形(象)问题的目的。
高考专题复习思想方法:数形结合(精华版)
数形结合思想数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要数学思想方法.利用数形结合思想,“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从而找到解题思路,使问题得到解决.以形助数常用的有:借助于数轴、函数图像、单位圆、数式的结构特征、解析几何方法,以数解形常用的有:借助于几何轨迹所遵循的数量关系、运算结果与几何定理的结合.【以形助数】例1、(集合中的数形结合)已知集合{}{}0103,22<--=+<<=xxxBaxaxA,当∅≠⋂BA,求实数a的取值范围.参考解答:画数轴分析可得45a-<<.例2、(函数中的数形结合)设()222f x x ax=-+,当[)1,x∈-+∞时,()f x a>恒成立,求a参考解答:解法一:由()f x a>,在[)1,-+∞上恒成立2x⇔考查函数()222g x x ax a=-+-的图像在[1,-不等式的成立条件是:1)()()244202,1a a a∆=--<⇒∈-;2)()(]13,210a ag∆≥⎧⎪<-⇒∈--⎨⎪->⎩;综上所述()3,1a∈-解法二:由()()2221f x a x a x>⇔+>+,令),l m对应的a的值分别为3,1-,故直线l对应的a∈例3、(方程中的数形结合)若方程()()2lg3lg3x x m x-+-=-在x∈内有唯一解,求实数参考解答:原方程变形为23033xx x m x->⎧⎨-+-=-⎩,即()3021xx m2->⎧⎪⎨-=-⎪⎩,作出曲线()212y x=-,()0,3x∈和直线21y m=-的图象,由图可知:①当10m-=时,有唯一解1m=;②当114m ≤-<时,即30m -<≤时,方程有唯一解. 综上可知,1m =或30m -<≤时,方程有唯一解.例4、(不等式中数形结合)不等式0222>++-a a ax x 在()2,0∈x 时恒成立,求a 的取值范围.参考解答:(][),10,-∞-⋃+∞例5、(解析几何中的数形结合)已知,x y 满足2211625x y +=,求3y x -的最大值与最小值. 参考解答:对于二元函数3y x -在限定条件2211625x y +=下求最值问题,常采用构造直线截距的方法 来求之.令3y x b -=,则3y x b =+,原问题转化为:在椭圆2211625x y +=上求一点, 使过该点的直线斜率为3,且在y 轴上截距最大或最小,由图可知,当直线3y x b =+与椭圆2211625x y +=相切时,有最大截距与最小截距.由可得0∆=,得13b =±,故3y x -的最大值为13,最小值为13-.例6、设0b >,二次函数2y ax =②(A ()B例7、线段AB 的两个端点为(1,1A 点,求a 的取值范围.参考解答:不论a 取何值,直线l 恒过定点(P需要l 由直线PA 的位置(绕P l 的倾斜角先逐渐增大到2π(从而l 依然逐渐增大,因此其正切值(l 故(][)2,42,a ∈-∞-⋃+∞,即例8、已知()1,1A为椭圆22195x y+=内一点,1F为椭圆左焦点,P为椭圆上一动点,求1PF PA+的最大值和最小值.参考解答:由椭圆的定义知121266PF PF PF PF+=⇒=-,122266,6PF PA PF PA AF AF+=-+∈⎡-+⎤⎣⎦即()1min6PF PA+=,()1max6PF PA+=【配套练习】1、方程1sin44x xπ⎛⎫-=⎪⎝⎭的解的个数为(C)()A1()B2()C3()D4 2、如果实数,x y满足()2223x y-+=,则yx的最大值为(D)()A12()B()C()D参考解答:等式()2223x y-+=有几何意义,它表示坐标平面上的一个圆,圆心为()2,0,半径3r=如图,y yx x-=-表示圆上的点(),x y与坐标原点()0,0的连线的斜率. 如此以来,该问题可转化为如下几何问题:动点A在以()2,0为圆心,以r=OA的斜率的最大值,由图可见,当A∠在第一象限,且与圆相切时,OA的斜率最大,经简单计算得最大值为tan60︒=3、已知函数()()2log1f x x=+,若0a b c<<<,则()()(),,f a f b f ca b c的大小关系为()()()f c f b f ac b a<<.4、设函数()2020x bx c xf xx⎧++≤=⎨>⎩,若()()40f f-=,()2f-=则关于x的方程()f x x=的解的个数为(C)()A1()B2()C35、函数y=D)()A2()B1+()C6、已知函数aaxxy-++=22在区间(]3,∞-内递减,则实数a参考解答:如图所示,可知对称轴362ax a=-≥⇒≤-7、设α、β分别是方程2log40240xx x x+-=+-=和的根,则αβ+=4.8、如果关于x 的方程0232=-++a ax x 有两个实数根21,x x ,并且()()2,0,1,21∈-∞-∈x x ,求实数a 的取值范围.参考解答:令()232f x x ax a =++-,由题()()()1043030032022070f a f a a f ⎧-<-<⎧⎪⎪<⇒-<⇒>⎨⎨⎪⎪>>⎩⎩.9、求函数2cos 2sin -+=x x y 的值域.参考解答:2cos 2sin -+=x x y 的形式类似于斜率公式2121y y k x x -=-,表示过两点()02,2P -,()cos ,sin P x x 的直线的斜率,由于点P 在单位圆122=+y x 上,显然B P A P k y k 00≤≤,设过0P 的圆的切线方程为)2(2-=+x ky ,则有11|22|2=++k k ,解得374±-=k ,即0P Ak =,0P Bk =,所以374374+-≤≤--y ,所以函数值域为⎥⎦⎤⎢⎣⎡+---374374,. 10、已知集合(){}()(){}22,1,,,,1,,P x y x y x R y R Q x y x a y x R y R=+≤∈∈=-+≤∈∈,求满足下列条件时实数a 的取值范围.⑴∅≠⋂QP ;⑵P Q ;参考解答:画区域分析问题,⑴[]2,2a ∈-,⑵0a =【高考真题】1、若集合⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<⎩⎨⎧===)0(s i n 3c o s 3)(πθθθy x y x M ,,集合}|){(b x y y x N +==,,且∅≠N M ,则实数b 的取值范围为(-.参考解答: 集合}109|){(22≤<=+=y y x y x M,,,显然,M 表示以()0,0为圆心,以3为半径的圆在x 轴上方的部分,(如图),而N 则表示一条直线,其斜率1k =,纵截距为b ,由图形易知,欲使M N ⋂≠∅,即直线y x b =+与半圆有公共点,显然b 的最小逼近值为3-,最大值为233≤<-b .2、已知()()2f x x a x b =---(其中a b <),且,αβ是方程()0f x =的两根(αβ<), 则实数(),a αβ∈,且b ∈(),αβ.3、点M 是椭圆1162522=+y x 上一点,它到其中一个焦点1F 的距离为2,N 为1MF 的中点,O 表示原点,则ON =(C ) ()A 32()B 2()C 4()D 8参考解答:设椭圆另一焦点为2F ,(如下图),则122MF MF a +=,而5a =,因为12MF =,所以28MF =,又注意到,N O 各为112,MF F F 的中点,所以ON 是12MF F ∆的中位线,因此4||21||2==MF ON .4、关于x 的方程()ax k x =-22在(]()*21,21x k k k N ∈-+∈上有两个不相等的实数解,求实数a 的取值范围.()1 ()2 ()3 ()4()A ()()()(),2,3,4c a b d ----1 ()B ()()()(),2,3,4a b c d ----1 ()C ()()()(),2,3,4b d a c ----1 ()D ()()()(),2,3,4b c d a ----18、已知函数()32f x ax bx cx d =+++的图像如图所示,则(A )()()A ,0b ∈-∞ ()()0,1B b ∈()()1,2C b ∈()()2,D b ∈+∞参考解答:本题可将图形转化为具体数值,由图像过3个特殊点及与x ⑴()00f =,即0d =;⑵()10f =,即0a b c ++=; ⑶()20f =,即8420a b c ++=;⑷()()()12f x ax x x =⋅-⋅-;⑸当()(),01,2x ∈-∞⋃时,()0f x <,由()10f -<得0a b c -+-<,⑹当()()0,12,x ∈⋃+∞时,()0f x >,()30f >,可推得0a >.巧妙合理地利用以上各式,就可以得到多种简捷的解法: 方法一:⑵⑶得3b a =-,再由⑹推得0b <,选A ;方法二:⑵⑸推得0b <;方法三:由⑷比较同次项系数得3b a =-,再由⑹得3b a =-.数学思想方法:数形结合数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要数学思想方法.利用数形结合思想,“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从而找到解题思路,使问题得到解决.以形助数常用的有:借助于数轴、函数图像、单位圆、数式的结构特征、解析几何方法,以数解形常用的有:借助于几何轨迹所遵循的数量关系、运算结果与几何定理的结合.【以形助数】 例1、(集合中的数形结合)已知集合{}{}0103,22<--=+<<=x x x B a x a x A ,当∅≠⋂B A ,求实数a 的取值范围.例2、(函数中的数形结合)设()222f x x ax =-+,当[)1,x ∈-+∞时,()f x a >恒成立,求a 的取值范围.例3、(方程中的数形结合)若方程()()2lg3lg 3xx m x -+-=-在()0,3x ∈内有唯一解,求实数m 的取值范围.例4、(不等式中数形结合)不等式0222>++-a a ax x在()2,0∈x 时恒成立,求a 的取值范围.例5、(解析几何中的数形结合)已知,x y 满足2211625x y +=,求3y x -的最大值与最小值.例6、设0b >,二次函数2y ax =②(A ()B 例7、线段AB 的两个端点为()()1,1,1,3A B -,直线:21l y ax =-,已知直线l 与线段AB 有公共点,求a 的取值范围.例8、已知()1,1A 为椭圆22195x y +=内一点,1F 为椭圆左焦点,P 为椭圆上一动点, 求1PF PA +的最大值和最小值.【配套练习】 1、方程1sin 44x x π⎛⎫-= ⎪⎝⎭的解的个数为( ) ()A 1()B 2()C 3()D 42、如果实数,x y 满足()2223x y -+=,则y x的最大值为( )()A 12()B()C()D 3、已知函数()()2l o g 1f x x=+,若0a b c <<<,则()()(),,f a f b f c a b c的大小关系为 .4、设函数()2020x bx c x f x x ⎧++≤=⎨>⎩,若()()40f f -=,()22f -=-,则关于x 的方程()f x x =的解的个数为( )()A 1()B 2()C 3()D 35、函数y = )()A 2()B 1+()C()D 6、已知函数aax x y -++=22在区间(]3,∞-内递减,则实数a的取值范围为 . 7、设α、β分别是方程2log 40240x x x x +-=+-=和的根,则αβ+= .8、如果关于x 的方程0232=-++a ax x 有两个实数根21,x x ,并且()()2,0,1,21∈-∞-∈x x ,求实数a 的取值范围.9、求函数2cos 2sin -+=x x y 的值域.10、已知集合(){}()(){}22,1,,,,1,,P x y x y x R y R Q x y x a y x R y R=+≤∈∈=-+≤∈∈,求满足下列条件时实数a 的取值范围.⑴∅≠⋂Q P ;⑵P Q .【高考真题】1、若集合⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<⎩⎨⎧===)0(s i n 3c o s 3)(πθθθy x y x M ,,集合}|){(b x y y x N +==,,且∅≠N M ,则实数b 的取值范围为 .2、已知()()()2f x x a x b =---(其中a b <),且,αβ是方程()0f x =的两根(αβ<), 则实数(),a αβ∈,且b (),αβ.3、点M 是椭圆1162522=+y x 上一点,它到其中一个焦点1F 的距离为2,N 为1MF 的中点,O 表示原点,则ON =( )()A 32()B 2 ()C 4 ()D 8 4、关于x 的方程()ax k x =-22在(]()*21,21x k k k N ∈-+∈上有两个不相等的实数解,求实数a 的取值范围.5678、已知函数f x ax bx cx d =+++的图像如图所示,则( )()()A ,0b ∈-∞ ()()0,1B b ∈ ()()1,2C b ∈ ()()2,D b ∈+∞。
(完整版)高中数学思想方法专题
高中数学思想方法专题(一)——函数与方程的思想方法一、知识要点概述函数与方程的思想是中学数学的基本思想,高考数学题中函数与方程的思想占较大的比例,题型涉及选择题、填空题、解答题,难度有大有小,且试题中的大部分压轴题都与函数方程有关。
函数的思想,就是运用运动和变化的观点,集合与对应的思想,去分析和研究数学问题中的等量关系,建立或构造函数关系,再运用函数的图像和性质去分析问题,转化问题,从而使问题获得解决。
方程的思想,就是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型——方程或方程组,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使获得解决。
二、解题方法指导运用函数观点解决问题主要从以下四个方面着手:一是根据方程与函数的密切关系,可将二元方程转化为函数来解决;二是根据不等式与函数的密切关系,常将不等式问题转化为函数问题,利用函数的图象和性质进行处理;三是在解决实际问题中,常涉及到最值问题,通常是通过建立目标函数,利用求函数最值的方法加以解决;四是中学数学中的某些数学模型(如数列的通项或前n项和、含有一个未知量的二项式定理等)可转化为函数问题,利用函数相关知识或借助处理函数问题的方法进行解决。
运用方程观点解决问题主要从以下四个方面着手:一是把问题中对立的已知与未知通过建立相等关系统一在方程中,通过解方程解决;二是从分析问题的结构入手,找出主要矛盾,抓住某一个关键变量,将等式看成关于这个主变元(常称为主元)的方程,利用方程的特征解决;三是根据几个变量间的关系,判断符合哪些方程的性质和特征(如利用根与系数的关系构造方程等),通过研究方程所具有的性质和特征解决;四是在中学数学中常见数学模型(如函数、曲线等),经常转化为方程问题去解决。
三、范例剖析例1已知f(t)=log2t,t[ ,8],对于f(t)值域内的所有实数m,不等式2x2+mx+4>2m+4x恒成立,求x的取值范围。
最新高考文科数学复习 数学思想方法 第2课时 数形结合的思想 PPT课件
解析:由f x 1 f x 1, 得f x f x 2 ,知函数 是周期为2的函数,因此根 据偶函数的性质首先作出f x 在 1,1 上的图象, 然后根据周期性作出f x 在1,3 上的图象,再作 1 x 出y ( ) 的图象. 10 1 x 由图象易知,函数f x 与y ( ) 的图象在 0,3内 10 1 x 有4个交点,因此方程f x ( ) 在x 0,3 上解 10 的个数是4,故选D.
数形结合的实质就是将抽象的数学语言与直 观的图形结合起来,使抽象思维和形象思维 结合起来,在解决代数问题时,想到它的图 形,从而启发思维,找到解题之路;或者在 研究图形时,利用代数的性质,解决几何的 问题.实现抽象概念与具体形象的联系和转 化,化难为易,化抽象为直观.这种处理数 学问题的方法,称之为数形结合的思想方法.
数形结合,不仅是一种重要的解题方法,而 且也是一种重要的思维方法,因此,它在中 学数学中占有重要的地位.在高考中,充分 利用选择题、填空题的题型特点(这两类题型 只须写出结果而无需写出解答过程),为考查 数形结合的思想提供了方便,能突出考查学 生将复杂的数量关系问题转化为直观的几何 图形问题来解决的意识,解答题中对数形结 合思想的考查则以由“形”到“数”的转化为主.
专题一
数 学 思 想 方 法
“数”和“形”是数学中两个最古老、最基 本的问题,是数学大厦的两块基石,数学的 所有问题都是围绕数和形的提炼、演变、发 展而展开的“数”和“形”是数学中两个最 基本的概念,它们既是对立的,又是统一的, 每一个几何图形中都蕴含着与它们的形状、 大小、位置密切相关的数量关系;反之,数 量关系又常常可以通过几何图形做出直观地 反映和描述.
变式题:若曲线C:y 2 x 1与直线l: y kx b没有公共点,则k、b分别应满足的 条件是 .
数形结合的思想方法(2)---高考题选讲
数形结合的思想方法(2)---高考题选讲数形结合思想是一种很重要的数学思想,数与形是事物的两个方面,正是基于对数与形的抽象研究才产生了数学这门学科,才能使人们能够从不同侧面认识事物,华罗庚先生说过:“数与形本是两依倚,焉能分作两边飞.数缺形时少直观,形少数时难入微.”把数量关系的研究转化为图形性质的研究,或者把图形性质的研究转化为数量关系的研究,这种解决问题过程中“数”与“形”相互转化的研究策略,就是数形结合的思想.数形结合思想就是要使抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维结合起来.在使用过程中,由“形”到“数”的转化,往往比较明显,而由“数”到“形”的转化却需要转化的意识,因此,数形结合思想的使用往往偏重于由“数”到“形”的转化.考试中心对考试大纲的说明中强调:“在高考中,充分利用选择题和填空题的题型特点,为考查数形结合的思想提供了方便,能突出考查考生将复杂的数量关系转化为直观的几何图形问题来解决的意识,而在解答题中,考虑到推理论证的严密性,对数量关系问题的研究仍突出代数的方法而不提倡使用几何的方法,解答题中对数形结合思想的考查以由…形‟到…数‟的转化为主.”1. 注重图形的内涵与拓展,突出对数字直觉能力的考查【例1】图1有面积关系则由图2有体积关系:_______.解:【点评】本题注重考查图形分析能力.思维方式上从平面向空间拓展,面积与体积类比,直观类比与猜想并举.体现了高考题以能力立意考查注重素质的命题原则.【例2】如图所示,已知椭圆=1的左、右焦点分别为F1,F2,点P在椭圆上,若F1,F2,P是一个直角三角形的三个顶点,则点P到x轴的距离为().解:以O为圆心以OF1为半径画圆,可知此圆与椭圆无交点,则△F1F2P中∠PF1F2(或∠PF2F1)为直角,如此求出P点坐标即得yp=±,故选D.【点评】本题以作图直观判断为突破口,直觉与逻辑推理互动,化解析几何问题为平面几何问题,化计算为判断,在理性的高度认识问题.【例3】某城市各类土地租价y(万元)与该地段和市中心的距离x(km)关系如图所示.其中l1表示商业用地,l2表示工业用地,l3表示居住用地.要使各类用地租金收入最高,应将工业用地划在().A. 与市中心距离分别为3km和5km的圆环型区域上B. 与市中心距离分别为1km和4km的圆环型区域上C. 与市中心距离为5km的区域外D. 与市中心距离为5km的区域内解:由函数y的实际意义知:在区间(1,4)上,即在与市中心距离分别为1km和4km的圆环型区域上,工业用地的租金大于商业用地的租金和居住用地的租金,为了获取最高的租金,因此这个区域应租用给工业,故选B.【点评】这道题考查的是阅读理解能力,提醒我们在日常的学习中,要注意训练直觉思维,养成整体观察、检索信息、把握问题实质的良好习惯.2. 注重绘图,突出对动手能力和探究性学习的考查【例4】设奇函数f(x)定义域为[-5,5],若当x∈[0,5]时,f(x)图象如下图,则不等式f(x)<0的解集是____.解:由奇函数的图象关于原点对称,完成f(x)在定义域内的图象,再由f(x)<0找出使f(x)图象在x轴下方的区域,从而得到不等式f(x)<0的解集为(-2,0)∪(2,5]. 【点评】用数形结合的方法去分析解决问题除了能读图外,还要能画图.绘制图形既是数形结合方法的需要,也是培养我们动手能力的需要.【例5】设集合U={(x,y)x∈R,y∈R},A={(x,y)2x-y+m>0},B={(x,y)x+y-n≤0},那么点P(2,3)∈A∩(B)的充要条件是().A. m>-1,n<5B. m<-1,n<5C. m<-1,n>5D. m>-1,n>5解:先假定点P(2,3)在直线2x-y+m=0和直线x+y-n=0上,则m=-1,n=5.再确定两个不等式2x-y-1>0和x+y-5>0所共同确定的区域,平移两直线得到答案A.【点评】此题考查了集合、二元一次不等式表示的区域、充要条件等知识.以运动、变化、联系的观点考虑问题,变静态思维方式为动态思维方式,强调辨证思维能力.3. 注重对思维的灵活性和创造性的考查【例6】已知点P是椭圆上的动点,F1,F2分别是左、右焦点,O为原点,则的取值范围是().解:此题的一种解法是:在△PF1F2中,根据中线定理得:PF12+PF22=2OP2+2F1O2,再由椭圆定义,得到(PF1-PF2)2=OP2-16,由2≤OP≤2得答案D.另一种解法是数形结合,根据P点所处的位置对取值的影响来判断出结论.逐渐移动P点到长轴端点,OP值逐渐增大,逐渐接近,当移动P点到短轴端点时PF1=PF2,取最小值0.从而判断出答案为D.【点评】解法二是采用极端性原则变静态思维方式为动态思维方式,把数与形分别视为运动事物在某一瞬间的取值或某一瞬间的相对位置.运用动态思维方式处理、研究问题,揭示了问题的本质,体现了思维的灵活性.4. 注重方法的通用性、应用性,突出能力考查【例7】电信局为了满足客户的不同需求,制定了A,B两种话费计算方案.这两种方案应付话费(元)与通话时间(分钟)之间的关系如下图所示(MN∥CD).(1)若通话时间为2小时,按方案A,B各付话费多少元?(2)方案B从500钟以后,每分钟收费多少元?(3)通话时间在什么范围内方案B才会比方案A优惠?解:由M(60,98),C(500,168),N(500,230).∵MN∥CD.设这两方案的应付话费与通话时间的函数关系式分别为f A(x),f B(x),(1)通话两小时的费用分别是116元和168元.(2)由f B(n+1)-f B(n)=0.3(n>500)或由直线CD的斜率的实际意义知方案B从500分钟以后每分钟收费0.3元.(3)由图知:当0≤x≤60时f A(x)<f B(x);当x>500时f A(x)>f B(x);当60<x≤500时,令f A(x)>f B(x)得x>,即通话时间为(,+∞)时方案B较优惠.【评析】此题在实际问题中融入函数,直线等知识,考查了阅读理解能力,体现了在知识应用过程中对能力的考查.下面就高考中出现的一些相关题进行点评【例8】. 若方程lg(-x2+3x-m)=lg(3-x)在x∈(0,3)内有唯一解,求实数m的取值范围。
江苏省2014年高考数学(文)二轮复习简易通配套课件:2-1 函数与方程思想、数形结合思想
如图所示,由图象可知,0<a<1, 1<b<10,10<c<12. ∵f(a)=f(b), ∴|lg a|=|lg b|. 1 1 即lg a=lg ,a= . b b 则ab=1. 所以abc=c∈(10,12). 答案 (1)2 (2)(10,12)
y [规律方法] (1)挖掘代数式 的几何意义,完成图形语言,符号语 x 言转化是解第(1)题的关键. (2)画出函数图象是一项基本技能,要求从画准确图开始(列表、 描点、连线),达到根据函数性质及关键点、线快速画草图的水 平,最后能够看着函数想出图象.
2 4k 2 k -1 , 2 即M 2 . 2k +1 2k +1
y=2kx-1 由 2 2 x + 2 y =2
,得(1+4k2)x2-4kx=0,
解得xN=
4k 4k2+1
4k ,yM=2k· 4k2+1
-1=
4k2-1 4k2+1
,即
2 4k 4 k -1 , 2 N 2 . 4k +1 4k +1
• [规律方法] 关于定点、定值问题,一般来 说,从两个方面来解决问题;(1)从特殊入 手,求出定点(定值),再证明这个点(值)与 变量无关;(2)直接推理计算,并在计算过 程中消去变量,从而得到定点(值).
• 二、数形结合思想 • [思想概述] • 数形结合思想的实质是把抽象的数学 语言与直观的图形语言有机结合,达到抽 象思维和形象思维的和谐统一.通过对规 范图形或示意图形的观察分析,化抽象为 直观,化直观为精确,从而使问题得到解 决.
∴c=1. a3 1 又∵公比q=a =3, 2
1 21n-1 所以an=- 3 =-23n,n∈N*. 3
因此,数列{an}是递增数列, 2 ∴n=1时,an有最小值a1=- . 3 答案 (1)15 2 (2)-3
高三数学二轮复习第二篇数学思想2.2数形结合思想课件理新人教版
由图知,两函数图象(tú xiànɡ)有2个交点, 所以函数f(x)有2个零点.
第五页,共29页。
【规律方法】利用数形结合探究方程解的问题的关注点 (1)讨论方程的解(或函数的零点)一般可构造两个函数, 使问题转化为讨论两曲线的交点(jiāodiǎn)问题,但用此 法讨论方程的解一定要注意图象的准确性、全面性,否则 会得到错解.
第十八页,共29页。
2.若实数x,y满足等式(děngshì)x2+y2=1,y那么
x2
(
的最大值为 )
A. 1 B. 3 C. 3 D. 3
2
3
2
第十九页,共29页。
【解析(jiě xī)】选B.设y k= ,如图所示,
x2
kPB=tan∠OPB=1 = 3k,PA=-tan∠OPA=- 3 ,
3
同的交点,
所以函数f(x)=
ln
x,
x
[与1,y3=],ax在区间
三个不同的交点,2ln
x,
x
[1 3
,1),
内有[ 1,3]
3
第九页,共29页。
作函数f(x)= 图象如图,
ln
x, x与[y1=,3a]x, 在区间(qū
jiān)
2ln
x,
x
[
1 3
,1),
[ 1内,3]的 3
第十页,共29页。
第二十二页,共29页。
作出满足上述不等式组对应的点(a,b)所在的平面区域, 得到△ABC及其内部,即如图所示的阴影(yīnyǐng)部分(不含边 界).
第二十三页,共29页。
其中A(-3,1),B(-2,0),C(-1,0),
高考数学思想技法攻略精讲:第二讲数形结合思想
第二讲数形结合思想魏总弋音怎環.戏宅很匣捉与蔻W间的篮应天丟,哥过故勺形的珥匸得代玦蔚讯扳学迥社耙患惡■烈形牯合思为和应用迅話凰下两T万面:(1)*的羽朋釵・.莊呪箜抽屛齐煜才问觀言观先■生引比「董懈靈梱象盅燈为廊象思址,觴示牧学问趟的不厉;M)■以址妄sr.it宜观囲岂酸Ei匕I更先更加箱址+思想方法突破sixiangl 扣制拙Upo抄典例剖祈方法探究要点一利用数形结合思想研究函数的零点、(刚订门)已旬严.升是圉数”了匸+口一人一丨血小的网个零虑川|■Z^ui*w"u*vi*M*v*w*Sr*u"!v*w"w*u"v>u^ae*waw*w«wa1>B w ai_|A BF*u K!lr h u a!W«u«v"u«v*uA l rS>HwH^w*M*Sr灯■■ ■■■ ■ ■ ■-■■ ■ ■ naaa ■ ■■ ■ ■ aauia ■ BB ■ U ■ l—W・■ ■ ■*■■■< ■!■■ ■ ■ ■«■■ ■A, 1 V_Fj Jf] 11, V I.Jt转忆内甫战y =甘,■ II® I的阳會交点横筮林的範值(2)(20ia ・昆三It检】LL对昊]--r鳴实数*的駅m世国把A H(-«!*(»B h<0.1 )切人点L转化为圉St y ="土£歩・訂』|的闍象交[解析](i)在同一坐标系下画出函数y=2x与y=『x|的大致图象,结合图象不难看出,这两条曲线的两个交点中,其中一个交点横坐标属于区间(0,1),另一个交点横坐标属于区间(1, +=),不妨设1 —2x1 \1 _2 1 1 X i€ (0,1), X2 € (1,+乂),则有2e = |lnx1|=- In冷€ qe , 2,2。
—2x2= |lnx2|= lnx2€ 0, 1e-2,1 ― 2x2 12。
高三数学专题复习:数形结合思想方法的应用ppt 人教课标版
f (
x 1 x 2 ) 2
0
f ( x t ) 0
f ( x t ) 0
O
x
y
x x0
f (
x 1 x 2 ) 2
0
f ( x t ) 0
f ( x t ) 0
O
x
y
x x0
f (
x 1 x 2 ) 2
0
f ( x t ) 0
f ( x t ) 0
O
足 且 x , x1 是 x2 f (x 1) f ( 2)
x 1 x 2 ) 0 2 x 1 x 2 C. f ( ) 0 2 A . f (
e
2
f ( x )
f (x)
的导函数,则
x 1 x 2 ) 0 2 x x 1 2 D .f ( ) 符 号 不 确 定 2 B . f (
高三数学专题复习
——数形结合思想方法的应用
蚌埠二中 王传江
思考:如何描述数形结合思想方法?
以 形 助 数
以 数 促 形
热身练习反馈:
x 例1:已知函数 f() 且 恰有一个 x a x 1 ( a 0 a 1) 0 a 1 或 a e 零点,则实数 的取值范围是 a
2 x f( x ) 2 x c o s xx , ( 0 , )
小 结:
数无形时少直觉,
形少数时难入微。 数形结合百般好, 隔离分家万事休。 —— 华罗庚
作业: 课后练习 1,2,3,4,5
感谢各位老师的指导!! 感谢同学们的配合!! 祝同学们学习进步!!
•
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学思想方法专题第二讲 数形结合思想1. 数形结合思想,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想.数形结合思想的应用包括以下两个方面:(1)“以形助数”,把某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,揭示数学问题的本质;(2)“以数定形”,把直观图形数量化,使形更加精确.2. 数形结合思想的实质、关键及运用时应注意的问题:其实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化,在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参,合理用参,建立关系,由数思形,以形思数,做好数形转化;第三是正确确定参数的取值范围.3. 实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系; (2)函数与图象的对应关系;(3)以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;(4)所给的等式或代数式的结构含有明显的几何意义.如等式(x -2)2+(y -1)2=4,表示坐标平面内以(2,1)为圆心,以2为半径的圆.1. (2013·重庆)已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( )A .52-4B.17-1 C .6-2 2D.17答案 A 解析 设P (x,0),设C 1(2,3)关于x 轴的对称点为C 1′(2,-3),那么|PC 1|+|PC 2|=|PC 1′|+|PC 2|≥|C 1′C 2|=(2-3)2+(-3-4)2=5 2.而|PM |=|PC 1|-1,|PN |=|PC 2|-3, ∴|PM |+|PN |=|PC 1|+|PC 2|-4≥52-4.2. (2011·大纲全国)已知a 、b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( )A .1B .2C. 2D.22答案 C 解析 如图,设OA →=a ,OB →=b ,OC →=c ,则CA →=a -c ,CB →=b -c .由题意知CA →⊥CB →,∴O 、A 、C 、B 四点共圆.∴当OC 为圆的直径时,|c |最大,此时,|OC →|= 2.3. (2013·山东)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM 斜率的最小值为( )A .2B .1C .-13D .-12答案 C 解析 如图,由⎩⎪⎨⎪⎧x +2y -1=0,3x +y -8=0得A (3,-1).此时直线OM 的斜率最小,且为-13.4. (2013·课标全国Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x , x ≤0,ln (x +1), x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]答案 D 解析 函数y =|f (x )|的图象如图.①当a =0时,|f (x )|≥ax 显然成 立.②当a >0时,只需在x >0时,ln(x +1)≥ax 成立.比较对数函数与一次函数y =ax 的增长速度.显然不存在a >0使ln(x +1)≥ax 在x >0上恒成立.③当a <0时,只需在x <0时,x 2-2x ≥ax 成立.即a ≥x -2成立,∴a ≥-2.综上所述:-2≤a ≤0.故选D.5. (2012·天津)已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是________.答案 (0,1)∪(1,4)解析 根据绝对值的意义,y =|x 2-1|x -1=⎩⎪⎨⎪⎧x +1(x >1或x <-1),-x -1(-1≤x <1).在直角坐标系中作出该函数的图象,如图中实线所示. 根据图象可知,当0<k <1或1<k<4时有两个交点.题型一 数形结合解决方程的根的个数问题例1 (2012·福建)对于实数a 和b ,定义运算“*”:a *b =⎩⎪⎨⎪⎧a 2-ab ,a ≤b ,b 2-ab ,a >b .设f (x )=(2x -1)*(x -1),且关于x 的方程f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3,则x 1x 2x 3的取值范围是________.审题破题 本题以新定义为背景,要先写出f (x )的解析式,然后将方程f (x )=m 根的个数转化为函数y =f (x )的图象和直线y =m 的交点个数.答案 ⎝ ⎛⎭⎪⎫1-316,0解析 由定义可知,f (x )=⎩⎪⎨⎪⎧(2x -1)x ,x ≤0,-(x -1)x ,x >0.作出函数f (x )的图象,如图所示.由图可知,当0<m <14时,f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3.不妨设x 1<x 2<x 3,易知x 2>0,且x 2+x 3=2×12=1,∴x 2x 3<14.令⎩⎪⎨⎪⎧(2x -1)x =14,x <0,解得x =1-34.∴1-34<x 1<0,∴1-316<x 1x 2x 3<0.反思归纳 研究方程的根的个数、根的范围等问题时,经常采用数形结合的方法.一般地,方程f (x )=0的根,就是函数f (x )的零点,方程f (x )=g (x )的根,就是函数f (x )和g (x )的图象的交点的横坐标.变式训练1 已知:函数f (x )满足下面关系:①f (x +1)=f (x -1);②当x ∈[-1,1]时,f (x )=x 2,则方程f (x )=lg x 解的个数是( )A .5B .7C .9D .10答案 C 解析 由题意可知,f (x )是以2为周期,值域为[0,1]的函数.又f (x )=lg x ,则x ∈(0,10],画出两函数图象,则交点个数即为解的个数.由图象可知共9个交点.题型二 数形结合解不等式问题例2 设有函数f (x )=a +-x 2-4x 和g (x )=43x +1,已知x ∈[-4,0]时恒有f (x )≤g (x ),求实数a 的取值范围.审题破题 x ∈[-4,0]时恒有f (x )≤g (x ),可以转化为x ∈[-4,0]时,函数f (x )的图象都在函数g (x )的图象下方或者两图象有交点. 解 f (x )≤g (x ),即a +-x 2-4x ≤43x +1,变形得-x 2-4x ≤43x +1-a ,令y =-x 2-4x , ① y =43x +1-a .②①变形得(x +2)2+y 2=4(y ≥0),即表示以(-2,0)为圆心,2为半径的圆的上半圆;②表示斜率为43,纵截距为1-a 的平行直线系.设与圆相切的直线为AT ,AT 的直线方程为: y =43x +b (b >0),则圆心(-2,0)到AT 的距离为d =|-8+3b |5,由|-8+3b |5=2得,b =6或-23(舍去).∴当1-a ≥6即a ≤-5时,f (x )≤g (x ).反思归纳 解决含参数的不等式和不等式恒成立问题,可以将题目中的某些条件用图象表现出来,利用图象间的关系以形助数,求方程的解集或其中参数的范围.变式训练2 已知不等式x 2+ax -2a 2<0的解集为P ,不等式|x +1|<3的解集为Q ,若P ⊆Q ,求实数a 的取值范围.解 x 2+ax -2a 2=(x +2a )(x -a )<0.|x +1|<3⇒Q ={x |-4<x <2}.当-2a <a ,即a >0时,P ={x |-2a <x <a }.∵P ⊆Q ,∴⎩⎪⎨⎪⎧-2a ≥-4,a ≤2,a >0.解得0<a ≤2.当-2a =a ,即a =0时,P =∅,P ⊆Q .当-2a >a ,即a <0时,P ={x |a <x <-2a },∵P ⊆Q ,∴⎩⎪⎨⎪⎧a ≥-4,-2a ≤2,a <0,解得-1≤a <0,综上可得-1≤a ≤2.题型三 数形结合解决有明显几何意义的式子(概念)问题例3 已知函数f (x )=ax 2+bx -1(a ,b ∈R 且a >0)有两个零点,其中一个零点在区间(1,2)内,则ba +1的取值范围为 ( )A .(-∞,1)B .(-∞,1]C .(-2,1]D .(-2,1)审题破题 先根据图象确定a ,b 满足的条件,然后利用ba +1的几何意义——两点(a ,b ),(-1,0)连线斜率求范围.答案D 解析 因为a >0,所以二次函数f (x )的图象开口向上.又f (0)=-1,所以要使函数f (x )的一个零点在区间(1,2)内,则有⎩⎪⎨⎪⎧a >0,f (1)<0,f (2)>0,即⎩⎪⎨⎪⎧a >0,a +b -1<0,4a +2b -1>0.如图所示的阴影部分是上述不等式组所确定的平面区域,式子ba +1表示平面区域内的点 P (a ,b )与点Q (-1,0)连线的斜率.而直线QA 的斜率k =1-00-(-1)=1,直线4a +2b -1=0的斜率为-2,显然不等式组所表示的平面区域不包括边界,所以 P ,Q 连线的斜率的取值范围为(-2,1).故选D.反思归纳 如果等式、代数式的结构蕴含着明显的几何特征,就要考虑用数形结合的思想方法来解题,即所谓的几何法求解,比较常见的对应有: (1)b -n a -m ↔(a ,b )、(m ,n )连线的斜率; (2)(a -m )2+(b -n )2↔(a ,b )、(m ,n )之间的距离; (3)a 2+b 2=c 2↔a 、b 、c 为直角三角形的三边;(4)f (a -x )=f (b +x )↔f (x )图象的对称轴为x =a +b2.只要具有一定的观察能力,再掌握常见的数与形的对应类型,就一定能得心应手地运用数形结合的思想方法.变式训练3 已知点P (x ,y )的坐标x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,|x |-y -1≤0,则x 2+y 2-6x +9的取值范围是( )A .[2,4]B .[2,16]C .[4,10]D .[4,16]答案 B 解析 画出可行域如图,所求的x 2+y 2-6x +9=(x -3)2+y 2是点 Q (3,0)到可行域上的点的距离的平方,由图形知最小值为Q 到射 线x -y -1=0(x ≥0)的距离d 的平方,最大值为|QA |2=16.∵d 2=⎝ ⎛⎭⎪⎫|3-0-1|12+(-1)22=(2)2=2.∴取值范围是[2,16].题型四 数形结合解几何问题例4 已知点P 在抛物线y 2=4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( )A .(14,-1)B .(14,1) C .(1,2)D .(1,-2)审题破题 本题可以结合图形将抛物线上的点P 到焦点的距离转化为到准线的距离,再探求最值.答案 A 解析 定点Q (2,-1)在抛物线内部,由抛物线的定义知,动点P 到抛物线焦点的距离等于它到准线的距离,问题转化为当点P 到点Q 的距离和点P 到抛物线的准线距离之和最小时,求点P 的坐标,显然点P 是直线y =-1和抛物线y 2=4x 的交点时,两距离之和取最小值,解得这个点的坐标是(14,-1).反思归纳 在几何中的一些最值问题中,可以根据图形的性质结合图形上点的条件进行转换,快速求得最值.变式训练4 已知P 是直线l :3x +4y +8=0上的动点,P A 、PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A 、B 是切点,C 是圆心,求四边形P ACB 面积的最小值.解 从运动的观点看问题,当动点P 沿直线3x +4y +8=0向左上方或右下方无穷远处运动时,直角三角形P AC 的面积S Rt △P AC =12|P A |·|AC |=12|P A |越来越大,从而S 四边形P ACB 也越来越大;当点P 从左上、右下两个方向向中间运动时,S 四边形P ACB 变小,显然,当点P 到达一个最特殊的位置,即CP 垂直直线l 时,S 四边形P ACB应有唯一的最小值,此时|PC |=|3×1+4×1+8|32+42=3,从而|P A |=|PC |2-|AC |2=2 2.∴(S 四边形P ACB )min =2×12×|P A |×|AC |=2 2.典例 (14分)已知函数f (x )=x 3-3ax -1,a ≠0.(1)求f (x )的单调区间;(2)若f (x )在x =-1处取得极值,直线y =m 与y =f (x )的图象有三个不同的交点,求m 的取值范围.规范解答解 (1)f ′(x )=3x 2-3a =3(x 2-a ),当a <0时,对x ∈R ,有f ′(x )>0,∴当a <0时,f (x )的单调增区间为(-∞,+∞);当a >0时,由f ′(x )>0,解得x <-a 或x >a ,由f ′(x )<0,解得-a <x <a ,∴当a >0时,f (x )的单调增区间为(-∞,-a ),(a ,+∞);单调减区间为(-a ,a ).[6分](2)∵f (x )在x =-1处取得极值,∴f ′(-1)=3×(-1)2-3a =0,∴a =1.[8分]∴f (x )=x 3-3x -1,f ′(x )=3x 2-3,由f ′(x )=0,解得x 1=-1,x 2=1.由(1)中f (x )的单调性可知,f (x )在x =-1处取得极大值f (-1)=1,在x =1处取得极小值f (1)=-3.因为直线y =m 与函数y =f (x )的图象有三个不同的交点,结合如图所示f (x )的图象可知:m的取值范围是(-3,1).[14分]评分细则(1)求出f′(x)给1分,不写出单调区间扣1分;(2)只画图象没有说明极值扣2分;(3)没有结论扣1分,结论中范围写成不等式形式不扣分.阅卷老师提醒(1)解答本题的关键是数形结合,根据函数的性质勾画函数的大致图象;(2)解答中一定要将函数图象的特点交待清楚,单调性和极值是勾画函数的前提,然后结合图象找出实数m的取值范围.1.设函数f(x)定义在实数集上,f(2-x)=f(x),且当x≥1时,f(x)=ln x,则有()A.f(13)<f(2)<f(12) B.f(12)<f(2)<f(13) C.f(12)<f(13)<f(2) D.f(2)<f(12)<f(13)答案C解析由f(2-x)=f(x)知f(x)的图象关于直线x=2-x+x2=1对称,又当x≥1时,f(x)=ln x,所以离对称轴x=1距离大的x的函数值大,∵|2-1|>|13-1|>|12-1|,∴f(12)<f(13)<f(2).2.设函数f(x)=⎩⎪⎨⎪⎧x2+bx+c,x≤0,2,x>0.若f(-4)=f(0),f(-2)=-2,则函数y=g(x)=f(x)-x的零点个数为()A.1 B.2 C.3 D.4答案C解析由f(-4)=f(0)得16-4b+c=c.由f(-2)=-2,得4-2b+c=-2.联立两方程解得:b=4,c=2.于是,f(x)=⎩⎪⎨⎪⎧x2+4x+2,x≤0,2,x>0.在同一直角坐标系内,作出函数y=f(x)与函数y=x的图象,知它们有3个交点,进而函数亦有3个零点.3.若方程x+k=1-x2有且只有一个解,则k的取值范围是()A.[-1,1) B.k=±2C.[-1,1] D.k=2或k∈[-1,1)答案D解析令y=x+k,令y=1-x2,则x2+y2=1(y≥0).作出图象如图:而y=x+k中,k是直线的纵截距,由图知:方程有一个解⇔直线与上述半圆只有一个公共点⇔k=2或-1≤k<1.4.设a,b,c是单位向量,且a·b=0,则(a-c)·(b-c)的最小值为()A.-2 B.2-2 C.-1 D.1- 2答案D解析由于(a-c)·(b-c)=-(a+b)·c+1,因此等价于求(a+b)·c的最大值,这个最大值只有当向量a+b与向量c同向共线时取得.由于a·b=0,故a⊥b,如图所示,|a+b|=2,|c|=1,当θ=0时,(a+b)·c取最大值2,故所求的最小值为1- 2.5.当0<x≤12时,4x<logax,则a的取值范围是()A.⎝⎛⎭⎫0,22B.⎝⎛⎭⎫22,1C.(1,2) D.(2,2)答案B解析由0<x≤12,且log a x>4x>0,可得0<a<1,由4 =log a12可得a=22.令f(x)=4x,g(x)=log a x,若4x<log a x,则说明当0<x≤12时,f(x)的图象恒在g(x)图象的下方(如图所示),此时需a>22.综上可得a的取值范围是⎝⎛⎭⎫22,1.6.已知P为抛物线y=14x2上的动点,点P在x轴上的射影为M,点A的坐标是(2,0),则|P A|+|PM|的最小值是________.答案5-1解析如图,抛物线y=14x2,即x2=4y的焦点F(0,1),记点P在抛物线的准线l:y=-1上的射影为P′,根据抛物线的定义知,|PP′|=|PF|,则|PP′|+|PA|=|PF|+|P A|≥|AF|=22+12= 5.所以(|P A|+|PM|)min=(|P A|+|PP′|-1)min=5-1.专题限时规范训练一、选择题1.已知f(x)是定义在(-3,3)上的奇函数,当0<x<3时,f(x)的图象如图所示,那么不等式f(x)·cos x<0的解集是()A.⎝⎛⎭⎫-3,-π2∪(0,1)∪⎝⎛⎭⎫π2,3 B.⎝⎛⎭⎫-π2,-1∪(0,1)∪⎝⎛⎭⎫π2,3C.(-3,-1)∪(0,1)∪(1,3) D.⎝⎛⎭⎫-3,-π2∪(0,1)∪(1,3)答案B解析根据对称性画出f(x)在(-3,0)上的图象如图,结合y=cos x在(-3,0),(0,3)上函数值的正负,易知不等式f(x)cos x<0的解集是⎝⎛⎭⎫-π2,-1∪(0,1)∪⎝⎛⎭⎫π2,3.2.已知函数f(x)=⎩⎪⎨⎪⎧|lg x|,0<x≤10,-12x+6,x>10,若a、b、c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()12A .(1,10)B .(5,6)C .(10,12)D .(20,24)答案 C 解析 a ,b ,c 互不相等,不妨设a <b <c ,∵f (a )=f (b )=f (c ),由图象可知,0<a <1,1<b <10,10<c <12.∵f (a )=f (b ),∴|lg a |=|lg b |,即lg a =lg 1b ,a =1b.则ab =1,所以abc =c ∈(10,12).3. 用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x ,x +2,10-x } (x ≥0),则f (x )的最大值为( )A .4B .5C .6D .7答案 C 解析 画出y =2x ,y =x +2,y =10-x 的图象,如图所示,观察图象,可知当0≤x ≤2,f (x )=2x ,当2<x ≤4时,f (x )=x +2,当x >4时,f (x )=10-x ,f (x )的最大值在x =4时取得,为6.4. 函数f (x )=(12)x -sin x 在区间[0,2π]上的零点个数为( )A .1B .2C .3D .4答案 B 解析 函数f (x )=(12)x -sin x 在区间[0,2π]上的零点个数即为方程(12)x-sin x =0在区间[0,2π]上解的个数.因此可以转化为两函数y =(12)x 与y =sin x交点的个数.根据图象可得交点个数为2,即零点个数为2.5. 已知双曲线x 2a 2-y 2b2=1 (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A .(1,2]B .(1,2)C .[2,+∞)D .(2,+∞)答案 C 解析 ∵渐近线y =bax 与过焦点F 的直线l 平行,或渐近线从该位置绕原点按逆时针旋转时,直线l 与双曲线的右支有一个交点,∴ba ≥3,即c 2=a 2+b 2≥4a 2,∴e ≥2.6. 设a =sin 5π7,b =cos 2π7,c =tan 2π7,则( )A .a <b <cB .a <c <bC .b <c <aD .b <a <c答案 D 解析 a =sin 5π7=sin ⎝⎛⎭⎫π-2π7=sin 2π7,又π4<2π7<π2, 可通过单位圆中的三角函数线进行比较:如图所示,cos 2π7=OA ,sin 2π7=AB ,tan 2π7=MN ,∴cos2π7<sin 2π7<tan 2π7,即b <a <c . 7. 不等式x 2-log a x <0在x ∈(0,12)时恒成立,则a 的取值范围是( )A .0<a <1 B.116≤a <1 C .a >1 D .0<a ≤116答案 B 解析 不等式x 2-log a x <0转化为x 2<log a x ,由图形知0<a <1且 (12)2≤log a 12,∴a ≥116,故a 的取值范围为⎣⎡⎭⎫116,1. 8. 函数y =11-x的图象与函数y =2sin πx (-2≤x ≤4)的图象所有交点的横坐标之和等于( )A .2B .4C .6D .8答案 D 解析 令1-x =t ,则x =1-t .由-2≤x ≤4,知-2≤1-t ≤4,所以-3≤t ≤3.又y =2sin πx =2sin π(1-t )=2sin πt .在同一坐标系下作出y =1t 和y =2sinπt 的图象.由图可知两函数图象在[-3,3]上共有8个交点,且这8个交点两两关于原点对称.因此这8个交点的横坐标的和为0,即t 1+t 2+…+t 8=0.也就是1-x 1+1-x 2+…+1-x 8=0,因此x 1+x 2+…+x 8=8. 二、填空题9. 若实数x 、y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2,则yx的最小值是________. 答案 2解析 可行域如图所示.又yx 的几何意义是可行域内的点与坐标原点连线的斜率k .由图知,过点A 的直线OA 的斜率最小.联立⎩⎪⎨⎪⎧x -y +1=0,y =2,得A (1,2),∴k OA =2-01-0=2.∴y x 的最小值为2.10.设A ={(x ,y )|x 2+(y -1)2=1},B ={(x ,y )|x +y +m ≥0},则使A ⊆B 成立的实数m 的取值范围是__________.答案 m ≥2-1解析 集合A 是一个圆x 2+(y -1)2=1上的点的集合,集合B 是一个不等式x +y +m ≥0表示的平面区域内的点的集合,要使A ⊆B ,则应使圆被平面区域所包含(如图),即直线x +y +m =0应与圆相切或相离(在圆的下方),而当直线与圆相切时有|m +1|2=1,又m >0,∴m =2-1,故m 的取值范围是m ≥2-1.11.若函数f (x )=a x -x -a (a >0且a ≠1)有两个零点,则实数a 的取值范围是________.答案 a >1解析 设函数y =a x (a >0且a ≠1)和函数y =x +a .则函数f (x )=a x -x -a (a >0且a ≠1)有两个零点,就是函数y =a x (a >0且a ≠1)的图象与函数y =x +a 的图象有两个交点.由图象可知,当0<a <1时,两函数只有一个交点,不符合;当a >1时,因为函数y =a x(a >1)的图象过点(0,1),而直线y =x +a 的图象与y 轴的交点一定在点(0,1)的上方,所以一定有两个交点.所以实数a 的取值范围是a >1.12.已知函数f (x )=⎩⎪⎨⎪⎧e x ,x ≥0-2x ,x <0,则关于x 的方程f [f (x )]+k =0,给出下列四个命题:①存在实数k ,使得方程恰有1个实根; ②存在实数k ,使得方程恰有2个不相等的实根; ③存在实数k ,使得方程恰有3个不相等的实根; ④存在实数k ,使得方程恰有4个不相等的实根.其中正确命题的序号是________.(把所有满足要求的命题序号都填上) 答案 ①②解析 依题意知函数f (x )>0,又 f [f (x )]=依据y =f [f (x )]的大致图象(如图)知,存在实数k ,使得方程f [f (x )]+k =0恰有1个实根;存在实数k ,使得方程f [f (x )]+k =0恰有2个不相等的实根;不存在实数k ,使得方程恰有3个不相等的实根;不存在实数k ,使得方程恰有4个不相等的实根.综上所述,其中正确命题的序号是①②. 三、解答题13.已知函数f (x )=x 3+ax 2+bx .(1)若函数y =f (x )在x =2处有极值-6,求y =f (x )的单调递减区间;(2)若y =f (x )的导数f ′(x )对x ∈[-1,1]都有f ′(x )≤2,求ba -1的范围.解 (1)f ′(x )=3x 2+2ax +b ,依题意有⎩⎪⎨⎪⎧ f ′(2)=0,f (2)=-6.即⎩⎪⎨⎪⎧12+4a +b =0,8+4a +2b =-6,解得⎩⎪⎨⎪⎧a =-52,b =-2.∴f ′(x )=3x 2-5x -2.由f ′(x )<0,得-13<x <2.∴y =f (x )的单调递减区间是⎝⎛⎭⎫-13,2. (2)由⎩⎪⎨⎪⎧ f ′(-1)=3-2a +b ≤2,f ′(1)=3+2a +b ≤2,得⎩⎪⎨⎪⎧2a -b -1≥0,2a +b +1≤0.不等式组确定的平面区域如图阴影部分所示:由⎩⎪⎨⎪⎧ 2a -b -1=0,2a +b +1=0,得⎩⎪⎨⎪⎧a =0,b =-1. ∴Q 点的坐标为(0,-1).设z =ba -1,则z 表示平面区域内的点(a ,b )与点P (1,0)连线的斜率.∵k PQ =1,由图可知z ≥1或z <-2,即ba -1∈(-∞,-2)∪[1,+∞).14.设关于θ的方程3cos θ+sin θ+a =0在区间(0,2π)内有相异的两个实根α、β.(1)求实数a 的取值范围; (2)求α+β的值.解 方法一(1)设x =cos θ,y =sin θ,则由题设知,直线l :3x +y +a =0与圆x 2+y 2=1有两个不同的交点A (cos α,sin α)和B (cos β,sin β). 所以原点O 到直线l 的距离小于半径1,即d =||0+0+a (3)2+12=|a |2<1,∴-2<a <2. 又∵α、β∈(0,2π),且α≠β.∴直线l 不过点(1,0),即3+a ≠0. ∴a ≠-3,即a ∈(-2,-3)∪(-3,2).(2)如图,不妨设∠xOA =α,∠xOB =-β,作OH ⊥AB ,垂足为H ,则∠BOH =α-β2.∵OH ⊥AB ,∴k AB ·k OH =-1.∴tan α+β2=33.又∵α+β2∈(0,2π),∴α+β=π3或α+β=7π3.方法二 (1)原方程可化为sin (θ+π3)=-a 2,作出函数y =sin (x +π3)(x ∈(0,2π))的图象.由图知,方程在(0,2π)内有相异实根α,β的充要条件是⎩⎨⎧-1<-a2<1-a 2≠32,即-2<a <-3或-3<a <2.(2)由图知:当-3<a <2,即-a 2∈⎝⎛⎭⎫-1,32时,直线y =-a 2与三角函数y =sin(x +π3)的图象交于C 、D 两点,它们中点的横坐标为7π6,∴α+β2=7π6,∴α+β=7π3.当-2<a <-3,即-a 2∈⎝⎛⎭⎫32,1时,直线y=-a2与三角函数y =sin(x +π3)的图象有两交点A 、B ,由对称性知,α+β2=π6,∴α+β=π3,综上所述,α+β=π3或α+β=7π3.。