专题:解不等式组计算专项练习题(有答案)
(完整版)解不等式组计算专项练习60题(有答案)
解不等式组专项练习60题(有答案)1.2..3..4.,5..6..7.8..9.10.11.12.,13..14.,15.16.17..18.19.20..21..22..23.24.25.,.26.27.,28.29..30.已知:2a﹣3x+1=0,3b﹣2x﹣16=0,且a≤4<b,求x的取值范围.31..32..33.已知:a=,b=,并且2b ≤<a.请求出x的取值范围.34.35.,36.,并将其解集在数轴上表示出来.37..38.,并把解集在数轴上表示出来.39.已知关于x、y 的方程组的解满足x>y >0,化简|a|+|3﹣a|.40.,并把它的解集在数轴上表示出来.41.42.43..44..45..46..47.关于x、y 的二元一次方程组,当m为何值时,x>0,y≤0.48.并将解集表示在数轴上.49.已知关于x、y 的方程组的解是一对正数,求m的取值范围.50.已知方程组的解满足,化简.51..52.53..54..55..56.57.58.59.60.解不等式组60题参考答案:1、解:,由①得2x≥2,即x≥1;由②得x<3;故不等式组的解集为:1≤x<3.2.解:,由①得:x≤5,由②得:x>﹣2,不等式组的解集为﹣2<x≤53.解:解不等式①,得x>1.解不等式②,得x<2.故不等式组的解集为:1<x<2.4.解:,解不等式①得,x>1,解不等式②得,x<3,故不等式的解集为:1<x<3,5.解不等式①,得x≤﹣2,解不等式②,得x>﹣3,故原不等式组的解集为﹣3<x≤﹣2,6.解:,解不等式①得:x>﹣1,解不等式②得:x≤2,不等式组的解集为:﹣1<x≤2,7.解:,由①得x>﹣3;由②得x≤1故此不等式组的解集为:﹣3<x≤1,8.解:解不等式①,得x<3,解不等式②,得x≥﹣1.所以原不等式的解集为﹣1≤x<3.9.解:∵由①得,x>﹣1;由②得,x≤4,∴此不等式组的解集为:﹣1<x≤4,10.解:,解不等式①得:x<3,解不等式②得:x≥1,不等式组的解集是1≤x<3 11.解:,由①得,x≥﹣;由②得,x<1,故此不等式组的解集为:﹣<x<1,12.解:∵由①得,x≤3,由②得x>0,∴此不等式组的解集为:0<x≤3,13.解:解不等式①,得x≥1;解不等式②,得x<4.∴1≤x<4.14.解:原不等式组可化为,解不等式①得x>﹣3;解不等式②得x≤3.所以-3<x≤3 15.解:由(1)得:x+4<4,x<0由(2)得:x﹣3x+3>5,x<﹣1∴不等式组解集是:x<﹣116.解:,解不等式(1),得x<5,解不等式(2),得x≥﹣2,因此,原不等式组的解集为﹣2≤x<5.17.解:由①得:去括号得,x﹣3x+6≤4,移项、合并同类项得,﹣2x≤﹣2,化系数为1得,x≥1.由②得:去分母得,1+2x>3x﹣3,移项、合并同类项得,﹣x>﹣4,化系数为1得,x<4 ∴原不等式组的解集为:1≤x<4.18.解:解不等式①,得x≥﹣1,解不等式②,得x<3,∴原不等式组的解集为﹣1≤x<3.19.解:解不等式(1)得x<1解不等式(2)得x≥﹣2所以不等式组的解集为﹣2≤x<1.20.解:解不等式①,得x>﹣.解不等式②,得x≤4.所以,不等式组的解集是﹣<x≤4.21.解:①的解集为x≥1②的解集为x<4原不等式的解集为1≤x<4.22.解:解不等式(1),得2x+4<x+4,x<0,不等式(2),得4x≥3x+3,x≥3.∴原不等式无解.23.解:解不等式2x+5≤3(x+2),得x≥﹣1解不等式x﹣1<x,得x<3.所以,原不等式组的解集是﹣1≤x<3.24.解:解不等式①,得x≥﹣1,解不等式②,得x<3,∴原不等式组的解是﹣1≤x<3.25.解:由题意,解不等式①,得x<2,解不等式②,得x≥﹣1,∴不等式组的解集是﹣1≤x<2.26.:由不等式①得:x≥0由不等式②得:x<4原不等式组的解集为0≤x<427.解:由不等式①得:2x≤8,x≤4.由不等式②得:5x﹣2+2>2x,3x>0,x>0.∴原不等式组的解集为:0<x≤4.28.解:解不等式①,得x≤﹣1,解不等式②,得x>﹣2,所以不等式组的解集为﹣2<x≤﹣1.29.解:解不等式①,得x≤2.解不等式②,得x>﹣3.所以原不等式组的解集为x≤2.30. 解:由2a﹣3x+1=0,3b﹣2x﹣16=0,可得a=,b=,∵a≤4<b,∴,由(1),得x≤3.由(2),得x>﹣2.∴x的取值范围是﹣2<x≤3.31.解:由①得:x≤2.由②得:x>﹣1.∴不等式组的解集为﹣1<x≤2.32.解:解不等式①,得x>;解不等式②,得x≤4.∴不等式的解集是<x≤4.33.解:把a,b代入得:2×.化简得:6x﹣21≤15<2x+8.解集为:3.5<x≤6.34.解:解不等式①,得x≤2.5,解不等式②,得x>﹣1,解不等式③,得x≤2,所以这个不等式组的解集是﹣1<x≤2.35.解:解不等式①,得x≥﹣1.解不等式②,得x<2.所以不等式组的解集是﹣1≤x<2.36.解:由①,得x<2.由②,得x≥﹣1.∴这个不等式组的解集为﹣1≤x<2.37.解:由①得:x>﹣1由②得:x所以解集为﹣1<x.38.解:由①得:﹣2x≥﹣2,即x≤1,由②得:4x﹣2<5x+5,即x>﹣7,所以﹣7<x≤1.在数轴上表示为:39.解:由方程组,解得.由x>y>0,得.解得a>2当2<a≤3时,|a|+|3﹣a|=a+3﹣a=3;当a>3时,|a|+|3﹣a|=a+a﹣3=2a﹣3.40.解:由(1)得x<8由(2)得,x≥4故原不等式组的解集为4≤x<8.41.解:由①得2x<6,即x<3,由②得x+8>﹣3x,即x>﹣2,所以解集为﹣2<x<3.42.解:(1)去括号得,10﹣4x+12≥2x﹣2,移项、合并同类项得,﹣6x≥﹣24,解得,x≤4;(2)去分母得,3(x﹣1)>1﹣2x,去括号得,3x﹣3>1﹣2x,移项、合并同类项得,5x>4,化系数为1得,x >.∴不等式组的解集为:<x≤4.43.解:解第一个不等式得:x <;解第二个不等式得:x≥﹣12.故不等式组的解集是:﹣12≤x <.44.解:原方程组可化为:,由(1)得,x<﹣3由(2)得,x≥﹣4根据“小大大小中间找”原则,不等式组的解集为﹣4≤x<﹣3.45.由①得:x<2,由②得:x≥﹣1∴﹣1≤x<2.46.整理不等式组得解之得,x>﹣2,x≤1∴﹣2<x≤147.解:①+②×2得,7x=13m﹣3,即x=③,把③代入②得,2×+y=5m﹣3,解得,y=78-m9,因为x>0,y≤0,所以,解得<m≤9848. 解不等式①,得x ≤,解不等式②,得x≥﹣8.把不等式的解集在数轴上表示出来,如图:所以这个不等式组的解集为﹣8≤x≤.49.解:由题意可解得,解得,故<m<1350.解:由2x﹣2=5得x=,代入第一个方程得+2y=5a;则y=a﹣,由于y <0,则a<(1)当a <﹣2时,原式=﹣(a+2)﹣[﹣(a ﹣)]=﹣2;(2)当﹣2<a<时,原式=a+2﹣[﹣(a﹣)]=2a+;(3)当<a<时,原式=a+2﹣(a﹣)=2;851.解不等式(1)得:2﹣x﹣1≤2x+4 ﹣3x≤3 x≥﹣1解不等式(2),得:x2+x>x2+3x ﹣2x>0 x<0 ∴原不等式组的解集为:﹣1≤x<0.52.解不等式(1)得:x≥-1 解不等式(2),得:x<2 ∴原不等式组的解集为:﹣1≤x<2.53.解①得x<解②得x≥3,∴不等式组的解集为无解.54.解第一个不等式得x<8解第二个不等式得x≥2∴原不等式组的解集为:2≤x<8.55.解:由①得:1﹣2x+2≤5∴2x≥﹣2即x≥﹣1由②得:3x﹣2<2x+1∴x<3.∴原不等式组的解集为:﹣1≤x<3.56.解:原不等式可化为:即在数轴上可表示为:∴不等式的解集为:1≤x<357.解:,解不等式①,得x<3,解不等式②,得x≥﹣1,把不等式的解集在数轴上表示出来,如图所示.不等式组的解集是﹣1≤x<358.解:由题意,解不等式①得x>2,不等式②×2得x﹣2≤14﹣3x解得x≤4,∴原不等式组的解集为2<x≤4.59.解:解不等式①,得x<2.(2分)解不等式②,得x≥﹣1.(4分)所以,不等式组的解集是﹣1≤x<2.(5分)解集在数轴上表示为:60.解:由①,得x≥﹣,由②,得x<3,所以不等式组的解集为﹣≤x<3.。
完整版)解不等式组计算专项练习60题(有答案)
完整版)解不等式组计算专项练习60题(有答案)1.解不等式组60题参考答案:1.解:由不等式①得2a-3x+1≥0,即x≤(2a+1)/3;由不等式②得3b-2x-16≥0,即x≤(3b-16)/2.又因为a≤4<b,所以2a+1≤9,3b-16≥8,所以x的取值范围为x≤3或x≥-11/2.2.解:由不等式①得x≤-1或x≥3;由不等式②得x≤4/3或x≥2.综合起来,x的取值范围为x≤-1或x≥3,或者4/3≤x≤2.3.解:由不等式①得x>(a+1)/2;由不等式②得x0,所以a/2>(a+1)/2,所以不等式组的解集为a/2<x<(a+1)/2.4.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.5.解:由不等式①得x≤-2;由不等式②得x>-3.所以不等式组的解集为-3<x≤-2.6.解:由不等式①得x>-1;由不等式②得x≤2.所以不等式组的解集为-1<x≤2.7.解:由不等式①得x≤-1;由不等式②得x≥-2.所以不等式组的解集为-2≤x≤-1.8.解:由不等式①得x>-3;由不等式②得x≤1.所以不等式组的解集为-3<x≤1.9.解:由不等式①得x>-1;由不等式②得x≤4.所以不等式组的解集为-1<x≤4.10.解:由不等式①得x-3.所以不等式组的解集为-3<x<2.11.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.1.由不等式组的①得x≥-1,由不等式组的②得 x<4,因此不等式组的解集为 -1≤x<4.2.由不等式①得x≤3,由不等式②得 x>0,因此不等式组的解集为0<x≤3.3.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.4.原不等式组可化为:x+45,x<-1.因此不等式组的解集为-3<x≤3.5.解不等式①得 x<5,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<5.6.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.7.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.8.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.9.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.10.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.11.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.12.解不等式组的①得-∞<x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.13.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.14.原不等式组可化为:x>-3,x≤3.因此不等式组的解集为-3<x≤3.15.解不等式组的①得 x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.16.解不等式①得 x<2,解不等式②得x≥-1,因此不等式组的解集为 -1≤x<2.17.解不等式①得x≥1,解不等式②得1≤x<4,因此不等式组的解集为1≤x<4.18.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.19.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.20.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.21.不等式①的解集为x≥1,不等式②的解集为 x<4,因此原不等式的解集为1≤x<4.22.解不等式①得 x<0,解不等式②得x≥3,因此原不等式无解。
不等式组计算题(含答案)
不等式组计算题一.解答题(共20小题)1.解一元一次不等式组:533(2)15126x xx x-+>-⎧⎪+-⎨-⎪⎩.2.解不等式组3142944637xxx x+⎧>-⎪⎨⎪++⎩3.解不等式组:2(1)51 3x xxx-<⎧⎪-⎨<+⎪⎩4.解不等式组:3(1)531152x xx x--⎧⎪-+⎨-⎪⎩.5.解不等式组3(1)563x xxx+>-⎧⎪-⎨>⎪⎩.6.解不等式组153742 xxx-<⎧⎪⎨++⎪⎩7.解不等式组:3(2)22123x xxx+->⎧⎪-⎨<+⎪⎩8.解不等式组315213x xxx-<-⎧⎪+⎨->⎪⎩.9.解不等式组:1054(1)1xx+>⎧⎨--<⎩.10.解不等式组:3(1)17212x xxx+>-⎧⎪⎨+-⎪⎩.11.解不等式组:3(1)21 212x xxx-<⎧⎪⎨-+>⎪⎩.12.解一元一次不等式组:317223(1)56xxx x⎧--⎪⎨⎪+>-⎩.13.解不等式组:223434xx x+⎧<⎪⎨⎪--⎩①②.14.解不等式组:351 123x xx->+⎧⎪⎨<⎪⎩15.解不等式组30215xx x-⎧⎨+>--⎩.16.解不等式组:3(2)22 254x xxx-<-⎧⎪⎨+<⎪⎩17.解不等式组:3122(2)5xx x--⎧⎨+<+⎩.18.解不等式组1(1)222323xx x⎧+⎪⎪⎨++⎪⎪⎩.19.解不等式组1123(2)2xx x+⎧⎪⎨⎪->-⎩.20.解不等式组:1122231xx⎧+<-⎪⎨⎪--⎩.不等式组计算题参考答案与试题解析一.解答题(共20小题)1.解一元一次不等式组:533(2)15126x xx x-+>-⎧⎪+-⎨-⎪⎩.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:() 533215126x xx x⎧-+>-⎪⎨+--⎪⎩①②,由①得:98x<,由②得:1x-,则不等式组的解集为1x-.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组取解集的方法是解本题的关键.2.解不等式组3142944637xxx x+⎧>-⎪⎨⎪++⎩【分析】首先分别计算出两个不等式的解集,再根据解集的规律确定不等式组的解集.【解答】解:3142944637xxx x+⎧>-⎪⎨⎪++⎩①②,解①得:10x<,解②得:1x,故不等式组的解为:110x<.【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.3.解不等式组:2(1)51 3x xxx-<⎧⎪-⎨<+⎪⎩【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:()21513x xxx⎧-<⎪⎨-<+⎪⎩①②,由①得:2x<,由②得:4x >-,则不等式组的解集为42x -<<.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组取解集的方法是解本题的关键.4.解不等式组:3(1)531152x x x x --⎧⎪-+⎨-⎪⎩. 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【解答】解:解不等式3(1)5x x --,得:1x -, 解不等式31152x x -+-,得:7x -, 则不等式组的解集为71x --.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.解不等式组3(1)563x x x x +>-⎧⎪-⎨>⎪⎩. 【分析】分别求出不等式组中两不等式的解集,找出两解集的方法部分即可.【解答】解:()31563x x x x ⎧+>-⎪⎨->⎪⎩①②, 由①得:4x >-,由②得:3x <-,则不等式组的解集为43x -<<-.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组取解集的方法是解本题的关键.6.解不等式组153742x x x -<⎧⎪⎨++⎪⎩ 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式15x -<,得:6x <;解不等式3742x x ++,得:1x , 则不等式组的解集为1x .【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.解不等式组:3(2)22123x x x x +->⎧⎪-⎨<+⎪⎩【分析】根据解一元一次不等式组的方法可以解答本题.【解答】解:()3222123x x x x ⎧+->⎪⎨-<+⎪⎩①②, 由不等式①,得2x >,由不等式②,得5x <,故原不等式组的解集是25x <<.【点评】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式组的方法.8.解不等式组315213x x x x -<-⎧⎪+⎨->⎪⎩. 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式315x x -<-,得:2x <-, 解不等式213x x +->,得:0.5x <-, 则不等式组的解集为2x <-.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.解不等式组:10?54(1)1x x +>⎧⎨--<⎩. 【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:()105411x x +>⎧⎪⎨--<⎪⎩①②, 由①得:1x >-,由②得:2x >,则不等式组的解集为2x >.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.10.解不等式组:3(1)17212x x x x +>-⎧⎪⎨+-⎪⎩. 【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:()3117212x x x x +>-⎧⎪⎨+-⎪⎩①②, 由①得:2x >-,由②得:3x ,∴不等式组的解集为23x -<.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.解不等式组:3(1)21212x x x x -<⎧⎪⎨-+>⎪⎩. 【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:()3121212x x x x -<⎧⎪⎨-+>⎪⎩①②, 由①得:3x <,由②得:1x >-,则不等式组的解集为13x -<<.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.12.解一元一次不等式组:317223(1)56x x x x ⎧--⎪⎨⎪+>-⎩. 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:()317223156x x x x ⎧--⎪⎨⎪+>-⎩①②, 解不等式①得,4x ,解不等式②得,92x <, ∴原不等式组的解集是4x .大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.解不等式组:223434x x x +⎧<⎪⎨⎪--⎩①②.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:4x <,解不等式②,得:0x ,则不等式组的解集为04x <.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.解不等式组:351123x x x ->+⎧⎪⎨<⎪⎩ 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式351x x ->+得:3x >, 解不能等式123x <得:6x <, 所以不等式组的解集为36x <<.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.解不等式组30215x x x-⎧⎨+>--⎩. 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:30,215x x x -⎧⎨+>--⋅⎩①② 解不等式①,得3x ,解不等式②,得2x >-,所以这个不等式组的解集是23x -<.大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.解不等式组:3(2)22254x x x x -<-⎧⎪⎨+<⎪⎩ 【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:()3222254x x x x -<-⎧⎪⎨+<⎪⎩①②, 由①得:4x <,由②得:52x >, 则不等式组的解集为542x <<. 【点评】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.17.解不等式组:3122(2)5x x x --⎧⎨+<+⎩. 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式312x --,得:1x -,解不等式2(2)5x x +<+,得:1x <,则不等式组的解集为11x -<.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.解不等式组1(1)222323x x x ⎧+⎪⎪⎨++⎪⎪⎩. 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式1(1)22x +,得:3x , 解不等式2323x x ++,得:0x , 则不等式组的解集为03x .【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同第11页(共11页)大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.解不等式组1123(2)2x x x+⎧⎪⎨⎪->-⎩.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式112x +,得:1x , 解不等式3(2)2x x ->-,得:2x >,则不等式组的解集为2x >.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.解不等式组:1122231x x ⎧+<-⎪⎨⎪--⎩.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式1122x +<-,得:6x <-, 解不等式231x --,得:1x ,则不等式组的解集为6x <-.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.。
不等式计算专项练习及答案
不等式计算专项练习一、解答题1.解不等式组,并且把解集在数轴上表示出来.2.求不等式组的整数解.3.计算下列不等式(组):(1)x-<2-.(2)-2≤≤7(3);(4)4.已知:y1=x+3,y2=-x+2,求满足下列条件时x的取值范围:(1)y1<y2(2)2y1-y2≤45.解不等式组:6.求下列不等式组的解集7.(1)计算:(-2)-2×|-3|-()0(2)解不等式组:8.解不等式组,并指出它的所有整数解.9.解不等式组:,并写出该不等式组的整数解.10.解不等式组,并将解集在数轴上表示出来.11.解不等式组并写出的所有整数解.12.(1)解方程:.(2)求不等式组:.13.求不等式组的整数解.14.(1)解不等式组:并把解集在数轴上表示出来.(2)解不等式组:15.求不等式组的非负整数解.16.解不等式(组),并把它们的解集在数轴上表示出来(1);(2)17.(1)解不等式组(2)在(1)的条件下化简:|x+1|+|x-4|18.已知关于x,y的方程组的解为正数.(1)求a的取值范围;(2)化简|-4a+5|-|a+4|.19.(1)解不等式2->+1,并把它的解集在数轴上表示出来;(2)求不等式组的整数解.20.解不等式组:.21.解不等式组22.解不等式组,并把它们解集表示在数轴上,写出满足该不等式组的所有整数解.23.解不等式组:;在数轴上表示出不等式组的解集,并写出它的整数解.24.解不等式组:.25.解不等式组26.解不等式组)27.当x是不等式组的正整数解时,求多项式(1﹣3x)(1+3x)+(1+3x)2+(﹣x2)3÷x4的值.28.解方程与不等式组:解方程:;解不等式组:29.解不等式组.30.解不等式组,并写出不等式组的整数解.31.(1)解不等式组:(2)解方程:32.解不等式组:.33.解不等式组,并在数轴上表示它的解集.34.(1)解方程:;(2)解不等式组:,并把解集在数轴上表示出来.35.解不等式组36.解不等式(组)(1)(2)37.解不等式组:38.已知不等式组的解集为﹣6<x<3,求m,n的值.39.解不等式组并把解集在数轴上表示出来;并写出其整数解。
最新解不等式组计算专项练习60题(有答案)
解不等式组专项练习60题(有答案)1.2..3..4.,5..6..7.8..9.10.11.12.,13..14.,15.16.17..18.19.20..21..22..23.24.25.,.26.27.,28.29..30.已知:2a﹣3x+1=0,3b﹣2x﹣16=0,且a≤4<b,求x的取值范围.31..32..33.已知:a=,b=,并且2b ≤<a.请求出x的取值范围.34.35.,36.,并将其解集在数轴上表示出来.37..38.,并把解集在数轴上表示出来.39.已知关于x、y 的方程组的解满足x>y >0,化简|a|+|3﹣a|.40.,并把它的解集在数轴上表示出来.41.42.43..44..45..46..47.关于x、y 的二元一次方程组,当m为何值时,x>0,y≤0.48.并将解集表示在数轴上.49.已知关于x、y 的方程组的解是一对正数,求m的取值范围.50.已知方程组的解满足,化简.51..52.53..54..55..56.57.58.59.60.解不等式组60题参考答案:1、解:,由①得2x≥2,即x≥1;由②得x<3;故不等式组的解集为:1≤x<3.2.解:,由①得:x≤5,由②得:x>﹣2,不等式组的解集为﹣2<x≤53.解:解不等式①,得x>1.解不等式②,得x<2.故不等式组的解集为:1<x<2.4.解:,解不等式①得,x>1,解不等式②得,x<3,故不等式的解集为:1<x<3,5.解不等式①,得x≤﹣2,解不等式②,得x>﹣3,故原不等式组的解集为﹣3<x≤﹣2,6.解:,解不等式①得:x>﹣1,解不等式②得:x≤2,不等式组的解集为:﹣1<x≤2,7.解:,由①得x>﹣3;由②得x≤1故此不等式组的解集为:﹣3<x≤1,8.解:解不等式①,得x<3,解不等式②,得x≥﹣1.所以原不等式的解集为﹣1≤x<3.9.解:∵由①得,x>﹣1;由②得,x≤4,∴此不等式组的解集为:﹣1<x≤4,10.解:,解不等式①得:x<3,解不等式②得:x≥1,不等式组的解集是1≤x<3 11.解:,由①得,x≥﹣;由②得,x<1,故此不等式组的解集为:﹣<x<1,12.解:∵由①得,x≤3,由②得x>0,∴此不等式组的解集为:0<x≤3,13.解:解不等式①,得x≥1;解不等式②,得x<4.∴1≤x<4.14.解:原不等式组可化为,解不等式①得x>﹣3;解不等式②得x≤3.所以-3<x≤3 15.解:由(1)得:x+4<4,x<0由(2)得:x﹣3x+3>5,x<﹣1∴不等式组解集是:x<﹣116.解:,解不等式(1),得x<5,解不等式(2),得x≥﹣2,因此,原不等式组的解集为﹣2≤x<5.17.解:由①得:去括号得,x﹣3x+6≤4,移项、合并同类项得,﹣2x≤﹣2,化系数为1得,x≥1.由②得:去分母得,1+2x>3x﹣3,移项、合并同类项得,﹣x>﹣4,化系数为1得,x<4 ∴原不等式组的解集为:1≤x<4.18.解:解不等式①,得x≥﹣1,解不等式②,得x<3,∴原不等式组的解集为﹣1≤x<3.19.解:解不等式(1)得x<1解不等式(2)得x≥﹣2所以不等式组的解集为﹣2≤x<1.20.解:解不等式①,得x>﹣.解不等式②,得x≤4.所以,不等式组的解集是﹣<x≤4.21.解:①的解集为x≥1②的解集为x<4原不等式的解集为1≤x<4.22.解:解不等式(1),得2x+4<x+4,x<0,不等式(2),得4x≥3x+3,x≥3.∴原不等式无解.23.解:解不等式2x+5≤3(x+2),得x≥﹣1解不等式x﹣1<x,得x<3.所以,原不等式组的解集是﹣1≤x<3.24.解:解不等式①,得x≥﹣1,解不等式②,得x<3,∴原不等式组的解是﹣1≤x<3.25.解:由题意,解不等式①,得x<2,解不等式②,得x≥﹣1,∴不等式组的解集是﹣1≤x<2.26.:由不等式①得:x≥0由不等式②得:x<4原不等式组的解集为0≤x<427.解:由不等式①得:2x≤8,x≤4.由不等式②得:5x﹣2+2>2x,3x>0,x>0.∴原不等式组的解集为:0<x≤4.28.解:解不等式①,得x≤﹣1,解不等式②,得x>﹣2,所以不等式组的解集为﹣2<x≤﹣1.29.解:解不等式①,得x≤2.解不等式②,得x>﹣3.所以原不等式组的解集为x≤2.30. 解:由2a﹣3x+1=0,3b﹣2x﹣16=0,可得a=,b=,∵a≤4<b,∴,由(1),得x≤3.由(2),得x>﹣2.∴x的取值范围是﹣2<x≤3.31.解:由①得:x≤2.由②得:x>﹣1.∴不等式组的解集为﹣1<x≤2.32.解:解不等式①,得x>;解不等式②,得x≤4.∴不等式的解集是<x≤4.33.解:把a,b代入得:2×.化简得:6x﹣21≤15<2x+8.解集为:3.5<x≤6.34.解:解不等式①,得x≤2.5,解不等式②,得x>﹣1,解不等式③,得x≤2,所以这个不等式组的解集是﹣1<x≤2.35.解:解不等式①,得x≥﹣1.解不等式②,得x<2.所以不等式组的解集是﹣1≤x<2.36.解:由①,得x<2.由②,得x≥﹣1.∴这个不等式组的解集为﹣1≤x<2.37.解:由①得:x>﹣1由②得:x所以解集为﹣1<x.38.解:由①得:﹣2x≥﹣2,即x≤1,由②得:4x﹣2<5x+5,即x>﹣7,所以﹣7<x≤1.在数轴上表示为:39.解:由方程组,解得.由x>y>0,得.解得a>2当2<a≤3时,|a|+|3﹣a|=a+3﹣a=3;当a>3时,|a|+|3﹣a|=a+a﹣3=2a﹣3.40.解:由(1)得x<8由(2)得,x≥4故原不等式组的解集为4≤x<8.41.解:由①得2x<6,即x<3,由②得x+8>﹣3x,即x>﹣2,所以解集为﹣2<x<3.42.解:(1)去括号得,10﹣4x+12≥2x﹣2,移项、合并同类项得,﹣6x≥﹣24,解得,x≤4;(2)去分母得,3(x﹣1)>1﹣2x,去括号得,3x﹣3>1﹣2x,移项、合并同类项得,5x>4,化系数为1得,x>.∴不等式组的解集为:<x≤4.43.解:解第一个不等式得:x <;解第二个不等式得:x≥﹣12.故不等式组的解集是:﹣12≤x <.44.解:原方程组可化为:,由(1)得,x<﹣3由(2)得,x≥﹣4根据“小大大小中间找”原则,不等式组的解集为﹣4≤x<﹣3.45.由①得:x<2,由②得:x≥﹣1∴﹣1≤x<2.46.整理不等式组得解之得,x>﹣2,x≤1∴﹣2<x≤147.解:①+②×2得,7x=13m﹣3,即x=③,把③代入②得,2×+y=5m﹣3,解得,y=78-m9,因为x>0,y≤0,所以,解得<m≤9848. 解不等式①,得x ≤,解不等式②,得x≥﹣8.把不等式的解集在数轴上表示出来,如图:所以这个不等式组的解集为﹣8≤x ≤.49.解:由题意可解得,解得,故<m<1350.解:由2x﹣2=5得x=,代入第一个方程得+2y=5a;则y=a ﹣,由于y<0,则a <(1)当a<﹣2时,原式=﹣(a+2)﹣[﹣(a ﹣)]=﹣2;(2)当﹣2<a <时,原式=a+2﹣[﹣(a ﹣)]=2a+;(3)当<a <时,原式=a+2﹣(a ﹣)=2;851.解不等式(1)得:2﹣x﹣1≤2x+4 ﹣3x≤3 x≥﹣1解不等式(2),得:x2+x>x2+3x ﹣2x>0 x<0 ∴原不等式组的解集为:﹣1≤x<0.52.解不等式(1)得:x≥-1 解不等式(2),得:x<2 ∴原不等式组的解集为:﹣1≤x<2.53.解①得x<解②得x≥3,∴不等式组的解集为无解.54.解第一个不等式得x<8解第二个不等式得x≥2∴原不等式组的解集为:2≤x<8.55.解:由①得:1﹣2x+2≤5∴2x≥﹣2即x≥﹣1由②得:3x﹣2<2x+1∴x<3.∴原不等式组的解集为:﹣1≤x<3.56.解:原不等式可化为:即在数轴上可表示为:∴不等式的解集为:1≤x<357.解:,解不等式①,得x<3,解不等式②,得x≥﹣1,把不等式的解集在数轴上表示出来,如图所示.不等式组的解集是﹣1≤x<358.解:由题意,解不等式①得x>2,不等式②×2得x﹣2≤14﹣3x解得x≤4,∴原不等式组的解集为2<x≤4.59.解:解不等式①,得x<2.(2分)解不等式②,得x≥﹣1.(4分)所以,不等式组的解集是﹣1≤x<2.(5分)解集在数轴上表示为:60.解:由①,得x≥﹣,由②,得x<3,所以不等式组的解集为﹣≤x<3.。
不等式计算专项练习及答案
不等式计算专项练习及答案1.解不等式组,并在数轴上表示解集。
2.求不等式组的解集。
3.计算不等式的整数解。
4.已知 $y_1=x+3$,$y_2=-x+2$,求满足给定条件的$x$ 的取值范围。
5.解不等式组。
6.求不等式组的解集。
7.(1) 计算 $(-2)\times|-3|-(-2)$。
(2) 解不等式组。
8.解不等式组,并指出所有整数解。
9.解不等式组,并写出整数解。
10.解不等式组,并在数轴上表示解集。
11.解不等式组。
12.(1) 解方程并写出所有整数解。
(2) 求不等式组。
13.求不等式组的整数解。
14.(1) 解不等式组并在数轴上表示解集。
(2) 解不等式组。
15.求不等式组的非负整数解。
16.解不等式组,并在数轴上表示解集。
17.(1) 解不等式组。
(2) 在给定条件下化简 $|x+1|+|x-4|$。
18.已知关于 $x$,$y$ 的方程组,求 $a$ 的取值范围,并化简 $|-4a+5|-|a+4|$。
19.(1) 解不等式并在数轴上表示解集。
(2) 求不等式组的正数解。
20.解不等式组的整数解。
21.解不等式组。
22.解不等式组并在数轴上表示解集,写出满足给定条件的所有整数解。
23.解不等式组。
24.解不等式组。
25.解不等式组。
26.解不等式组。
27.当 $x$ 是不等式组的正整数解时,求多项式 $(1-3x)(1+3x)+(1+3x)-x/x$ 的值。
28.解方程和不等式组。
29.解不等式组。
30.解不等式组并写出整数解。
31.(1) 解不等式组。
(2) 解方程。
32.解不等式组。
33.解不等式组并在数轴上表示解集。
34.(1) 解方程。
(2) 解不等式组并在数轴上表示解集。
35.解不等式组。
36.解不等式组。
37.解不等式组。
38.已知不等式组的解集为$-6<x<3$,求$m$,$n$ 的值。
39.解不等式组。
40.计算并分解因式。
根据题目给出的不等式组,列出每个不等式的解集,再求出它们的交集,即为不等式组的解集。
解不等式组计算专项练习60题(有答案)
解不等式组计算专项练习60题(有答案)1.解不等式组专项练60题(附答案)2.解:2x+1≤3x,得x≥1;3x-16≥2x,得x≥16,综合得1≤x<16,即x∈[1,16)。
3.解:|a-1|<1,即-1<a-1<1,解得0<a<2;|a+2|<2,即-2<a+2<2,解得-4<a<-0.5.综合得-4<a<-0.5,0<a<2,即a∈(-4,-0.5)∪(0,2)。
4.解:x+1>0,即x>-1;x-3<0,即x<3,综合得-1<x<3,即x∈(-1,3)。
5.解:x-2≥0,即x≥2;2x+1≤3x-2,得x≥3,综合得x≥3,即x∈[3,∞)。
6.解:x+1>0,即x>-1;2x-3≤x+2,得x≤5,综合得-1<x≤5,即x∈(-1,5]。
7.解:x-3≥0,即x≥3;2x-1≤3x-4,得x≤3,综合得x=3.8.解:x+3>0,即x>-3;x-1≤0,即x≤1,综合得-3<x≤1,即x∈(-3,1]。
9.解:x+1>0,即x>-1;3x-2≤2x+8,得x≤10,综合得-1<x≤10,即x∈(-1,10]。
10.解:x-1≥0,即x≥1;x+2≥0,即x≥-2,综合得x≥1,即x∈[1,∞)。
11.解:x-3<0,即x<3;x-1≥0,即x≥1,综合得x∈(-∞,3)∩[1,∞),即x∈[1,3)。
12.删除此段。
13.解:x-2>0,即x>2;x+1≤0,即x≤-1,综合得x∈(2.-1]。
14.解:x+3≥0,即x≥-3;3x-2≤2x+5,得x≤7,综合得-3≤x≤7,即x∈[-3,7]。
15.解:x+1>0,即x>-1;2x-5≥0,即x≥2.5,综合得x>2.5,即x∈(2.5,∞)。
不等式计算专项练习及答案
不等式计算专项练习一、解答题1.解不等式组,并且把解集在数轴上表示出来.2.求不等式组的整数解.3.计算下列不等式(组):(1)x-<2-.(2)-2≤≤7(3);(4)4.已知:y1=x+3,y2=-x+2,求满足下列条件时x的取值范围:(1)y1<y2(2)2y1-y2≤45.解不等式组:6.求下列不等式组的解集7.(1)计算:(-2)-2×|-3|-()0(2)解不等式组:8.解不等式组,并指出它的所有整数解.9.解不等式组:,并写出该不等式组的整数解.10.解不等式组,并将解集在数轴上表示出来.11.解不等式组并写出的所有整数解.12.(1)解方程:.(2)求不等式组:.13.求不等式组的整数解.14.(1)解不等式组:并把解集在数轴上表示出来.(2)解不等式组:15.求不等式组的非负整数解.16.解不等式(组),并把它们的解集在数轴上表示出来(1);(2)17.(1)解不等式组(2)在(1)的条件下化简:|x+1|+|x-4|18.已知关于x,y的方程组的解为正数.(1)求a的取值范围;(2)化简|-4a+5|-|a+4|.19.(1)解不等式2->+1,并把它的解集在数轴上表示出来;(2)求不等式组的整数解.20.解不等式组:.21.解不等式组22.解不等式组,并把它们解集表示在数轴上,写出满足该不等式组的所有整数解.23.解不等式组:;在数轴上表示出不等式组的解集,并写出它的整数解.24.解不等式组:.25.解不等式组26.解不等式组)27.当x是不等式组的正整数解时,求多项式(1﹣3x)(1+3x)+(1+3x)2+(﹣x2)3÷x4的值.28.解方程与不等式组:解方程:;解不等式组:29.解不等式组.30.解不等式组,并写出不等式组的整数解.31.(1)解不等式组:(2)解方程:32.解不等式组:.33.解不等式组,并在数轴上表示它的解集.34.(1)解方程:;(2)解不等式组:,并把解集在数轴上表示出来.35.解不等式组36.解不等式(组)(1)(2)37.解不等式组:38.已知不等式组的解集为﹣6<x<3,求m,n的值.39.解不等式组并把解集在数轴上表示出来;并写出其整数解。
不等式组计算题(含答案)
不等式组计算题一.解答题(共20小题)1.解一元一次不等式组:533(2)15126x xx x-+>-⎧⎪+-⎨-⎪⎩.2.解不等式组3142944637xxx x+⎧>-⎪⎨⎪++⎩3.解不等式组:2(1)51 3x xxx-<⎧⎪-⎨<+⎪⎩4.解不等式组:3(1)531152x xx x--⎧⎪-+⎨-⎪⎩.5.解不等式组3(1)563x xxx+>-⎧⎪-⎨>⎪⎩.6.解不等式组153742 xxx-<⎧⎪⎨++⎪⎩7.解不等式组:3(2)22123x xxx+->⎧⎪-⎨<+⎪⎩8.解不等式组315213x xxx-<-⎧⎪+⎨->⎪⎩.9.解不等式组:1054(1)1xx+>⎧⎨--<⎩.10.解不等式组:3(1)17212x xxx+>-⎧⎪⎨+-⎪⎩.11.解不等式组:3(1)21 212x xxx-<⎧⎪⎨-+>⎪⎩.12.解一元一次不等式组:317223(1)56xxx x⎧--⎪⎨⎪+>-⎩.13.解不等式组:223434xx x+⎧<⎪⎨⎪--⎩①②.14.解不等式组:351 123x xx->+⎧⎪⎨<⎪⎩15.解不等式组30215xx x-⎧⎨+>--⎩.16.解不等式组:3(2)22 254x xxx-<-⎧⎪⎨+<⎪⎩17.解不等式组:3122(2)5xx x--⎧⎨+<+⎩.18.解不等式组1(1)222323xx x⎧+⎪⎪⎨++⎪⎪⎩.19.解不等式组1123(2)2xx x+⎧⎪⎨⎪->-⎩.20.解不等式组:1122231xx⎧+<-⎪⎨⎪--⎩.不等式组计算题参考答案与试题解析一.解答题(共20小题)1.解一元一次不等式组:533(2)15126x xx x-+>-⎧⎪+-⎨-⎪⎩.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:() 533215126x xx x⎧-+>-⎪⎨+--⎪⎩①②,由①得:98x<,由②得:1x-,则不等式组的解集为1x-.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组取解集的方法是解本题的关键.2.解不等式组3142944637xxx x+⎧>-⎪⎨⎪++⎩【分析】首先分别计算出两个不等式的解集,再根据解集的规律确定不等式组的解集.【解答】解:3142944637xxx x+⎧>-⎪⎨⎪++⎩①②,解①得:10x<,解②得:1x,故不等式组的解为:110x<.【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.3.解不等式组:2(1)51 3x xxx-<⎧⎪-⎨<+⎪⎩【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:()21513x xxx⎧-<⎪⎨-<+⎪⎩①②,由①得:2x<,由②得:4x >-,则不等式组的解集为42x -<<.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组取解集的方法是解本题的关键.4.解不等式组:3(1)531152x x x x --⎧⎪-+⎨-⎪⎩. 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【解答】解:解不等式3(1)5x x --,得:1x -, 解不等式31152x x -+-,得:7x -, 则不等式组的解集为71x --.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.解不等式组3(1)563x x x x +>-⎧⎪-⎨>⎪⎩. 【分析】分别求出不等式组中两不等式的解集,找出两解集的方法部分即可.【解答】解:()31563x x x x ⎧+>-⎪⎨->⎪⎩①②, 由①得:4x >-,由②得:3x <-,则不等式组的解集为43x -<<-.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组取解集的方法是解本题的关键.6.解不等式组153742x x x -<⎧⎪⎨++⎪⎩ 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式15x -<,得:6x <;解不等式3742x x ++,得:1x , 则不等式组的解集为1x .【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.解不等式组:3(2)22123x x x x +->⎧⎪-⎨<+⎪⎩【分析】根据解一元一次不等式组的方法可以解答本题.【解答】解:()3222123x x x x ⎧+->⎪⎨-<+⎪⎩①②, 由不等式①,得2x >,由不等式②,得5x <,故原不等式组的解集是25x <<.【点评】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式组的方法.8.解不等式组315213x x x x -<-⎧⎪+⎨->⎪⎩. 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式315x x -<-,得:2x <-, 解不等式213x x +->,得:0.5x <-, 则不等式组的解集为2x <-.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.解不等式组:10?54(1)1x x +>⎧⎨--<⎩. 【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:()105411x x +>⎧⎪⎨--<⎪⎩①②, 由①得:1x >-,由②得:2x >,则不等式组的解集为2x >.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.10.解不等式组:3(1)17212x x x x +>-⎧⎪⎨+-⎪⎩. 【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:()3117212x x x x +>-⎧⎪⎨+-⎪⎩①②, 由①得:2x >-,由②得:3x ,∴不等式组的解集为23x -<.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.解不等式组:3(1)21212x x x x -<⎧⎪⎨-+>⎪⎩. 【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:()3121212x x x x -<⎧⎪⎨-+>⎪⎩①②, 由①得:3x <,由②得:1x >-,则不等式组的解集为13x -<<.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.12.解一元一次不等式组:317223(1)56x x x x ⎧--⎪⎨⎪+>-⎩. 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:()317223156x x x x ⎧--⎪⎨⎪+>-⎩①②, 解不等式①得,4x ,解不等式②得,92x <, ∴原不等式组的解集是4x .大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.解不等式组:223434x x x +⎧<⎪⎨⎪--⎩①②.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:4x <,解不等式②,得:0x ,则不等式组的解集为04x <.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.解不等式组:351123x x x ->+⎧⎪⎨<⎪⎩ 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式351x x ->+得:3x >, 解不能等式123x <得:6x <, 所以不等式组的解集为36x <<.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.解不等式组30215x x x-⎧⎨+>--⎩. 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:30,215x x x -⎧⎨+>--⋅⎩①② 解不等式①,得3x ,解不等式②,得2x >-,所以这个不等式组的解集是23x -<.大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.解不等式组:3(2)22254x x x x -<-⎧⎪⎨+<⎪⎩ 【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:()3222254x x x x -<-⎧⎪⎨+<⎪⎩①②, 由①得:4x <,由②得:52x >, 则不等式组的解集为542x <<. 【点评】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.17.解不等式组:3122(2)5x x x --⎧⎨+<+⎩. 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式312x --,得:1x -,解不等式2(2)5x x +<+,得:1x <,则不等式组的解集为11x -<.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.解不等式组1(1)222323x x x ⎧+⎪⎪⎨++⎪⎪⎩. 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式1(1)22x +,得:3x , 解不等式2323x x ++,得:0x , 则不等式组的解集为03x .【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同第11页(共11页)大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.解不等式组1123(2)2x x x+⎧⎪⎨⎪->-⎩.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式112x +,得:1x , 解不等式3(2)2x x ->-,得:2x >,则不等式组的解集为2x >.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.解不等式组:1122231x x ⎧+<-⎪⎨⎪--⎩.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式1122x +<-,得:6x <-, 解不等式231x --,得:1x ,则不等式组的解集为6x <-.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.。
不等式组的练习题及答案
不等式组的练习题及答案不等式组是数学中的一个重要概念,它涉及到多个不等式的组合和求解。
以下是一些不等式组的练习题及其答案,供学生练习和教师参考。
练习题1:解不等式组:\[ \begin{cases}x + 2 > 0 \\3 - x \geq 0\end{cases} \]答案:首先解第一个不等式 \( x + 2 > 0 \),得到 \( x > -2 \)。
接着解第二个不等式 \( 3 - x \geq 0 \),得到 \( x \leq 3 \)。
综合两个不等式的解,不等式组的解集是 \( -2 < x \leq 3 \)。
练习题2:若不等式组:\[ \begin{cases}x - 5 \leq 7 \\2x + 1 > 10\end{cases} \]求 \( x \) 的取值范围。
答案:解第一个不等式 \( x - 5 \leq 7 \),得到 \( x \leq 12 \)。
解第二个不等式 \( 2x + 1 > 10 \),得到 \( x > 4.5 \)。
不等式组的解集是 \( 4.5 < x \leq 12 \)。
练习题3:解不等式组:\[ \begin{cases}3x - 1 \geq 5 \\x + 4 < 7\end{cases} \]答案:解第一个不等式 \( 3x - 1 \geq 5 \),得到 \( x \geq 2 \)。
解第二个不等式 \( x + 4 < 7 \),得到 \( x < 3 \)。
不等式组的解集是 \( 2 \leq x < 3 \)。
练习题4:若不等式组:\[ \begin{cases}-3x + 2 \leq 4 \\5 - 2x > 3x - 5\end{cases} \]求 \( x \) 的解集。
答案:解第一个不等式 \( -3x + 2 \leq 4 \),得到 \( x \geq -\frac{2}{3} \)。
数学课程不等式组求解练习题及答案
数学课程不等式组求解练习题及答案一、不等式组求解练习题1. 解下列不等式组:(1)2x + y ≥ 73x - y ≤ 4(2)3x + 2y ≤ 10x - 4y > 3(3)4x + 5y < 202x - 3y ≥ 52. 解下列不等式组,并画出解集在坐标系中的图形表示:(1)x + 2y > 3x - y < 2(2)2x - 3y ≥ 6x + y > 2二、不等式组求解练习题答案1. 解下列不等式组:(1)解2x + y ≥ 7 → (1)3x - y ≤ 4 → (2)将不等式 (1) 乘以 3:6x + 3y ≥ 21 → (3)将不等式 (2) 乘以 2:6x - 2y ≤ 8 → (4)将 (3) 和 (4) 相加可得:6x + 3y + 6x - 2y ≥ 21 + 8→ 12x + y ≥ 29因此原不等式组的解为:2x + y ≥ 73x - y ≤ 412x + y ≥ 29(2)解3x + 2y ≤ 10 → (1)x - 4y > 3 → (2)将不等式 (1) 乘以 4:12x + 8y ≤ 40 → (3)将不等式 (2) 乘以 3:3x - 12y > 9 → (4)将 (3) 和 (4) 相加可得:12x + 8y + 3x - 12y ≤ 40 + 9→ 15x - 4y ≤ 49因此原不等式组的解为:3x + 2y ≤ 10x - 4y > 315x - 4y ≤ 49(3)解4x + 5y < 20 → (1)2x - 3y ≥ 5 → (2)将不等式 (1) 乘以 2:8x + 10y < 40 → (3)将不等式 (2) 乘以 5:10x - 15y ≥ 25 → (4)将 (3) 和 (4) 相加可得:8x + 10y + 10x - 15y < 40 + 25→ 18x - 5y < 65因此原不等式组的解为:4x + 5y < 202x - 3y ≥ 518x - 5y < 652. 解下列不等式组,并画出解集在坐标系中的图形表示:(1)解x + 2y > 3 → (1)x - y < 2 → (2)将不等式 (1) 减去不等式 (2) 可得:3y > 1因此 y > 1/3将不等式 (1) 减去两倍的不等式 (2) 可得:2x > 4因此 x > 2因此原不等式组的解为:x > 2y > 1/3(2)解2x - 3y ≥ 6 → (1)x + y > 2 → (2)将不等式 (1) 乘以 3:6x - 9y ≥ 18 → (3)将不等式 (2) 乘以 2:2x + 2y > 4 → (4)将 (3) 和 (4) 相加可得:6x - 9y + 2x + 2y ≥ 18 + 4→ 8x - 7y ≥ 22因此原不等式组的解为:2x - 3y ≥ 6x + y > 28x - 7y ≥ 22以上是数学课程不等式组求解练习题及答案,希望能对你的学习有所帮助。
不等式专项练习200题及参考答案(六年级)
2 x 4 89. x x 1 2 3
2 x 1 3 90. 1 x 0 2
x 4 x 91. 1 x 5 x 2
3 x x 1 92. 5 4 x 3 x
2 x 3 x 1 93. 1 x 1 4
不等式专项练习 200 题 一、解不等式 1. 3x+2>﹣1 2. 3 x 12
3. 2x-6>0
4. 3 x 5 13
5. 3 x 2 5
6. 1 2 x 0
7. 2 x 2 7
8. 3 x 3 11
9.
2 x 3x 3
10. 3 x 2 x 5
不等式专项练习 200 题
说明: 本题集共 200 题, 其中 1~118 题为一元一次不等式与不等式组的计算, 题目从易到难, 旨在练习同学们的计算能力, 以及不等式组的解集与 数轴结合的思想,为基础题型,建议每天做 20 题,限时做题,在保 证正确率的情况下可以继续做后续题目; 119~160 题为填空题,题型涉及复杂不等式与不等式组求解,整数解 和解的存在性问题, 建议在学完相关课程之后再做题, 有能力的同学 可以先行预习之后做题,建议每天做 10 题; 161~200 题为不等式与不等式组的实际应用题,包括销售问题、分配 问题、 购买问题以及运输问题中的多种方案选择, 建议每天做 10 题.
2 x 5 x 1 14 101. 3x 1 x 10 1 2
1 x 1 2 102. 3 x 5 x 4 2
3 x 2 x 8 103. x x 1 3 2
x 3 2x 5 104. 1 3 1 x 2 2
不等式经典题型专题练习(含答案)-
26.解:(1)原不等式组的解集是x<2;(2)a=1.
27.(1)答案见解析;(2) 型住房 套, 型住房 套获得利润最大;(3)答案见解析.
19.6
20.(1)参赛学生人数在155≤x<200范围内;
(2)参赛学生人数是180人.
21.(1)40,50(2)当m=15时,总费用最低
22.(1)共有8种购买方案,
方案1:购买康乃馨1支,购买兰花6支;
方案2:购买康乃馨1支,购买兰花7支;
方案3:购买康乃馨1支,购买兰花8支;
方案4:购买康乃馨2支,购买兰花5支;
(3)在(2)的条件下,根据市场调查,每套乙种套房的提升费用不会改变,每套甲种套房提升费用将会提高a万元(a>0),市政府如何确定方案才能使费用最少?
25.如图,用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当未进入木块的钉子长度足够时,每次钉入木块的钉子长度是前一次 .已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后铁钉进入木块的长度是2cm,若铁钉总长度为acm,求a的取值范围.
16.某宾馆一楼客房比二楼少5间,某旅游团有48人,如果全住一楼,若按每间4人安排,则房间不够;若按每间5人安排,则有的房间住不满5人.如果全住在二楼,若按每间3人安排,则房间不够;若按每间4人安排,则有的房间住不满4人,试求该宾馆一楼有多少间客房?
17.3个小组计划在10天内生产500件产品(计划生产量相同),按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产一件产品,就能提前完成任务。每个小组原先每天生产多少件产品?
方案5:购买康乃馨2支,购买兰花6支;
方案6:购买康乃馨3支,购买兰花4支;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解不等式组专项练习题(有答案)
1.
2..
3..
4.,
5..6..
7.
8..
9.
10.
11.12.,
13..14.,
15.
16.
17..
18.
19.
20..21..
22..
23.
24.
25.,.
26.
27.,
28.
29..
30.已知:2a﹣3x+1=0,3b﹣2x﹣16=0,且a≤4<b,求x的取值范围.
31..
32..
33.已知:a=,b=,并且2b≤<a.请求出x的取值范围.34.
35.,
36.,并将其解集在数轴上表示出来.
37..
38.,并把解集在数轴上表示出来.
39.已知关于x、y 的方程组的解满足x>y >0,化简|a|+|3﹣a|.
40.,并把它的解集在数轴上表示出来.
41.
42.
43..
解不等式组60题参考答案:
1、解:,由①得2x≥2,即x≥1;由②得x<3;故不等式组的解集为:1≤x<3.2.解:,由①得:x≤5,由②得:x>﹣2,不等式组的解集为﹣2<x≤5
3.解:解不等式①,得x>1.解不等式②,得x<2.故不等式组的解集为:1<x<2.4.解:,解不等式①得,x>1,解不等式②得,x<3,故不等式的解集为:1<x<3,
5.解不等式①,得x≤﹣2,解不等式②,得x>﹣3,故原不等式组的解集为﹣3<x≤﹣2,
6. 解:,解不等式①得:x>﹣1,解不等式②得:x≤2,不等式组的解集为:﹣1<x≤2,7.解:,由①得x>﹣3;由②得x≤1故此不等式组的解集为:﹣3<x≤1,
8.解:解不等式①,得x<3,解不等式②,得x≥﹣1.所以原不等式的解集为﹣1≤x<3.9.解:∵由①得,x>﹣1;由②得,x≤4,∴此不等式组的解集为:﹣1<x≤4,
10.解:,解不等式①得:x<3,解不等式②得:x≥1,不等式组的解集是1≤x<3 11.解:,由①得,x≥﹣;由②得,x<1,故此不等式组的解集为:﹣<x<1,
12.解:∵由①得,x≤3,由②得x>0,∴此不等式组的解集为:0<x≤3,
13.解:解不等式①,得x≥1;解不等式②,得x<4.∴1≤x<4.
14.解:原不等式组可化为,解不等式①得x>﹣3;解不等式②得x≤3.所以-3<x≤3 15.解:由(1)得:x+4<4,x<0由(2)得:x﹣3x+3>5,x<﹣1∴不等式组解集是:x<﹣1
16.解:,解不等式(1),得x<5,解不等式(2),得x≥﹣2,因此,原不等式组的解集为﹣2≤x<5.
17.解:由①得:去括号得,x﹣3x+6≤4,移项、合并同类项得,﹣2x≤﹣2,化系数为1得,x≥1.由②得:去分母得,1+2x>3x﹣3,移项、合并同类项得,﹣x>﹣4,
化系数为1得,x<4 ∴原不等式组的解集为:1≤x<4.
18.解:解不等式①,得x≥﹣1,解不等式②,得x<3,∴原不等式组的解集为﹣1≤x<3.
19.解:解不等式(1)得x<1解不等式(2)得x≥﹣2所以不等式组的解集为﹣2≤x<1.
20.解:解不等式①,得x>﹣.解不等式②,得x≤4.所以,不等式组的解集是﹣<x≤4.
21.解:①的解集为x≥1②的解集为x<4原不等式的解集为1≤x<4.
22.解:解不等式(1),得2x+4<x+4,x<0,不等式(2),得4x≥3x+3,x≥3.∴原不等式无解.
23.解:解不等式2x+5≤3(x+2),得x≥﹣1解不等式x﹣1<x,得x<3.所以,原不等式组的解集是﹣1≤x<3.24.解:解不等式①,得x≥﹣1,解不等式②,得x<3,∴原不等式组的解是﹣1≤x<3.
25.解:由题意,解不等式①,得x<2,解不等式②,得x≥﹣1,
∴不等式组的解集是﹣1≤x<2.
26.:由不等式①得:x≥0由不等式②得:x<4原不等式组的解集为0≤x<4
27.解:由不等式①得:2x≤8,x≤4.由不等式②得:5x﹣2+2>2x,3x>0,x>0.
∴原不等式组的解集为:0<x≤4.
28.解:解不等式①,得x≤﹣1,解不等式②,得x>﹣2,所以不等式组的解集为﹣2<x≤﹣1.
29.解:解不等式①,得x≤2.解不等式②,得x>﹣3.所以原不等式组的解集为x≤2.
30. 解:由2a﹣3x+1=0,3b﹣2x﹣16=0,可得a=,b=,
∵a≤4<b,∴,由(1),得x≤3.由(2),得x>﹣2.∴x的取值范围是﹣2<x≤3.
31.解:由①得:x≤2.由②得:x>﹣1.∴不等式组的解集为﹣1<x≤2.
32.解:解不等式①,得x>;解不等式②,得x≤4.∴不等式的解集是<x≤4.
33.解:把a,b代入得:2×.化简得:6x﹣21≤15<2x+8.解集为:<x≤6.
34.解:解不等式①,得x≤,解不等式②,得x>﹣1,解不等式③,得x≤2,
所以这个不等式组的解集是﹣1<x≤2.
35.解:解不等式①,得x≥﹣1.解不等式②,得x<2.所以不等式组的解集是﹣1≤x<2.
36.解:由①,得x<2.由②,得x≥﹣1.
∴这个不等式组的解集为﹣1≤x<2.
37.解:由①得:x>﹣1由②得:x所以解集为﹣1<x.
38.解:由①得:﹣2x≥﹣2,即x≤1,由②得:4x﹣2<5x+5,即x>﹣7,所以﹣7<x≤1.在数轴上表示为:
39.解:由方程组,解得.由x>y>0,得.解得a>2
当2<a≤3时,|a|+|3﹣a|=a+3﹣a=3;
当a>3时,|a|+|3﹣a|=a+a﹣3=2a﹣3.
40.解:由(1)得x<8由(2)得,x≥4故原不等式组的解集为4≤x<8.
41.解:由①得2x<6,即x<3,由②得x+8>﹣3x,即x>﹣2,所以解集为﹣2<x<3.
42.解:(1)去括号得,10﹣4x+12≥2x﹣2,移项、合并同类项得,﹣6x≥﹣24,解得,x≤4;
(2)去分母得,3(x﹣1)>1﹣2x,去括号得,3x﹣3>1﹣2x,移项、合并同类项得,5x>4,化系数为1得,x>.∴不等式组的解集为:<x≤4.
43.解:解第一个不等式得:x<;解第二个不等式得:x≥﹣12.故不等式组的解集是:﹣12≤x<.。