1.3.2排列与组合(二)
排列与组合公式排列从N个不同元素中任取R个元素排成一
1.3.2 古典概型
【例1.5】(摸球问题)箱中盛有个白球和个黑 球,从其中任意地接连取出k+1个球(k+1 + ),
如果每个球被取出后不再放回,试求最后取出的球 是白球的概率.
1.3.2 古典概型
解:由于注意了球的次序,故应考虑排列.
接连不放回地取k + 1个球的所有结果共有
个, Ak1
即样本空间中共有
Ak1
个样本点.
最后取出的白球可以是个白球中的任一个,
共有种取法,
与k无关!
其余k个可以是其余+–1个的任意k个,
共有
Ak 1
当投针试验次数n很大时,测出针与平行线相交
的次数mm,根据频率的稳定性, 频率值 n 可作为P(A)的近似值带入上式,
那么
m 2l 2nl
n dπ
dm
利用上式可以计算圆周率 的近似值.
☺课堂思考
实际应某用接中待,站认在为某小一概周率曾事接件待在过一1次2次试来验访中,几已乎知 是所不有可这能发12生次的接,待从都而是可在知周接二待和时周间四是进有行规的定,问的是.
n)!
1.3.2 古典概型
(3) C =“某指定房中恰有m (m n)人” 事件C中的m个人可自n个人中任意选出, 共有 Cnm 种选法,
其余n – m个人可以任意分配在其余N – 1间房里,
共有 ( N 1)nm 个分配法,
因而事件C中有
Cnm ( N
1)
nm
个样本点,
于是
P (C )
1.3 组合数学之排列
注意 本解法用到了组合的概念,它也可以作为基 本的组合模型
Yiqiang Wei <weiyiqiang@>
1.3 排列与组合
定义 从n个不同元素中取r个不重复的元素组成一 个子集,而不考虑其元素的顺序,称为从n个中 取r个的无重组合。 组合的全体组成的集合用 C(n,r) 表示, 所有不同组合的个数记为 C(n,r)或 Cnr 若球不同,盒子相同,则是从n个不同元素中取r 个不重复的组合的模型。
20种不同的花取3种排列的排列数是 P(20,3)=20 × 19 × 18=6840 根据乘法法,则得图案数为 20 ×6840=136800
Yiqiang Wei <weiyiqiang@>
1.3 排列与组合
例10 A单位有7名代表,B单位有3位代表,排成一 列合影,如果要求B单位的3人排在一起,问有多 少种不同的排列方案。若A单位的2人排在队伍两 端,B单位的3人不能相邻,问有多少种不同的排 列方案? B单位3人按一个元素参加排列,P(8,8)×P(3,3)
1.2 一一对应原理
1.3 排列与组合
1.3 排列与组合
定义 从n个不同的元素中,取r个不重复的元素, 按次序排列,称为从n个中取r个的无重排列。 排列的全体组成的集合用 P(n,r)表示。 所有不同排列的个数称为排列数,也记为P(n,r)。 或Prn,或Arn。 当r=n时称为全排列。所有不同全排列的个数记为 Pn或An。
0! 1, Pn0 1
从n中取出r个排列的模型,可看作是从n个有区 别的球中取出r个,放入r个有标记的盒子中,且 无一空盒。
Yiqiang Wei <weiyiqiang@>
组合与排列的计算方法
组合与排列的计算方法组合与排列是数学中常见的计算方法,用于解决不同的问题。
在实际生活中,我们经常需要计算某些元素的组合方式或排列方式。
本文将详细介绍组合与排列的计算方法,包括定义、公式及应用范围等。
一、组合的计算方法1.1 定义组合是从给定的元素集合中,选取若干个元素按照一定的规则组成子集的方式。
在组合中,元素的顺序不重要,即组合只关注元素的选择,而不关注元素的排列顺序。
1.2 组合的计算公式对于含有n个元素的集合,从中选取m个元素进行组合,计算方法如下:C(n, m) = n! / (m! * (n-m)!)其中,C(n, m)表示从n个元素中选取m个元素的组合数量,n!表示n的阶乘,即n! = n * (n-1) * (n-2) * ... * 2 * 1。
1.3 组合的应用范围组合的计算方法在概率统计、排列组合等领域有广泛的应用。
例如,在抽奖活动中,求解中奖组合、在竞赛中求解选手比赛成绩排名等都需要用到组合的计算方法。
二、排列的计算方法2.1 定义排列是从给定的元素集合中,选取若干个元素按照一定的规则排列的方式。
与组合不同,排列中元素的顺序是重要的,即排列依赖元素的排列顺序。
2.2 排列的计算公式对于含有n个元素的集合,从中选取m个元素进行排列,计算方法如下:P(n, m) = n! / (n-m)!其中,P(n, m)表示从n个元素中选取m个元素的排列数量。
2.3 排列的应用范围排列的计算方法在密码学、统计分析、问题求解等领域有广泛的应用。
例如,在密码学中,求解密码的破译方式、在统计学中分析数据的排列情况等都需要用到排列的计算方法。
三、组合与排列的比较3.1 区别组合与排列的最主要区别在于元素选择的顺序是否重要。
组合只关注元素的选择,顺序不重要;而排列则依赖于元素的排列顺序。
3.2 应用场景组合适用于计算元素的选择方式,常用于抽奖、竞赛成绩排名等场景;排列适用于计算元素的排列方式,常用于密码破译、统计分析等场景。
新人教A版选修2-31.2排列与组合课件二
从排列与组合的定义可 以知道,两者都是从n个不同 元素中取出mm n个元素, 这是排列、组合的共同 点;它们的不同点是 , 排列与元素的顺序有关 , 组合与 元素的顺序无关 .只有元素相同且顺序也 相同的两个 排列才是相同的; 只要两个组合的元素相 同 ,不论 元 素的顺序如何 , 都是相同的组合 .例如 ab 与 ba 是两个 不同的排列 , 但它们却是同一个组合 . , 我们引进如下概念 : 类比排列问题 C是英文com bination 组合的 从n个不同元素中取出m m n个 第一个字母 , 组合 元素的所有不同组合的个数 ,叫做 数还可用符号 从n个不同元素中取出m个元素的
上述解释可以推广到一 般情形. 求从n个不同元素中取出 m个元素的排列数 , 可看作由以下 2个步骤得到的: 第1步, 从这n个不同元素中取出 m个元素,共
有C 种不同的取法 ; 第 2 步, 将取出的m个元素做全排列 ,共有A m m 种不同的排法 . m m 根据分步乘法计数原理 ,有 Am C A n n m.
1.2 排列与组合
1.2.2 组合
探究 从甲、乙、丙 3名同学中选出 2名去参加 一项活动 , 有多少种不同的选法 ? 这一问题与上 一节开头提出的问题 1有什么联系与区别 ? 从3名同学中选出 2名的可能选法可以列举 如下 : 甲、乙; 甲、丙; 乙、丙 .
上一节开头的问题 1 :" 从甲、乙、丙 3名同学中 选出 2 名去参加一活动 , 其中1 名参加上午的活 动,1 名参加下午活动 " , 由于 "甲上午,乙下午" 与 "乙上午,甲下午" 是 两种不同的选法,因此解决 这个问题时 ,不仅要从 3 名同学中选出2名, 而且 还要将他们按照 " 上午在前 , 下午在后" 的顺序排 列.这是上一节研究的排列 问题.
1.3(2)第2课时 组合数的性质和应用
(14 分)
【题后反思】 此类问题属于所谓“多面手”问题,应该按照“多 面手”有没有被选中,选中的“多面手”作何用进行分类.
【变式3】 有11名外语翻译人员,其中5名是英语译员,4名是日 语译员,另外两名英、日都精通.从中找出8人,使他们可以 组成两个翻译小组,其中4人翻译英语,另外4人翻译日语, 这两个小组能同时工作,问这样的8人名单共可开出几张? 解 按“英、日语都会的人”的参与情况,分成三类:
种分法中还有(AB,EF,CD),(CD,AB,EF),(CD,EF,
3 AB),(EF,CD,AB),(EF,AB,CD),共有A 3 种情况,而这A 3 3
种情况仅是AB,CD,EF的顺序不同,因此只能作为一种分法, C2 C2 C2 6· 4· 2 故分配方式有 A3 =15(种).
3
(4)有序均匀分组问题.在(3)的基础上再分配给3个人,共有分配
=
90(种).
(7)直接分配问题.
1 甲选1本,有C1 6种方法;乙从余下的5本中选1本,有C5种方法; 1 1 4 余下4本留给丙,有C4 种方法,共有分配方式 C C5· C4=30(种). 4 6·
(9 分)
1 2 3 0 (3)甲、乙都上场,都作前锋有 C6 C4种,都作后卫有 C6 · C4种,一
2 1 2 1 C C 种,共有 C1C2+C3C0+C1C C = 个作前锋一个作后卫有 C1 2 6 4 6 4 6 4 2 6 4
176(种).故共有 120+340+176=636(种).
解
3 (1)第一步:选3名男运动员,有C 6 种选法,第二步:选2名女
3 2 运动员,有C2 种选法,故共有 C C4=120(种)选法. 4 6·
课件7:1.2.2 第二课时 组合的综合应用
法二:(间接法)C46-C24=9 种.
【答案】A
考点二 与几何有关的组合问题 例2.平面内有12个点,其中有4个点共线,此外再无任何3点共 线.以这些点为顶点,可构成多少个不同的三角形? [思路点拨] 解答本题可以从共线的4个点中选取2个、1个、0个作为 分类标准,也可以从反面考虑,任意三点的取法种数减去共线三点 的取法种数.
1.2 排列与组合 1.2.2 组 合
第二课时 组合的综合应用
考点一 有限制条件的组合问题 例1.现有10件产品,其中有2件次品,任意抽出3件检查. (1)恰有一件是次品的抽法有多少种? (2)至少有一件是次品的抽法有多少种? [思路点拨] 分清“恰有”“至少”的含义,正确地分类或分步.
解:(1)从 2 件次品中任取 1 件,有 C12种抽法. 从 8 件正品中取 2 件,有 C28种抽法. 由分步乘法计数原理可知,不同的抽法共有 C12×C28=56 种. (2)法一:含 1 件次品的抽法有 C12×C28种, 含 2 件次品的抽法有 C22×C18种. 由分类加法计数原理知,不同的抽法共有 C12×C28+C22×C18=56+8=64 种.
解:分两类: 第一类,甲被选中,共有 C25C24C14A44种分派方案; 第二类,甲不被选中,共有 C35C24A55种分派方案. 根据分类加法计数原理,共有 C25C24C14A44+C35C24A55=5 760+7 200=12 960 种分派方案.
[一点通] 本题是一道“既选又排”的排列、组合综合题,解 决这类问题的方法是“先选后排”,同时要注意特殊元素、特殊位 置优先安排的原则.
法二(间接法):从 12 个点中任意取 3 个点,有 C312=220 种取法, 而在共线的 4 个点中任意取 3 个均不能构成三角形,即不能构成三角 形的情况有 C34=4 种.
组合数学课件--第一章第二节 允许重复的组合与不相邻的组合
一、序数法
怎样建立a(3)a(2)a(1)p(1)p(2)p(3)p(4)
a(3) 确定4的位置,a(2)确定3的位置
a(1)确定2的位置,剩余的位置就是1的位置 例3:021, 3 2 1 4 例3: 201, 2 4 1 3
12
一、序数法
求n个不同的数的全排列,主要有以下两步:
1、求出0到n!-1之间各数对应的序列{an-1, an-2,…, a1} m=an-1(n-1)!+an-2(n-2)!+…a2 * 2!+a1*1! 2、由{an-1, an-2,…, a1}确定排列序列p1p2…pn an-1,确定n的位置, an-2确定n-1的位置, ……………………… a1确定2的位置, 剩下的是1的位置。
9
一、序数法
推论 从0到n!-1的n!个整数与序列{an-1, an-2,…, a1} 一一对应。这里 0a1 1,0 a2 2, …, 0 an-1 n-1 算法: int a[]={0}; int m,n;// 0=<m<=n!-1 int b=m; int index =1; do { a[index]=b%(index+1); b = b/(index+1); index++; } while(b);
14
一、序数法
2、对于0,1,2,…,n!-1共n!个数求序列a[i]
for( i = 0; i < fact; i++ ) { int b=i, index =1; do { a[index]=b%(index+1); b = b/(index+1); index++; } while(b);
1.3.2组合
1.3 组合第二课时教学目标:知识与技能:理解组合的意义,能写出一些简单问题的所有组合。
明确组合与排列的联系与区别,能判断一个问题是排列问题还是组合问题。
过程与方法:了解组合数的意义,理解排列数mn A 与组合数之间的联系,掌握组合数公式,能运用组合数公式进行计算。
情感、态度与价值观:能运用组合要领分析简单的实际问题,提高分析问题的能力。
教学重点:组合的概念和组合数公式 教学难点:组合的概念和组合数公式授课类型:新授课教 具:多媒体、一、复习引入:1分类加法计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++ 种不同的方法2.分步乘法计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯ 种不同的方法3.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....4.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号m n A 表示5.排列数公式:(1)(2)(1)m n A n n n n m =---+ (,,m n N m n *∈≤) 6阶乘:!n 表示正整数1到n 的连乘积,叫做n 的阶乘规定0!1=.7.排列数的另一个计算公式:m n A =!()!n n m - 8.提出问题:示例1:从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?示例2:从甲、乙、丙3名同学中选出2名去参加一项活动,有多少种不同的选法? 引导观察:示例1中不但要求选出2名同学,而且还要按照一定的顺序“排列”,而示mn C例2只要求选出2名同学,是与顺序无关的引出课题:组合... 例1. 一位教练的足球队共有 17 名初级学员,他们中以前没有一人参加过比赛.按照足球比赛规则,比赛时一个足球队的上场队员是11人.问:(l)这位教练从这 17 名学员中可以形成多少种学员上场方案?(2)如果在选出11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事情?分析:对于(1),根据题意,17名学员没有角色差异,地位完全一样,因此这是一个从 17 个不同元素中选出11个元素的组合问题;对于( 2 ) ,守门员的位置是特殊的,其余上场学员的地位没有差异,因此这是一个分步完成的组合问题.解: (1)由于上场学员没有角色差异,所以可以形成的学员上场方案有 C }手= 12 376 (种) .(2)教练员可以分两步完成这件事情:第1步,从17名学员中选出 n 人组成上场小组,共有1117C 种选法;第2步,从选出的 n 人中选出 1 名守门员,共有111C 种选法.所以教练员做这件事情的方法数有1111711C C ⨯=136136(种). 例2.(1)平面内有10 个点,以其中每2 个点为端点的线段共有多少条?(2)平面内有 10 个点,以其中每 2 个点为端点的有向线段共有多少条?解:(1)以平面内 10 个点中每 2 个点为端点的线段的条数,就是从10个不同的元素中取出2个元素的组合数,即线段共有 2101094512C ⨯==⨯(条). (2)由于有向线段的两个端点中一个是起点、另一个是终点,以平面内10个点中每 2 个点为端点的有向线段的条数,就是从10个不同元素中取出2个元素的排列数,即有向线段共有21010990A =⨯=(条).组合数的性质1:m n nm n C C -=. 一般地,从n 个不同元素中取出m 个元素后,剩下n m -个元素.因为从n 个不同元素中取出m 个元素的每一个组合,与剩下的n - m 个元素的每一个组合一一对应....,所以从n 个不同元素中取出m 个元素的组合数,等于从这n 个元素中取出n - m 个元素的组合数,即:m n nm n C C -=.在这里,主要体现:“取法”与“剩法”是“一一对应”的思想证明:∵)!(!!)]!([)!(!m n m n m n n m n n C m n n -=---=- 又 )!(!!m n m n C m n -=,∴n n m n C C -=说明:①规定:10=n C ;②等式特点:等式两边下标同,上标之和等于下标;③此性质作用:当2n m >时,计算m n C 可变为计算m n n C -,能够使运算简化. 例如20012002C =200120022002-C =12002C =2002;④y n x n C C =y x =⇒或n y x =+.2.组合数的性质2:m n C 1+=m n C +1-m nC . 一般地,从121,,,+n a a a 这n +1个不同元素中取出m 个元素的组合数是m n C 1+,这些组合可以分为两类:一类含有元素1a ,一类不含有1a .含有1a 的组合是从132,,,+n a a a 这n 个元素中取出m -1个元素与1a 组成的,共有1-m nC 个;不含有1a 的组合是从132,,,+n a a a 这n 个元素中取出m 个元素组成的,共有m n C 个.根据分类计数原理,可以得到组合数的另一个性质.在这里,主要体现从特殊到一般的归纳思想,“含与不含其元素”的分类思想.证明:)]!1([)!1(!)!(!!1---+-=+-m n m n m n m n C C m n m n )!1(!!)1(!+-++-=m n m m n m n n )!1(!!)1(+-++-=m n m n m m n )!1(!)!1(+-+=m n m n m n C 1+= ∴m n C 1+=m n C +1-m nC . 说明:①公式特征:下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与大的相同的一个组合数;②此性质的作用:恒等变形,简化运算例3.一个口袋内装有大小不同的7个白球和1个黑球,(1)从口袋内取出3个球,共有多少种取法?(2)从口袋内取出3个球,使其中含有1个黑球,有多少种取法?(3)从口袋内取出3个球,使其中不含黑球,有多少种取法?解:(1)5638=C ,或=38C +27C 37C ,;(2)2127=C ;(3)3537=C .例4.(1)计算:69584737C C C C +++; (2)求证:n m C 2+=n m C +12-n m C +2-n m C .解:(1)原式4565664889991010210C C C C C C C =++=+===;证明:(2)右边1121112()()n n n n n n n m m m m m m m C C C C C C C ----+++=+++=+==左边课堂练习:1.判断下列问题哪个是排列问题,哪个是组合问题:(1)从4个风景点中选出2个安排游览,有多少种不同的方法?(2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?2.7名同学进行乒乓球擂台赛,决出新的擂主,则共需进行的比赛场数为( )A .42B .21C .7D .63.如果把两条异面直线看作“一对”,则在五棱锥的棱所在的直线中,异面直线有( ) A .15对 B .25对 C .30对 D .20对4.设全集{},,,U a b c d =,集合A 、B 是U 的子集,若A 有3个元素,B 有2个元素,且{}A B a = ,求集合A 、B ,则本题的解的个数为 ( )A .42B .21C .7D .3小结 :组合的意义与组合数公式;解决实际问题时首先要看是否与顺序有关,从而确定是排列问题还是组合问题,必要时要利用分类和分步计数原理作业:教学反思:排列组合问题联系实际生动有趣,题型多样新颖且贴近生活,解法灵活独到但不易掌握,许多学生面对较难问题时一筹莫展、无计可施,尤其当从正面入手情况复杂、不易解决时,可考虑换位思考将其等价转化,使问题变得简单、明朗。
第三节 排列与组合(二)
栏 目 链 接
考点探究
考点3 用间接法求组合数
【例 3】 平面上有 9 个点,其中有 4 个点共线,除此外无 3 点 共线. (1)用这 9 个点可以确定多少条直线? (2)用这 9 个点可以确定多少个三角形? (3)用这 9 个点可以确定多少个四边形?
【例 1 】 (1) 方程 x + y + z = 9 共有 n 组正整数解,则 n 等于
28 _____________ .
(2)10 名战士站成一排,从中任选 3 个互不相邻的战士去执行一项 任务,则不同的选派方法的种数是________ 56 . 点评:组合数计数对应的元素不考虑其在位臵上的顺序,解决有关 组合数计数问题时, 关键是理解所取的元素在分配中没有顺序或只 有一种顺序.
1 3 4 边形的个数为 C4 - C C - C 9 5 4 4=105.
栏 目 链 接
点评:当一个组合数的分类较多,或正面求解较复杂时,可用从 反面考虑,在整体中把不符合的组合数去掉得到满足条件的组合数.
考点探究
变式探究
3. 从 4 名男生和 5 名女生中任选 5 人参加数学课外小组. (1)选 2 名男生和 3 名女生,且女生甲必须入选的方法数 为________ 36 ; (2)最多选 4 名女生,且男生甲和女生乙不同时入选的方 法数为________ . 90
3 3 3 DEF,GHK,),那么 C9 C6C3种分法中还包括了(ABC,GHK,DEF),
栏 目 链 接
(DEF,ABC,GHK),(DEF,GHK,ABC),(GHK,ABC,DEF),
act数学与高考知识点
act数学与高考知识点ACT(American College Testing)考试是美国大学招生中广泛使用的一种标准化考试,其中包括数学科目。
本文将详细介绍ACT数学考试的知识点,以帮助考生有效备考。
1. 代数 (Algebra)1.1 线性方程与不等式 (Linear Equations and Inequalities)1.1.1 一元一次方程 (One-variable linear equations)1.1.2 一元一次不等式 (One-variable linear inequalities)1.1.3 线性方程组 (Systems of linear equations)1.2 函数 (Functions)1.2.1 函数定义与图像 (Function definition and graphs)1.2.2 函数的运算 (Operations with functions)1.2.3 函数的反函数 (Inverse functions)1.3 多项式与因式分解 (Polynomials and Factoring)1.3.1 一元多项式 (One-variable polynomials)1.3.2 因式分解 (Factoring)1.3.3 二次方程与二次多项式 (Quadratic equations and polynomials)2. 几何 (Geometry)2.1 平面几何 (Plane Geometry)2.1.1 直线与角度 (Lines and angles)2.1.2 三角形与四边形 (Triangles and quadrilaterals)2.1.3 圆与圆环 (Circles and annuli)2.2 空间几何 (Spatial Geometry)2.2.1 空间中的点、直线、面 (Points, lines, and planes in space)2.2.2 空间几何体的体积与表面积 (Volumes and surface areas of spatial figures)2.2.3 空间几何体的旋转与投影 (Rotations and projections of spatial figures)3. 数据分析与概率 (Data Analysis and Probability)3.1 图表解读与数据分析 (Interpreting graphs and data analysis)3.1.1 条形图、折线图与饼状图 (Bar graphs, line graphs, and pie charts)3.1.2 平均数、中位数与众数 (Mean, median, and mode)3.2 概率 (Probability)3.2.1 随机事件与概率计算 (Random events and probability calculations)3.2.2 排列与组合 (Permutations and combinations)4. 比例、百分数与利率 (Ratios, Percentages, and Rates)4.1 比例与比率 (Ratios and rates)4.2 百分数 (Percentages)4.3 利率与利息 (Interest rates and interest)5. 数字、指数与对数 (Number, Exponents, and Logarithms)5.1 整数与有理数 (Integers and rational numbers)5.2 指数 (Exponents)5.3 对数 (Logarithms)6. 函数与三角 (Functions and Trigonometry)6.1 线性函数与二次函数 (Linear functions and quadratic functions)6.2 三角函数 (Trigonometric functions)6.3 三角方程与三角恒等式 (Trigonometric equations and identities)通过掌握以上知识点,考生能够在ACT数学考试中取得优异的成绩。
2015届高考数学总复习 第十章 第三节排列与组合(二)课时精练 理
第三节排列与组合(二)1.(2013·河北模拟)4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有( )A.12种B.24种C.30种D.36种解析:第一步选出2人选修课程甲有C24=6种方法,第二步安排剩余两人从乙、丙中各选1门课程有2×2种选法,根据分步乘法计数原理,有6×4=24种选法.答案:B2.从5张100元,3张200元,2张300元的运动会门票中任选3张,则选取的3张中至少有2张价格相同的不同的选法共有( )A.70种B.80种C.90种D.100种解析:基本事件的总数是C310,在三种价格的门票中各自选取1张的方法数是C15C13C12,故其对立事件“选取的3张中至少有2张价格相同”的不同的选法共有C310-C15C13C12=90种.故选C.答案:C3.防疫站有A,B, C,D 4名内科医生和E,F 2名儿科医生,现将他们分成两个3人小组分别派往甲、乙两地指导疾病防控.两地都需要既有内科医生又有儿科医生,而且A 只能去乙地,则不同的选派方案共有( )A.6种B.8种C.12种D.16种答案:A4.(2013·四川卷)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是( )A.9 B.10 C.18 D.20解析:由于lg a-lg b=lg ab(a>0,b>0),从1,3,5,7,9中任取两个作为ab有A25种,又1 3与39相同,31与93相同,所以lg a-lg b的不同值的个数有A25-2=20-2=18,故选C.答案:C5.从射击、乒乓球、跳水、田径四个大项的北京奥运冠军中选出10名作“夺冠之路”的励志报告.若每个大项中至少选派两人,则名额分配有几种情况?( ) A.10 B.15 C.20 D.25解析:名额分配只与人数有关,与不同的人无关.每大项中选派两人,则还剩余两个名额,当剩余两人出自同一大项时,名额分配情况有C14=4种,当剩余两人出自不同大项时,名额分配情况有C24=6种.所以有C14+C24=10种.答案:A6.现有4种不同颜色要对如图所示的4个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有( )A.24种B.30种C.36种D.48种解析:若用4种颜色,着色方法为A44种,若用3种颜色,着色方法为C34C13A22种.所以总的着色方法为C34C13A22+A44=48种.故选D.答案:D7.某外商计划在5个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有( )A.60种B.70种C.80种D.120种解析:分两类:第一类,每个城市只能投资一个项目,共有A35种方案;第二类,有一个城市投资2个项目,共有C23·A15·A14种方案.由分类加法计数原理得共有A35+C23A15A14=120种方案.答案:D8.(2013·北京丰台区调研)男、女生共有8人,若从男生中选取2人,从女生中选取1人,共有30种不同的选法,则女生有( )A.2人或3人B.3人或4人C.3人D.4人解析:设男生有n人,则女生有(8-n)人,由题意可得C2n C18-n=30,解得n=5或n=6,代入验证,可知女生有2人或3人.答案:A9.学校准备从5位报名同学中挑选3人,分别担任运动会田径、游泳和球类3个不同项目比赛的志愿者,已知其中同学甲不能担任游泳比赛的志愿者,则不同的安排方法共有( )A.24种B.36种C.48种D.60种答案:C10.某校安排5个班到4个工厂进行社会实践,每个班去1个工厂,每个工厂至少安排一个班,不同的安排方法共有________种(用数字作答).解析:由题意可知有1个工厂安排2个班,另外3个工厂每厂1个班,共有C14C25A33=240种安排方法.答案:24011.5名乒乓球队员中,有2名老队员和3名新队员.现从中选出3名队员排成1,2,3号参加团体比赛,则入选的3名队员中至少有一名老队员,且1,2号中至少有1名新队员的排法有________种(以数字作答).解析:两老一新时,有C13C12A22=12种排法;两新一老时,有C12C23A33=36种排法,即共有48种排法.答案:4812.三角形的三边长均为整数,且最长的边为11,则这样的三角形的个数有________个.解析:设另两边长为x、y,且1≤x≤y≤11,(x,y∈Z),构成三角形,则x+y≥12,当y取11时,x=1、2、3,…,11,有11个,当y取10时,x=2,3,…,10,有9个,当y取9时,x=3,4,…,9,共7个,当y取8时,x取4、5、6、7、8共5个,当y取7时,x取5、6、7,共3个,当y取6时,x也只能为6,有1个,故满足题设的三角形共有:11+9+7+5+3+1=36个.答案:3613. (2012·浙江卷)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有________种.解析:因和为偶数,故分为4偶或2偶2奇或4奇,所以共有C44+C24C25+C45=66.答案:6614.在送医下乡活动中,某医院安排2名男医生和2名女医生到三所乡医院工作,每所医院至少安排一名医生,且男医生不安排在同一乡医院工作,则不同的安排方法总数为__________(用数字作答).解析:将2名男医生安排到三所医院中的两所,方法数为A23,因为每所医院至少安排一名,所以2名女医生安排到三所医院的方法数为5,所以总的方法数为5A23=30.答案:3015.某校开设A类选修课3门,B类选修课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选项共有________种.解析:(法一)分类讨论:要求两类课程中各至少选一门,则不同的选法:A类2门,B 类1门或A类1门,B类2门,即C23C14+C13C24=30.(法二)任选3门有C37种选法,3门全为A类的或B类的有C34+C33=5,所以两类课程中各至少选一门的选法有C37-C34-C33=30.答案:3016.设编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子,现将这五个球投放到五个盒子内,要求每个盒子内投放一个球,并且恰好有两个球的编号与盒子编号相同,则这样的投放方法总数为________.解析:从五个球中任意取出两个放入和它们编号相同的盒子中有C25种方法,再从剩下的3个球中取出一个放入和它编号不同的两个盒子中的一个有C12种方法,最后剩下的两个球只能有一种放法,所以共有C25C12=20种放法.答案:2017.将1,2,3,4,5,6,7,8,9这9个数字填入右图的空格中,要求每行从左到右,每列从上到下都依次增大,且4已经固定,则所有不同的填入方法有______________种.解析:显然1只能填入左上角空格,9只能填入右下角空格,2,3只能填入“1”的右边或下边空格,有2种不同的填法;再从5,6,7,8四个数中任取2个,有C24种取法,填入右面两个空格,只有1种填法,其余2个数填入剩下的两个空格中,也只有1种填法,则所有不同的填入方法共有2C24=12种.答案:12。
厦门市高中数学教材人教A版目录(详细版)
考试范围:文科:必考内容:必修①②③④⑤+选修1-1,1-2选考内容:无选考内容理科:必考内容:必修①②③④⑤+选修2-1,2-2,2-3 选考内容(三选二):选修4-2,4-4,4-5文、理科必考内容:数学①必修第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示1.1.2 集合间的基本关系1.1.3 集合的基本运算1.2 函数及其表示1.2.1 函数的概念1.2.2 函数的表示法1.3 函数的基本性质1.3.1 单调性与最大(小)值1.3.2 奇偶性第二章基本初等函数(I)2.1 指数函数2.1.1 指数与指数幂的运算2.1.2 指数函数及其性质2.2 对数函数2.2.1 对数与对数运算2.2.2 对数函数及其性质2.3 幂函数第三章函数的应用3.1 函数与方程3.1.1 方程的根与函数的零点3.1.2 用二分法求方程的近似解3.2 函数模型及其应用3.2.1 几类不同增长的函数模型3.2.2 函数模型的应用实例数学②必修第一章空间几何体1.1 空间几何体的结构1.1.1 柱、锥、台、球的结构特征1.1.2 简单组合体的结构特征1.2 空间几何体的三视图和直观图1.2.1 空间几何体的三视图1.2.2 空间几何体的直观图1.2.3 平行投影与中心投影1.3 空间几何体的表面积与体积1.3.1 柱体、锥体、台体的表面积与体积1.3.2 球的体积和表面积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.1.1 平面2.1.2 空间中直线与直线之间的位置关系2.1.3 空间中直线与平面之间的位置关系2.1.4 平面与平面之间的位置关系2.2 直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定2.2.2 平面与平面平行的判定2.2.3 直线与平面平行的性质2.2.4 平面与平面平行的性质2.3 直线、平面垂直的判定及其性质2.3.1 直线与平面垂直的判定2.3.2 平面与平面垂直的判定2.3.3 直线与平面垂直的性质2.3.4 平面与平面垂直的性质第三章直线与方程3.1 直线的倾斜角与斜率3.1.1 倾斜角与斜率3.1.2 两条直线平行与垂直的判定3.2 直线的方程3.2.1 直线的点斜式方程3.2.2 直线的两点式方程3.2.3 直线的一般式方程3.3 直线的交点坐标与距离公式3.3.1 两条直线的交点坐标3.3.2 两点间的距离3.3.3 点到直线的距离3.3.4 两条平行直线间的距离第四章圆与方程4.1 圆的方程4.1.1 圆的标准方程4.1.2 圆的一般方程4.2 直线、圆的位置关系4.2.1 直线与圆的位置关系4.2.2 圆与圆的位置关系4.2.3 直线与圆的方程的应用4.3 空间直角坐标系4.3.1 空间直角坐标系4.3.2 空间两点间的距离公式数学③必修第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.2 基本算法语句1.2.1 输入语句、输出语句和赋值语句1.2.2 条件语句1.2.3 循环语句1.3 算法案例第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.2 用样本估计总体2.2.1 用样本的频率分布估计总体分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量间的相关关系2.3.1 变量之间的相关关系2.3.2 两个变量的线性相关第三章概率3.1 随机事件的概率3.1.1 随机事件的概率3.1.2 概率的意义3.1.3 概率的基本性质3.2 古典概型3.2.1 古典概型3.2.2 整数值随机数(random numbers)的产生3.3 几何概型3.3.1 几何概型3.3.2 均匀随机数的产生数学④必修第一章三角函数1.1 任意角和弧度制1.1.1 任意角1.1.2 弧度制1.2 任意角的三角函数1.2.1 任意角的三角函数1.2.2 同角三角函数的基本关系1.3 三角函数的诱导公式1.4 三角函数的图像和性质1.4.1 正弦函数、余弦函数的图像1.4.2 正弦函数、余弦函数的性质1.4.3 正切函数的性质和图像1.5 函数y=Asin(ωx+ψ)的图像1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.1.1 向量的物理背景与概念2.1.2 向量的几何表示2.1.3 相等向量与共线向量2.2 平面向量的线性运算2.2.1 向量加法运算及其几何意义2.2.2 向量减法运算及其几何意义2.2.3 向量数乘运算及其几何意义2.3 平面向量的基本定理及坐标表示2.3.1 平面向量基本定理2.3.2 平面向量的正交分解及坐标表示2.3.3 平面向量的坐标运算2.3.4 平面向量共线的坐标表示2.4 平面向量的数量积2.4.1 平面向量数量积的物理背景及其含义2.4.2 平面向量数量积的坐标表示、模、夹角2.5 平面向量应用举例2.5.1 平面几何中的向量方法2.5.2 向量在物理中的应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.1.1 两角差的余弦公式3.1.2 两角和与差的正弦、余弦、正切公式3.1.3 二倍角的正弦、余弦、正切公式3.2 简单的三角恒等变换数学⑤必修第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例1.3 实习作业第二章数列2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列的前n项和第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次(组)与简单的线性规划问题3.3.1 二元一次不等式(组)与平面区域3.3.2 简单的线性规划问题3.4 基本不等式√ab≤﹙a+b﹚/2文科必考内容:数学选修1-1第一章常用逻辑用语1.1 命题及其关系1.1.1 命题1.1.2 四种命题1.1.3 四种命题间的相互关系1.2 充分条件与必要条件1.2.1 充分条件与必要条件1.2.2 充要条件1.3 简单的逻辑关联词1.3.1 且(and)1.3.2 或(or)1.3.3 非(not)1.4 全称量词与存在量词1.4.1 全称量词1.4.2 存在量词1.4.3 含有一个量词的命题的否定第二章圆锥曲线与方程2.1 椭圆2.1.1 椭圆及其标准方程2.1.2 椭圆的简单几何性质2.2 双曲线2.2.1 双曲线及其标准方程2.2.3 双曲线的简单几何性质2.3 抛物线2.3.1 抛物线及其标准方程2.3.2 抛物线的简单几何性质第三章导数及其应用3.1 变化率与导数3.1.1 变化率问题3.1.2 导数的概念3.1.3 导数的几何意义3.2 导数的计算3.2.1 几个常用函数的导数3.2.2 基本初等函数的导数公式及导数的运算法则3.3 导数在研究函数中的应用3.3.1 函数的单调性与导数3.3.2 函数的极值与导数3.3.3 函数的最大(小)值与导数3.4 生活中的优化问题举例数学选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法和分析法2.2.2 反证法第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.3.1 数系的扩充和复数的概念3.3.2 复数的几何意义3.2 复数代数形式的四则运算3.2.1 复数代数形式的加减运算及其几何意义3.2.2 复数代数形式的乘除运算第四章框图4.1 流程图4.2 结构图理科必考内容:数学选修2-1第一章常用逻辑用语1.1 命题及其关系1.1.1 命题1.1.2 四种命题1.1.3 四种命题间的相互关系1.2 充分条件与必要条件1.2.1 充分条件与必要条件1.2.2 充要条件1.3 简单的逻辑关联词1.3.1 且(and)1.3.2 或(or)1.3.3 非(not)1.4 全称量词与存在量词1.4.1 全称量词1.4.2 存在量词1.4.3 含有一个量词的命题的否定第二章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程2.1.2 求曲线的方程2.2 椭圆2.1.1 椭圆及其标准方程2.1.2 椭圆的简单几何性质2.3 双曲线2.2.1 双曲线及其标准方程2.2.3 双曲线的简单几何性质2.4 抛物线2.3.1 抛物线及其标准方程2.3.2 抛物线的简单几何性质第三章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量及其加减运算3.1.2 空间向量的数乘运算3.1.3 空间向量的数量积运算3.1.4 空间向量的正交分解及其坐标表示3.1.5 空间向量运算的坐标表示3.2 立体几何中的向量方法数学选修2-2第一章导数及其应用1.1 变化率与导数1.1.1 变化率问题1.1.2 导数的概念1.1.3 导数的几何意义1.2 导数的计算1.2.1 几个常用函数的导数1.2.2 基本初等函数的导数公式及导数的运算法则1.3 导数在研究函数中的应用1.3.1 函数的单调性与导数1.3.2 函数的极值与导数1.3.3 函数的最大(小)值与导数1.4 生活中的优化问题举例1.5 定积分的概念1.5.1 曲边梯形的面积1.5.2 汽车行驶的路程1.5.3 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用1.7.1 定积分在几何中的应用1.7.2 定积分在物理中的应用第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法和分析法2.2.2 反证法2.3 数学归纳法第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.3.1 数系的扩充和复数的概念3.3.2 复数的几何意义3.2 复数代数形式的四则运算3.2.1 复数代数形式的加减运算及其几何意义3.2.2 复数代数形式的乘除运算数学选修2-3第一章计数原理1.1 分类加法计数原理与分布乘法计数原理1.2 排列与组合1.2.1 排列1.2.2 组合1.3 二项式定理1.3.1 二项式定理1.3.2 “杨辉三角”与二项式系数的性质第二章随机变量及其分布2.1 离散型随机变量及其分布列2.1.1 离散型随机变量2.1.2 离散型随机变量的分布列2.2 二项分布及其应用2.2.1 条件概率2.2.2 事件的相互独立性2.2.3 独立重复试验与二项分布2.3 离散型随机变量的均值与方差2.3.1 离散型随机变量的均值2.3.2 离散型随机变量的方差2.4 正态分布第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用理科选考内容(三选二):数学选修4-2矩阵与变换第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用1.恒等变换2.旋转变换3.切变变换4.反射变换5.投影变换第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1. 逆变换与逆矩阵2. 逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1. 二元一次方程组的矩阵形式2. 逆矩阵与二元一次方程组第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1. 特征值与特征向量2. 特征值与特征向量的计算二特征向量的应用1. A^nα的简单表示2. 特征向量在实际问题中的应用数学选修4-4坐标系与参数方程第一讲坐标系一平面直角坐标系1. 平面直角坐标系2. 平面直角坐标系中的伸缩变换二极坐标系1. 极坐标系的概念2. 极坐标和直角坐标的互化三简单曲线的极坐标方程1. 圆的极坐标方程2. 直线的极坐标方程四柱坐标系与球坐标系简介1. 柱坐标系2. 球坐标系第二讲参数方程一曲线的参数方程1. 参数方程的概念2. 圆的的参数方程3. 参数方程和普通方程的互化二圆锥曲线的参数方程1. 椭圆的参数方程2. 双曲线的参数方程3. 抛物线的参数方程三直线的参数方程四渐开线与摆线1. 渐开线2. 摆线数学选修4-5不等式选讲第一讲不等式与绝对值不等式一不等式1. 不等式的基本性质2. 基本不等式3. 三个正数的算术-几何平均不等式二绝对值不等式1. 绝对值三角不等式2. 绝对值不等式的解法第二讲证明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式的柯西不等式二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式。
人教a版数学【选修2-3】1.2.2《组合2》ppt课件
2 构成一个平行四边形,故共有 C2 C 8 10=1 260(个).
[答案] B
[解析] 至少 2 件次品包含两类: (1)
3 共 C2 3C197种,
2 件次品, 3 件正品,
2 (2)3 件次品,2 件正品,共 C3 C 3 197种, 3 3 2 由分类加法计数原理得抽法共有 C2 3C197+C3C197,故选 B.
第一章
1.2
1.2.2
第2课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
5.在同一个平面内有一组平行线共8条,另一组平行线共
10条,这两组平行线相互不平行. (1)它们共能构成________个平行四边形; (2)共有________个交点. [答案] 1 260 80
[解析]
(1)第一组中每两条与另一组中的每两条直线均能
3 . (2013· 福州文博中学高二期末 ) 某同学有同样的画册 2 本,同样的集邮册 3 本,从中取出 4 本赠送给 4位朋友,每位朋 友1本,则不同的赠送方式共有( A.4种 ) B.10种
C.18种
[答案] B
D.20种
第一章
1.2
1.2.2
第2课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
第一章
1.2
1.2.2
第2课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
(4)辩证地看待“元素”与“位置” 排列组合问题中的元素与位置,要视具体情况而定,有时 “定元素选位置”,有时“定位置选元素”. (5)把实际问题抽象成组合模型
数学中的排列与组合问题
数学中的排列与组合问题在数学中,排列与组合是一类常见的问题,它们在各个领域都有广泛的应用,尤其是在概率论、组合数学、计算机科学等方面。
本文将介绍排列和组合问题的概念、性质以及解题方法。
一、排列问题1.1 排列的概念排列是指从一组元素中选取若干个元素进行有序的安排。
常用的排列记作P(n, k),表示从n个元素中选取k个元素进行排列。
排列中的元素顺序不同,即使元素相同,也会视为不同的排列。
1.2 排列的性质排列问题具有以下性质:性质1:P(n, 0) = 1,表示从n个元素中选取0个元素进行排列,只有一种情况,即空集。
性质2:P(n, n) = n!,表示从n个元素中选取n个元素进行排列,有n!种情况,即全排列。
性质3:P(n, k) = n! / (n-k)!,表示从n个元素中选取k个元素进行排列,有P(n, k) = n! / (n-k)!种情况。
1.3 解题方法解排列问题的一种常见方法是使用数学公式计算。
根据性质3,可以直接计算出排列的种类数。
此外,还可以采用递归的思想求解排列问题。
通过从第一个元素开始选取并固定,然后对剩下的元素进行排列,即可得到所有的排列情况。
二、组合问题2.1 组合的概念组合是指从一组元素中选取若干个元素进行无序的组合。
常用的组合记作C(n, k),表示从n个元素中选取k个元素进行组合。
组合中的元素顺序无关,即使元素相同,也视为相同的组合。
2.2 组合的性质组合问题具有以下性质:性质1:C(n, 0) = 1,表示从n个元素中选取0个元素进行组合,只有一种情况,即空集。
性质2:C(n, n) = 1,表示从n个元素中选取n个元素进行组合,只有一种情况,即全集。
性质3:C(n, k) = C(n-1, k-1) + C(n-1, k),表示从n个元素中选取k 个元素进行组合,可以分为两种情况:选择了第一个元素,再从剩下的n-1个元素中选取k-1个元素;不选择第一个元素,从剩下的n-1个元素中选取k个元素。
人教A版数学选修2-31.2排列与组合课件
mn
是
.
5.一名同学有4本不同的数学书,5本不同的物理书,3本不
同的化学书,现要将这些书放在一个单层的书架上.
(1)如果要选其中的6本书放在书架上,那么有多少种不同的
放法?
(2)如果要将全部的书放在书架上,且不使同类的书分开,那
么有多少种不同的放法?
答案:(1)665280;
A.
B.
C.
D.
D
A.
B.
C.
D.
4.求证:
(1)
)
(2
3.一个火车站有8股岔道,如果每股道只能停放1列火车,现
要停故4列不同的火车,共有多少种不同的停放方法?
答案:
1680.
排列数的两个公式
(1)排列数的第一个公式
n(n-1)(n-2)…(n-m+1)适用m
已知的排列数的计算以及排列数的方程和不等式.在运用时要注意
解: (1)
(2)
(3)
B
A.
B.
C.
D.
C
A.
B.
C.
D.
B
A.
B.
C.
D.
150
A
A.
B.
C.
D.
A
A.
B.
C.
D.
1.先计算,然后用计算工具检验
。(1)
(2)
(3)
)
答案:(1)15;
(2)36;
(3)20;
(4)148.
(4
2.有政治、历史、地理、物理、化学、生物这6门学科的学业
?
1.某省中学生足球赛预选赛每组有6 支队,每支队都要与同组
的其他各队在主、客场分别比赛1场,那么每组共进行多少场比
高考数学复习课件:排列组合与二项式定理
直接法:在处理有限制条件的排列,优先排 特殊元素,后再排其他元素。
定元定位优先排
间接法:先不考虑特殊元素,而列出所有元 素的全排列数,从中减去不满足特殊元素 要求的排列数。
注意:不重不漏
• 成才后翻P56 T13
• 六个人从左到右排成一行,最左端只能排甲或已,最右端不 能排甲,则不同的排法?
那么 完成这件事共有
种不同的方法.
2、分步乘法计数原理:完成一件事,需要分成n个步
骤,做第1步有m1种不同的方法,做第2步有m2种不同
的方法……,做第n步有mn种不同的方法.那么完成这
件事共有
种不同的方法.
区别1 区别2
分类计数原理
分步计数原理
完成一件事,共有n类办法,关 键词“分类”
完成一件事,共分n个步骤,关 键词“分步”
解:(2)设f(x)=(3x-1)8 分别赋予x=1,-1
a0+a2+a4+a6+a8=[f(1)+f(-1)]/2
一般来说 多项式f(x)各项系数和为f(1) 奇数项系数和为1/2[f(1)-f(-1)] 偶数项系数和为1/2[f(1)+f(-1)]
求值、等式与不等式证明问题
(2)求证:5555+1能被8整除;
解:采用“隔板法” 得: C259 4095
类似练习: 1、将8个学生干部的培训指标分配给5个不同的班级, 共有多少种不同的分配方法?
2、从一楼到二楼的楼梯有17级,上楼时可以一步走 一级,也可以一步走两级,若要求11步走完,则有 多少种不同的走法?
3、方程x+y+z=12的非负整数解的个数为多少? 正整数解的个数呢?
《组合数学》教案 1章(排列组合基础)
第1章组合数学基础1.1 绪论(一)背景起源:数学游戏幻方问题:给定自然数1, 2, …, n2,将其排列成n阶方阵,要求每行、每列和每条对角线上n个数字之和都相等。
这样的n阶方阵称为n阶幻方。
每一行(或列、或对角线)之和称为幻方的和(简称幻和)。
例:3阶幻方,幻和=(1+2+3+…+9)/3=15。
关心的问题(1)存在性问题:即n阶幻方是否存在?(2)计数问题:如果存在,对某个确定的n,这样的幻方有多少种?(3)构造问题:即枚举问题,亦即如何构造n阶幻方。
图1.1.1 3阶幻方奇数阶幻方的生成方法:一坐上行正中央,依次斜填切莫忘,上边出格往下填,右边出格往左填,右上有数往下填,右上出格往下填。
例:将2,4,6,8,10,12,14,16,18填入下列幻方:【例1.1.1】(拉丁方)36名军官问题:有1,2,3,4,5,6共六个团队,从每个团队中分别选出具有A、B、C、D、E、F六种军衔的军官各一名,共36名军官。
问能否把这些军官排成6×6的方阵,使每行及每列的6名军官均来自不同的团队且具有不同军衔?本问题的答案是否定的。
A1 B2 C3 D4 E5 F6 A1 B2 C3 D4 E5 F6B2 C3 D4 E5 F6 A1B3 C4 D5 E6 F1 A2C3 D4 E5 F6 A1 B2 C5 D6 E1 F2 A3 B4D4 E5 F6 A1 B2 C3 D2 E3 F4 A5 B6 C1E5 F6 A1 B2 C3 D4 E4 F5 A6 B1 C2 D3F6 A1 B2 C3 D4 E5 F6【例1.1.2】(计数——图形染色)用3种颜色红(r)、黄(y)、蓝(b)涂染平面正方形的四个顶点,若某种染色方案在正方形旋转某个角度后,与另一个方案重合,则认为这两个方案是相同的。
求本质上不同的染色方案。
举例:形式总数:43=81种。
实际总数(见第6章):L =()32334124⨯++=24 【例1.1.3】(存在性)不同身高的26个人随意排成一行,那么,总能从中挑出6个人,让其出列后,他们的身高必然是由低到高或由高到低排列的(见第5章)。
1.3.1二项式定理(2)
(n ∈ N )
(2)二项展开式的通项 二项展开式的通项: 二项展开式的通项
∗
Tk +1 = C a
k n
n− k
b
k
(注意,它是第k+1项) 注意,它是第 注意 项 (3)区别二项式系数, (3)区别二项式系数,项的系数 区别二项式系数 (4)掌握用通项公式求二项式系数, (4)掌握用通项公式求二项式系数,项的系数及项 掌握用通项公式求二项式系数 (5)二项式定理简单应用 二项式定理简单应用. 二项式定理简单应用
0 n
r
+ C + C + L + C = (1 + 1) = 2n
1 n 2 n n n n
运用二项式定理可以在头脑里迅速地展开一些式 从而能解决些问题.这节课我们来做一些练习. 子,从而能解决些问题.这节课我们来做一些练习.
普通高中课程数学选修2-3] 1.2 排列与组合 普通高中课程数学选修 3 [普通高中课程数学选修
故存在常数项且为第7项 故存在常数项且为第 项,
6 6 8
1 常数项T7 = ( −1) ⋅ C ⋅ 2
8− 6
⋅x =7
0
4. 9192除以 除以100的余数是_____ 的余数是_____ 的余数是
0 1 91 92 91 分 析 : 92 = (90 + 1)92 = C 92 90 92 + C 92 90 91 + L + C 92 90 + C 92
由此可见,除后两项外均能被 由此可见,除后两项外均能被100整除 整除 91 92 C 92 90 + C 92 = 8281 = 82 × 100 + 81
人教a版数学【选修2-3】1.2.1《排列2》ppt课件
第一章
1.2
1.2.1
第2课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
2.5名同学排成一排,其中甲、乙、丙三人必须排在一起
的不同排法有(
A.70 C.36 [答案] C
)
B.72 D.12
[解析] 甲、乙、丙先排好后视为一个整体与其他 2 个同
3 学进行排列,共有 A3 A 3 3=36 种排法.
3 .间接法:先不考虑附加条件,计算出总排列数,再减
不合要求 的排列数. 去__________ 捆绑 法,相离问题 ______ 插空 法,定元、定位 4 .相邻元素 ______ 优先排 法,至多、至少______ 间接 法,定序元素__________ 最后排 法. ________
第一章
1.2
成才之路 · 数学
人教A版 · 选修2-3
路漫漫其修远兮 吾将上下而求索
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
第一章
计数原理
第一章
计数原理
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
第一章 1.2 排列与组合
1.2.1 排列
1.2
1.2.1
第2课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
明确问题的限制条件,能够解决含有特殊元素 ( 或特殊位 置)的排列问题,会用间接法求解有限制条件的排列问题.
第一章
1.2
1.2.1
第2课时
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
mAm n-1 __________
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A B
1.3.2 排列与组合(二)
【学习目标】
1.进一步掌握处理排列与组合应用问题的常用方法策略;
2.正确运用排列与组合的知识解决综合问题,提高分析问题、解决问题的能力.
【自主学习】
1.先无序,再有序;先组合,再排列的原则是什么?
2.特殊的(元素或位置)优先考虑的原则是什么?
3.直接法和间接法的关系是什么?
4.重视均匀分组(堆)问题的解决方法是什么?
5.指定元素顺序的问题的处理方法是什么?
【自主检测】
1. 3名医生和6名护士被分配到3所学校为学生体检,每所学校分配1名医生
和2名护士,不同的分配方法共有
2. 两位到北京旅游的外国游客要与2008奥运会的吉祥物福娃(5个)合影留念,要求排成一排,两位游客相邻且不排在两端,则不同的排法共有
3.4名男生和3名女生排成一行,按下列要求各有多少种排法:
(1)男生必须排在一起;(2)女生互不相邻
;(3)男女生相间
;(4)女生按指定顺序排列.【典型例题】
例1.圆周上有12个不同的点,过其中任意两点作弦,这些弦在圆内的交点个数最多是多少?
例2.如图是由12个小正方形组成的43矩形网格,一质点沿网格线从点
A 到点
B 的不同路径之中,最短路径有条例3.有10只不同的试验产品,其中有4只次品,6只正品,现每次取一
只测试,直到4只次品全测出为止,求最后一只次品正好在第五次
测试时被发现的不同情形有多少种?【课堂检测】
1.有七名同学站成一排照毕业纪念照,其中甲必须站在正中间,并且乙、丙两倍
同学要站在一起,则不同的站法有()
A.240种 B.192种 C.96种D.48
2.公共汽车上有4位乘客,汽车沿途停靠6个站,那么这4位乘客不同的下车方式共有种;如果其中任何两人都不在同一站下车,那么这4位乘客不同的下车方式共有种
3.有10只不同的试验产品,其中有4只次品,6只正品,现每次取一只测试,直到测出1只次品为止,求第一只次品正好在第五次测试时被发现的不同情形有种.
4.某考生打算从7所重点大学中选3所填在第一档次的3个志愿栏内,其中A校定为第一志愿;再从5所一般大学中选3所填在第二档次的三个志愿栏内,其中B、C两校必选,且B在C前问:此考生共有多少种不同的填表方法?
【总结提升】
1.解决有关计数的应用题时,要仔细分析事件的发生、发展过程,弄清问题究
竟是排列问题还是组合问题,还是应直接利用分类计数原理或分步计数原理解
决一个较复杂的问题往往是分类与分步交织在一起,要准确分清,容易产生的
错误是遗漏和重复计数;
2.按元素的性质进行分类、按事件发生的连续过程分步,是处理组合应用题的基本思想方法;
3.按指定的一种顺序排列的问题,实质是组合问题
4.把实际的研究对象抽象为元素,把实际问题转化为最基本的排列组合问题.在解决排列组合实际问题时经常用到这种对应思想.。