详细版大学物理学-习题解答习题10.doc

合集下载

大学物理第10章题解

大学物理第10章题解

习题10.1 两平行金属板A 、B ,带有等量异号电荷,相距为5.0mm,两板的面积都是150cm 2,电荷量的大小都是2.66×10-8C ,A 板带正电荷并接地,设地的电势为零,并忽略边缘效应,求B 板的电势及A B 间离A 板1.0mm 处的电势。

解:因平行板间电荷的散布的电场是匀强电场,有由高斯定理得)(100.20.50.1100.10.1,)(100.11015010854.8100.51066.201)1(23341238V V Ed Ed U mm A B A V V Q d d B QPB p PA BABAA B U sU U s⨯-=⨯⨯-=-=-=-=⨯-=⨯⨯⨯⨯⨯⨯-=︒-=E -=⋅E -=︒=︒=E ⎰⎰⎰-----处的电势为:板间离板的电势为:)得由(εεεσ 10.2 如下图,三块平行的金属板A 、B 和C ,面积都为200 cm 2,A 、B 相距4.0mm ,A 、C 相距2.0mm, B 和C 都接地。

若是使A 板带+ 3.0×10-7的电荷,略去边缘效应,问B 、C 两板上的感应电荷各是多少?以地的电势为零,A 板的电势为多少?解:因B ,C 两板都接地,故知B ,C 两板上只有向着A 的那里有感应电荷,设电荷的面密度别离为)(103.21020010854.8100.4100.1)(100.2)100.1(24)(100.1100.324210410987,,6e e e 5e 4320103412370077770E E V V sA C C C C C AB AC A B A B A C B A d Qd d E U QQd ddQ Q dd Qddd d d UU d d QQQ QQ ABBAB BABABAC AACABACBBACABCBAC AB C AB B AB AB AC C CBAC AB CAC AC ABABACBACABCBAB BACCAC AB C B⨯=⨯⨯⨯⨯⨯⨯==-=⋅=⨯-=⨯-⨯=⨯-=⨯⨯+-=+===∴-==-==-==-=+--=+∴=+=+--------εεσσσεσεσεσεεεσσσσσσσσσσσσσ板的电势为:)联立得:),(由()(两边乘以板的面积即得)()(得)(,则由间的距离为间的距离为,设)()(间的电场强度为:,指向量,从为垂直于板面的单位矢式中)(间的电场强度为:,由高斯定理得)(的关系为:得三块板上电荷量两间两边乘以鞭的面积,便)()()(理得,则由对称性和高斯定和则由度分别为的两面上电荷量的面密和板向着,和10.3 半径为10cm 的金属球A 带电1.0×10-8C 。

物理学(第五版)马文蔚第1至8章课后习题答案详解

物理学(第五版)马文蔚第1至8章课后习题答案详解

1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( )(A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r(C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s(D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( )(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v(C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v分析与解 (1) 质点在t 至(t +Δt )时间沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故ts t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故ts t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即(1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x . 下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确(C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解 tr d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r 表示速度矢量;在自然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D). 1 -3 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即(1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t. 下述判断正确的是( )(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的(C) 只有(2)是对的 (D) 只有(3)是对的分析与解td d v 表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;tr d d 在极坐标系中表示径向速率v r (如题1 -2 所述);t s d d 在自然坐标系中表示质点的速率v ;而td d v 表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D).1 -4 一个质点在做圆周运动时,则有( )(A) 切向加速度一定改变,法向加速度也改变(B) 切向加速度可能不变,法向加速度一定改变(C) 切向加速度可能不变,法向加速度不变(D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).*1 -5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v 0 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( )(A) 匀加速运动,θcos 0v v = (B) 匀减速运动,θcos 0v v =(C) 变加速运动,θcos 0v v = (D) 变减速运动,θcos 0v v =(E) 匀速直线运动,0v v =分析与解 本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l ,则小船的运动方程为22h l x -=,其中绳长l 随时间t 而变化.小船速度22d d d d h l t llt x -==v ,式中t l d d 表示绳长l 随时间的变化率,其大小即为v 0,代入整理后为θl h l cos /0220v v v =-=,方向沿x 轴负向.由速度表达式,可判断小船作变加速运动.故选(C).讨论 有人会将绳子速率v 0按x 、y 两个方向分解,则小船速度θcos 0v v =,这样做对吗?1 -6 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:(1) 质点在运动开始后4.0 s 的位移的大小;(2) 质点在该时间所通过的路程;(3) t =4 s 时质点的速度和加速度.分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =tx 来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 的位移大小Δx 1 、Δx 2 ,则t 时间的路程21x x s ∆+∆=,如图所示,至于t =4.0 s 时质点速度和加速度可用tx d d 和22d d t x 两式计算. 解 (1) 质点在4.0 s 位移的大小m 32Δ04-=-=x x x(2) 由 0d d =tx 得知质点的换向时刻为s 2=p t (t =0不合题意)则m 0.8Δ021=-=x x x m 40Δ242-=-=x x x所以,质点在4.0 s 时间间隔的路程为m 48ΔΔ21=+=x x s(3) t =4.0 s 时1s0.4s m 48d d -=⋅-==t t x v 2s0.422m.s 36d d -=-==t t x a1 -7一质点沿x轴方向作直线运动,其速度与时间的关系如图(a)所示.设t=0 时,x=0.试根据已知的v-t图,画出a-t图以及x -t图.分析 根据加速度的定义可知,在直线运动中v -t 曲线的斜率为加速度的大小(图中AB 、CD 段斜率为定值,即匀变速直线运动;而线段BC 的斜率为0,加速度为零,即匀速直线运动).加速度为恒量,在a -t 图上是平行于t 轴的直线,由v -t 图中求出各段的斜率,即可作出a -t 图线.又由速度的定义可知,x -t 曲线的斜率为速度的大小.因此,匀速直线运动所对应的x -t 图应是一直线,而匀变速直线运动所对应的x –t 图为t 的二次曲线.根据各段时间的运动方程x =x (t ),求出不同时刻t 的位置x ,采用描数据点的方法,可作出x -t 图.解 将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为2s m 20-⋅=--=AB A B AB t t a v v (匀加速直线运动) 0=BC a (匀速直线运动)2s m 10-⋅-=--=CD C D CD t t a v v (匀减速直线运动) 根据上述结果即可作出质点的a -t 图[图(B)].在匀变速直线运动中,有2021t t x x ++=v 由此,可计算在0~2s和4~6s时间间隔各时刻的位置分别为用描数据点的作图方法,由表中数据可作0~2s和4~6s时间的x -t 图.在2~4s时间, 质点是作1s m 20-⋅=v 的匀速直线运动, 其x -t 图是斜率k =20的一段直线[图(c)].1 -8 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求:(1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s质点的位移Δr 和径向增量Δr ;*(4) 2 s 质点所走过的路程s .分析 质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,可根据其定义计算.其中对s 的求解用到积分方法,先在轨迹上任取一段微元d s ,则22)d ()d (d y x s +=,最后用⎰=s s d 积分求s.解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为2412x y -= 这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置.(3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r *(4) 如图(B)所示,所求Δs 即为图中PQ 段长度,先在其间任意处取AB 微元d s ,则22)d ()d (d y x s +=,由轨道方程可得x x y d 21d -=,代入d s ,则2s路程为 m 91.5d 4d 402=+==⎰⎰x x s s Q P1 -9 质点的运动方程为23010t t x +-=22015t t y -=式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为t tx x 6010d d +-==v t ty y 4015d d -==v 当t =0 时, v o x =-10 m·s-1 , v o y =15 m·s-1 ,则初速度大小为120200s m 0.18-⋅=+=y x v v v设v o 与x 轴的夹角为α,则 23tan 00-==x yαv v α=123°41′(2) 加速度的分量式为2s m 60d d -⋅==ta x x v , 2s m 40d d -⋅-==t a y y v 则加速度的大小为222s m 1.72-⋅=+=y x a a a设a 与x 轴的夹角为β,则 32tan -==x y a a β β=-33°41′(或326°19′) 1 -10 一升降机以加速度1.22 m·s-2上升,当上升速度为2.44 m·s-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距2.74 m .计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.分析 在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y 1 =y 1(t )和y 2 =y 2(t ),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为20121at t y +=v 20221gt t h y -+=v 当螺丝落至底面时,有y 1 =y 2 ,即20202121gt t h at t -+=+v v s 705.02=+=ag h t (2) 螺丝相对升降机外固定柱子下降的距离为m 716.021202=+-=-=gt t y h d v 解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g +a ,螺丝落至底面时,有2)(210t a g h +-= s 705.02=+=ag h t (2) 由于升降机在t 时间上升的高度为2021at t h +='v 则 m 716.0='-=h h d1 -11一质点P 沿半径R=3.0 m的圆周作匀速率运动,运动一周所需时间为20.0s,设t=0 时,质点位于O点.按(a)图中所示Oxy坐标系,求(1) 质点P 在任意时刻的位矢;(2)5s时的速度和加速度.分析该题属于运动学的第一类问题,即已知运动方程r=r(t)求质点运动的一切信息(如位置矢量、位移、速度、加速度).在确定运动方程时,若取以点(0,3)为原点的O′x′y′坐标系,并采用参数方程x′=x′(t)和y′=y′(t)来表示圆周运动是比较方便的.然后,运用坐标变换x=x0 +x′和y=y0 +y′,将所得参数方程转换至Oxy坐标系中,即得Oxy坐标系中质点P 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解 (1) 如图(B)所示,在O′x′y′坐标系中,因t Tθπ2=,则质点P 的参数方程为 t T R x π2sin=', t TR y π2cos -=' 坐标变换后,在O x y 坐标系中有 t T R x x π2sin='=, R t TR y y y +-=+'=π2cos 0 则质点P 的位矢方程为 j i r ⎪⎭⎫ ⎝⎛+-+=R t T R t T R π2cos π2sinj i )]π1.0(cos 1[3)π1.0(sin 3t t -+=(2) 5s时的速度和加速度分别为j j i r )s m π3.0(π2sin π2π2cos π2d d 1-⋅=+==t TT R t T T R t v i j i r a )s m π03.0(π2cos )π2(π2sin )π2(d d 222222-⋅-=+-==t TT R t T T R t 1 -12 地面上垂直竖立一高20.0 m 的旗杆,已知正午时分太阳在旗杆的正上方,求在下午2∶00 时,杆顶在地面上的影子的速度的大小.在何时刻杆影伸展至20.0 m ?分析 为求杆顶在地面上影子速度的大小,必须建立影长与时间的函数关系,即影子端点的位矢方程.根据几何关系,影长可通过太线对地转动的角速度求得.由于运动的相对性,太线对地转动的角速度也就是地球自转的角速度.这样,影子端点的位矢方程和速度均可求得.解 设太线对地转动的角速度为ω,从正午时分开始计时,则杆的影长为s =h tg ωt ,下午2∶00 时,杆顶在地面上影子的速度大小为132s m 1094.1cos d d --⋅⨯===tωωh t s v 当杆长等于影长时,即s =h ,则 s 606034πarctan 1⨯⨯===ωh s ωt即为下午3∶00 时.1 -13 质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m·s-1 ,求质点的运动方程.分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =和tx d d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解 由分析知,应有⎰⎰=t t a 0d d 0v v v 得 03314v v +-=t t (1)由 ⎰⎰=t xx t x 0d d 0v 得 00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m·s-1代入(1) (2)得v 0=-1 m·s-1,x 0=0.75 m .于是可得质点运动方程为75.0121242+-=t t x 1 -14 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a =A -B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程.分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为t a d )(d =v v 后再两边积分.解 选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v v B A ta -==d d (1) 用分离变量法把式(1)改写为 t B A d d =-vv (2)将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v v v vv得石子速度 )1(Bt e BA --=v 由此可知当,t →∞时,B A →v 为一常量,通常称为极限速度或收尾速度.(2) 再由)1(d d Bt e BA t y --==v 并考虑初始条件有 t e BA y t Bt y d )1(d 00⎰⎰--= 得石子运动方程)1(2-+=-Bt e B A t B A y 1 -15 一质点具有恒定加速度a =6i +4j ,式中a 的单位为m·s-2 .在t =0时,其速度为零,位置矢量r 0 =10 m i .求:(1) 在任意时刻的速度和位置矢量;(2) 质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图.分析 与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量a x 和a y 分别积分,从而得到运动方程r 的两个分量式x (t )和y (t ).由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即20021t a t x x x x ++=v 和20021t a t y y y y ++=v ,两个分运动均为匀变速直线运动.读者不妨自己验证一下.解 由加速度定义式,根据初始条件t 0 =0时v 0 =0,积分可得⎰⎰⎰+==t t t t 000)d 46(d d j i a v vj i t t 46+=v 又由td d r =v 及初始条件t =0 时,r 0=(10 m)i ,积分可得 ⎰⎰⎰+==tt rr t t t t 00)d 46(d d 0j i r v j i r 222)310(t t ++=由上述结果可得质点运动方程的分量式,即x =10+3t 2 y =2t 2 消去参数t ,可得运动的轨迹方程 3y =2x -20 m 这是一个直线方程.直线斜率32tan d d ===αx y k ,α=33°41′.轨迹如图所示.1 -16 一质点在半径为R 的圆周上以恒定的速率运动,质点由位置A 运动到位置B,OA 和OB 所对的圆心角为Δθ.(1) 试证位置A 和B 之间的平均加速度为)Δ(/)Δcos 1(22θR θa v -=;(2) 当Δθ分别等于90°、30°、10°和1°时,平均加速度各为多少? 并对结果加以讨论.分析 瞬时加速度和平均加速度的物理含义不同,它们分别表示为t d d v =a 和tΔΔv =a .在匀速率圆周运动中,它们的大小分别为Ra n 2v =,t a ΔΔv = ,式中|Δv |可由图(B)中的几何关系得到,而Δt 可由转过的角度Δθ 求出.由计算结果能清楚地看到两者之间的关系,即瞬时加速度是平均加速度在Δt →0 时的极限值.解 (1) 由图(b)可看到Δv =v 2 -v 1 ,故θΔcos 2Δ212221v v v v -+=v)Δcos 1(2θ-=v而vv θR s t ΔΔΔ==所以 θR θt a Δ)cos Δ1(2ΔΔ2v -==v (2) 将Δθ=90°,30°,10°,1°分别代入上式,得R a 219003.0v ≈,Ra 229886.0v ≈ R a 239987.0v ≈,Ra 24000.1v ≈ 以上结果表明,当Δθ→0 时,匀速率圆周运动的平均加速度趋近于一极限值,该值即为法向加速度R2v . 1 -17 质点在Oxy 平面运动,其运动方程为r =2.0t i +(19.0 -2.0t 2)j ,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t 1=1.0s 到t 2 =2.0s 时间的平均速度;(3) t 1 =1.0s时的速度及切向和法向加速度;(4) t =1.0s 时质点所在处轨道的曲率半径ρ.分析 根据运动方程可直接写出其分量式x =x (t )和y =y (t ),从中消去参数t ,即得质点的轨迹方程.平均速度是反映质点在一段时间位置的变化率,即tΔΔr =v ,它与时间间隔Δt 的大小有关,当Δt →0 时,平均速度的极限即瞬时速度td d r =v .切向和法向加速度是指在自然坐标下的分矢量a t 和a n ,前者只反映质点在切线方向速度大小的变化率,即t t te a d d v =,后者只反映质点速度方向的变化,它可由总加速度a 和a t 得到.在求得t 1 时刻质点的速度和法向加速度的大小后,可由公式ρa n 2v =求ρ. 解 (1) 由参数方程x =2.0t , y =19.0-2.0t 2消去t 得质点的轨迹方程:y =19.0 -0.50x 2(2) 在t 1 =1.00s 到t 2 =2.0s时间的平均速度j i r r 0.60.2ΔΔ1212-=--==t t t r v (3) 质点在任意时刻的速度和加速度分别为j i j i j i t ty t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 222220.4d d d d )(-⋅-=+=s m ty t x t 则t 1 =1.00s时的速度v (t )|t =1s=2.0i -4.0j切向和法向加速度分别为t t y x t t t tt e e e a 222s 1s m 58.3)(d d d d -=⋅=+==v v v n n t n a a e e a 222s m 79.1-⋅=-=(4) t =1.0s质点的速度大小为122s m 47.4-⋅=+=y x v v v 则m 17.112==na ρv 1 -18 飞机以100 m·s-1 的速度沿水平直线飞行,在离地面高为100 m 时,驾驶员要把物品空投到前方某一地面目标处,问:(1) 此时目标在飞机正下方位置的前面多远? (2) 投放物品时,驾驶员看目标的视线和水平线成何角度?(3) 物品投出2.0s后,它的法向加速度和切向加速度各为多少?分析 物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t 时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t ,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量v x 、v y 求出,这样,也就可将重力加速度g 的切向和法向分量求得.解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x =vt , y =1/2 gt 2飞机水平飞行速度v =100 m·s -1,飞机离地面的高度y =100 m,由上述两式可得目标在飞机正下方前的距离 m 4522==gy x v(2) 视线和水平线的夹角为 o 5.12arctan==x y θ (3) 在任意时刻物品的速度与水平轴的夹角为vv v gt αx yarctan arctan == 取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为2s m 88.1arctan sin sin -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a t 2s m 62.9arctan cos cos -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a n 1 -19 如图(a)所示,一小型迫击炮架设在一斜坡的底端O 处,已知斜坡倾角为α,炮身与斜坡的夹角为β,炮弹的出口速度为v 0,忽略空气阻力.求:(1)炮弹落地点P 与点O 的距离OP ;(2) 欲使炮弹能垂直击中坡面.证明α和β必须满足αβtan 21tan =并与v 0 无关. 分析 这是一个斜上抛运动,看似简单,但针对题目所问,如不能灵活运用叠加原理,建立一个恰当的坐标系,将运动分解的话,求解起来并不容易.现建立如图(a)所示坐标系,则炮弹在x 和y 两个方向的分运动均为匀减速直线运动,其初速度分别为v 0cos β和v 0sin β,其加速度分别为g sin α和gcos α.在此坐标系中炮弹落地时,应有y =0,则x =OP .如欲使炮弹垂直击中坡面,则应满足v x =0,直接列出有关运动方程和速度方程,即可求解.由于本题中加速度g 为恒矢量.故第一问也可由运动方程的矢量式计算,即20g 21t t +=v r ,做出炮弹落地时的矢量图[如图(B)所示],由图中所示几何关系也可求得OP (即图中的r 矢量).(1)解1 由分析知,炮弹在图(a)所示坐标系中两个分运动方程为αgt βt x sin 21cos 20-=v (1) αgt βt y cos 21sin 20-=v (2) 令y =0 求得时间t 后再代入式(1)得)cos(cos sin 2)sin sin cos (cos cos sin 2220220βααg ββαβααg βx OP +=-==v v 解2 做出炮弹的运动矢量图,如图(b)所示,并利用正弦定理,有βgt αt βαsin 212πsin 2πsin 20=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛--v r 从中消去t 后也可得到同样结果.(2) 由分析知,如炮弹垂直击中坡面应满足y =0 和v x =0,则0sin cos 0=-=αgt βx v v (3)由(2)(3)两式消去t 后得αβsin 21tan = 由此可知.只要角α和β满足上式,炮弹就能垂直击中坡面,而与v 0 的大小无关.讨论 如将炮弹的运动按水平和竖直两个方向分解,求解本题将会比较困难,有兴趣读者不妨自己体验一下.1 -20 一直立的雨伞,开后其边缘圆周的半径为R ,离地面的高度为h ,(1) 当伞绕伞柄以匀角速ω旋转时,求证水滴沿边缘飞出后落在地面上半径为g ωh R r /212+=的圆周上;(2) 读者能否由此定性构想一种草坪上或农田灌溉用的旋转式洒水器的方案?分析 选定伞边缘O 处的雨滴为研究对象,当伞以角速度ω旋转时,雨滴将以速度v 沿切线方向飞出,并作平抛运动.建立如图(a)所示坐标系,列出雨滴的运动方程并考虑图中所示几何关系,即可求证.由此可以想像如果让水从一个旋转的有很多小孔的喷头中飞出,从不同小孔中飞出的水滴将会落在半径不同的圆周上,为保证均匀喷洒对喷头上小孔的分布还要给予精心的考虑.解 (1) 如图(a)所示坐标系中,雨滴落地的运动方程为t ωR t x ==v (1)h gt y ==221 (2) 由式(1)(2)可得 gh ωR x 2222= 由图(a)所示几何关系得雨滴落地处圆周的半径为22221ωgh R R x r +=+= (2) 常用草坪喷水器采用如图(b)所示的球面喷头(θ0 =45°)其上有大量小孔.喷头旋转时,水滴以初速度v 0 从各个小孔中喷出,并作斜上抛运动,通常喷头表面基本上与草坪处在同一水平面上.则以φ角喷射的水柱射程为gR 2sin 0v =为使喷头周围的草坪能被均匀喷洒,喷头上的小孔数不但很多,而且还不能均匀分布,这是喷头设计中的一个关键问题.1 -21 一足球运动员在正对球门前25.0 m 处以20.0 m·s-1 的初速率罚任意球,已知球门高为3.44 m .若要在垂直于球门的竖直平面将足球直接踢进球门,问他应在与地面成什么角度的围踢出足球? (足球可视为质点)分析 被踢出后的足球,在空中作斜抛运动,其轨迹方程可由质点在竖直平面的运动方程得到.由于水平距离x 已知,球门高度又限定了在y 方向的围,故只需将x 、y 值代入即可求出.解 取图示坐标系Oxy ,由运动方程θt x cos v =, 221sin gt θt y -=v 消去t 得轨迹方程 222)tan 1(2tan x θg θx y +-=v 以x =25.0 m,v =20.0 m·s-1 及3.44 m≥y ≥0 代入后,可解得71.11°≥θ1 ≥69.92°27.92°≥θ2 ≥18.89°如何理解上述角度的围?在初速一定的条件下,球击中球门底线或球门上缘都将对应有两个不同的投射倾角(如图所示).如果以θ>71.11°或θ <18.89°踢出足球,都将因射程不足而不能直接射入球门;由于球门高度的限制,θ 角也并非能取71.11°与18.89°之间的任何值.当倾角取值为27.92°<θ <69.92°时,踢出的足球将越过门缘而离去,这时球也不能射入球门.因此可取的角度围只能是解中的结果.1 -22 一质点沿半径为R 的圆周按规律2021bt t s -=v 运动,v 0 、b 都是常量.(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b ?(3) 当加速度达到b 时,质点已沿圆周运行了多少圈?分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s (t ),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a t,而加速度的法向分量为a n =v 2 /R .这样,总加速度为a =a te t+a n e n .至于质点在t 时间通过的路程,即为曲线坐标的改变量Δs =s t -s 0.因圆周长为2πR,质点所转过的圈数自然可求得.解 (1) 质点作圆周运动的速率为bt ts -==0d d v v 其加速度的切向分量和法向分量分别为b t s a t -==22d d , Rbt R a n 202)(-==v v 故加速度的大小为R )(402222bt b a a a a t tn -+=+=v 其方向与切线之间的夹角为⎥⎦⎤⎢⎣⎡--==Rb bt a a θt n 20)(arctan arctan v (2) 要使|a |=b ,由b bt b R R=-+4022)(1v 可得 bt 0v = (3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为b s s s t 2200v =-=因此质点运行的圈数为bRR s n π4π220v == 1 -23 一半径为0.50 m 的飞轮在启动时的短时间,其角速度与时间的平方成正比.在t =2.0s 时测得轮缘一点的速度值为4.0 m·s-1.求:(1) 该轮在t′=0.5s的角速度,轮缘一点的切向加速度和总加速度;(2)该点在2.0s所转过的角度.分析 首先应该确定角速度的函数关系ω=kt 2.依据角量与线量的关系由特定时刻的速度值可得相应的角速度,从而求出式中的比例系数k ,ω=ω(t )确定后,注意到运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移.解 因ωR =v ,由题意ω∝t 2得比例系数 322s rad 2-⋅===Rtt ωk v 所以 22)(t t ωω== 则t ′=0.5s 时的角速度、角加速度和切向加速度分别为12s rad 5.02-⋅='=t ω2s rad 0.24d d -⋅='==t tωα 2s m 0.1-⋅==R αa t总加速度n t t n R ωR αe e a a a 2+=+= ()()2222s m 01.1-⋅=+=R ωR αa 在2.0s该点所转过的角度 rad 33.532d 2d 203202200====-⎰⎰t t t t ωθθ 1 -24 一质点在半径为0.10 m 的圆周上运动,其角位置为342t θ+=,式中θ 的单位为rad,t 的单位为s.(1) 求在t =2.0s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少?(3) t 为多少时,法向加速度和切向加速度的值相等?分析 掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到.解 (1) 由于342t θ+=,则角速度212d d t tθω==.在t =2 s 时,法向加速度和切向加速度的数值分别为 22s 2s m 30.2-=⋅==ωr a t n 2s 2s m 80.4d d -=⋅==t ωr a t t(2) 当22212/t n t a a a a +==时,有223n t a a =,即 ()()422212243t r rt = 得 3213=t 此时刻的角位置为 rad 15.3423=+=t θ(3) 要使t n a a =,则有()()422212243t r rt = t =0.55s1 -25 一无风的下雨天,一列火车以v 1=20.0 m·s-1 的速度匀速前进,在车的旅客看见玻璃窗外的雨滴和垂线成75°角下降.求雨滴下落的速度v2 .(设下降的雨滴作匀速运动)分析 这是一个相对运动的问题.设雨滴为研究对象,地面为静止参考系S,火车为动参考系S′.v 1 为S′相对S 的速度,v 2 为雨滴相对S的速度,利用相对运动速度的关系即可解.解 以地面为参考系,火车相对地面运动的速度为v 1 ,雨滴相对地面竖直下落的速度为v 2 ,旅客看到雨滴下落的速度v 2′为相对速度,它们之间的关系为1'22v v v += (如图所示),于是可得 1o 12s m 36.575tan -⋅==v v 1 -26 如图(a)所示,一汽车在雨中沿直线行驶,其速率为v 1 ,下落雨滴的速度方向偏于竖直方向之前θ 角,速率为v 2′,若车后有一长方形物体,问车速v 1为多大时,此物体正好不会被雨水淋湿?分析 这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v 2′的方向)应满足h l αarctan ≥.再由相对速度的矢量关系122v v v -=',即可求出所需车速v 1.解 由122v v v -='[图(b)],有θθαcos sin arctan221v v v -= 而要使hlαarctan ≥,则 hl θθ≥-cos sin 221v v v ⎪⎭⎫ ⎝⎛+≥θh θl sin cos 21v v1 -27 一人能在静水中以1.10 m·s-1 的速度划船前进.今欲横渡一宽为1.00 ×103 m、水流速度为0.55 m·s-1 的大河.(1) 他若要从出发点横渡该河而到达正对岸的一点,那么应如何确定划行方向? 到达正对岸需多少时间? (2)如果希望用最短的时间过河,应如何确定划行方向? 船到达对岸的位置在什么地方?分析 船到达对岸所需时间是由船相对于岸的速度v 决定的.由于水流速度u 的存在, v 与船在静水中划行的速度v ′之间有v =u +v ′(如图所示).若要使船到达正对岸,则必须使v 沿正对岸方向;在划速一定的条件下,若要用最短时间过河,则必须使v 有极大值.解 (1) 由v =u +v ′可知v '=u αarcsin,则船到达正对岸所需时间为 s 1005.1cos 3⨯='==αd d t v v (2) 由于αcos v v '=,在划速v ′一定的条件下,只有当α=0 时, v 最大(即v =v ′),此时,船过河时间t ′=d /v ′,船到达距正对岸为l 的下游处,且有m 100.52⨯='='=v d u t u l 1 -28 一质点相对观察者O 运动, 在任意时刻t , 其位置为x =vt , y =gt 2 /2,质点运动的轨迹为抛物线.若另一观察者O′以速率v 沿x 轴正向相对于O 运动.试问质点相对O′的轨迹和加速度如何?分析 该问题涉及到运动的相对性.如何将已知质点相对于观察者O 的运动转换到相对于观察者O′的运动中去,其实质就是进行坐标变换,将系O。

高考物理练习题库10(牛顿第二定律)

高考物理练习题库10(牛顿第二定律)

高考物理练习题库10(牛顿第二定律)1.关于牛顿第二定律,正确的说法是( ).【1】(A)物体的质量跟外力成正比,跟加速度成反比(B)加速度的方向一定与合外力的方向一致(C)物体的加速度跟物体所受的合外力成正比,跟物体的质量成反比(D)由于加速度跟合外力成正比,整块砖的重力加速度一定是半块砖重力加速度的2倍答案:BC2.课本中实验是用以下什么步骤导出牛顿第二定律的结论的( ).【1】(A)同时改变拉力F和小车质量m的大小(B)只改变拉力F的大小,小车的质最m不变(C)只改变小车的质量m,拉力F的大小不变(D)先保持小车质量m不变,研究加速度a与F的关系,再保持F不变,研究a与m的关系,最后导出a与m及F的关系答案:D3.物体静止在光滑的水平桌面上.从某一时刻起用水平恒力F推物体,则在该力刚开始作用的瞬间( ).【1】(A)立即产生加速度,但速度仍然为零(B)立即同时产生加速度和速度(C)速度和加速度均为零(D)立即产生速度,但加速度仍然为零答案:A4.合外力使一个质量是0.5kg的物体A以4m/s2的加速度前进,若这个合外力使物体B产生2.5m/s2的加速度,那么物体B的质量是______kg.【1】答案:0.86.在牛顿第二定律公式F=kma中,比例系数k的数值( ).【2】(A)在任何情况下都等于1(B)是由质量m、加速度a利力F三者的大小所决定的(C)是由质量m、加速度a和力F三者的单位所决定的(D)在国际单位制中一定等于1答案:CD7.用2N的水平力拉一个物体沿水平面运动时,物体可获得1m/s2的加速度;用3N的水平力拉物体沿原地面运动,加速度是2m/s2,那么改用4N的水平力拉物体,物体在原地面上运动的加速度是______m/s2,物体在运动中受滑动摩擦力大小为______N.【2】答案:3,18.一轻质弹簧上端固定,下端挂一重物体,平衡时弹簧伸长4cm,现将重物体向下拉1cm 然后放开,则在刚放开的瞬时,重物体的加速度大小为( ).【1.5】(A)2.5m/s2(B)7.5m/s2(C)10m/s2(D)12.5m/s2答案:A9.力F1单独作用在物体A上时产生的加速度为a1=5m/s2,力F2单独作用在物体A上时产生的加速度为a2=-1m/s2.那么,力F1和F2同时作用在物体A上时产生的加速度a的范围是( ).【1.5】(A)0≤a≤6m/s2B)4m/s2≤a≤5m/s2(C)4m/s2≤a≤6m/s2(D)0≤a≤4m/s2答案:C10.航空母舰上的飞机跑道长度有限.飞机回舰时,机尾有一个钩爪,能钩住舰上的一根弹性钢索,利用弹性钢索的弹力使飞机很快减速.若飞机的质量为M=4.0×103kg,同舰时的速度为v=160m/s,在t=2.0s内速度减为零,弹性钢索对飞机的平均拉力F=______N(飞机与甲板间的摩擦忽略不计).【2】答案:3.2×10511.某人站在升降机内的台秤上,他从台秤的示数看到自己体重减少20%,则此升降机的运动情况是______,加速度的大小是______m/s.(g取10m/s2).【2】答案:匀加速下降或匀减速上升,212.质量为10kg的物体,原来静止在水平面上,当受到水平拉力F后,开始沿直线作匀加速运动,设物体经过时间t位移为s,且s、t的关系为s=2t2,物体所受合外力大小为______N,第4s末的速度是______m/s,4s末撤去拉力F,则物体再经10s停止运动,则F=______N,物体与平面的摩擦因数μ=______(g取10m/s2).【4】答案:40,16,56,0.1613.在粗糙的水平面上,物体在水平推力作用下由静止开始作匀加速直线运动,作用一段时间后,将水平推力逐渐减小到零,则在水平推力逐渐减小到零的过程中( ).【2】(A)物体速度逐渐减小,加速度逐渐减小(B)物体速度逐渐增大,加速度逐渐减小(C)物体速度先增大后减小,加速度先增大后减小(D )物体速度先增大后减小,加速度先减小后增大答案:D14.如图所示,物体P 置于水平面上,用轻细线跨过质量不计的光滑定滑轮连接一个重力G =10N 的重物,物体P 向右运动的加速度为a 1;若细线下端不挂重物,而用F =10N 的力竖直向下拉细线下端,这时物体P 的加速度为a 2,则( ).【2】(A )a 1>a 2 (B )a 1=a 2(C )a 1<a 2 (D )条件不足,无法判断答案:C15.在做“验证牛顿第二定律”的实验时(装置如图所示):【5】(1)下列说法中正确的是( ).(A )平衡运动系统的摩擦力时,应把装砂的小桶通过定滑轮拴在小车上(B )连接砂桶和小车的轻绳应和长木板保持平行(C )平衡摩擦力后,长木板的位置不能移动(D )小车应靠近打点计时器,且应先接通电源再释放小车答案:BCD(2)研究在作用力F 一定时,小车的加速度a 与小车质量M 的关系,某位同学设计的实验步骤如下:(A )用天平称出小车和小桶及内部所装砂子的质量.(B )按图装好实验器材.(C )把轻绳系在小车上并绕过定滑轮悬挂砂桶.(D )将打点计时器接在6V 电压的蓄电池上,接通电源,放开小车,打点计时器在纸带上打下一系列点,并在纸带上标明小车质量..(E )保持小桶及其中砂子的质量不变,增加小车上的砝码个数,并记录每次增加后的M 值,重复上述实验.(F )分析每条纸带,测量并计算出加速度的值.(G )作a -M 关系图像,并由图像确定a 、M 关系.①该同学漏掉的重要实验步骤是______,该步骤应排在______步实验之后.②在上述步骤中,有错误的是______,应把______改为______.③在上述步骤中,处理不恰当的是______,应把______改为______.答案:○1平衡摩擦力,B ○2D ,蓄电池,学生电源G ,a -M ,M1a 16.利用上题装置做“验证牛顿第二定律”的实验时:【8】(1)甲同学根据实验数据画出的小车的加速度a 和小车所受拉力F 的图像为右图所示中的直线Ⅰ,乙同学画出的图像为图中的直线.直线Ⅰ、Ⅱ在纵轴或横轴上的截距较大.明显超出了误差范围,下面给出了关于形成这种情况原因的四种解释,其中可能正确的是( ).(A )实验前甲同学没有平衡摩擦力(B )甲同学在平衡摩擦力时,把长木板的末端抬得过高了(C )实验前乙同学没有平衡摩擦力(D )乙同学在平衡摩擦力时,把长木板的末端抬得过高了(2)在研究小车的加速度a 和小车的质量M 的关系时,由于始终没有满足M 》m (m 为砂桶及砂桶中砂的质量)的条件,结果得到的图像应是如下图中的图( ).(3)在研究小车的加速度a 和拉力F 的关系时,由于始终没有满足M 》m 的关系,结果应是下图中的图( ).答案:(1)BC (2)D (3)D17.物体在水平地面上受到水平推力的作用,在6s 内力F 的变化和速度v 的变化如图所示,则物体的质量为______kg ,物体与地面的动摩擦因数为______.【3】答案:4,0.02518.如图所示,在固定的光滑水平地面上有质量分别为m A 和m B 的木块A 、B .A 、B 之间用轻质弹簧相连接,用水平向右的外力F 推A ,弹簧稳定后,A 、B 一起向右作匀加速直线运动,加速度为a 以向右为正方向.在弹簧稳定后的某时刻,突然将外力F 撤去,撤去外力的瞬间,木块A 的加速度是a A =______,小块B 的加速度是a B =______.【3】答案:AB m a m ,a 19.长车上载有木箱,木箱与长车接触面间的静摩擦因数为0.25.如长车以v =36km /h 的速度行驶,长车至少在多大一段距离内刹车,才能使木箱与长车间无滑动(g 取10m /s 2)?p .27【3】答案:20m20.质量为24kg 的气球,以2m /s 的速度竖直匀述上升.当升至离地面300m 高处时,从气球上落下一个体积很小(与气球体积相比)、质量为4kg 的物体.试求物体脱离气球5s 后气球距地面的高度(g 取10m /s 2).【3】答案:335m21.质量为20kg 的物体若用20N 的水平力牵引它,刚好能在水平面上匀速前进.问:若改用50N 拉力、沿与水平方向成37°的夹角向斜上方拉它,使物体由静止出发在水平而上前进2.3m ,它的速度多大?在前进2.3m 时撤去拉力,又经过3s ,物体的速度多大(g 取10m /s 2)?【5】答案:2.3m /s22.一质量为2kg 的物体放在光滑水平面上,初速度为零.先对物体施加向东的恒力F =8N ,历时1s ,随即把此力改为向西,大小不变历时1s ,接着把此力改为向东,大小不变历时1s ……如此反复,只改变力的方向,共历时4s .在这4s 内,画出此过程的a -t 图和v -t 图,并求这4s 内物体经过的位移.【5】答案:a -t 图、v -t 图,如图.位移为8m23.如图所示,半径分别为r 和R 的圆环竖直叠放(相切)于水平面上,一条公共斜弦过两圆切点且分别与两圆相交于a 、b 两点.在此弦上铺一条光滑轨道,且令一小球从b 点以某一初速度沿轨道向上抛出,设小球穿过切点时不受阻挡.若该小球恰好能上升到a 点,则该小球从b 点运动到a 点所用时间为多少?【5】答案:g)r R 2t +=( 24.伽利略的题目:如图所示,试证明,质点从竖直平面内的圆环上的各个点沿弦的方向安装的斜面向滑到最低点D 所用的时间都相等,都等于从最高点A 自由下落到最低点D 所用的时间,假设斜面与质点间无摩擦.【3】答案:略25.惯性制导系统已广泛应用于弹道式导弹工程中,这个系统的重要元件之一是加速度计.加速度计的构造原理的示意图如图所示.滑导弹长度方向安装的固定光滑杆上套一质量为m 的滑块,滑块两侧分别与劲度系数均为k 的弹簧相连,两弹簧的另一端与固定壁相连.滑块原来静止,弹簧处于自然长度.滑块上有指针,可通过标尺测出滑块的位移,然后通过控制系统进行制导.设某段时间内导弹沿水平方向运动,指针向左偏离O 点的距离为s ,则这段时间内导弹的加速度( ).(2001年全国高考试题)【3】(A )方向向左,大小为mks (B )方向向右,大小为m ks (C )方向向左,大小为m 2ks (D )方向向右,大小为m 2ks 答案:D26.如图所示,均匀板可绕中点O 转动,两人站在板上时,板恰能水平静止,AO =2BO .若两人在板上同时开始作初速为零的匀加速运动,板仍保持静止,关于人1和人2的运动方向,加速度的大小,下列判断中正确的是( ).【2】(A )相向运动,a 1:a 2=1:4 (B )相背运动,a 1:a 2=2:1(C )相向运动,a 1:a 2=2:1 (D )相背运动,a 1:a 2=4:1答案:BC27.在粗糙水平面上放着一箱子,前面的人用与水平方向成仰角θ1的力F 1拉箱子,同时,后面的人用与水平方向成俯角θ2的推力F 2推箱子,此时箱子的加速度为a .如果撤去推力F 2,则箱子的加速度( ).(1996年全国力学竞赛试题)【4】(A )一定增大 (B )一定减小(C )可能不变 (D )不是增大就是减小,不可能不变答案:C28.如图所示,将金属块m用压缩的轻弹簧卡在一矩形的箱中.在箱的上顶板和下底板装有压力传感器,箱可以沿竖直轨道运动,当箱以a=2.0m/s2的加速度竖直向上作匀减速运动时,上顶板的压力传感器显示的压力为6.0N,下底板的压力传感器显示的压力为10.0N(g取10m/s2).(1)若上顶板压力传感器的示数是下底板压力传感器示数的一半,试判断箱的运动情况.(2)要使上顶板压力传感器的示数为零,箱沿竖直方向运动的情况可能是怎样的?【10】答案:(1)匀速直线运动(2)作向上匀加速或向下匀减速直线运动。

西南科技大学 原子核物理及辐射探测学_1-10章答案

西南科技大学   原子核物理及辐射探测学_1-10章答案

西南科技大学最新原子核物理及辐射探测学_1-10章答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN西南科技大学 原子核物理与辐射探测学1-10章课后习题答案第一章 习题答案1-1 当电子的速度为18105.2-⨯ms 时,它的动能和总能量各为多少?答:总能量()MeV....c vc m mc E e 924003521511012222=⎪⎭⎫ ⎝⎛-=-==;动能()MeV c vc m T e 413.011122=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--= 1-2.将α粒子的速度加速至光速的0.95时,α粒子的质量为多少?答:α粒子的静止质量 ()()()u M m M m e 0026.44940.9314,244,224,20=∆+=≈-= α粒子的质量g u m m 2322010128.28186.1295.010026.41-⨯==-=-=βα1-4 kg 1的水从C 00升高到C 0100,质量增加了多少?答:kg 1的水从C 00升高到C 0100需做功为J t cm E 510184.41001184.4⨯=⨯⨯=∆=∆。

()kg c E m 1228521065.4100.310184.4-⨯=⨯⨯=∆=∆ 1-5 已知:()();054325239;050786238239238u .U M u .U M ==()()u .U M;u .U M045582236043944235236235==试计算U-239,U-236最后一个中子的结合能。

答:最后一个中子的结合能()()()[]MeV.uc .c ,M m ,M ,B n n 774845126023992238922399222==⋅-+=()()()[]MeV .uc .c ,M m ,M ,B n n 54556007027023692235922369222==⋅-+=也可用书中的质量剩余()A ,Z ∆:()()()()MeV....,n ,,B n 806457250071830747239922389223992=-+=∆-∆+∆= ()()()()MeV ....,n ,,B n 545644242071891640236922359223692=-+=∆-∆+∆=其差别是由于数据的新旧和给出的精度不同而引起的。

大学物理习题答案10电磁相互作用

大学物理习题答案10电磁相互作用

大学物理练习题九一、选择题1. 取一闭合积分回路L ,使三根载流导线穿过它所围成的面。

现改变三根导线之间的相互间隔,但不越出积分回路,则(A )回路L 内的∑I 不变,L 上各点的B ϖ不变。

(B )回路L 内的∑I 不变,L 上各点的B ϖ改变。

(C )回路L 内的∑I 改变,L 上各点的B ϖ不变。

(D )回路L 内的∑I 改变,L 上各点的B ϖ改变。

[ B ]解:在安培环路定理∑⎰μ=⋅i 0L I d B λϖϖ中,(1)式右的I i 是闭合回路包围的电流。

所以∑i I 不变; (2)式左的B 是空间中所有电流产生的磁场。

电流分布变了,磁场分布也变了,因此L 上各点的磁场改变。

注意:式左的积分值也不变化。

2. 磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R ,x 坐标轴垂直圆筒轴线,原点在中心轴线上,图(A)~(E)哪一条曲线表示B-x 的关系? [ B ]解:(1)在圆筒内垂直于轴的方向取圆形回路(包围的电流为零),由安培定理知,筒内B=0 ;(2)在垂直于轴的方向取圆形回路(回路半径x >R ,包围的电流为I ),由安培定理有I x B d B L 02μπ=⋅=⋅⎰λϖϖ筒外x 处的磁场x IB πμ20= (B-x 是双曲线)3.如图,无限长直载流导线与正三角形载流线圈在同一平面内,若长直导线固定不动,则载流三角形线圈将 [ A ](A )向着长直导线平移。

(B )离开长直导线平移。

(C )转动。

(D )不动。

解:将三角形右边两段通电导线等效为向下的一段,左边一段的通电导线处的磁场强。

因此,整个三角形的受力与左边相同,受到无限长直电流的吸引。

4.一铜板厚度为D=1.00mm ,放置在磁感应强度为B=1.35T 的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示,现测得铜板上下两面电势差为V U 51010.1-⨯=,已知铜板中自由电子数密度3281020.4-⨯=m n ,电子电量C e 191060.1-⨯=,则此铜板中的电流为 [ B ](A) 82.2A. (B) 54.8A. (C) 30.8A. (D) 22.2A.解: D IBen U 1=,=⨯⨯⨯⨯⨯⨯==---35.1)102.4()106.1(10101.1281935B UDqn I 76.54(A )二、填空题1. 有一长直金属圆筒,沿长度方向有稳恒电流I 通过,在横截面上电流均匀分布。

大学基础物理学答案(习岗)第10章

大学基础物理学答案(习岗)第10章

129第十章 量子物理基础本章提要1. 光的量子性· 物体由于自身具有一定温度而以电磁波的形式向周围发射能量的现象称热辐射。

· 在任何温度下都能全部吸收照射到其表面上的各种波长的光(电磁波),的物体称为绝对黑体,简称黑体。

· 单位时间内从物体单位表面积发出的、波长在λ附近单位波长间隔内电磁波的能量称单色辐射本领(又称单色辐出度),用)(T M λ表示· 单位时间内物体单位表面积发出的包括所有波长在内的电磁波的辐射功率称为辐射出射度,用则M 表示,M 与)(T M λ的关系为0()d M M T λλ∞=⎰2. 维恩位移定律在不同的热力学温度T 下,单色辐射本领的实验曲线存在一个峰值波长λm , T 和λm 满足如下关系:λm T b =其中,b 是维恩常量。

该式称维恩位移定律。

3. 斯忒藩—玻尔兹曼定律· 黑体的辐射出射度M 与温度T 的关系为4T M σ=其中,σ为斯忒藩—玻尔兹曼常量。

该结果称斯忒藩—玻尔兹曼定律。

· 对于一般的物体4T M εσ=ε称发射率。

4. 黑体辐射· 能量子假说:黑体辐射不是连续地辐射能量,而是一份份地辐射能量,并且每一份能量与电磁波的频率ν成正比,满足条件E nhv =,其中n =1,2,3,…,等正整数,h 为普朗克常数。

这种能量分立的概念被称为能量量子化,130每一份最小的能量E hv =称为一个能量子。

· 普朗克黑体辐射公式(简称普朗克公式)为112)(/52-=kT hc e hc T M λλλπ其中,h 是普朗克常量。

由普朗克公式可以很好地解释黑体辐射现象。

· 光子假说:光是以光速运动的粒子流,这些粒子称为光量子,简称光子。

一个光子具有的能量为νh E =动量为 λh p =5. 粒子的波动性· 实物粒子也具有波粒二象性,它的能量E 、动量p 与和它相联系的波的频率ν、波长λ满足关系2E mc h ν==λh p m u ==这两个公式称为德布罗意公式或德布罗意假设。

大学物理(下)练习题及答案

大学物理(下)练习题及答案

xyoa•••a-(0,)P y qq-大学物理(下)练习题第三编 电场和磁场 第八章 真空中的静电场1.如图所示,在点((,0)a 处放置一个点电荷q +,在点(,0)a -处放置另一点电荷q -。

P 点在y 轴上,其坐标为(0,)y ,当y a ?时,该点场强的大小为(A) 204q y πε; (B) 202q y πε;(C)302qa y πε; (D)304qa y πε.[ ]2.将一细玻璃棒弯成半径为R 的半圆形,其上半部均匀分布有电量Q +, 下半部均匀分布有电量Q -,如图所示。

求圆心o 处的电场强度。

3.带电圆环的半径为R ,电荷线密度0cos λλφ=,式中00λ>,且为常数。

求圆心O 处的电场强度。

4.一均匀带电圆环的半径为R ,带电量为Q ,其轴线上任一点P 到圆心的距离为a 。

求P 点的场强。

5.关于高斯定理有下面几种说法,正确的是(A) 如果高斯面上E r处处为零,那么则该面内必无电荷;(B) 如果高斯面内无电荷,那么高斯面上E r处处为零;(C) 如果高斯面上E r处处不为零,那么高斯面内必有电荷;(D) 如果高斯面内有净电荷,那么通过高斯面的电通量必不为零; (E) 高斯定理仅适用于具有高度对称性的电场。

[ ]6.点电荷Q 被闭合曲面S 所包围,从无穷远处引入另一点电荷q 至曲面S 外一点,如图所示,则引入前后(A) 通过曲面S 的电通量不变,曲面上各点场强不变;(B) 通过曲面S 的电通量变化,曲面上各点场强不变;(C) 通过曲面S 的电通量变化,曲面上各点场强变化;(D) 通过曲面S 的电通量不变,曲面上各点场强变化。

[ ]7.如果将带电量为q 的点电荷置于立方体的一个顶角上,则通过与它不相邻的每个侧面的电场强度通量为xq g S Q g(A)06q ε; (B) 012q ε; (C) 024q ε; (D) 048q ε. [ ]8.如图所示,A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上的电荷面密度721.7718A C m σ--=-⨯⋅,B 面上的电荷面密度723.5418B C m σ--=⨯⋅。

大学物理题库-波动光学 光的衍射习题与答案解析

大学物理题库-波动光学  光的衍射习题与答案解析

11、波动光学光的衍射一、选择题(共15题)1.在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射到单缝上.对应于衍射角为30°的方向上,若单缝处波面可分成3个半波带,则缝宽度a等于(A) λ.(B) 1.5 λ.(C) 2 λ.(D) 3 λ.[]2.一束波长为λ的平行单色光垂直入射到一单Array缝AB上,装置如图.在屏幕D上形成衍射图样,如果P是中央亮纹一侧第一个暗纹所在的位置,则BC的长度为(A) λ / 2.(B) λ.(C) 3λ / 2 .(D) 2λ.[]3.在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变小.(B) 对应的衍射角变大.(C) 对应的衍射角也不变.(D) 光强也不变.[]4.在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹(A) 宽度变小.(B) 宽度变大.(C) 宽度不变,且中心强度也不变.(D) 宽度不变,但中心强度增大.[]5.在如图所示的单缝夫琅禾费衍射装置中,设中央明纹的衍射角范围很小.若使单缝宽度a 变为原来的23,同时使入射的单色光的波长λ变为原来的3 / 4,则屏幕C 上单缝衍射条纹中央明纹的宽度∆x 将变为原来的(A) 3 / 4倍. (B) 2 / 3倍.(C) 9 / 8倍. (D) 1 / 2倍.(E) 2倍. [ ] 6.λ在如图所示的单缝夫琅禾费衍射装置中,将单缝宽度a 稍梢变宽,同时使单缝沿y 轴正方向作微小平移(透镜屏幕位置不动),则屏幕C 上的中央衍射条纹将(A) 变窄,同时向上移; (B) 变窄,同时向下移;(C) 变窄,不移动;(D) 变宽,同时向上移;(E) 变宽,不移. [ ] 7.一束平行单色光垂直入射在光栅上,当光栅常数(a + b )为下列哪种情况时(a 代表每条缝的宽度),k =3、6、9 等级次的主极大均不出现? (A) a +b =2 a . (B) a +b =3 a .(C) a +b =4 a . (A) a +b =6 a . [ ] 8.在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系为(A) a=21b . (B) a=b .(C) a=2b . (D) a=3 b . [ ]λ9.测量单色光的波长时,下列方法中哪一种方法最为准确?(A) 双缝干涉. (B) 牛顿环 .(C) 单缝衍射. (D) 光栅衍射. [ ] 10.波长λ=550 nm(1nm=10−9m)的单色光垂直入射于光栅常数d =2×10-4 cm 的平面衍射光栅上,可能观察到的光谱线的最大级次为(A) 2. (B) 3. (C) 4. (D) 5. [ ] 11.在双缝衍射实验中,若保持双缝S 1和S 2的中心之间的距离d 不变,而把两条缝的宽度a 略微加宽,则(A) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变少. (B) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变多. (C) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目不变. (D) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变少.(E) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变多.[ ] 12.某元素的特征光谱中含有波长分别为λ1=450 nm 和λ2=750 nm (1 nm =10-9 m)的光谱线.在光栅光谱中,这两种波长的谱线有重叠现象,重叠处λ2的谱线的级数将是(A) 2 ,3 ,4 ,5 ...... (B) 2 ,5 ,8 ,11...... (C) 2 ,4 ,6 ,8 ......(D) 3 ,6 ,9 ,12...... [ ] 13.当单色平行光垂直入射时,观察单缝的夫琅禾费衍射图样.设0I 表示中央极大(主极大)的光强,1θ表示中央亮条纹的半角宽度.若只是把单缝的宽度增大为原来的3倍,其他条件不变,则(A) 0I 增大为原来的9倍,1sin θ减小为原来的 31.(B) 0I 增大为原来的3倍,1sin θ减小为原来的 31.(C) 0I 增大为原来的3倍,1sin θ增大为原来的3倍.(D) 0I 不变,1sin θ减小为原来的 31. [ ]14.波长为0.168 nm (1 nm = 10-9 m)的X 射线以掠射角θ 射向某晶体表面时,在反射方向出现第一级极大,已知晶体的晶格常数为0.168 nm ,则θ 角为(A) 30°. (B) 45°.(C) 60°. (D) 90°. [ ] 15.X 射线射到晶体上,对于间距为d 的平行点阵平面,能产生衍射主极大的最大波长为 (A) d / 4. (B) d / 2.(C) d . (D) 2d . [ ]二、填空题(共15题)1.在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度a =5 λ的单缝上.对应于衍射角ϕ 的方向上若单缝处波面恰好可分成 5个半波带,则衍射角ϕ =___________________________. 2.如图所示在单缝的夫琅禾费衍射中波长为λ的单色光垂直入射在单缝上.若对应于会聚在P 点的衍射光线在缝宽a 处的波阵面恰好分成3个半波带,图中DB CD AC ==,则光线 1和2在P 点的相位差为___________.3.在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射在宽度为a =2λ的单缝上,对应于衍射角为30︒方向,单缝处的波面可分成的半波带数目为________个. 4.将波长为λ的平行单色光垂直投射于一狭缝上,若对应于衍射图样的第一级暗纹位置的衍射角的绝对值为θ,则缝的宽度等于_________. 5.波长为 600 nm 的单色平行光,垂直入射到缝宽为a=0.60 mm 的单缝上,缝后有一焦距f '=60 cm 的透镜,在透镜焦平面上观察衍射图样.则:中央明纹的宽度为_______,两个第三级暗纹之间的距离为______.(1 nm =10﹣9 m) 6.a λ在单缝夫琅禾费衍射示意图中,所画出的各Array条正入射光线间距相等,那末光线1与2在幕上P点上相遇时的相位差为______ P点应为_____ 点.7.测量未知单缝宽度a的一种方法是:用已知波长λ的平行光垂直入射在单缝上,在距单缝的距离为D处测出衍射花样的中央亮纹宽度为l(实验上应保证D≈103a,或D为几米),则由单缝衍射的原理可标出a 与λ,D,l的关系为a =_ ___.8.波长为λ的单色光垂直投射于缝宽为a,总缝数为N,光栅常数为d的光栅上,光栅方程(表示出现主极大的衍射角ϕ应满足的条件)为___________.9.一束平行单色光垂直入射在一光栅上,若光栅的透明缝宽度a与不透明部分宽度b相等,则可能看到的衍射光谱的级次为________.10.若光栅的光栅常数d、缝宽a和入射光波长λ都保持不变,而使其缝数N增加,则光栅光谱的同级光谱线将变得___________.11.用平行的白光垂直入射在平面透射光栅上时,波长为λ1=440 nm的第3级光谱线将与波长为λ2=______nm的第2级光谱线重叠.(1 nm =10 –9 m)12.一双缝衍射系统,缝宽为a,两缝中心间距为d.若双缝干涉的第±4,±8,±12,±16,…级主极大由于衍射的影响而消失(即缺级),则d/ a的最大值为____ ____________.13.汽车两盏前灯相距l,与观察者相距S= 10 km.夜间人眼瞳孔直径d= 5.0 mm.人眼敏感波长为λ = 550 nm (1 nm = 10-9 m),若只考虑人眼的圆孔衍射,则人眼可分辨出汽车两前灯的最小间距l = _________m.14.在通常亮度下,人眼瞳孔直径约为3 mm.对波长为550 nm的绿光,最小分辨角约为_______rad.(1 nm = 10-9 m)15.X射线入射到晶格常数为d的晶体中,可能发生布喇格衍射的最大波长为____________.三、计算题(共6题)1. (6分)在单缝的夫琅禾费衍射中,缝宽a =0.100 mm ,平行光垂直入射在单缝上,波长λ=500 nm ,会聚透镜的焦距f =1.00 m .求中央亮纹旁的第一个亮纹的宽度∆x . (1 nm =10–9 m)2. (5分)如图所示,设波长为λ的平面波沿与单缝平面法线成θ角的方向入射,单缝AB 的宽度为a ,观察夫琅禾费衍射.试求出各极小值(即各暗条纹)的衍射角ϕ.3. (5分)一束具有两种波长λ1和λ2的平行光垂直照射到一衍射光栅上,测得波长λ1的第三级主极大衍射角和λ2的第四级主极大衍射角均为30°.已知λ1=560 nm (1 nm= 10-9 m),试求: (1) 光栅常数a +b(2) 波长λ24. (10分)波长λ=600nm(1nm=10﹣9m)的单色光垂直入射到一光栅上,测得第二级主极大的衍射角为30°,且第三级是缺级.(1) 光栅常数(a + b )等于多少?(2) 透光缝可能的最小宽度a 等于多少?(3) 在选定了上述(a + b )和a 之后,求在衍射角-π21<ϕ<π21范围内可能观察到的全部主极大的级次.5.(10分)以波长为λ = 500 nm (1 nm = 10-9 m)的单色平行光斜入射在光栅常数为d = 2.10 μm 、缝宽为a = 0.700 μm 的光栅上,入射角为i = 30.0°,求能看到哪几级光谱线.6. (5分)设汽车前灯光波长按λ = 550 nm (1 nm = 10-9 m)计算,两车灯的距离d = 1.22 m ,在夜间人眼的瞳孔直径为D = 5 mm ,试根据瑞利判据计算人眼刚能分辨上述两只车灯时,人与汽车的距离L .11、波动光学 光的衍射 答案一、选择题(共15题) 1-5:D 、B 、B 、A 、D 、 6-10:C 、B 、B 、D 、B 、 11-15:D 、D 、A 、A 、D 二、填空题(共15题)1、答案:30°2、答案:π3、答案:24、答案:λ / sin θ5、答案:1.2 mm ;3.6 mm6、答案:2π 暗7、答案:2λD / l8、答案:d sin ϕ =k λ ( k =0,±1,±2,···) 9、答案:0,±1,±3,........ 10、答案:更窄更亮 11、答案:660nm 12、答案:413、答案:1.34m14、答案:2.24×10-4 rad 15、答案:2d三、计算题(共6题)1、解:单缝衍射第1个暗纹条件和位置坐标x 1为:a sin θ1 = λa f f f x /sin tg 111λθθ≈≈= (∵θ1很小) 2分单缝衍射第2个暗纹条件和位置坐标x 2为: a sin θ2 = 2λa f f f x /2sin tg 222λθθ≈≈= (∵θ2很小) 2分 单缝衍射中央亮纹旁第一个亮纹的宽度 ()a a f x x x //2121λλ-≈-=∆= f λ / a=1.00×5.00×10-7 / (1.00×10-4) m=5.00 mm 2分2、解:1、2两光线的光程差,在如图情况下为ϕθδsin sin a a BD CA -=-= 2分由单缝衍射极小值条件a (sin θ-sin ϕ ) = ± k λ k = 1,2,…… 2分 (未排除k = 0 的扣1分)得 ϕ = sin —1( ± k λ / a+sin θ ) k = 1,2,……(k ≠ 0) 1分3、解:(1) 由光栅衍射主极大公式得 ()1330sin λ=+ b acm 1036.330sin 341-⨯==+λb a 3分 (2) ()2430sin λ=+ b a()4204/30sin 2=+= b a λnm 2分4、解:(1) 由光栅衍射主极大公式得a +b =ϕλsin k =2.4×10-4 cm 3分(2) 若第三级不缺级,则由光栅公式得()λϕ3sin ='+b a由于第三级缺级,则对应于最小可能的a ,ϕ'方向应是单缝衍射第一级暗纹:两式比较,得 λϕ='sin aa = (a +b )/3=0.8×10-4 cm 3分(3)()λϕk b a =+sin ,(主极大) λϕk a '=sin ,(单缝衍射极小) (k '=1,2,3,......)L θ2 θ1 Cx 2 x 1 ∆x f因此 k =3,6,9,........缺级. 2分又因为k max =(a +b ) / λ=4, 所以实际呈现k=0,±1,±2级明纹.(k=±4 在π / 2处看不到.) 2分5、解:(1) 斜入射时的光栅方程λθk i d d =-sin sin ,k = 0,±1,±2,… 2分规定i 从光栅G 的法线n -n 起,逆时针方向为正;θ 从光栅G 的法线n -n 起,逆时针方向为正.(2) 对应于i = 30°,设θ = 90°, k = k max1,则有λ1max 30sin 90sin k d d =︒-︒ )30sin 90)(sin /(1max ︒-︒=d d k λ= 2.10取整 k max1 = 2. 2分 (3) 对应于i = 30°,设θ = -90°, k = k max2, 则有 λ2max 30sin )90sin(k d d =︒-︒-]30sin )90)[sin(/(2max ︒-︒-=d d k λ = - 6.30取整 k max1 = -6. 2分 (4) 但因 d / a = 3,所以,第-6,-3,… 级谱线缺级. 2分 (5) 综上所述,能看到以下各级光谱线: -5,-4,-2,-1,0,1,2,共7条光谱线. 2分6、解:人眼最小分辨角为 θr = 1.22 λ /D 2分汽车两前灯对人眼的张角 L d /≈'θ1分 人眼刚能分辨两灯时,θθ'=r ,或 d / L =1.22 λ /D∴ ==)22.1/(λDd L 9.09 km 2分d 屏 光栅 透镜11、波动光学光的衍射一、选择题(共15题)1.在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射到单缝上.对应于衍射角为30°的方向上,若单缝处波面可分成3个半波带,则缝宽度a等于(A) λ.(B) 1.5 λ.(C) 2 λ.(D) 3 λ.[]2.一束波长为λ的平行单色光垂直入射到一单Array缝AB上,装置如图.在屏幕D上形成衍射图样,如果P是中央亮纹一侧第一个暗纹所在的位置,则BC的长度为(A) λ / 2.(B) λ.(C) 3λ / 2 .(D) 2λ.[]3.在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变小.(B) 对应的衍射角变大.(C) 对应的衍射角也不变.(D) 光强也不变.[]4.在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹(A) 宽度变小.(B) 宽度变大.(C) 宽度不变,且中心强度也不变.(D) 宽度不变,但中心强度增大.[]5.在如图所示的单缝夫琅禾费衍射装置中,设中央明纹的衍射角范围很小.若使单缝宽度a 变为原来的23,同时使入射的单色光的波长λ变为原来的3 / 4,则屏幕C 上单缝衍射条纹中央明纹的宽度∆x 将变为原来的(A) 3 / 4倍. (B) 2 / 3倍.(C) 9 / 8倍. (D) 1 / 2倍.(E) 2倍. [ ] 6.λ在如图所示的单缝夫琅禾费衍射装置中,将单缝宽度a 稍梢变宽,同时使单缝沿y 轴正方向作微小平移(透镜屏幕位置不动),则屏幕C 上的中央衍射条纹将(A) 变窄,同时向上移; (B) 变窄,同时向下移;(C) 变窄,不移动;(D) 变宽,同时向上移;(E) 变宽,不移. [ ] 7.一束平行单色光垂直入射在光栅上,当光栅常数(a + b )为下列哪种情况时(a 代表每条缝的宽度),k =3、6、9 等级次的主极大均不出现? (A) a +b =2 a . (B) a +b =3 a .(C) a +b =4 a . (A) a +b =6 a . [ ] 8.在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系为(A) a=21b . (B) a=b .(C) a=2b . (D) a=3 b . [ ]λ9.测量单色光的波长时,下列方法中哪一种方法最为准确?(A) 双缝干涉. (B) 牛顿环 .(C) 单缝衍射. (D) 光栅衍射. [ ] 10.波长λ=550 nm(1nm=10−9m)的单色光垂直入射于光栅常数d =2×10-4 cm 的平面衍射光栅上,可能观察到的光谱线的最大级次为(A) 2. (B) 3. (C) 4. (D) 5. [ ] 11.在双缝衍射实验中,若保持双缝S 1和S 2的中心之间的距离d 不变,而把两条缝的宽度a 略微加宽,则(A) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变少. (B) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变多. (C) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目不变. (D) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变少.(E) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变多.[ ] 12.某元素的特征光谱中含有波长分别为λ1=450 nm 和λ2=750 nm (1 nm =10-9 m)的光谱线.在光栅光谱中,这两种波长的谱线有重叠现象,重叠处λ2的谱线的级数将是(A) 2 ,3 ,4 ,5 ...... (B) 2 ,5 ,8 ,11...... (C) 2 ,4 ,6 ,8 ......(D) 3 ,6 ,9 ,12...... [ ] 13.当单色平行光垂直入射时,观察单缝的夫琅禾费衍射图样.设0I 表示中央极大(主极大)的光强,1θ表示中央亮条纹的半角宽度.若只是把单缝的宽度增大为原来的3倍,其他条件不变,则(A) 0I 增大为原来的9倍,1sin θ减小为原来的 31.(B) 0I 增大为原来的3倍,1sin θ减小为原来的 31.(C) 0I 增大为原来的3倍,1sin θ增大为原来的3倍.(D) 0I 不变,1sin θ减小为原来的 31. [ ]14.波长为0.168 nm (1 nm = 10-9 m)的X 射线以掠射角θ 射向某晶体表面时,在反射方向出现第一级极大,已知晶体的晶格常数为0.168 nm ,则θ 角为(A) 30°. (B) 45°.(C) 60°. (D) 90°. [ ] 15.X 射线射到晶体上,对于间距为d 的平行点阵平面,能产生衍射主极大的最大波长为 (A) d / 4. (B) d / 2.(C) d . (D) 2d . [ ]二、填空题(共15题)1.在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度a =5 λ的单缝上.对应于衍射角ϕ 的方向上若单缝处波面恰好可分成 5个半波带,则衍射角ϕ =___________________________. 2.如图所示在单缝的夫琅禾费衍射中波长为λ的单色光垂直入射在单缝上.若对应于会聚在P 点的衍射光线在缝宽a 处的波阵面恰好分成3个半波带,图中DB CD AC ==,则光线 1和2在P 点的相位差为___________.3.在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射在宽度为a =2λ的单缝上,对应于衍射角为30︒方向,单缝处的波面可分成的半波带数目为________个. 4.将波长为λ的平行单色光垂直投射于一狭缝上,若对应于衍射图样的第一级暗纹位置的衍射角的绝对值为θ,则缝的宽度等于_________. 5.波长为 600 nm 的单色平行光,垂直入射到缝宽为a=0.60 mm 的单缝上,缝后有一焦距f '=60 cm 的透镜,在透镜焦平面上观察衍射图样.则:中央明纹的宽度为_______,两个第三级暗纹之间的距离为______.(1 nm =10﹣9 m) 6.a λ在单缝夫琅禾费衍射示意图中,所画出的各Array条正入射光线间距相等,那末光线1与2在幕上P点上相遇时的相位差为______ P点应为_____ 点.7.测量未知单缝宽度a的一种方法是:用已知波长λ的平行光垂直入射在单缝上,在距单缝的距离为D处测出衍射花样的中央亮纹宽度为l(实验上应保证D≈103a,或D为几米),则由单缝衍射的原理可标出a 与λ,D,l的关系为a =_ ___.8.波长为λ的单色光垂直投射于缝宽为a,总缝数为N,光栅常数为d的光栅上,光栅方程(表示出现主极大的衍射角ϕ应满足的条件)为___________.9.一束平行单色光垂直入射在一光栅上,若光栅的透明缝宽度a与不透明部分宽度b相等,则可能看到的衍射光谱的级次为________.10.若光栅的光栅常数d、缝宽a和入射光波长λ都保持不变,而使其缝数N增加,则光栅光谱的同级光谱线将变得___________.11.用平行的白光垂直入射在平面透射光栅上时,波长为λ1=440 nm的第3级光谱线将与波长为λ2=______nm的第2级光谱线重叠.(1 nm =10 –9 m)12.一双缝衍射系统,缝宽为a,两缝中心间距为d.若双缝干涉的第±4,±8,±12,±16,…级主极大由于衍射的影响而消失(即缺级),则d/ a的最大值为____ ____________.13.汽车两盏前灯相距l,与观察者相距S= 10 km.夜间人眼瞳孔直径d= 5.0 mm.人眼敏感波长为λ = 550 nm (1 nm = 10-9 m),若只考虑人眼的圆孔衍射,则人眼可分辨出汽车两前灯的最小间距l = _________m.14.在通常亮度下,人眼瞳孔直径约为3 mm.对波长为550 nm的绿光,最小分辨角约为_______rad.(1 nm = 10-9 m)15.X射线入射到晶格常数为d的晶体中,可能发生布喇格衍射的最大波长为____________.三、计算题(共6题)1. (6分)在单缝的夫琅禾费衍射中,缝宽a =0.100 mm ,平行光垂直入射在单缝上,波长λ=500 nm ,会聚透镜的焦距f =1.00 m .求中央亮纹旁的第一个亮纹的宽度∆x . (1 nm =10–9 m)2. (5分)如图所示,设波长为λ的平面波沿与单缝平面法线成θ角的方向入射,单缝AB 的宽度为a ,观察夫琅禾费衍射.试求出各极小值(即各暗条纹)的衍射角ϕ.3. (5分)一束具有两种波长λ1和λ2的平行光垂直照射到一衍射光栅上,测得波长λ1的第三级主极大衍射角和λ2的第四级主极大衍射角均为30°.已知λ1=560 nm (1 nm= 10-9 m),试求: (1) 光栅常数a +b(2) 波长λ24. (10分)波长λ=600nm(1nm=10﹣9m)的单色光垂直入射到一光栅上,测得第二级主极大的衍射角为30°,且第三级是缺级.(1) 光栅常数(a + b )等于多少?(2) 透光缝可能的最小宽度a 等于多少?(3) 在选定了上述(a + b )和a 之后,求在衍射角-π21<ϕ<π21范围内可能观察到的全部主极大的级次.5.(10分)以波长为λ = 500 nm (1 nm = 10-9 m)的单色平行光斜入射在光栅常数为d = 2.10 μm 、缝宽为a = 0.700 μm 的光栅上,入射角为i = 30.0°,求能看到哪几级光谱线.6. (5分)设汽车前灯光波长按λ = 550 nm (1 nm = 10-9 m)计算,两车灯的距离d = 1.22 m ,在夜间人眼的瞳孔直径为D = 5 mm ,试根据瑞利判据计算人眼刚能分辨上述两只车灯时,人与汽车的距离L .11、波动光学 光的衍射 答案一、选择题(共15题) 1-5:D 、B 、B 、A 、D 、 6-10:C 、B 、B 、D 、B 、 11-15:D 、D 、A 、A 、D 二、填空题(共15题)1、答案:30°2、答案:π3、答案:24、答案:λ / sin θ5、答案:1.2 mm ;3.6 mm6、答案:2π 暗7、答案:2λD / l8、答案:d sin ϕ =k λ ( k =0,±1,±2,···) 9、答案:0,±1,±3,........ 10、答案:更窄更亮 11、答案:660nm 12、答案:413、答案:1.34m14、答案:2.24×10-4 rad 15、答案:2d三、计算题(共6题)1、解:单缝衍射第1个暗纹条件和位置坐标x 1为:a sin θ1 = λa f f f x /sin tg 111λθθ≈≈= (∵θ1很小) 2分单缝衍射第2个暗纹条件和位置坐标x 2为: a sin θ2 = 2λa f f f x /2sin tg 222λθθ≈≈= (∵θ2很小) 2分 单缝衍射中央亮纹旁第一个亮纹的宽度 ()a a f x x x //2121λλ-≈-=∆= f λ / a=1.00×5.00×10-7 / (1.00×10-4) m=5.00 mm 2分2、解:1、2两光线的光程差,在如图情况下为ϕθδsin sin a a BD CA -=-= 2分由单缝衍射极小值条件a (sin θ-sin ϕ ) = ± k λ k = 1,2,…… 2分 (未排除k = 0 的扣1分)得 ϕ = sin —1( ± k λ / a+sin θ ) k = 1,2,……(k ≠ 0) 1分3、解:(1) 由光栅衍射主极大公式得 ()1330sin λ=+ b acm 1036.330sin 341-⨯==+λb a 3分 (2) ()2430sin λ=+ b a()4204/30sin 2=+= b a λnm 2分4、解:(1) 由光栅衍射主极大公式得a +b =ϕλsin k =2.4×10-4 cm 3分(2) 若第三级不缺级,则由光栅公式得()λϕ3sin ='+b a由于第三级缺级,则对应于最小可能的a ,ϕ'方向应是单缝衍射第一级暗纹:两式比较,得 λϕ='sin aa = (a +b )/3=0.8×10-4 cm 3分(3)()λϕk b a =+sin ,(主极大) λϕk a '=sin ,(单缝衍射极小) (k '=1,2,3,......)L θ2 θ1 Cx 2 x 1 ∆x f因此 k =3,6,9,........缺级. 2分又因为k max =(a +b ) / λ=4, 所以实际呈现k=0,±1,±2级明纹.(k=±4 在π / 2处看不到.) 2分5、解:(1) 斜入射时的光栅方程λθk i d d =-sin sin ,k = 0,±1,±2,… 2分规定i 从光栅G 的法线n -n 起,逆时针方向为正;θ 从光栅G 的法线n -n 起,逆时针方向为正.(2) 对应于i = 30°,设θ = 90°, k = k max1,则有λ1max 30sin 90sin k d d =︒-︒ )30sin 90)(sin /(1max ︒-︒=d d k λ= 2.10取整 k max1 = 2. 2分 (3) 对应于i = 30°,设θ = -90°, k = k max2, 则有 λ2max 30sin )90sin(k d d =︒-︒-]30sin )90)[sin(/(2max ︒-︒-=d d k λ = - 6.30取整 k max1 = -6. 2分 (4) 但因 d / a = 3,所以,第-6,-3,… 级谱线缺级. 2分 (5) 综上所述,能看到以下各级光谱线: -5,-4,-2,-1,0,1,2,共7条光谱线. 2分6、解:人眼最小分辨角为 θr = 1.22 λ /D 2分汽车两前灯对人眼的张角 L d /≈'θ1分 人眼刚能分辨两灯时,θθ'=r ,或 d / L =1.22 λ /D∴ ==)22.1/(λDd L 9.09 km 2分d 屏 光栅 透镜。

(完整版)原子物理学练习题及答案

(完整版)原子物理学练习题及答案

填空题1、在正电子与负电子形成的电子偶素中,正电子与负电子绕它们共同的质心的运动,在n = 2的状态, 电子绕质心的轨道半径等于 nm 。

2、氢原子的质量约为____________________ MeV/c 2。

3、一原子质量单位定义为 原子质量的 。

4、电子与室温下氢原子相碰撞,欲使氢原子激发,电子的动能至少为 eV 。

5、电子电荷的精确测定首先是由________________完成的。

特别重要的是他还发现了_______ 是量子化的。

6、氢原子 n=2,n φ =1与H +e 离子n=•3,•n φ•=•2•的轨道的半长轴之比a H /a He •=____,半短轴之比b H /b He =__ ___。

7、玻尔第一轨道半径是0.5291010-⨯m,则氢原子n=3时电子轨道的半长轴a=_____,半短轴b•有____个值,•分别是_____•, ••, .8、 由估算得原子核大小的数量级是_____m,将此结果与原子大小数量级• m 相比,可以说明__________________ .9、提出电子自旋概念的主要实验事实是-----------------------------------------------------------------------------和_________________________________-。

10、钾原子的电离电势是4.34V ,其主线系最短波长为 nm 。

11、锂原子(Z =3)基线系(柏格曼系)的第一条谱线的光子能量约为 eV (仅需两位有效数字)。

12、考虑精细结构,形成锂原子第二辅线系谱线的跃迁过程用原子态符号表示应为——————————————————————————————————————————————。

13、如果考虑自旋, 但不考虑轨道-自旋耦合, 碱金属原子状态应该用量子数————————————表示,轨道角动量确定后, 能级的简并度为 。

《大学物理》磁学习题及答案

《大学物理》磁学习题及答案

AI I一、选择题1.在磁感强度为的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量与的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) πr 2B . (B) 2 πr 2B (C) -πr 2B sin α (D) -πr 2B cos α 2.边长为l 的正方形线圈中通有电流I ,此线圈在A 点(见图)产生的磁感强度(A)(B) (C) (D) 以上均不对3.如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点。

若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度(A) 方向垂直环形分路所在平面且指向纸内 (B) 方向垂直环形分路所在平面且指向纸外 (C) 方向在环形分路所在平面,且指向b(D) 方向在环形分路所在平面内,且指向a (E) 为零4.通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为:(A) B P > B Q > B O (B) B Q > B P > B O(C)B Q > B O > B P (D) B O > B Q > B P5.电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点流出,经长直导线2沿cb 延长线方向返回电源(如图)。

若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用、和表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但,B 3 = 0(C) B ≠ 0,因为虽然B 3 = 0、B 1= 0,但B 2≠ 0(D) B ≠ 0,因为虽然,但≠ 06.电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆环流出,经长导线2返回电源(如图)。

《大学物理实验》第一册习题与思考题

《大学物理实验》第一册习题与思考题

《大学物理实验》第一册习题与思考题第一章 实验测量不确定度与数据处理习题1. 指出下列各项各项哪些属于系统误差,哪些属于偶然误差: a.米尺刻度不均匀 b.实验者的偏见c.刻度因温度改变而伸缩d.最小分度后一位的雇计 c.游标卡尺零点不为零 f.电表指针的磨擦 g.视差2. 下列数值改用有效数字的标准式来表示 (1) 光速=299792458±100米/秒(2) 热功当量=41830000±40000尔格/卡 (3) 比热=C 0.001730±0.0005卡/克度(4) 电子的电荷=4.8030⨯10-10静库。

准确到0.1% (5) 9876.52准确到0.2%3.请把下列各数值正确的有效数字表示于括号内: (1) 3.467±0.2 ( ) (2) 746.000±2 ( ) (3) 0.002654±0.0008 ( ) (4) 6523.587±0.3 ( )4.下列各式的算术运算都是正确的,就是没有考虑到有效数字的问题。

假设下列各数值的最后一位都是估计(可疑)的,请在括号内以有效数字表示其正确答案。

(1)(1.732)(1.74)=3.01368 ( ) (2)(10.22)(0.0832)(0.41)=0.34862464 ( ) (3)4.20419.30034.6038.60421.8=+-=y ( )(4) 628.7/7.8=80.6026 ( ) (5) (17.34-17.13)(14.28)=2.9988 ( )5.计算下式结果及其不确定度的表示式。

N=A+2B+C-5D设:A=38.206±0.001cm B=13.2487±0.0001cm C=161.25±0.01cm D=1.3242±0.0001cm6.一圆柱体的直径为(2.14±0.02)厘米,求其横截面积。

大学物理学练习题

大学物理学练习题

第1单元 质点运动学一. 选择题1. 某质点作直线运动的运动学方程为x =3t -5t 3+ 6 (SI),则该质点作[ ]。

(A) 匀加速直线运动,加速度沿x 轴正方向; (B) 匀加速直线运动,加速度沿x 轴负方向; (C) 变加速直线运动,加速度沿x 轴正方向;(D) 变加速直线运动,加速度沿x 轴负方向。

2. 质点作曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,S 表示路程,t a 表示切向加速度,下列表达式中[ ]。

(1) a t d /d v , (2) v t /r d d , (3) v t S d /d , (4) t a t d /d v。

(A) 只有(1)、(4)是对的; (B) 只有(2)、(4)是对的;(C) 只有(2)是对的; (D) 只有(3)是对的。

3. 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22 (其中a 、b 为常量), 则该质点作[ ]。

(A) 匀速直线运动; (B) 变速直线运动; (C) 抛物线运动; (D)一般曲线运动。

4. 一小球沿斜面向上运动,其运动方程为s=5+4t t 2(SI), 则小球运动到最高点的时刻是[ ]。

(A) t=4s ; (B) t=2s ; (C) t=8s ; (D) t=5s 。

5. 一质点在xy 平面内运动,其位置矢量为j t i t r ˆ)210(ˆ42(SI ),则该质点的位置矢量与速度矢量恰好垂直的时刻为[ ]。

(A) s t 2 ; (B )s t 5; (C )s t 4 ; (D )s t 3 。

6. 某物体的运动规律为t k t 2d /d v v ,式中的k 为大于零的常量。

当0 t 时,初速为v 0,则速度v 与时间t 的函数关系是[ ]。

(A) 0221v vkt ; (B) 0221v v kt ; (C) 02121v v kt ; (D) 02121v vkt 。

第10章习题与解答

第10章习题与解答

第10章 习题与解答10-1 电路如下图,(1)试确信图(a )中两线圈的同名端;(2)假设已知互感0.04M H =,,流经1L 的电流1i 的波形如图(b )所示,试画出2L 两头的互感电压21u 的波形;(3)如图(c )所示的两耦合线圈,已知0.0125M H =,1L 中通过的电流1=10cos800i t (A ),求2L 两头的互感电压21u 。

122')(a ) (b )121(c )题10-1图解:(1)依照同名端概念可知,图(a )中两线圈的同名端为1和2。

(2)依照同名端的位置和电压、电流参考方向,互感电压121=di u Mdt由图(b )可得133131(08)8101510(810)2100(10)i t t ms i t t ms t ms ---⎧=≤≤⎪⨯⎪⎪=⨯-≤≤⎨⨯⎪>⎪⎪⎩因此3131125(/)(08)8101500(/)(810)2100(10)A s t ms di A s t ms dt t ms --⎧=≤≤⎪⨯⎪⎪=-=-≤≤⎨⨯⎪>⎪⎪⎩则1210.041255()0.04(500)20()0V di u M V dt ⨯=⎧⎪==⨯-=-⎨⎪⎩21u 的波形图为)-题10-1 附图(3) 依照同名端概念可知,图(c )中两线圈的同名端为1和2',因此 1210.012510cos800di du Mt dt dt=-=-⨯ 0.012510(800sin800)100sin800100cos(80090)()t t t V =-⨯⨯-==-10-2有两组线圈,一组的参数为1=0.01L H ,2=0.04L H ,=0.01M H ;另一组的参数为1'=0.04L H ,2'=0.06L H ,'=0.02M H 。

别离计算每组线圈的耦合系数,通过比较说明,是不是互感大者耦合必紧?什么缘故?解:计算耦合系数0.5k == 0.41k ==比较:'M M <但'k k >,k 大者耦合较紧。

大学普通物理学习题答案-第十一章-恒定电流与恒定磁场

大学普通物理学习题答案-第十一章-恒定电流与恒定磁场

第十一章恒定电流与恒定磁场一、选择题1.如图11-1所示,有两根载有相同电流的无限长直导线,分别通过x1=1m、x2=3m的点,且平行于y轴,则磁感应强度B等于零的地方是()。

A.x=2m的直线上B.在x>2m的区域C.在x<1m的区域D.不在x、y平面上图11-11.【答案】A。

解析:根据对称性可得,两条载流导线在x=2m的直线上产生的磁感应强度大小相等;用右手螺旋定则可判断两磁感应强度的方向相反,相互抵消,合磁感应强度为零,故选A。

2.图11-2中6根无限长导线互相绝缘,通过电流均为I,区域Ⅰ、Ⅰ、Ⅰ、Ⅰ均为全等的正方形,哪一个区域指向纸内的磁通量最大()。

A. Ⅰ区域B. Ⅰ区域C. Ⅰ区域D. Ⅰ区域2.【答案】B。

解析:通过Ⅰ区域的磁通量为0,通过Ⅰ区城的磁通量最大且指向纸内,通过Ⅰ区域的磁通量最大但指向纸外,通过IV区域的磁通量为0。

故选B。

3.如图11-3所示,在一圆形电流I所在的平面内,选取一个同心圆形闭合回路L,则由安培环路定理可知()。

A.d 0LB l ⋅=⎰,且环路上任意一点B =0 B.d 0LB l ⋅=⎰,且环路上任意一点B ≠0 C.d 0LB l ⋅≠⎰,且环路上任意一点B ≠0 D.d 0LB l ⋅≠⎰,且环路上任意一点B =常量3.【答案】B 。

解析:根据安培环路定理,闭合回路内没有电流穿过,所以环路积分等于0.但是由于圆形电流的存在,环路上任意一点的磁感应强度都不等于0。

故选B 。

4.无限长直圆柱体,半径为R ,沿轴向均匀流有电流,设圆柱体内(r <R )的磁感应强度为B i ,圆柱体外(r>R )的磁感应强度为B e ,则有:()。

A.B i 、B e 均与r 成正比B.B i 、B e 均与r 成反比C.B i 与r 成反比,B e 与r 成正比D.B i 与r 成正比,B e 与r 成反比4.【答案】B 。

解析:导体横截面上的电流密度2πR I J =,以圆柱体轴线为圆心,半径为r 的同心圆作为安培环路,当r <R ,20ππ2r J r B i ⋅=⋅μ,20π2R IrB i μ=;当r <R ,I r B e ⋅=⋅0π2μ,rIB e π20μ=;所以选D 。

清华大学《大学物理》习题库试题及答案

清华大学《大学物理》习题库试题及答案

清华大学《大学物理》习题库试题及答案一、选择题1.4351:宇宙飞船相对于地面以速度v 作匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号,经过∆t (飞船上的钟)时间后,被尾部的接收器收到,则由此可知飞船的固有长度为 (c 表示真空中光速)(A) c ·∆t (B) v ·∆t (C) (D)[ ]2.4352一火箭的固有长度为L ,相对于地面作匀速直线运动的速度为v 1,火箭上有一个人从火箭的后端向火箭前端上的一个靶子发射一颗相对于火箭的速度为v 2的子弹。

在火箭上测得子弹从射出到击中靶的时间间隔是:(c 表示真空中光速) (A) (B) (C) (D)[ ]3.8015:有下列几种说法:(1) 所有惯性系对物理基本规律都是等价的;(2) 在真空中,光的速度与光的频率、光源的运动状态无关;(3) 在任何惯性系中,光在真空中沿任何方向的传播速率都相同。

若问其中哪些说法是正确的,答案是(A) 只有(1)、(2)是正确的 (B) 只有(1)、(3)是正确的(C) 只有(2)、(3)是正确的 (D) 三种说法都是正确的 [ ]4.4164:在狭义相对论中,下列说法中哪些是正确的?(1) 一切运动物体相对于观察者的速度都不能大于真空中的光速(2) 质量、长度、时间的测量结果都是随物体与观察者的相对运动状态而改变的(3) 在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的(4)惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比与他相对静止的相同的时钟走得慢些(A) (1),(3),(4) (B) (1),(2),(4) (C) (1),(2),(3) (D) (2),(3),(4) [ ]5.4169在某地发生两件事,静止位于该地的甲测得时间间隔为4 s ,若相对于甲作匀速直线运动的乙测得时间间隔为5 s ,则乙相对于甲的运动速度是(c 表示真空中光速)(A) (4/5) c (B) (3/5) c (C) (2/5) c (D) (1/5) c [ ]6.4356:一宇航员要到离地球为5光年的星球去旅行。

大学物理热力学基础知识点及试题带答案

大学物理热力学基础知识点及试题带答案

热力学基础一、基本要求1. 理解功、热量及准静态过程的概念。

2. 掌握热力学第一定律,能分析计算理想气体等容、等压、等温过程和绝热过程中的功、热量、内能改变量;理解循环过程概念及卡诺循环的特征,并能计算效率和致冷系数。

3. 了解可逆过程、不可逆过程及卡诺定理。

4. 了解热力学第二定律及其统计意义。

二、主要内容1. 准静态过程:过程进行的每一时刻,系统的状态都无限接近平衡态。

准静态过程可以用状态图上的曲线表示。

2. 热力学第一定律(1) 热力学第一定律的数学表达式Q=E 2 - E 1 +W对微分过程为dQ=dE +d W热力学第一定律的实质是能量守恒与转换定律在热现象中的应用,其内容表示系统吸收的热量一部分转换为系统的内能,一部分对外做功。

(2) 准静态过程系统对外做功:d W=pd V ,W=⎰12V V pd V(3) 热量:系统和外界之间或两个物体之间由于温度不同而交换的热运动量,热量也是过程量。

一定摩尔的某种物质,在某一过程中吸收的热量,)(C m12m c,T T M Q -=(4) 摩尔热容:1mo1物质温度变化1K 所吸收或放出的热量,定义式为 dTQd m,=m c C 其中m 为1mo1 物质吸热。

摩尔定容热容:CV , m =摩尔定压热容:Cp, m =理想气体的摩尔热容:CV, m =,Cp, m =Cp, m =CV, m + 摩尔热容比:=3. 热力学第一定律对理想气体等值过程和绝热过程的应用,详见表1 表1 d =0 =恒量=恒量p =恒量mmmM m T1nMm T1nCV, m =Cp, m =4. 循环过程(1)循环过程的特征是E =0热循环:系统从高温热源吸热,对外做功,向低温热源放热,致效率为== 1—致冷循环:系统从低温热源吸热,接受外界做功,向高温热源放热,致冷系数为==(2)卡诺循环:系统只和两个恒温热源进行热交换的准静态循环过程。

卡诺热机的效率为= 1—卡诺致冷机的致冷系数为三、习题与解答1、 如图所示,一定量的空气,开始在状态A ,其压强为2.0×105Pa ,体积为2.0 ×10-3m 3 ,沿直线AB 变化到状态B 后,压强变为1.0 ×105Pa ,体积变为3.0 ×10-3m 3 ,求此过程中气体所作的功.解 S ABCD =1/2(BC +AD)×CD 故 W =150 J2、 汽缸内储有2.0mol 的空气,温度为27 ℃,若维持压强不变,而使空气的体积膨胀到原体积的3倍,求空气膨胀时所作的功. 解 根据物态方程11RT pV v =, 则作功为()J 1097.92231112⨯===-=RT pv V V p W v3、64g 氧气(可看成刚性双原子分子理想气体)的温度由0℃升至50℃,〔1〕保持体积不变;(2)保持压强不变。

(完整word版)热力学第一定律复习题(13,10)

(完整word版)热力学第一定律复习题(13,10)

第二章 热力学第一定律1. :系统与环境间由于温差而交换的能量。

是物质分子无序运动的结果。

是过程量。

:除热以外的、在系统与环境间交换的所有其它形式的能量。

是物质分子有序运动的、恒压条件下,△H =Q p 。

系统状态变化时,计算系统与环境间交换的能量) 恒压反应热与恒容反应热的关系:Q p =Q V +∑νB (g)RT1B ()(B,)m f mT H T ν=∑∆21,21);()()Tm p r p m r m r m m T C H T H T dT =∆∆=∆+∆⎰(a) 升高(b)降低(c) 不变(d)难以确定(答案) c (△U=Q+W,∵p外=0 , ∴W=0 ,又∵绝热,∴Q=0,所以△U=0)因为是真空故不做功,又因为是绝热故无热交换,故△U=0.温度不变。

2。

当热力学第一定律写成d U = δQ–p d V时,它适用于(a). 理想气体的可逆过程(b)。

封闭体系的任一过程(c). 封闭体系只做体积功过程(d)。

封闭体系的定压过程(答案) c (W=W体+W非,当W非=0时,W体= -pdV)3.对热力学可逆过程,下列说法中正确的是(a)过程进行的速度无限慢(b) 没有功的损失(c)系统和环境可同时复原(d)不需环境做功(答案) c可逆过程:体系经过某一过程从状态(1)变到状态(2)之后,如果能够使体系和环境都恢复到原来的状态而未留下任何永久性的变化,则该过程称为热力学可逆过程.否则为不可逆过程特征:①状态变化时推动力与阻力相差无限小,体系与环境始终无限接近于平衡态;②过程中的任何一个中间态都可以从正、逆两个方向到达;③体系变化一个循环后,体系和环境均恢复原态,变化过程中无任何耗散效应;④等温可逆过程中,体系对环境作最大功,环境对体系作最小功。

⑤在可逆过程中,由于状态变化时推动力与阻力相差无限小,所以完成过程所需的时间为无限长。

4.对于封闭体系来说,当过程的始态与终态确定后,下列各项中哪一个无确定值(a) Q(b)Q + W(c) W(当Q = 0时) (d) Q(当W = 0时)(答案) a (△U=Q+W)5.对于孤立体系中发生的实际过程,下列关系中不正确的是(a) W = 0 (b) Q = 0(c)ΔU= 0 (d) ΔH = 0(答案) d (孤立体系? △U=Q+W)6.对于内能是体系状态的单值函数概念,错误理解是(a) 体系处于一定的状态,具有一定的内能(b)对应于某一状态,内能只能有一数值不能有两个以上的数值(c)状态发生变化,内能也一定跟着变化(d) 对应于一个内能值,可以有多个状态(答案) c (理想气体等温过程,△U,即内能不变;绝热可逆过程△S=0)7.凡是在孤立体系中进行的变化,其ΔU和ΔH的值一定是(a)ΔU〉0 ,ΔH > 0 (b)ΔU = 0 ,ΔH = 0(c)ΔU < 0 , ΔH〈0 (d) ΔU = 0 ,ΔH大于、小于或等于零不确定(答案)d8. 封闭体系从A态变为B态,可以沿两条等温途径:甲)可逆途径;乙)不可逆途径,则下列关系式⑴ΔU可逆> ΔU不可逆⑵W可逆 > W不可逆⑶ Q 可逆 Q 不可逆 ⑷ ( Q 可逆 - W 可逆) 〉 ( Q 不可逆 - W 不可逆)正确的是(a) (1),(2) (b ) (2),(3) (c ) (3),(4) (d) (1),(4)(答案) b (④等温可逆过程中,体系对环境作最大功,环境对体系作最小功.)9. 理想气体自由膨胀过程中(a)。

(完整版)第十章界面现象练习题及答案

(完整版)第十章界面现象练习题及答案

第十章界面现象练习题一、是非题(对的画√错的画×)1、液体的表面张力总是力图缩小液体的表面积。

()2、液体的表面张力的方向总是与液面垂直。

()3、分子间力越大的物体其表面张力也越大。

()4、垂直插入水槽中一支干净的玻璃毛细管,当在管中上升平衡液面外加热时,水柱会上升。

()5、在相同温度下,纯汞在玻璃毛细管中呈凸液面,所以与之平衡的饱和蒸气压必大于其平液面的蒸汽压。

()6、溶液表面张力总是随溶液的浓度增大而减小。

()7、某水溶液发生负吸附后,在干净的毛细管中的上升高度比纯水在该毛细管中上升的高度低。

()8、通常物理吸附的速率较小,而化学吸附的速率较大。

()9、兰格缪尔等温吸附理论只适用于单分子层吸附。

()10、临界胶束浓度(CMC)越小的表面活性剂,其活性越高。

()11、物理吸附无选择性。

()12、纯水、盐水、皂液相比,其表面张力的排列顺序是:γ(盐水)<γ(纯水)<γ(皂液)。

()13、在相同温度与外压力下,水在干净的玻璃毛细管中呈凹液面,故管中饱和蒸气压应小于水平液面的蒸气压力。

()14、朗缪尔吸附的理论假设之一是吸附剂固体的表面是均匀的。

()15、同一纯物质,小液滴的饱和蒸气压大于大液滴的饱和蒸气压。

()16、弯曲液面的饱和蒸气压总大于同温度下平液面的蒸气压。

()17、表面张力在数值上等于等温等压条件下系统增加单位表面积时环境对系统所做的可逆非体积功。

()18、某水溶液发生正吸附后,在干净的毛细管中的上升高度比在纯水的毛细管中的水上升高度低。

()19、弯曲液面处的表面张力的方向总是与液面相切。

()20、吉布斯所定义的“表面过剩物质的量”只能是正值,不可能是负值。

( )21、封闭在容器内的大、小液滴若干个,在等温下达平衡时,其个数不变,大小趋于一致。

()22、凡能引起表面张力降低的物质均称之为表面活性剂。

()23、表面过剩物质的量为负值,所以吸附达平衡后,必然引起液体表面张力降低。

高分子物理习题10

高分子物理习题10

《高分子物理》第一章 概论一、 概念1、 特性粘度二、选择答案1、( )可以快速、自动测定聚合物的平均分子量和分子量分布。

A 粘度法,B 滲透压法,C 光散射法,D 凝胶渗透色谱(GPC)法2、下列四种方法中,( )可以测定聚合物的重均分子量。

A 、粘度法,B 、滲透压法,C 、光散射法,D 、沸点升高法3、特性粘度[η]的表达式正确的是( )。

A 、c sp /ηB 、c /ln γηC 、 c sp o c /lim η→D 、c oc /lim γη→ 三、填空题1、高分子常用的统计平均分子量有数均分子量、重均分子量和 ,它们之间的关系 。

2、测定聚合物分子量的方法很多,如端基分析法可测 分子量,光散射法可测重均分子量,稀溶液粘度法可测 分子量。

3、凝胶渗透色谱GPC 可用来测定聚合物的 分子量 和 分子量 。

溶质分子体积越小,其淋出体积越大。

四、回答下列问题1、简述GPC 的分级测定原理。

五、计算题1、在25℃的θ溶剂中,测得的浓度为7.36×10-3g/ml 的聚氯乙稀溶液的渗透压为0.248g/(cm)2,求此试样的分子量及溶液的第二维利系数,得到的是何种平均分子量?(∏/C=RT(1/M+A 2C+…) R=8.84×104(g.cm)/(mol.K)第二章 高分子链的结构一、 概念1、 构型2、 构象3、 均方末端距4、 旋光异构5、 几何异构6. 等规度二、选择答案1、高分子科学诺贝尔奖获得者中,( )首先把“高分子”这个概念引进科学领域。

A 、H. Staudinger,B 、K.Ziegler, G .Natta,C 、P. J. Flory,D 、H. Shirakawa2、下列聚合物中,( )是聚异戊二烯(PI)。

A 、 CCH 2n CH CH 23B 、O C NH O C NH C 6H 4C 6H 4n C 、 CH Cl CH 2n D 、OC CH 2CH 2O O n O C3、链段是高分子物理学中的一个重要概念,下列有关链段的描述,错误的是( )。

大学物理册习题答案(匡乐满主编)

大学物理册习题答案(匡乐满主编)

习题八8-1 根据点电荷场强公式204r q E πε=,当被考察的场点距源点电荷很近(r →0)时,则场强E→∞,这是没有物理意义的,对此应如何理解?解: 020π4r r q Eε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.8-2 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024d q πε,又有人说,因为f =qE ,SqE 0ε=,所以f =Sq 02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强SqE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S qE 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力.8-3 一个点电荷q 放在球形高斯面的中心,试问在下列情况下,穿过这高斯面的E 通量是否改变?高斯面上各点的场强E 是否改变?(1) 另放一点电荷在高斯球面外附近. (2) 另放一点电荷在高斯球面内某处.(3) 将原来的点电荷q 移离高斯面的球心,但仍在高斯面内. (4) 将原来的点电荷q 移到高斯面外.答:根据高斯定理,穿过高斯面的电通量仅取决于面内电量的代数和,而与面内电荷的分布情况及面外电荷无关,但各点的场强E 与空间所有分布电荷有关,故: (1) 电通量不变, Φ1=q 1 / ε0,高斯面上各点的场强E 改变(2) 电通量改变,由Φ1变为Φ2=(q 1+q 2 ) /ε 0,高斯面上各点的场强E 也变(3) 电通量不变,仍为Φ1.但高斯面上的场强E 会变 。

(4) 电通量变为0,高斯面上的场强E 会变.8-4 以下各种说法是否正确,并说明理由.(1) 场强为零的地方,电势一定为零;电势为零的地方,场强也一定为零. (2) 在电势不变的空间内,场强一定为零.(3) 电势较高的地方,场强一定较大;场强较小的地方,电势也一定较低. (4) 场强大小相等的地方,电势相同;电势相同的地方,场强大小也一定相等.(5) 带正电的带电体,电势一定为正;带负电的带电体,电势一定为负.(6) 不带电的物体,电势一定为零;电势为零的物体,一定不带电.答:场强与电势的微分关系是, U E -∇=.场强的大小为电势沿等势面法线方向的变化率,方向为电势降落的方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章10-1 无限长直线电流的磁感应强度公式为B =μ0I2πa ,当场点无限接近于导线时(即a →0),磁感应强度B →∞,这个结论正确吗?如何解释?答:结论不正确。

公式aIB πμ20=只对理想线电流适用,忽略了导线粗细,当a →0,导线的尺寸不能忽略,电流就不能称为线电流,此公式不适用。

10-2 如图所示,过一个圆形电流I 附近的P 点,作一个同心共面圆形环路L ,由于电流分布的轴对称,L 上各点的B 大小相等,应用安培环路定理,可得∮L B ·d l =0,是否可由此得出结论,L 上各点的B 均为零?为什么? 答:L 上各点的B 不为零. 由安培环路定理∑⎰=⋅ii I l d B 0μ得 0=⋅⎰l d B,说明圆形环路L 内的电流代数和为零,并不是说圆形环路L 上B 一定为零。

10-3 设题10-3图中两导线中的电流均为8A ,对图示的三条闭合曲线a ,b ,c ,分别写出安培环路定理等式右边电流的代数和.并讨论:(1)在各条闭合曲线上,各点的磁感应强度B的大小是否相等?(2)在闭合曲线c 上各点的B是否为零?为什么? 解: ⎰μ=⋅al B 08d⎰μ=⋅bal B 08d⎰=⋅cl B 0d(1)在各条闭合曲线上,各点B的大小不相等.(2)在闭合曲线C 上各点B 不为零.只是B的环路积分为零而非每点0=B .题10-3图习题10-2图10-4 图示为相互垂直的两个电流元,它们之间的相互作用力是否等值、反向?由此可得出什么结论?答:两个垂直的电流元之间相互作用力不是等值、反向的。

B l Id F d⨯= 20ˆ4rr l Id B d ⨯= πμ 2212122110221212201112)ˆ(4ˆ4r rl d I l d I r r l d I l d I F d ⨯⨯=⨯⨯=πμπμ 2121211220212121102212)ˆ(4ˆ4r rl d I l d I r r l d I l d I F d ⨯⨯=⨯⨯=πμπμ ))ˆ()ˆ((4212121221************r r l d l d r r l d l d I I F d F d ⨯⨯+⨯⨯-=+πμ 2122112210212112221212102112)(ˆ4))ˆ()ˆ((4r l d l d rI I r l d r l d l d r l d I I F d F d⨯⨯=⋅-⋅=+πμπμ 一般情况下 02112≠+F d F d由此可得出两电流元(运动电荷)之间相互作用力一般不满足牛顿第三定律。

10-5 把一根柔软的螺旋形弹簧挂起来,使它的下端和盛在杯里的水银刚好接触,形成串联电路,再把它们接到直流电源上通以电流,如图所示,问弹簧会发生什么现象?怎样解释?答:弹簧会作机械振动。

当弹簧通电后,弹簧内的线圈电流可看成是同向平行的,而同向平行电流会互相吸引,因此弹簧被压缩,下端会离开水银而电流被断开,磁力消失,而弹簧会伸长,于是电源又接通,弹簧通电以后又被压缩……,这样不断重复,弹簧不停振动。

10-6 如图所示为两根垂直于xy 平面放置的导线俯视图,它们各载有大小为I 但方向相反的电流.求:(1)x 轴上任意一点的磁感应强度;(2)x 为何值时,B 值最大,并给出最大值B max .解:(1) 利用安培环路定理可求得1导线在P 点产生的磁感强度的大小为:rI B π=201μ2/1220)(12x d I +⋅π=μ2导线在P 点产生的磁感强度的大小为:r I B π=202μ2/1220)(12x d I +⋅π=μ 1B、2B 的方向如图所示.P 点总场θθcos cos 2121B B B B B x x x +=+= 021=+=y y y B B B 习题10-4图 r 12r 21 习题10-5图 习题10-6图 yPr B 1xy1 oxd θθ)()(220x d Idx B +π=μ,i x d Idx B)()(220+π=μ(2) 当 0d )(d =x x B ,0d )(d 22=<x x B 时,B (x )最大. 由此可得:x = 0处,B 有最大值.10-7 如图所示被折成钝角的长直载流导线中,通有电流I =20 A ,θ=120°,a =2.0 mm ,求A 点的磁感应强度. 解:载流直导线的磁场)sin (sin 4120ββπμ-=dIBA 点的磁感应强度)))90sin(90(sin sin 40000θθπμ--+=a IB)5.01(2/3100.2201037+⨯⨯⨯=--B =1.73⨯10-3T 方向垂直纸面向外。

10-8 一根无限长直导线弯成如图所示形状,通以电流I ,求O 点的磁感应强度. 解:图所示形状,为圆弧电流和两半无限长直载流导线的磁场叠加。

圆电流的中心的 πϕμ220R I B =半无限长直载流导线的磁场 aIB πμ40=8320R I B μ=+R I πμ20=)38(160ππμ+=R IB 方向垂直纸面向外。

10-9 如图所示,宽度为a 的薄长金属板中通有电流I ,电流沿薄板宽度方向均匀分布.求在薄板所在平面内距板的边缘为x 的P 点处的磁感应强度. 解:取离P 点为y 宽度为d y 的无限长载流细条y aI i d d = 长载流细条在P 点产生的磁感应强度y i B π=2d d 0μy yI πα=2d 0μ 所有载流长条在P 点产生的磁感强度的方向都相同,方向垂直纸面向外. 所以==⎰B B d y dy Ixa x⎰+πα20μxxa a I +π=ln 20μ 方向垂直纸面向外.习题10-7图 d 习题10-8图 习题10-9图y10-10 如图所示,半径为R 的圆盘上均匀分布着电荷,面密度为+σ,当这圆盘以角速度ω绕中心垂轴旋转时,求轴线上距圆盘中心O 为x 处的P 点的磁感应强度.解:在圆盘上取一半径为r ,宽度为d r 的环带,此环带所带电荷r r q d 2d π⋅=σ. 此环带转动相当于一圆电流,其电流大小为 π=2/d d q I ω它在x 处产生的磁感强度为2/32220)(2d d x r I r B +=μr x r r d )(22/32230+⋅=σωμ故P 点处总的磁感强度大小为:⎰+=R r x r r B 02/32230d )(2σωμ)2)(2(22/122220x x R x R -++=σωμ 方向沿x 轴方向.10-11 半径为R 的均匀带电细圆环,单位长度上所带电量为λ,以每秒n 转绕通过环心,并与环面垂直的转轴匀速转动.求:(1)轴上任一点处的磁感应强度值;(2)圆环的磁矩值.解:(1) n R I λπ2=2/32230)(y R nR B B y +==λπμB的方向为y 轴正向(2) j R n j I R p m 3222πλπ==10-12 已知磁感应强度0.2=B Wb ·m -2的均匀磁场,方向沿x 轴正方向,如题10-12图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量. 解: 如题10-12图所示题10-12图(1)通过abcd 面积1S 的磁通是24.04.03.00.211=⨯⨯=⋅=S BΦWby ORω习题10-10图(2)通过befc 面积2S 的磁通量022=⋅=S BΦ(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ΦWb (或曰24.0-Wb )10-13 两平行长直导线,相距0.4 m ,每根导线载有电流I 1=I 2=20 A ,如图所示,试计算通过图中斜线部分面积的磁通量. 解:如图取面微元 l d x=0.20dxBldx S d B d m =⋅=Φ)(222010x d I x I B -+=πμπμ方向垂直纸面向外.ldx x d I x I d m m ⎰⎰-+=Φ=Φ30.010.02010))(22(πμπμ30.040.010.040.0ln210.030.0ln 22010--+=πμπμl I l I =2.26⨯10-6Wb10-14长直同轴电缆由一根圆柱形导线外套同轴圆筒形导体组成,尺寸如图所示.电缆中的电流从中心导线流出,由外面导体圆筒流回.设电流均匀分布,内圆柱与外圆筒之间可作真空处理,求磁感应强度的分布.解: ⎰∑μ=⋅LI l B 0d(1)a r < 2202RIr r B μπ=202RIrB πμ=(2) b r a << I r B 02μπ=rIB πμ20=(3)c r b << I bc b r I r B 0222202μμπ+---= )(2)(22220b c r r c I B --=πμ 习题10-13图 xdx d(4)cr>02=rBπ=B题10-14图习题10-15图10-15如图所示,一截面为长方形的闭合绕线环,通有电流I=1.7 A,总匝数N =1000 匝,外直径与内直径之比为η=1.6,高h=5.0 cm.求:(1)绕线环内的磁感应强度分布;(2)通过截面的磁通量.解:(1) 环内取一同心积分回路NIrBBdll dB2μπ===⋅⎰⎰rNIBπμ2=方向为右螺旋(2) 取面微元h drBhdrS dBdm=⋅=Φ通过截面的磁通量. ⎰⎰=⋅=Φ212RRmhdrrNIS dBπμηπμπμln2ln212NIhRRNIhm==Φ=8.0⨯10-6Wb10-16一根m=1.0 kg的铜棒静止在两根相距为l=1.0 m的水平导轨上,棒载有电流I=50 A,如图所示.(1)如果导轨光滑,均匀磁场的磁感应强度B垂直回路平面向上,且B=0.5 T,欲保持其静止,须加怎样的力(大小与方向)?(2)如果导轨与铜棒间静摩擦系数0.6,求能使棒滑动的最小磁感应强度B.解:(1)导线ab中流过电流I,受安培力IlBF=1方向水平向右,如图所示欲保持导线静止,则必须加力2F,12FF=2F方向与1F相反,即水平向左,5.0102012⨯⨯===IlBFF =25N(2) F1-μmg=m aF1-μmg≥0IlmgBμ==0.1508.90.16.0⨯⨯⨯0.12T习题10-16图abIlF2F110-17 如题10-17图所示,在长直导线AB 内通以电流1I =20A ,在矩形线圈CDEF 中通有电流2I =10 A ,AB 与线圈共面,且CD ,EF 都与AB 平行.已知a =9.0cm,b =20.0cm,d =1.0 cm ,求:(1)导线AB 的磁场对矩形线圈每边所作用的力;(2)矩形线圈所受合力和合力矩.解:(1)CD F方向垂直CD 向左,大小4102100.82-⨯==dI bI F CD πμ N 同理FE F方向垂直FE 向右,大小5102100.8)(2-⨯=+=a d I bI F FE πμ NCF F方向垂直CF 向上,大小为⎰+-⨯=+πμ=πμ=ad dCF dad I I r r I I F 5210210102.9ln 2d 2 N ED F方向垂直ED 向下,大小为5102.9-⨯==CF ED F F N(2)合力ED CF FE CD F F F F F+++=方向向左,大小为4102.7-⨯=F N合力矩B P M m⨯=∵ 线圈与导线共面∴ B P m//0=M.题10-17图题10-18图10-18 边长为l =0.1m 的正三角形线圈放在磁感应强度B =1T 的均匀磁场中,线圈平面与磁场方向平行.如题10-18图所示,使线圈通以电流I =10A ,求: (1) 线圈每边所受的安培力; (2) 对O O '轴的磁力矩大小;(3)从所在位置转到线圈平面与磁场垂直时磁力所作的功.解: (1) 0=⨯=B l I F bcB l I F ab⨯= 方向⊥纸面向外,大小为866.0120sin ==︒IlB F ab NB l I F ca⨯=方向⊥纸面向里,大小866.0120sin ==︒IlB F ca N(2)IS P m =B P M m⨯= 沿O O '方向,大小为221033.443-⨯===B l I ISB M m N ⋅(3)磁力功 )(12ΦΦ-=I A∵ 01=Φ B l 2243=Φ ∴ 221033.443-⨯==B l IA J10-19 横截面积S =2.0 mm 2的铜线,密度ρ=8.9×103 kg·m -3,弯成正方形的三边,可以绕水平轴OO ′转动,如图所示.均匀磁场方向向上,当导线中通有电流I =10 A ,导线AD 段和BC 段与竖直方向的夹角θ=15°时处于平衡状态,求磁感应强度B 的量值.解:在平衡的情况下,必须满足线框的重力矩与线框所受的磁力矩平衡(对OO '轴而言). 设正方形的边长为a , 则重力矩θρθρsin sin 2121gSa a a gS a M +⋅=θρsin 22g Sa =磁力矩 θθcos )21sin(222B Ia BIa M =-π=平衡时 21M M =所以 θρsin 22g Sa θcos 2B Ia = 31035.9/tg 2-⨯≈=I g S B θρ T10-20 塑料圆环盘,内外半径分别为a 和R ,如图所示.均匀带电+q ,令此盘以ω绕过环心O 处的垂直轴匀角速转动.求:(1)环心O 处的磁感应强度B ;(2)若施加一均匀外磁场,其磁感应强度B 平行于环盘平面,计算圆环受到的磁力矩. 解:(1) 取一r →r r d +圆环,环上电荷 r r q d 2d π=σ 环电流 r r I d d ωσ=圆环电流的中心的 rdIdB 20μ=dr dB 20σωμ=dr B Ra20σωμ⎰=)()(2220a R a R q --=πωμ)(20a R q +=πωμ(2) 圆环r →r r d +磁矩大小为I r p m d d 2π=r r r d 2σωπ=r B r M R a d 3σωπ=⎰)(22a R B q +41=ω10-21 一电子具有速度 v =(2.0×106i +3.0×106j ) m·s -1,进入磁场B =(0.03i -0.15j ) T 中,求作用在电子上的洛伦兹力.解:)(B q F ⨯=υ610)15.003.0()0.30.2(⨯-⨯+=j i j i q FN k j k k F-1413106.0810)09.030.0(6.1⨯-=⨯--⨯=-10-22 一质子以v =(2.0×105i +3.0×105j ) m·s -1的速度射入磁感应强度B =0.08i T 的均匀磁场中,求这质子作螺线运动的半径和螺距(质子质量m p =1.67×10-27 kg).解:半径:qBm R ⊥=υ 08.0106.1100.31067.119527⨯⨯⨯⨯⨯=--=3.91⨯10-2m qBm v R T ππ22==⊥螺距:qBm v T v h π2////⋅== 08.0106.11067.114.32100.219275⨯⨯⨯⨯⨯⨯⨯=--=0.164m习题10-20图。

相关文档
最新文档