湖南高考文科数学试题含答案(Word版).doc
湖南高考数学文科考试(带答案)
A.1+ B.1- C.-1+ D.-1-
【测量目标】复数代数的四则运算.
【考查方式】复数分数形式的化简.
【参考答案】A
【试题解析】 ,故选A.
2.下列命题中的假命题是()
A. B.
C. D.
【测量目标】函数值域定义域的判断
【考查方式】给出对数函数,三角函数,幂函数和指数函数求函数在某定义域下的值域.
4. 极坐标 和参数方程 (t为参数)所表示的图形分别是()
A.直线、直线B. 直线、圆C.圆、圆D.圆、直线
【测量目标】极坐标和参数方程的图象
【考查方式】给出两个函数判断函数的图象.
【参考答案】D
【试题解析】由极坐标方程 可得 表示的是圆;
由参数方程 推得直线 ,故选D.
5. 设抛物线 上一点P到y轴的距离是4,则点P到该抛物线焦点的距离是()
A. 4B.6C. 8D.12
【测量目标】抛物线的简单几何性质,抛物线的焦点和准线.
【考查方式】给定抛物线和抛物线上点到y轴的距离求点到焦点的距离.
【参考答案】B
【试题解析】易知抛物线的准线方程是 ,由抛物线的定义可知点 到该抛物线焦点的距离就是点 到该抛物线准线的距离,即 ,故选B.
6.若非零向量a,b满足| ,则a与b的夹角为()
11.在区间[ 1,2]上随即取一个数x,则x [0,1]的概率为.
【测量目标】几何概率的计算
【考查方式】给定一区间,求x出现在一子区间的概率.
【参考答案】
【试题解析】由几何概型得长度比: .
12.如图是求实数x的绝对值的算法程序框图,则判断框①中可填
【测量目标】选择结构的程序框图.
【考查方式】给定程序框图求判断框中应该填写的内容.
最新整理湖南文科数高考题及答案全解析.doc
yx20xx 高考湖南文科数学试题及全解全析一.选择题1.已知{}7,6,5,4,3,2=U ,{}7,5,4,3=M ,{}6,5,4,2=N ,则( )A .{}6,4=⋂N M .B MN U =C .U M N C u = )( D. N N M C u = )( 【答案】B【解析】由{}7,6,5,4,3,2=U ,{}7,5,4,3=M ,{}6,5,4,2=N ,易知B 正确. 2.“21<-x ”是“3<x ”的( )A .充分不必要条件 B.必要不充分条件C .充分必要条件 D.既不充分也不必要条件 【答案】A【解析】由21<-x 得13x -<<,所以易知选A.3.已条变量y x ,满足⎪⎩⎪⎨⎧≤-≤≥,0,2,1y x y x 则y x +的最小值是( )A .4 B.3 C.2 D.1 【答案】C【解析】如图得可行域为一个三角形,其三个顶点分别为(1,1),(1,2),(2,2),代入验证知在点(1,1)时,x y +最小值是11 2.+=故选C.4.函数)0()(2≤=x x x f 的反函数是( ))0()(.1≥=-x x x f A )0()(.1≥-=-x x x fB)0()(.1≤--=-x x x fC )0()(.21≤-=-x x x fD【答案】B【解析】用特殊点法,取原函数过点(1,1),-则其反函数过点(1,1),-验证知只有答案B 满足.也可用直接法或利用“原函数与反函数的定义域、值域互换”来解答。
15.已知直线m,n 和平面βα,满足βα⊥⊥⊥,,a m n m ,则( ).A n β⊥ ,//.βn B 或β⊂n α⊥n C . ,//.αn D 或α⊂n【答案】D【解析】易知D 正确.6.下面不等式成立的是( )A .322log 2log 3log 5<<B .3log 5log 2log 223<<C .5log 2log 3log 232<<D .2log 5log 3log 322<< 【答案】A【解析】由322log 21log 3log 5<<< , 故选A.7.在ABC ∆中,AB=3,AC=2,BC=10,则AB AC ⋅= ( ) A .23-B .32-C .32D .23 【答案】D【解析】由余弦定理得1cos ,4CAB ∠=所以1332,42AB AC ⋅=⨯⨯=选D. 8.某市拟从4个重点项目和6个一般项目中各选2个项目作为本年度启动的项目,则重点项目A 和一般项目B 至少有一个被选中的不同选法种数是( ) A .15 B .45 C .60 D .75 【答案】C【解析】用直接法:11122135353515301560,C C C C C C ++=++=或用间接法:22224635903060,C C C C -=-=故选C.9.长方体1111ABCD A B C D -的8个顶点在同一个球面上,且AB=2,AD=3,11=AA ,则顶点A 、B 间的球面距离是( )A .42π B .22π C .π2D .2π2 【答案】 B【解析】112BD AC R ===R ∴=设11,BD AC O =则OA OB R ===,2AOB π⇒∠=,2l R πθ∴==故选B.10.双曲线)0,0(12222>>=-b a by a x 的右支上存在一点,它到右焦点及左准线的距离相等,则双曲线离心率的取值范围是( )A .B .)+∞C .1]D .1,)+∞ 【答案】C【解析】200a ex a x c -=+20(1)a e x a c ⇒-=+2(1),a a e a c⇒+≥- 1111,a e c e∴-≤+=+2210,e e ⇒--≤11e ⇒≤≤+而双曲线的离心率1,e >1],e ∴∈故选C.二.填空题11.已知向量)3,1(=a ,)0,2(-=b ,则b a +=_____________________. 【答案】2 【解析】由(1,3),||13 2.a b a b +=-∴+=+=12.从某地区15000位老人中随机抽取500人,其生活能否自理的情况如下表所示:则该地区生活不能自理的老人中男性比女性约多_____________人。
2024年湖南高考数学真题(含答案)
2024年湖南高考数学真题及答案本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1. 已知集合{}355,{3,1,0,2,3}A x xB =-<<=--∣,则A B = ( )A. {1,0}- B. {2,3}C. {3,1,0}-- D.{1,0,2}-2. 若1i 1zz =+-,则z =( )A. 1i-- B. 1i-+ C. 1i- D. 1i+3. 已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =( )A. 2- B. 1- C. 1D. 24. 已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=( )A. 3m -B. 3m -C.3m D. 3m5.( )A.B.C.D. 6. 已知函数为22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是( )A. (,0]-∞ B. [1,0]- C. [1,1]- D.[0,)+∞7. 当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭交点个数为( )A. 3B. 4C. 6D. 88. 已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是( )A. (10)100f > B. (20)1000f >C. (10)1000f < D. (20)10000f <二、选择题:本题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的选项中,有多项符合题目要求. 全部选对得 6 分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9. 为了解推动出口后亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则( )(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A. (2)0.2P X >> B. (2)0.5P X ><的的C. (2)0.5P Y >> D. (2)0.8P Y ><10. 设函数2()(1)(4)f x x x =--,则( )A. 3x =是()f x 的极小值点B. 当01x <<时,()2()f x f x<C. 当12x <<时,4(21)0f x -<-< D. 当10x -<<时,(2)()f x f x ->11. 造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则( )A. 2a =- B.点在C 上C. C 在第一象限的点的纵坐标的最大值为1D. 当点()00,x y 在C 上时,0042y x ≤+三、填空题:本题共 3 小题,每小题 5 分,共 15 分.12. 设双曲线2222:1(0,0)x y C a b a b -=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.13. 若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.14. 甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数的字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.15. 记ABC 内角A 、B 、C 的对边分别为a ,b ,c,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC的面积为3,求c .16. 已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭椭圆2222:1(0)x y C a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.17. 如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --,求AD .18. 已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;为(3)若()2f x >-当且仅当12x <<,求b 的取值范围.19. 设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.参考答案本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.的一、选择题:本题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1. 已知集合{}355,{3,1,0,2,3}A x xB =-<<=--∣,则A B = ( )A. {1,0}- B. {2,3}C. {3,1,0}-- D.{1,0,2}-【答案】A 【解析】【分析】化简集合A ,由交集的概念即可得解.【详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-.故选:A.2. 若1i 1zz =+-,则z =( )A. 1i -- B. 1i-+ C. 1i- D. 1i+【答案】C 【解析】【分析】由复数四则运算法则直接运算即可求解.【详解】因为11111i 111z z z z z -+==+=+---,所以111i i z =+=-.故选:C.3. 已知向量(0,1),(2,)a b x ==,若(4)b b a ⊥-,则x =( )A. 2- B. 1- C. 1D. 2【答案】D 【解析】【分析】根据向量垂直的坐标运算可求x 的值.【详解】因为()4b b a ⊥- ,所以()40b b a ⋅-=,所以240b a b -⋅=即2440x x +-=,故2x =,故选:D.4. 已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=( )A. 3m - B. 3m -C.3m D. 3m【答案】A 【解析】【分析】根据两角和的余弦可求cos cos ,sin sin αβαβ的关系,结合tan tan αβ的值可求前者,故可求()cos αβ-的值.【详解】因为()cos m αβ+=,所以cos cos sin sin m αβαβ-=,而tan tan 2αβ=,所以sin sin 2cos cos αβαβ=,故cos cos 2cos cos m αβαβ-=即cos cos m αβ=-,从而sin sin 2m αβ=-,故()cos 3m αβ-=-,故选:A.5. ( )A. B. C. D. 【答案】B 【解析】【分析】设圆柱的底面半径为r ,根据圆锥和圆柱的侧面积相等可得半径r 的方程,求出解后可求圆锥的体积.【详解】设圆柱的底面半径为r而它们的侧面积相等,所以2ππr r=即=,故3r=,故圆锥的体积为1π93⨯=.故选:B.6. 已知函数为22,0()e ln(1),0xx ax a xf xx x⎧---<=⎨++≥⎩,在R上单调递增,则a取值的范围是()A. (,0]-∞ B. [1,0]- C. [1,1]- D. [0,)+∞【答案】B【解析】【分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【详解】因为()f x在R上单调递增,且0x≥时,()()e ln1xf x x=++单调递增,则需满足()221e ln1aa-⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a-≤≤,即a的范围是[1,0]-.故选:B.7. 当[0,2]xπÎ时,曲线siny x=与2sin36y xπ⎛⎫=-⎪⎝⎭的交点个数为()A. 3B. 4C. 6D. 8【答案】C【解析】【分析】画出两函数在[]0,2π上的图象,根据图象即可求解【详解】因为函数siny x=的的最小正周期为2πT=,函数π2sin 36y x ⎛⎫=-⎪⎝⎭的最小正周期为2π3T =,所以在[]0,2πx ∈上函数π2sin 36y x ⎛⎫=-⎪⎝⎭有三个周期的图象, 在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C8. 已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是( )A. (10)100f > B. (20)1000f >C. (10)1000f < D. (20)10000f <【答案】B 【解析】【分析】代入得到(1)1,(2)2f f ==,再利用函数性质和不等式的性质,逐渐递推即可判断.【详解】因为当3x <时()f x x =,所以(1)1,(2)2f f ==,又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>,(8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>,(11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+>(14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确.故选:B.【点睛】关键点点睛:本题的关键是利用(1)1,(2)2f f ==,再利用题目所给的函数性质()(1)(2)f x f x f x >-+-,代入函数值再结合不等式同向可加性,不断递推即可.二、选择题:本题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的选项中,有多项符合题目要求. 全部选对得 6 分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9. 为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则( )(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A. (2)0.2P X >>B. (2)0.5P X ><C. (2)0.5P Y >>D. (2)0.8P Y ><【答案】BC 【解析】【分析】根据正态分布的3σ原则以及正态分布的对称性即可解出.【详解】依题可知,22.1,0.01x s ==,所以()2.1,0.1Y N ,故()()()2 2.10.1 2.10.10.84130.5P Y P Y P Y >=>-=<+≈>,C 正确,D 错误;因为()1.8,0.1X N ,所以()()2 1.820.1P X P X >=>+⨯,因为()1.80.10.8413P X <+≈,所以()1.80.110.84130.15870.2P X >+≈-=<,而()()()2 1.820.1 1.80.10.2P X P X P X >=>+⨯<>+<,B 正确,A 错误,故选:BC .10. 设函数2()(1)(4)f x x x =--,则( )A. 3x =是()f x 的极小值点B. 当01x <<时,()2()f x f x<C. 当12x <<时,4(21)0f x -<-< D. 当10x -<<时,(2)()f x f x ->【答案】ACD 【解析】【分析】求出函数()f x 的导数,得到极值点,即可判断A ;利用函数的单调性可判断B ;根据函数()f x 在()1,3上的值域即可判断C ;直接作差可判断D.【详解】对A,因为函数()f x 的定义域为R ,而()()()()()()22141313f x x x x x x =--+-=--',易知当()1,3x ∈时,()0f x '<,当(),1x ∞∈-或()3,x ∞∈+时,()0f x '>函数()f x 在(),1∞-上单调递增,在()1,3上单调递减,在()3,∞+上单调递增,故3x =是函数()f x 的极小值点,正确;对B ,当01x <<时,()210x x x x -=->,所以210x x >>>,而由上可知,函数()f x 在()0,1上单调递增,所以()()2f x f x>,错误;对C ,当12x <<时,1213x <-<,而由上可知,函数()f x 在()1,3上单调递减,所以()()()1213f f x f >->,即()4210f x -<-<,正确;对D,当10x -<<时,()()()()()()222(2)()12141220f x f x x x x x x x --=------=-->,所以(2)()f x f x ->,正确;故选:ACD.11. 造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则( )A. 2a =- B.点在C 上C. C 在第一象限的点的纵坐标的最大值为1D. 当点()00,x y 在C 上时,0042y x ≤+【答案】ABD 【解析】【分析】根据题设将原点代入曲线方程后可求a ,故可判断A 的正误,结合曲线方程可判断B 的正误,利用特例法可判断C 的正误,将曲线方程化简后结合不等式的性质可判断D 的正误.【详解】对于A :设曲线上的动点(),P x y ,则2x >-4a =,4a =,解得2a =-,故A 正确.对于B24=,而2x >-,()24x+=.当0x y ==()2844=-=,故()在曲线上,故B 正确.对于C :由曲线的方程可得()()2221622y x x =--+,取32x =,则2641494y =-,而64164525624510494494494---=-=>⨯,故此时21y >,故C 在第一象限内点的纵坐标的最大值大于1,故C 错误.对于D :当点()00,x y 在曲线上时,由C 的分析可得()()()220022001616222y x x x =--≤++,故0004422y x x -≤≤++,故D 正确.故选:ABD.【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理.三、填空题:本题共 3 小题,每小题 5 分,共 15 分.12. 设双曲线2222:1(0,0)x y C a b a b -=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.【答案】32【解析】【分析】由题意画出双曲线大致图象,求出2AF ,结合双曲线第一定义求出1AF ,即可得到,,a b c 的值,从而求出离心率.【详解】由题可知2,,A B F 三点横坐标相等,设A 在第一象限,将x c =代入22221x ya b-=得2b y a =±,即22,,,b b Ac B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,故2210b AB a ==,225b AF a ==,又122AF AF a -=,得1222513AF AF a a =+=+=,解得4a =,代入25b a=得220b =,故22236,c a b =+=,即6c =,所以6342c e a ===.故答案为:3213. 若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.【答案】ln 2【解析】【分析】先求出曲线e xy x =+在()0,1的切线方程,再设曲线()ln 1y x a =++的切点为()()0,ln 1x xa ++,求出y ',利用公切线斜率相等求出0x ,表示出切线方程,结合两切线方程相同即可求解.【详解】由e xy x =+得e 1x y '=+,00|e 12x y ='=+=,故曲线e xy x =+在()0,1处的切线方程为21y x =+;由()ln 1y x a =++得11y x '=+,设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++,由两曲线有公切线得0121y x '==+,解得012x =-,则切点为11,ln 22a ⎛⎫-+ ⎪⎝⎭,切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++- ⎪⎝⎭,根据两切线重合,所以ln 20a -=,解得ln 2a =.故答案为:ln 214. 甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.【答案】12##0.5【解析】【分析】将每局的得分分别作为随机变量,然后分析其和随机变量即可.【详解】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲获胜的出牌组合有六种,从而甲在该轮获胜的概率()631448k P X ===⨯,所以()()31,2,3,48k E X k ==.从而()()()441234113382kk k E X E X X X X E X ===+++===∑∑.记()()0,1,2,3k p P X k k ===.如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ==;如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p ==.而X 的所有可能取值是0,1,2,3,故01231p p p p +++=,()1233232p p p E X ++==.所以121112p p ++=,1213282p p ++=,两式相减即得211242p +=,故2312p p +=.所以甲总得分不小于2的概率为2312p p +=.故答案为:12.【点睛】关键点点睛:本题的关键在于将问题转化为随机变量问题,利用期望的可加性得到等量关系,从而避免繁琐的列举.四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.15. 记ABC 内角A 、B 、C 的对边分别为a ,b ,c,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC的面积为3,求c .【答案】(1)π3B = (2)【解析】【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B=得cos B 值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【小问1详解】由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得222cos 2a b c C ab +-===,因为()0,πC ∈,所以sin 0C >,的的从而sin C===又因为sin C B=,即1cos2B=,注意到()0,πB∈,所以π3B=.小问2详解】由(1)可得π3B=,cos C=,()0,πC∈,从而π4C=,ππ5ππ3412A=--=,而5πππ1sin sin sin12462A⎛⎫⎛⎫==+=+=⎪ ⎪⎝⎭⎝⎭由正弦定理有5πππsin sin sin1234a b c==,从而,a b====,由三角形面积公式可知,ABC的面积可表示为211sin22ABCS ab C===,由已知ABC面积为323=+,所以c=16. 已知(0,3)A和33,2P⎛⎫⎪⎝⎭为椭圆2222:1(0)x yC a ba b+=>>上两点.(1)求C的离心率;(2)若过P的直线l交C于另一点B,且ABP的面积为9,求l的方程.【答案】(1)12(2)直线l的方程为3260x y--=或20x y-=.【的【解析】【分析】(1)代入两点得到关于,a b 的方程,解出即可;(2)方法一:以AP 为底,求出三角形的高,即点B 到直线AP 的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到B 点坐标,则得到直线l 的方程;方法二:同法一得到点B 到直线AP 的距离,再设()00,B x y ,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点B 到直线AP 的距离,利用椭圆的参数方程即可求解;法四:首先验证直线AB 斜率不存在的情况,再设直线3y kx =+,联立椭圆方程,得到点B 坐标,再利用点到直线距离公式即可;法五:首先考虑直线PB 斜率不存在的情况,再设3:(3)2PB y k x -=-,利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘12表达面积即可.【小问1详解】由题意得2239941b a b =⎧⎪⎪⎨⎪+=⎪⎩,解得22912b a ⎧=⎨=⎩,所以12e ===.【小问2详解】法一:3312032APk -==--,则直线AP 的方程为132y x =-+,即260x y +-=,AP ==,由(1)知22:1129x y C +=,设点B 到直线AP 的距离为d,则d ==则将直线AP沿着与AP 单位即可,此时该平行线与椭圆的交点即为点B ,设该平行线的方程为:20x y C ++=,6C =或18C =-,当6C =时,联立221129260x y x y ⎧+=⎪⎨⎪++=⎩,解得03x y =⎧⎨=-⎩或332x y =-⎧⎪⎨=-⎪⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,当()0,3B -时,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当33,2B ⎛⎫--⎪⎝⎭时,此时12lk =,直线l 的方程为12y x =,即20x y -=,当18C =-时,联立2211292180x y x y ⎧+=⎪⎨⎪+-=⎩得22271170y y -+=,227421172070∆=-⨯⨯=-<,此时该直线与椭圆无交点.综上直线l 的方程为3260x y --=或20x y -=.法二:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP的距离d =设()00,B x y22001129x y ⎪+=⎪⎩,解得00332x y =-⎧⎪⎨=-⎪⎩或0003x y =⎧⎨=-⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,以下同法一.法三:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP的距离d =设(),3sin B θθ,其中[)0,2θ∈π联立22cos sin 1θθ+=,解得cos 1sin 2θθ⎧=⎪⎪⎨⎪=-⎪⎩或cos 0sin 1θθ=⎧⎨=-⎩,即()0,3B -或33,2⎛⎫-- ⎪⎝⎭,以下同法一;法四:当直线AB 的斜率不存在时,此时()0,3B -,16392PAB S =⨯⨯= ,符合题意,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当线AB 的斜率存在时,设直线AB 的方程为3y kx =+,联立椭圆方程有2231129y kx x y =+⎧⎪⎨+=⎪⎩,则()2243240k x kx ++=,其中AP k k ≠,即12k ≠-,解得0x =或22443kx k -=+,0k ≠,12k ≠-,令22443k x k -=+,则2212943k y k -+=+,则22224129,4343k k B k k ⎛⎫--+ ⎪++⎝⎭同法一得到直线AP 的方程为260x y +-=,点B 到直线AP的距离d =,解得32k =,此时33,2B ⎛⎫--⎪⎝⎭,则得到此时12lk =,直线l 的方程为12y x =,即20x y -=,综上直线l 的方程为3260x y --=或20x y -=.法五:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当l 的斜率存在时,设3:(3)2PB y k x -=-,令()()1122,,,P x y B x y ,223(3)21129y k x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,消y 可得()()22224324123636270k x k k x k k +--+--=,()()()2222Δ24124433636270k kk k k =--+-->,且AP k k ≠,即12k ≠-,21222122241243,36362743k k x x k PB k k x x k ⎧-+=⎪⎪+==⎨--⎪=⎪+⎩,A 到直线PB距离192PABd = ,12k ∴=或32,均满足题意,1:2l y x ∴=或332y x =-,即3260x y --=或20x y -=.法六:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当直线l 斜率存在时,设3:(3)2l y k x =-+,设l 与y 轴的交点为Q ,令0x =,则30,32Q k ⎛⎫-+⎪⎝⎭,联立223323436y kx k x y ⎧=-+⎪⎨⎪+=⎩,则有()2223348336362702k x k k x k k ⎛⎫+--+--= ⎪⎝⎭,()2223348336362702k xk k x k k ⎛⎫+--+--= ⎪⎝⎭,其中()()22223Δ8343436362702k k k k k ⎛⎫=--+--> ⎪⎝⎭,且12k ≠-,则2222363627121293,3434B B k k k k x x k k----==++,则211312183922234P B k S AQ x x k k +=-=+=+,解的12k =或32k =,经代入判别式验证均满足题意.则直线l 为12y x =或332y x =-,即3260x y --=或20x y -=.17. 如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --,求AD .【答案】(1)证明见解析(2【解析】【分析】(1)先证出AD ⊥平面PAB ,即可得AD AB ⊥,由勾股定理逆定理可得BC AB ⊥,从而 //AD BC ,再根据线面平行的判定定理即可证出;(2)过点D 作DE AC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,根据三垂线法可知,DFE ∠即为二面角A CP D --的平面角,即可求得tan DFE ∠=AD的长度表示出,DE EF ,即可解方程求出AD .【小问1详解】(1)因为PA ⊥平面ABCD ,而AD ⊂平面ABCD ,所以PA AD ⊥,又AD PB ⊥,PB PA P = ,,PB PA ⊂平面PAB ,所以AD ⊥平面PAB ,而AB ⊂平面PAB ,所以AD AB ⊥.因为222BC AB AC +=,所以BC AB ⊥, 根据平面知识可知//AD BC ,又AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC .【小问2详解】如图所示,过点D 作DEAC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,因为PA ⊥平面ABCD ,所以平面PAC ⊥平面ABCD ,而平面PAC 平面ABCD AC =,所以DE ⊥平面PAC ,又EF CP ⊥,所以⊥CP 平面DEF ,根据二面角的定义可知,DFE ∠即为二面角A CP D --的平面角,即sin DFE ∠=tan DFE ∠=因为AD DC ⊥,设AD x =,则CD =,由等面积法可得,DE =,又242xCE -==,而EFC 为等腰直角三角形,所以EF =,故tan DFE∠==x =AD =.18. 已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.【答案】(1)2-(2)证明见解析 (3)23b ≥-【解析】【分析】(1)求出()min 2f x a '=+后根据()0f x '≥可求a 的最小值;(2)设(),P m n 为()y f x =图象上任意一点,可证(),P m n 关于()1,a 的对称点为()2,2Q m a n --也在函数的图像上,从而可证对称性;(3)根据题设可判断()12f =-即2a =-,再根据()2f x >-在()1,2上恒成立可求得23b ≥-.【小问1详解】0b =时,()ln2xf x ax x=+-,其中()0,2x ∈,则()()()112,0,222f x a x x x x x =+=+∈--',因为()22212x x x x -+⎛⎫-≤= ⎪⎝⎭,当且仅当1x =时等号成立,故()min 2f x a '=+,而()0f x '≥成立,故20a +≥即2a ≥-,所以a 的最小值为2-.,【小问2详解】()()3ln12x f x ax b x x=++--的定义域为()0,2,设(),P m n 为()y f x =图象上任意一点,(),P m n 关于()1,a 的对称点为()2,2Q m a n --,因为(),P m n 在()y f x =图象上,故()3ln 12m n am b m m=++--,而()()()()3322ln221ln 122m m f m a m b m am b m a m m -⎡⎤-=+-+--=-++-+⎢⎥-⎣⎦,2n a =-+,所以()2,2Q m a n --也在()y f x =图象上,由P 的任意性可得()y f x =图象为中心对称图形,且对称中心为()1,a .【小问3详解】因为()2f x >-当且仅当12x <<,故1x =为()2f x =-的一个解,所以()12f =-即2a =-,先考虑12x <<时,()2f x >-恒成立.此时()2f x >-即为()()3ln21102x x b x x +-+->-在()1,2上恒成立,设()10,1t x =-∈,则31ln 201t t bt t+-+>-在()0,1上恒成立,设()()31ln 2,0,11t g t t bt t t+=-+∈-,则()()2222232322311tbtbg t bt t t -++=-+=-'-,当0b ≥,232332320bt b b b -++≥-++=>,故()0g t '>恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当203b -≤<时,2323230bt b b -++≥+≥,故()0g t '≥恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当23b <-,则当01t <<<时,()0g t '<故在⎛ ⎝上()g t 为减函数,故()()00g t g <=,不合题意,舍;综上,()2f x >-在()1,2上恒成立时23b ≥-.而当23b ≥-时,而23b ≥-时,由上述过程可得()g t 在()0,1递增,故()0g t >的解为()0,1,即()2f x >-的解为()1,2.综上,23b ≥-.【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.19. 设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.【答案】(1)()()()1,2,1,6,5,6 (2)证明见解析 (3)证明见解析【解析】【分析】(1)直接根据(),i j -可分数列的定义即可;(2)根据(),i j -可分数列的定义即可验证结论;(3)证明使得原数列是(),i j -可分数列的(),i j 至少有()21m m +-个,再使用概率的定义.【小问1详解】首先,我们设数列1242,,...,m a a a +的公差为d ,则0d ≠.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形()111,2,...,42k ka a a k m d-=+=+',得到新数列()1,2, (42)a k k m ==+',然后对1242,,...,m a a a +'''进行相应的讨论即可.换言之,我们可以不妨设()1,2,...,42k a k k m ==+,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和()j i j <,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的(),i j 就是()()()1,2,1,6,5,6.【小问2详解】由于从数列1,2,...,42m +中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①{}{}{}1,4,7,10,3,6,9,12,5,8,11,14,共3组;②{}{}{}15,16,17,18,19,20,21,22,...,41,4,41,42m m m m -++,共3m -组.(如果30m -=,则忽略②)故数列1,2,...,42m +是()2,13-可分数列.【小问3详解】定义集合{}{}410,1,2,...,1,5,9,13,...,41A k k m m =+==+,{}{}420,1,2,...,2,6,10,14,...,42B k k m m =+==+.下面证明,对142i j m ≤<≤+,如果下面两个命题同时成立,则数列1,2,...,42m +一定是(),i j -可分数列:命题1:,i A j B ∈∈或,i B j A ∈∈;命题2:3j i -≠.我们分两种情况证明这个结论.第一种情况:如果,i A j B ∈∈,且3j i -≠.此时设141i k =+,242j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124142k k +<+,即2114k k ->-,故21k k ≥.此时,由于从数列1,2,...,42m +中取出141i k =+和242j k =+后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}{}{}11111111222242,43,44,45,46,47,48,49,...,42,41,4,41k k k k k k k k k k k k ++++++++--+,共21k k -组;③{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,42m +是(),i j -可分数列.第二种情况:如果,i B j A ∈∈,且3j i -≠.此时设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124241k k +<+,即2114k k ->,故21k k >.由于3j i -≠,故()()2141423k k +-+≠,从而211k k -≠,这就意味着212k k -≥.此时,由于从数列1,2,...,42m +中取出142i k =+和241j k =+后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}112121241,31,221,31k k k k k k k +++++++,{}121212232,222,32,42k k k k k k k +++++++,共2组;③全体{}11212124,3,22,3k p k k p k k p k k p +++++++,其中213,4,...,p k k =-,共212k k --组;④{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含212k k --个行,4个列的数表以后,4个列分别是下面这些数:{}111243,44,...,3k k k k +++,{}12121233,34,...,22k k k k k k +++++,{}121212223,223,...,3k k k k k k +++++,{}1212233,34,...,4k k k k k ++++.可以看出每列都是连续的若干个整数,它们再取并以后,将取遍{}11241,42,...,42k k k +++中除开五个集合{}1141,42k k ++,{}121231,32k k k k ++++,{}1212221,222k k k k ++++,{}121231,32k k k k ++++,{}2241,42k k ++中的十个元素以外的所有数.而这十个数中,除开已经去掉的142k +和241k +以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,42m +是(),i j -可分数列.至此,我们证明了:对142i j m ≤<≤+,如果前述命题1和命题2同时成立,则数列1,2,...,42m +一定是(),i j -可分数列.然后我们来考虑这样的(),i j 的个数.首先,由于A B ⋂=∅,A 和B 各有1m +个元素,故满足命题1的(),i j 总共有()21m +个;而如果3j i -=,假设,i A j B ∈∈,则可设141i k =+,242j k =+,代入得()()2142413k k +-+=.但这导致2112k k -=,矛盾,所以,i B j A ∈∈.设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈,则()()2141423k k +-+=,即211k k -=.所以可能的()12,k k 恰好就是()()()0,1,1,2,...,1,m m -,对应的(),i j 分别是()()()2,5,6,9,...,42,41m m -+,总共m 个.所以这()21m +个满足命题1的(),i j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的(),i j 的个数为()21m m +-.当我们从1,2,...,42m +中一次任取两个数i 和()j i j <时,总的选取方式的个数等于()()()()424121412m m m m ++=++.而根据之前的结论,使得数列1242,,...,m a a a +是(),i j -可分数列的(),i j 至少有()21m m +-个.所以数列1242,,...,m a a a +是(),i j -可分数列的概率m P 一定满足()()()()()()()()()22221111124214121412142221218m m m m m m m m P m m m m m m m m ⎛⎫+++ ⎪+-++⎝⎭≥=>==++++++++.这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.。
普通高等学校招生全国统一考试湖南卷文科数学试题及解答
2019年一般高等学校招生湖南卷文史类数学试题一、选择题:本大题共12小题,每题5分,共60分,在每题给出的四个选项中,只有一项切合要求的1.函数ylg(11)的定义域为()xA.x|x0}B.x|x1}C.x|0x1}D.x|x0或1} 2.设直线ax+by+c=0的倾斜角为,且sin+cos=0,则a,b知足()A.ab1B.ab1C.ab0D.ab0 3.设f1(x)是函数f(x)=x的反函数,则以下不等式中恒建立的是()A.f1(x)2x1B.f1(x)2x1C.f1(x)2x1D.f1(x)2x14.假如双曲线x2y21上一点P到右焦点的距离为13,那么点P到右准线的距离是()131213B.13C.55A.D.5135.把正方形ABC D 沿对角线AC折起,当A、B C、D四点为极点的三棱锥体积最大时,直线BD 与平面ABC所成的角的大小为()A.90°B.60°C.45°D.30°6.某企业甲、乙、丙、丁四个地域分别有150个、120个、180个、150个销售点.企业为了检查产品的状况,需从这600个销售点中抽取一个容量为100的样本,记这项检查为①;在丙地域中有20个特大型销售点,要从中抽取7个检查其收入和售后服务等状况,记这项检查为②.则达成这两项检查宜采纳的抽样方法挨次为()A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法7.若f(x)=-x2+2ax与g(x)a在区间[1,2]上都是减函数,则a的值范围是()x1A.(1,0)(0,1)B.(1,0)(0,1]C.(0,1)D.(0,1]8.已知向量a(cos,sin),向量b(3,1)则|2ab|的最大值,最小值分别是()A.42,0B.4,42C.16,0D.4,09.若函数2/()f(x)=x+bx+c的图象的极点在第四象限,则函数f(x)的图象是y y y yo x o x o x o x AB C D10.从正方体的八个极点中任取三个点作为三角形,直角三角形的个数为()A.56B.52C.48D.4011.农民收入由薪资性收入和其余收入两部分组成.2003年某地域农民人均收入为3150元(其中薪资性收入为1800元,其余收入为1350元),估计该地域自2019年起的5年内,农民的薪资性收入将以每年6%的年增添率增添,其余收入每年增添160元依据以上数据,2008年该地域农民人均收入介于()A.4200元~4400元B.4400元~4600元C.4600元~4800元D.4800元~5000元12.设会合U={(x,y)|x∈R,y∈R},A={(x,y)|2x-y+m>0},B={(x,y)|x+y-n≤0},那么点P(2,3)A(C U B)的充要条件是()A.m1,n5B.m1,n5C.m1,n5D.m1,n5二、填空题:本大题共4小题,每题4分,共16分,把答案填在题中横线上.13.过点P(-1,2)且与曲线y=3x2-4x+2在点M(1,1)处的切线平行的直线方程是__________.14.(x21)9的睁开式中的常数项为___________(用数字作答) x,F是椭圆C:x2x21的焦点,在C上知足PF⊥PF的点P的个数为__________.15.F12841216.若直线y=2a与函数y=|a x-1|(a>0,且a≠1)的图象有两个公共点,则a的取值范围是_______.三、解答题:本大题共6 小题,共 74分.解答应写出必需的文字说明、证明过程或运算步骤.17.(本小题满分 12分)1已知 tan() 2, 求的值.42sincoscos218.(本小题满分12分)如图,在底面 是菱形的四棱锥 P —ABC D中,∠ABC=600,PA=AC=a,PB=PD=2a ,点E 是PD 的中点.I )证明PA ⊥平面ABCD ,PB ∥平面EAC ;(II )求以AC 为棱,EAC 与DAC 为面的二面角 的正切值.PE ADBC19.(本小题满分 12分) 甲、乙、丙三台机床各自独立地加工同一种部件, 已知甲机床加工的部件是一等品而乙机床加工的部件不是一等品的概率为1 ,乙机床加工的部件是一等品而丙机床加工的部件不142是一等品的概率为,甲、丙两台机床加工的部件都是一等品的概率为.12 9(Ⅰ)分别求甲、乙、丙三台机床各自加工部件是一等品的概率;(Ⅱ)从甲、乙、丙加工的部件中各取一个查验,求起码有一个一等品的概率.20.(本小题满分12分)已知数列{a n}是首项为a且公比q不等于1的等比数列,S n是其前n项的和,a1,2a7,3a4成等差数列. I)证明12S3,S6,S12-S6成等比数列;II)乞降T n=a1+2a4+3a7++na3n-2.21.(本小题满分12分)如图,已知曲线33C1:y=x(x≥0)与曲线C2:y=-2x+3x(x≥0)交于O,A,直线x=t(0<t<1)与曲线C1,C2分别交于B,D.(Ⅰ)写出四边形ABOD的面积S与t的函数关系式S=f(t);(Ⅱ)议论f(t)的单一性,并求f(t)的最大值.yC1DAC2BxO22.(本小题满分14分)t如图,过抛物线x2=4y的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A,B两点,点Q是点P对于原点的对称点(I)设点P分有向线段AB所成的比为,证明:QP(QAQB)(II)设直线AB的方程是x-2y+12=0,过A,B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.2019年一般高等学校招生湖南卷文史类类数学试题参照答案113.2x -y+4=0 14.8415.216.(0, )17.(本小题满分 12分)2解:由tan(4)1 tan 2,得tan1.1 tan3(1)21sin 2221 12于是costan3coscos22sin coscos 22tan11.2sin1 32318.(Ⅰ)证法一 由于底面ABCD 是菱形,∠ABC=60°,P因此AB=AD=AC= a , 在△PAB 中,由PA 2+AB 2=2a 2=PB 2 知PA ⊥AB. 同理,PA ⊥AD ,因此PA ⊥平面ABCD.由于PB PD DC CB 2ED DC DAE(ED DA) (ED DC) EA EC.AD因此 PB 、EA 、EC 共面.又PB 平面EAC ,因此PB//平面EAC. 证法二 同证法一得 PA ⊥平面ABCD. 连接BD ,设BD AC=O ,则O 为BD 的中点. 连接OE ,由于E 是PD 的中点,因此 PB//OE. 又PB 平面EAC ,OE 平面EAC ,故PB//平面EAC. (Ⅱ)解 作EG//PA 交AD 于G ,由PA ⊥平面ABCD. 知EG ⊥平面ABCD.作GH ⊥AC 于H ,连接EH ,则EH ⊥AC ,∠EHG 即为二面角平面角.BP的CE又E 是PD 的中点,进而G 是AD 的中点,AEG11 a,GHAGsin603BHa,AGa.224因此tanEG 2 3.GH319.(本小题满分 12分)解:(Ⅰ)设A 、B 、C 分别为甲、乙、丙三台机床各自加工的部件是一等品的事件P(A B)1 ,P(A) (1 P(B))1 4 ,①4由题设条件有P(B C)1, 即P(B)(1 P(C))1, ②1212P(AC)2. P(A)P(C)2. ③99由①、③得P(B) 19P(C) 代入②得27[P(C)]2-51P(C)+22=0.G DC.8解得P(C) 2 11(舍去).3 或9将P(C)2 分别代入③、②可得P(A)1,P(B)1.334即甲、乙、丙三台机床各加工的部件是一等品的概率分别是1 , 1 , 2.3 4 3(Ⅱ)记D 为从甲、乙、丙加工的部件中各取一个查验,起码有一个一等品的事件,则P(D)1P(D)1(1P(A))(1P(B))(1 P(C))1 2 3 1 5.34 3 6故从甲、乙、丙加工的部件中各取一个查验,起码有一个一等品的概率为5.620.(Ⅰ)证明由a 1,2a 7,3a 4成等差数列, 得4a 7 a 1 3a 4,即4aq 6 a 3aq 3.变形得(4q 31)(q 3 1)0,因此q 31 或q 3 1(舍去).4a 1(1 q 6)由S 61 q1q 3 1 .12S 312a 1(1 q 3)12161 qa 1(1 q 12)S12S 6S121 1q1 1 q 6 1q61S 6S 6.a 1(1q 6)161 q得S 6S12S6.因此12S 3 ,S ,S-S 成等比数列.12S 3S 66126(Ⅱ)解:T na 12 a 4 3na 3n2a23 36 na q3(n1).a 7aqaq即T na2(1)a3(1)2an(1)n1a.① ①×(1)得:4441 112 a3(1 3an(1 n1an(1n a44T n4a2(4) 4)4)4)a[1 ( 1)n ]1n 4414n(a(n a.1)a5n)()1 ( )4544因此T n16a(164n)(1)na.25 255421.(本小题满分12分)解:(Ⅰ)由y x 3得交点O 、A 的坐标分别是(0,0),(1,1).2x 3y3x,f(t)SABOSOBD1|BD||10|1|BD|1(3t 33t),3(t 3222 即f(t)t).(0 t 1).2(Ⅱ)f(t)9t 2 3.令f(t)解得t3.2 23当0t3时,f(t)0,进而f(t)在区间(0, 3)上是增函数;33当3 t 1时,f(t)0,进而f(t)在区间(3,1)上是减函数.33因此当t3 时,f(t)有最大值为f(3) 3.333。
高考文科数学湖南卷试题与答案word解析版
普通高等学校夏季招生全国统一考试数学文史类(湖南卷)19.(2013湖南,文19)(本小题满分13分)设S n 为数列{a n }的前n 项和,已知a 1≠0,2a n -a 1=S 1·S n ,n ∈N *.(1)求a 1,a 2,并求数列{a n }的通项公式;(2)求数列{na n }的前n 项和.19.解:(1)令n =1,得2a 1-a 1=a 12,即a 1=a 12.因为a 1≠0,所以a 1=1.令n =2,得2a 2-1=S 2=1+a 2.解得a 2=2.当n ≥2时,由2a n -1=S n,2a n -1-1=S n -1两式相减得2a n -2a n -1=a n . 即a n =2a n -1.于是数列{a n }是首项为1,公比为2的等比数列.所以,a n =2n -1.所以数列{a n }的通项公式为a n =2n -1.(2)由(1)知,na n =n ·2n -1.记数列{n ·2n -1}的前n 项和为B n ,于是B n =1+2×2+3×22+…+n ×2n -1,①2B n =1×2+2×22+3×23+…+n ×2n .②①-②得-B n =1+2+22+…+2n -1-n ·2n=2n -1-n ·2n .从而B n =1+(n -1)·2n .20.(2013湖南,文20)(本小题满分13分)已知F 1,F 2分别是椭圆E :25x +y 2=1的左、右焦点,F 1,F 2关于直线x +y -2=0的对称点是圆C 的一条直径的两个端点.(1)求圆C 的方程;(2)设过点F 2的直线l 被椭圆E 和圆C 所截得的弦长分别为a ,b ,当ab 最大时,求直线l 的方程.20.解:(1)由题设知,F 1,F 2的坐标分别为(-2,0),(2,0),圆C 的半径为2,圆心为原点O 关于直线x +y -2=0的对称点.设圆心的坐标为(x 0,y 0),由00001,2022y x x y ⎧=⎪⎪⎨⎪+-=⎪⎩解得002,2.x y =⎧⎨=⎩ 所以圆C 的方程为(x -2)2+(y -2)2=4.(2)由题意,可设直线l 的方程为x =my +2,则圆心到直线l的距离d =所以b ==由222,15x my x y =+⎧⎪⎨+=⎪⎩得(m 2+5)y 2+4my -1=0. 设l 与E 的两个交点坐标分别为(x 1,y 1),(x 2,y 2),则y 1+y 2=245m m -+,y 1y 2=215m -+.于是a =从而ab===m= 故当m =±3时,ab 最大,此时,直线l 的方程为x y +2或x =y +2,即x y -2=0,或x -2=0.21.(2013湖南,文21)(本小题满分13分)已知函数f (x )=211x x-+e x . (1)求f (x )的单调区间;(2)证明:当f (x 1)=f (x 2)(x 1≠x 2)时,x 1+x 2<0.21.(2013湖南,文21)(本小题满分13分)已知函数f (x )=211x x-+e x . (1)求f (x )的单调区间;(2)证明:当f (x 1)=f (x 2)(x 1≠x 2)时,x 1+x 2<0.(1)解:函数f (x )的定义域为(-∞,+∞). f ′(x )=211x x -⎛⎫'⎪+⎝⎭e x +211x x -+e x =2222211e 11x x x x x x ⎡⎤---+⎢⎥(+)+⎣⎦ =222[12]e 1x x x x -(-)+(+). 当x <0时,f ′(x )>0;当x >0时,f ′(x )<0.所以f (x )的单调递增区间为(-∞,0),单调递减区间为(0,+∞).(2)证明:当x <1时,因为211x x-+>0,e x >0, 故f (x )>0;同理,当x >1时,f (x )<0.当f (x 1)=f (x 2)(x 1≠x 2)时,不妨设x 1<x 2,由(1)知x 1∈(-∞,0),x 2∈(0,1).下面证明:∀x ∈(0,1),f (x )<f (-x ),即证2211e e 11x x x x x x--+<++. 此不等式等价于(1-x )e x -1ex x +<0. 令g (x )=(1-x )e x -1e x x +,则 g ′(x )=-x e -x (e 2x -1).当x ∈(0,1)时,g ′(x )<0,g (x )单调递减,从而g (x )<g (0)=0.即 (1-x )e x -1e xx +<0. 所以∀x ∈(0,1),f (x )<f (-x ).而x 2∈(0,1),所以f (x 2)<f (-x 2),从而f (x 1)<f (-x 2).因为x 1,-x 2∈(-∞,0),f (x )在(-∞,0)上单调递增,所以x 1<-x 2,即 x 1+x 2<0.。
高考文科数学湖南卷试题与答案word解析版
高考文科数学湖南卷试题与答案word解析版20XX年普通高等学校夏季招生全国统一考试数学文史类(湖南卷)一、选择题:本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(20XX年湖南,文1)复数z=i(1+i)(i为虚数单位)在复平面上对应的点位于( ).A.第一象限B.第二象限C.第三象限D.第四象限2.(20XX年湖南,文2)“1<x<2”是“x<2”成立的( ).A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.(20XX年湖南,文3)某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n=( ).A.9 B.10 C.12 D.13 4.(20XX年湖南,文4)已知f(x)是奇函数,g(x)是偶函数,且f(-1)+g(1)=2,f(1)+g(-1)=4,则g(1)等于( ).A.4 B.3 C.2 D.1 5.(20XX年湖南,文5)在锐角△ABC 中,角A,B所对的边长分别为a,b.若2asin B,则角A等于( ).ππππA.3 B.4 C.6 D.126.(20XX年湖南,文6)函数f(x)=ln x的图象与函数g(x)=x-4x+4的图象的交点个数为( ).A.0 B.1 C.2 D.3 7.(20XX年湖南,文7)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,的矩形,则该正方体的正视图的面积等于( ).2A.B.1 C.D8.(20XX年湖南,文8)已知a,b是单位向量,ab=0.若向量c满足|c-a-b|=1,则|c|的最大值为( ). A1 B1 D29.(20XX年湖南,文9)已知事件“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”发生的概1AD,则=( ).2AB11A.2 B.4 C.D.二、填空题:本大题共6小题,每小题5分,共30分.率为10.(20XX年湖南,文10)已知集合U={2,3,6,8},A={2,3},B={2,6,8},则(UA)∩B=__________.x 2s 111.(20XX年湖南,文11)在平面直角坐标系xOy中,若直线l1:(s为参数)和直线l2:y sx at,(t为参数)平行,则常数a的值为__________.y 2t 112.(20XX年湖南,文12)执行如图所示的程序框图,如果输入a=1,b=2,则输出的a的值为__________.x 2y 8,13.(20XX年湖南,文13)若变量x,y满足约束条件0 x 4,则x+y0 y 3,的最大值为__________.x2y214.(20XX年湖南,文14)设F1,F2是双曲线C:2 2 1(a>0,b>0)的两个焦点.若在C上存在ab一点P,使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为__________.15.(20XX年湖南,文15)对于E={a1,a2,,a100}的子集X={ai1,ai2,,aik},定义X的“特征数列”为x1,x2,,x100,其中xi1=xi2==xik=1,其余项均为0.例如:子集{a2,a3}的“特征数列”为0,1,1,0,0,,0.(1)子集{a1,a3,a5}的“特征数列”的前3项和等于__________;(2)若E的子集P的“特征数列”p1,p2,,p100满足p1=1,pi+pi+1=1,1≤i≤99;E的子集Q的“特征数列”q1,q2,,q100满足q1=1,qj+qj+1+qj+2=1,1≤j≤98,则P∩Q的元素个数为__________.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.π16.(20XX年湖南,文16)(本小题满分12分)已知函数f(x)=cos xcos x .32π(1)求f 的值;31(2)求使f(x)<成立的x的取值集合.417.(20XX年湖南,文17)(本小题满分12分)如图,在直棱柱ABC-A1B1C1中,∠BAC=90°,AB=ACAA1=3,D是BC的中点,点E在棱BB1上运动.(1)证明:AD⊥C1E;(2)当异面直线AC,C1E所成的角为60°时,求三棱锥C1-A1B1E的体积.18.(20XX年湖南,文18)(本小题满分12分)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y(单位:kg) 1米.(1)(2)48 kg的概率.19.(20XX年湖南,文19)(本小题满分13分)设Sn为数列{an}的前n项和,已知a1≠0,2an-a1=S1Sn,n∈*N.(1)求a1,a2,并求数列{an}的通项公式;(2)求数列{nan}的前n项和.x2220.(20XX年湖南,文20)(本小题满分13分)已知F1,F2分别是椭圆E:+y=1的左、右焦点,F1,F25关于直线x+y-2=0的对称点是圆C的一条直径的两个端点.(1)求圆C的方程;(2)设过点F2的直线l被椭圆E和圆C所截得的弦长分别为a,b,当ab最大时,求直线l的方程.21.(20XX年湖南,文21)(本小题满分13分)已知函数f(x)=(1)求f(x)的单调区间;(2)证明:当f(x1)=f(x2)(x1≠x2)时,x1+x2<0.1 xxe. 1 x220XX年普通高等学校夏季招生全国统一考试数学文史类(湖南卷)数学(文史卷)一、选择题:本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.答案:B解析:z=i(1+i)=i-1=-1+i,故选B.2.答案:A解析:∵“1<x<2”能推出“x<2”成立,但“x<2”不能推出“1<x<2”成立,故选A.3.答案:D 解析:抽样比为31 ,所以甲抽取6件,乙抽取4件,丙抽取3件,∴n=13,故选D.60204.答案:B解析:∵f(x)是奇函数,g(x)是偶函数,∴f(-1)+g(1)=2,即-f(1)+g(1)=2.① f(1)+g(-1)=4,即f(1)+g(1)=4.② 由①+②得g(1)=3,故选B.5.答案:A解析:∵2asin B,∴2sin Asin BB.∵sin B≠0,∴sin Aπ,2 π∴A=.故选A.3∵A∈ 0,6.答案:C解析:利用图象知,有两个交点.故选C.7.答案:D解析:如图所示,正方体ABCD-A1B1C1D1的俯视图为ABCD,侧视图为BB1D1D正方体的正视图应为AA1C1C.又因AC8.答案:C解析:可利用特殊值法求解.可令a=(1,0),b=(0,1),c=(x,y).由|c-a-b|=1,1,∴(x-1)+(y-1)=1. |c|即为22,可看成M上的点到原点的距离,∴|c|max=|OM|+1=1.故选C.答案:D解析:如图,设AB=2x,AD=2y.由于AB为最大边的概率是11,则P在EF上运动满足条件,且DE=CF=x,即AB=EB或AB=FA.229222∴2x 4x=4y+x,472y272即x=4y,∴2 .4x16y∴ .x4AD2yy又∵,故选D.AB2xx4二、填空题:本大题共6小题,每小题5分,共30分.10.答案:{6,8} 11.答案:4解析:l1的普通方程为:x=2y+1,l2的普通方程为:x=a y 1aa,即x y ,∴a=4. 22212.答案:9解析:输入a=1,b=2,不满足a>8,故a=3;a=3不满足a>8,故a=5;a=5不满足a>8,故a=7;a=7不满足a >8,故a=9,满足a>8,终止循环.输出a=9. 13.答案:6 解析:画出可行域,令z=x+y,易知z在A(4,2)处取得最大值6.14.1解析:如图所示,∵PF1⊥P F2,∠PF1F2=30°,可得|PF2|=c. 由双曲线定义知,|PF1|=2a+c,222由|F1F2|=|PF1|+|PF2|得*****4c=(2a+c)+c,即2c-4ac-4a=0,2即e-2e-2=0,∴ee 1. 15.答案:(1)2 (2)17解析:(1){a1,a3,a5}的特征数列为1,0,1,0,1,0,,0,∴前3项和为2. (2)根据题意知,P的特征数列为1,0,1,0,1,0,,则P={a1,a3,a5,,a99}有50个元素,Q的特征数列为1,0,0,1,0,0,1,,则Q={a1,a4,a7,a10,,a100}有34个元素,∴P∩Q={a1,a7,a13,,a97},共有1+97 1=17个.6三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解:(1)f2π3cos2π3 cosπ3 =cosππ3 cos32=11 24.(2)f(x)=cos xcosx π3=cos x1 cosx x 22=12cos2x+2sin xcos x =14(1+cos 2x)+4sin 2x =12cos2x π 13 4. f(x)<14等价于12cos2x 3 4 4,即cosπ2x 3 0.于是2kπ+π2<2x-π3<2kπ+3π2,k∈Z.解得kπ+5π12<x<kπ+11π12,k∈Z.故使f(x)<1 5π11π4成立的x的取值集合为x|kπ 12 x kπ 12,k Z.17.(1)证明:因为AB=AC,D是BC的中点,所以AD⊥BC.①又在直三棱柱ABC-A1B1C1中,BB1⊥平面ABC,而AD 平面ABC,所以AD⊥BB1.② 由①,②得AD⊥平面BB1C1C.由点E在棱BB1上运动,得C1E 平面BB1C1C,所以AD⊥C1E.(2)解:因为AC∥A1C1,所以∠A1C1E是异面直线AC,C1E 所成的角,由题设,∠A1C1E=60°,因为∠B1A1C1=∠BAC=90°,所以A1C1⊥A1B1,又AA1⊥A1C1,从而A1C1⊥平面A1ABB1,于是A1C1⊥A1E. 故C1EAC11cos60,又B1C1=2,所以B1E=2,从而V1三棱锥C A1B1E=13S112A1B1EA1C1=3 2 2 3. 18.解:(1)所种作物的总株数为1+2+3+4+5=15,其中“相近”作物株数为1的作物有2株,“相近”作物株数为2的作物有4株,“相近”作物株数为3的作物有6株,“相近”作物株数为4的作物有3株.列表如下:所种作物的平均年收获量为51 2 48 4 45 6 42 315102 192 270 126=15690==46. 15(2)由(1)知,P(Y=51)=24,P(Y=48)=. 1515242. *****故在所种作物中随机选取一株,它的年收获量至少为48 kg 的概率为P(Y≥48)=P(Y=51)+P(Y=48)=19.22解:(1)令n=1,得2a1-a1=a1,即a1=a1. 因为a1≠0,所以a1=1.令n=2,得2a2-1=S2=1+a2. 解得a2=2.当n≥2时,由2an-1=Sn,2an-1-1=Sn-1两式相减得2an-2an-1=an. 即an=2an-1.于是数列{an}是首项为1,公比为2的等比数列.n-1因此,an=2.n-1所以数列{an}的通项公式为an=2.n-1(2)由(1)知,nan=n2.n-1记数列{n2}的前n项和为Bn,于是Bn=1+22+322++n2n-1,①23n2Bn=12+22+32++n2.② ①-②得2n-1n-Bn=1+2+2++2-n2 nn=2-1-n2.n从而Bn=1+(n-1)2. 20.解:(1)由题设知,F1,F2的坐标分别为(-2,0),(2,0),圆C 的半径为2,圆心为原点O关于直线x+y-2=0的对称点.y01,x0 2,x设圆心的坐标为(x0,y0),由0解得y0 2. x0 y0 222所以圆C的方程为(x-2)+(y-2)=4.(2)由题意,可设直线l的方程为x=my+2,则圆心到直线l 的距离d 所以b22x my 2, 22由x2得(m+5)y+4my-1=0. 2y 1 5设l与E的两个交点坐标分别为(x1,y1),(x2,y2),则y1+y2=4m1,y.1y2=22m 5m 5于是a从而ab=,即m故当m3时,ab最大,此时,直线l的方程为x+2或x=+2,即x-2=0,或x-2=0.1 xx21.(20XX年湖南,文21)(本小题满分13分)已知函数f(x)=e.1 x2(1)求f(x)的单调区间;(2)证明:当f(x1)=f(x2)(x1≠x2)时,x1+x2<0. (1)解:函数f(x)的定义域为(-∞,+∞).1 x x1 xxe e+22 1 x 1 xx2 2x 11 x xe =222 1 x 1 xf′(x)=x[ x 1 2 2]x=e. 221 x当x<0时,f′(x)>0;当x>0时,f′(x)<0.所以f(x)的单调递增区间为(-∞,0),单调递减区间为(0,+∞).(2)证明:当x<1时,由于1 xx>0,e>0,2故f(x)>0;同理,当x>1时,f(x)<0.当f(x1)=f(x2)(x1≠x2)时,不妨设x1<x2,由(1)知x1∈(-∞,0),x2∈(0,1).下面证明:x∈(0,1),f(x)<f(-x),即证1 xx1 x xe e. 221 x1 x此不等式等价于1 x<0. ex1 xx令g(x)=(1-x)e-x,则e(1-x)e-xg′(x)=-xe-x(e2x-1).当x∈(0,1)时,g′(x)<0,g(x)单调递减,从而g(x)<g(0)=0.即(1-x)e-1 x<0. ex所以x∈(0,1),f(x)<f(-x).而x2∈(0,1),所以f(x2)<f(-x2),从而f(x1)<f(-x2).由于x1,-x2∈(-∞,0),f(x)在(-∞,0)上单调递增,所以x1<-x2,即x1+x2<0.。
2019年湖南高考文科数学试题及答案word版
绝密★启用前2019年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z = A .2B 3C 2D .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则UB A =A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .451-51-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体51-.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是a b c <<a c b <<c a b <<b c a <<A .165 cmB .175 cmC .185 cmD .190cm5.函数f (x )=2sincos x xx x++在[—π,π]的图像大致为 A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .-2B .-C .2D .8.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
高考文科数学试卷答案解析
138] ,
[139,
151],
[152,
153] ,
根据系数抽样方法从中抽取 7 人 ,
得到抽取比例为 ,
所以成绩在区间 [139,
151] 中共有 20 名运动员 ,
抽取人数为 20× =4 ;
故选 B.
点评:本 题考查了茎叶图的认识以及利用系统抽样抽取个体的方法;关键是正确分层
,
明确抽取比例.
8.( 5 分)( 2019 ?湖南)设函数
A .奇 函数 ,
且在( 0,
函数
f ( x) =ln ( 1+x)﹣ ln( 1﹣ x),
则 f( x)是(
)
1)上是增 B. 奇 函数 ,
且在( 0,
1)上是减
函数
C. 偶 函数 , 函数
且在( 0,
1)上是增 D. 偶 函数 , 函数
且在( 0,
1)上是减
1﹣ 35 号 ,
再用系数抽样方法从中
抽取 7 人 ,
则其中成绩在区间 [139,
151] 上的运动员人数是(
)
A .3
B.4
C. 5
D.6
分析:对 各数据分层为三个区间 ,
然后根据系数抽样方法从中抽取
取比例为 ,
然后各层按照此比例抽取.
7 人,
得到抽
解答:解 :由已知 ,
将个数据分为三个层次是 [130,
|=|2 + |=|4+ |. B 为(﹣ 1,
0)时 ,
|4+ |≤7,
即可得出结论.
解答: 解:由题意 ,
AC 为直径 ,
所以 |
|=|2 + |=|4+ |.
高考文数试题及答案(湖南卷)(WORD版)
2008 年一般高等学校招生全国一致考试(湖南卷)文科数学能力测试一.选择题1.已知U 2,3,4,5,6,7 , M 3,4,5,7 , N 2,4,5,6 ,则A .M N 4,6 B.M N UC.(C u N ) M U D. (C u M ) N N2.“x 1 2 ”是“ x 3 ”的A .充足不用要条件 B. 必需不充足条件C.充足必需条件 D. 既不充足也不用要条件x 1,3.已条变量x, y知足y 2, 则 x y的最小值是x y 0,A . 4 B.3 C.2 D.14.函数f ( x) x2 (x 0) 的反函数是A. f 1 (x) x (x 0)B. f 1 ( x) x (x 0)C . f 1 ( x) x( x 0) D. f 1 ( x) x2 ( x 0)5.已知直线 m,n 和平面, 知足 m n,m a, ,则A.nB.n // , 或 nC.n D .n // , 或 n6.下边不等式建立的是A .log32 log 2 3 log 2 5B.log3 2 log 2 5 log 2 3C.log2 3 log 3 2 log 2 5D.log23 log 2 5 log 3 27.在ABC 中,AB=3,AC=2,BC=10 ,则 AB AC3 2A.B.2 32 3C.D.3 28.某市拟从 4 个要点项目和 6 个一般项目中各选 2 个项目作为今年度启动的项目,则要点项目A 和一般项目B 起码有一个被选中的不一样选法种数是A.15 B. 45C.60 D. 759.长方体ABCD A1 B1 C1D1的8个极点在同一个球面上,且AB=2 ,AD= 3,AA1 1,则极点 A 、 B 间的球面距离是2 2A .B.4 2C. 2 D . 2 2x2 y 21( a 0, b 0) 的右支上存在一点,它到右焦点及左准线的距离相等,10.双曲线2 b 2a则双曲线离心率的取值范围是A.1, 2 B. 2 ,C.1, 2 1 D . 2 1,二.填空题11.已知向量 a (1, 3) , b ( 2,0) ,则a b =_____________________.12.从某地域15000 位老人中随机抽取500 人,其生活可否自理的状况以下表所示:男女能178278不可以2321则该地域生活不可以自理的老人中男性比女性约多_____________ 人。
湖南数学高考文科试卷及解答精选文档
湖南数学高考文科试卷及解答精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-选择题:本大题共12小题,每小题5分(1)设集合,,则(A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7} (2)设的实部与虚部相等,其中a 为实数,则a=(A )-3 (B )-2 (C )2 (D )3(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(A ) (B ) (C )23(D )(4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知,,,则b= (A(B(C )2 (D )3(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为(A )13 (B )12 (C )23 (D )34(6)若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为 {1,3,5,7}A ={|25}B x x =≤≤A B =(12i)(i)a ++131256a =2c =2cos 3A =(A )y =2sin(2x +π4) (B )y =2sin(2x +π3) (C )y =2sin(2x –π4) (D )y =2sin(2x –π3) (7)如图,学.科网某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是(A )17π (B )18π (C )20π (D )28π (8)若a>b>0,0<c<1,则(A )log a c <log b c (B )log c a <log c b (C )a c <b c (D )c a >c b (9)函数y =2x 2–e |x |在[–2,2]的图像大致为(A )(B )(C ) (D )(10)平面过正文体ABCD —A 1B 1C 1D 1的顶点A,,,,则m ,n 所成角的正弦值为(A(B (C (D )α11//CB D α平面ABCD m α=平面11ABB A n α=平面32313(A ) (B )(C )(D )本卷包括必考题和选考题两部分.第(13) ~ (21)题为必考题,每个试题考生都必须作答.第(22) ~ (24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)设向量a =(x ,x +1),b =(1,2),且a b ,则x =___________(14)已知θ是第四象限角,且sin(θ+)=,则tan(θ–)=___________.(15)设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若,则圆C 的面积为_________(16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料。
最新 文科数学高考精选试题(湖南卷)附答案及解析
普通高等学校招生全国统一考试(湖南卷)数学(文史类)一、选择题:本大题共9小题,每小题5分,共45分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.设集合M={-1,0,1},N={x|x2=x},则M∩N=A.{-1,0,1}B.{0,1}C.{1}D.{0} 【答案】B【解析】{}0,1Q M={-1,0,1} ∴M∩N={0,1}N=【点评】本题考查了集合地基本运算,较简单,易得分.先求出{}0,1N=,再利用交集定义得出M∩N.2.复数z=i(i+1)(i为虚数单位)地共轭复数是A.-1-iB.-1+iC.1-iD.1+i 【答案】A 【解析】由z=i (i+1)=1i -+,及共轭复数定义得1z i =--. 【点评】本题考查复数代数形式地四则运算及复数地基本概念,考查基本运算能力.先把Z 化成标准地(,)a bi ab R +∈形式,然后由共轭复数定义得出1z i =--.3.命题“若α=4π,则tan α=1”地逆否命题是 A.若α≠4π,则tan α≠1 B. 若α=4π,则tan α≠1C. 若tan α≠1,则α≠4πD. 若tan α≠1,则α=4π 【答案】C【解析】因为“若p ,则q ”地逆否命题为“若p ⌝,π,则tanα=1”地逆否命题是则q⌝”,所以“若α=4π”.“若tanα≠1,则α≠4【点评】本题考查了“若p,则q”形式地命题地逆命题、否命题与逆否命题,考查分析问题地能力.4.某几何体地正视图和侧视图均如图1所示,则该几何体地俯视图不可能...是【答案】D【解析】本题是组合体地三视图问题,由几何体地正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角地三棱柱,A,B,C,都可能是该几何体地俯视图,D不可能是该几何体地俯视图,因为它地正视图上面应为如图地矩形.【点评】本题主要考查空间几何体地三视图,考查空间想象能力.是近年来热点题型.5.设某大学地女生体重y(单位:kg)与身高x(单,位:cm)具有线性相关关系,根据一组样本数据(xi )(i=1,2,…,n),用最小二乘法建立地回归方yi程为$y=0.85x-85.71,则下列结论中不正确...地是A.y与x具有正地线性相关关系B.回归直线过样本点地中心(x,y)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg【答案】D【解析】由回归方程为$y=0.85x-85.71知y随x地增大而增大,所以y与x具有正地线性相关关系,由最小二乘法建立地回归方程得过程知ˆ()=+=+-=-,所以回归直线过样本点地中心y bx a bx y bx a y bx(x,y),利用回归方程可以预测估计总体,所以D 不正确.【点评】本题组要考查两个变量间地相关性、最小二乘法及正相关、负相关地概念,并且是找不正确地答案,易错.6. 已知双曲线C :22x a -22y b =1地焦距为10 ,点P (2,1)在C 地渐近线上,则C 地方程为A .220x -25y =1 B.25x -220y =1 C.280x -220y =1 D.220x -280y =1 【答案】A【解析】设双曲线 C :22x a -22y b =1地半焦距为c ,则210,5c c ==.又Q C 地渐近线为b y x a =±,点P (2,1)在C 地渐近线上,12b a ∴=g ,即2a b =. 又222ca b=+,a ∴==,∴C 地方程为220x -25y =1.【点评】本题考查双曲线地方程、双曲线地渐近线方程等基础知识,考查了数形结合地思想和基本运算能力,是近年来常考题型.7 . 设 a >b >1,0c < ,给出下列三个结论:① ca >cb ;② ca <cb ; ③ log ()log ()baa cbc ->-,其中所有地正确结论地序号是__.A .① B.① ② C.② ③ D.① ②③ 【答案】D【解析】由不等式及a >b >1知11a b <,又0c <,所以c a>c b ,①正确;由指数函数地图像与性质知②正确;由a >b >1,0c <知11a c b c c ->->->,由对数函数地图像与性质知③正确.【点评】本题考查函数概念与基本初等函数Ⅰ中地指数函数地图像与性质、对数函数地图像与性质,不等关系,考查了数形结合地思想.函数概念与基本初等函数Ⅰ是常考知识点.8 . 在△ABC 中,,BC=2,B =60°,则BC 边上地高等于A .2 B.2 C.24【答案】B【解析】设AB c =,在△ABC 中,由余弦定理知2222cos AC AB BC AB BC B=+-⋅⋅,即27422cos60cc =+-⨯⨯⨯o,2230,(-3)(1)cc c c --=+即=0.又0, 3.c c >∴=设BC 边上地高等于h ,由三角形面积公式11sin 22ABC S AB BC B BC h ==V g g g ,知1132sin 60222h ⨯⨯⨯=⨯⨯o ,解得2h =.【点评】本题考查余弦定理、三角形面积公式,考查方程思想、运算能力,是历年常考内容. 9. 设定义在R 上地函数f(x)是最小正周期为2π地偶函数,()f x '是f(x)地导函数,当[]0,x π∈时,0<f(x)<1;当x ∈(0,π) 且x ≠2π时 ,()()02x f x π'->,则函数y=f(x)-sinx 在[-2π,2π] 上地零点个数为A .2B .4 C.5 D. 8 【答案】B【解析】由当x ∈(0,π) 且x ≠2π时 ,()()02x f x π'->,知0,()0,()2x f x f x π⎡⎫'∈<⎪⎢⎣⎭时,为减函数;()0,()2x f x f x ππ⎛⎤'∈> ⎥⎝⎦,时,为增函数又[]0,x π∈时,0<f (x )<1,在R 上地函数f (x )是最小正周期为2π地偶函数,在同一坐标系中作出sin=和y x =草图像如下,由图知y=f(x)-sinx在[-2π,2 ()y f xπ] 上地零点个数为4个.【点评】本题考查函数地周期性、奇偶性、图像及两个图像地交点问题.二、填空题,本大题共7小题,考生作答6小题.每小题5分共30分,把答案填在答题卡中对应题号后地横线上.(一)选做题,(请考生在第10,,1两题中任选一题作答,如果全做,则按前一题记分)10.在极坐标系中,曲线1C :sin )1ρθθ+=与曲线2C :a ρ=(0)a >地一个交点在极轴上,则a =_______.【解析】曲线1C 1y +=,曲线2C 地普通方程是直角坐标方程222x y a +=,因为曲线C 1:sin )1ρθθ+=与曲线C 2:a ρ=(0)a >地一个交点在极轴上,所以1C 与x 轴交点横坐标与a 值相等,由0,2y x ==,知a =2.【点评】本题考查直线地极坐标方程、圆地极坐标方程,直线与圆地位置关系,考查转化地思想、方程地思想,考查运算能力;题型年年有,难度适中.把曲线1C 与曲线2C 地极坐标方程都转化为直角坐标方程,求出与x 轴交点,即得.11.某制药企业为了对某种药用液体进行生物测定,需要优选培养温度,实验范围定为29℃~63℃.精确度要求±1℃.用分数法进行优选时,能保证找到最佳培养温度需要最少实验次数为_______.【答案】7【解析】用分数法计算知要最少实验次数为7. 【点评】本题考查优选法中地分数法,考查基本运算能力.(二)必做题(12~16题)12.不等式x2-5x+6≤0地解集为______.【答案】{}23≤≤x x【解析】由x2-5x+6≤0,得(3)(2)0--≤,从而地不等x x式x2-5x+6≤0地解集为{}≤≤.23x x【点评】本题考查一元二次不等式地解法,考查简单地运算能力.13.图2是某学校一名篮球运动员在五场比赛中所得分数地茎叶图,则该运动员在这五场比赛中得分地方差为_________.08910352图 (注:方差2222121()()()n s x x x x x x n⎡⎤=-+-++-⎣⎦L ,其中x 为x 1,x 2,…,x n 地平均数)【答案】6.8 【解析】1(89101315)115x =++++=, 2222221(811)(911)(1011)(1311)(1511)5s ⎡⎤=-+-+-+-+-⎣⎦ 6.8=.【点评】本题考查统计中地茎叶图方差等基础知识,考查分析问题、解决问题地能力.14.如果执行如图3所示地程序框图,输入 4.5x =,则输出地数i = .【答案】4【解析】算法地功能是赋值,通过四次赋值得0.5x =,输出4i =.【点评】本题考查算法流程图,考查分析问题解决问题地能力,平时学习时注意对分析问题能力地培养.15.如图4,在平行四边形ABCD 中 ,AP ⊥BD ,垂足为P ,3AP =且AP AC uu u v u u u v g = .【答案】18【解析】设AC BD O =I ,则2()AC AB BO =+uu u v u u u v u u u v ,AP AC u u u v u u u v g = 2()AP AB BO +=u u u v u u u v u u u v g 22AP AB AP BO +u u u v u u u v u u u v u u u v g g 222()2AP AB AP AP PB AP ==+=u u u v u u u v u u u v u u u v u u u v u u u v g 18=.【点评】本题考查平面向量加法地几何运算、平面向量地数量积运算,考查数形结合思想、等价转化思想等数学思想方法.16.对于N n *∈,将n 表示为1101102222k k k k n a a a a --=⨯+⨯++⨯+⨯L ,当i k =时1i a =,当01i k ≤≤-时i a 为0或1,定义nb 如下:在n 地上述表示中,当01,a a ,a 2,…,a k 中等于1地个数为奇数时,b n =1;否则b n =0.(1)b 2+b 4+b 6+b 8=__;(2)记c m 为数列{b n }中第m 个为0地项与第m +1个为0地项之间地项数,则c m 地最大值是___.【答案】(1)3;(2)2.【解析】(1)观察知000112,1,1a a b =⨯==;1010221202,1,0,1a a b =⨯+⨯===;一次类推10331212,0b =⨯+⨯=;21044120202,1b =⨯+⨯+⨯=;21055120212,0b =⨯+⨯+⨯=;2106121202=⨯+⨯+⨯,60b =,781,1b b ==,b 2+b 4+b 6+b 8=3;(2)由(1)知c m 地最大值为2.【点评】本题考查在新环境下地创新意识,考查运算能力,考查创造性解决问题地能力.需要在学习中培养自己动脑地习惯,才可顺利解决此类问题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)某超市为了解顾客地购物量及结算时间等信息,安排一名员工随机收集了在该超市购物地100位顾客地相关数据,如下表所示.已知这100位顾客中地一次购物量超过8件地顾客占55%.(Ⅰ)确定x ,y 地值,并估计顾客一次购物地结算时间地平均值;(Ⅱ)求一位顾客一次购物地结算时间不超过...2分钟地概率.(将频率视为概率)【解析】(Ⅰ)由已知得251055,35,15,20y x y x y ++=+=∴==,该超市所有顾客一次购物地结算时间组成一个总体,所收集地100位顾客一次购物地结算时间可视为一个容量为100地简单随机样本,顾客一次购物地结算时间地平均值可用样本平均数估计,其估计值为: 115 1.530225 2.520310 1.9100⨯+⨯+⨯+⨯+⨯=(分钟).(Ⅱ)记A 为事件“一位顾客一次购物地结算时间不超过2分钟”,123,,A A A 分别表示事件“该顾客一次购物地结算时间为1分钟”, “该顾客一次购物地结算时间为1.5分钟”, “该顾客一次购物地结算时间为2分钟”.将频率视为概率,得123153303251(),(),()10020100101004P A P A P A ======.123123,,,A A A A A A A =Q U U 且是互斥事件,123123()()()()()P A P A A A P A P A P A ∴==++U U 33172010410=++=.故一位顾客一次购物地结算时间不超过2分钟地概率为710.【点评】本题考查概率统计地基础知识,考查运算能力、分析问题能力.第一问中根据统计表和100位顾客中地一次购物量超过8件地顾客占55%,知251010055%,35,y x y ++=⨯+=从而解得,x y ,再用样本估计总体,得出顾客一次购物地结算时间地平均值地估计值;第二问,通过设事件,判断事件之间互斥关系,从而求得一位顾客一次购物地结算时间不超过...2分钟地概率. 18.(本小题满分12分) 已知函数()sin()(,0,02f x A x x R πωϕωω=+∈><<地部分图像如图5所示. (Ⅰ)求函数f (x )地解析式;(Ⅱ)求函数()()()1212g x f x f x ππ=--+地单调递增区间.【解析】(Ⅰ)由题设图像知,周期11522(),21212T T ππππω=-=∴==.因为点5(,0)12π在函数图像上,所以55sin(2)0,sin()0126A ππϕϕ⨯+=+=即.又55450,,=26636πππππϕϕϕπ<<∴<+<+Q 从而,即=6πϕ. 又点0,1()在函数图像上,所以sin 1,26A A π==,故函数f (x )地解析式为()2sin(2).6f x x π=+ (Ⅱ)()2sin 22sin 2126126g x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫=-+-++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦2sin 22sin(2)3x x π=-+12sin 22(sin 22)2x x x =-+sin 22x x=-2sin(2),3x π=-由222,232k x k πππππ-≤-≤+得5,.1212k x k k z ππππ-≤≤+∈()g x ∴地单调递增区间是5,,.1212k k k z ππππ⎡⎤-+∈⎢⎥⎣⎦【点评】本题主要考查三角函数地图像和性质.第一问结合图形求得周期1152(),1212T πππ=-=从而求得22Tπω==.再利用特殊点在图像上求出,A ϕ,从而求出f (x )地解析式;第二问运用第一问结论和三角恒等变换及sin()y A x ωϕ=+地单调性求得.19.(本小题满分12分)如图6,在四棱锥P-ABCD 中,PA ⊥平面ABCD ,底面ABCD 是等腰梯形,AD ∥BC ,AC ⊥BD. (Ⅰ)证明:BD ⊥PC ;(Ⅱ)若AD=4,BC=2,直线PD 与平面PAC 所成地角为30°,求四棱锥P-ABCD 地体积.【解析】(Ⅰ)因为,,.⊥⊂⊥平面平面所以PA ABCD BD ABCD PA BD又,,⊥是平面PAC内地两条相较直线,所以BD⊥AC BD PA AC平面PAC,而PC⊂平面PAC,所以BD PC⊥.(Ⅱ)设AC和BD相交于点O,连接PO,由(Ⅰ)知,BD⊥平面PAC,所以DPO∠是直线PD和平面PAC所成地角,从而=o.∠30DPO由BD⊥平面PAC,PO⊂平面PAC,知BD PO⊥.在Rt POD V 中,由DPO ∠30=o,得PD=2OD.因为四边形ABCD 为等腰梯形,AC BD ⊥,所以,AOD BOC V V 均为等腰直角三角形,从而梯形ABCD 地高为111(42)3,222AD BC +=⨯+=于是梯形ABCD 面积1(42)39.2S =⨯+⨯=在等腰三角形AOD中,2,22,2OD AD ==所以22242, 4.PD OD PA PD AD ===-=故四棱锥P ABCD -地体积为11941233V S PA =⨯⨯=⨯⨯=.【点评】本题考查空间直线垂直关系地证明,考查空间角地应用,及几何体体积计算.第一问只要证明BD ⊥平面PAC 即可,第二问由(Ⅰ)知,BD ⊥平面PAC ,所以DPO ∠是直线PD 和平面PAC 所成地角,然后算出梯形地面积和棱锥地高,由13V S PA =⨯⨯算得体积. 20.(本小题满分13分)某公司一下属企业从事某种高科技产品地生产.该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年地相同.公司要求企业从第一年开始,每年年底上缴资金d 万元,并将剩余资金全部投入下一年生产.设第n 年年底企业上缴资金后地剩余资金为a n 万元.(Ⅰ)用d 表示a 1,a 2,并写出1n a +与a n 地关系式;(Ⅱ)若公司希望经过m (m ≥3)年使企业地剩余资金为4000万元,试确定企业每年上缴资金d 地值(用m 表示).【解析】(Ⅰ)由题意得12000(150%)3000a d d =+-=-,2113(150%)2a a d a d =+-=-, 13(150%)2n n n a a d a d +=+-=-.(Ⅱ)由(Ⅰ)得132nn aa d -=-2233()22n a d d -=--233()22n a d d -=--=L12213333()1()()2222n n a d --⎡⎤=-++++⎢⎥⎣⎦L .整理得1133()(3000)2()122n n n a d d --⎡⎤=---⎢⎥⎣⎦13()(30003)22n d d -=-+.由题意,134000,()(30003)24000,2n nad d -=∴-+=解得13()210001000(32)2332()12n n n n nn d +⎡⎤-⨯⎢⎥-⎣⎦==--.故该企业每年上缴资金d 地值为缴11000(32)32n n n n+--时,经过(3)m m ≥年企业地剩余资金为4000元.【点评】本题考查递推数列问题在实际问题中地应用,考查运算能力和使用数列知识分析解决实际问题地能力.第一问建立数学模型,得出1n a +与a n 地关系式132n n aa d +=-,第二问,只要把第一问中地132n n aa d +=-迭代,即可以解决. 21.(本小题满分13分)在直角坐标系xOy 中,已知中心在原点,离心率为12地椭圆E 地一个焦点为圆C :x 2+y 2-4x+2=0地圆心. (Ⅰ)求椭圆E 地方程;(Ⅱ)设P 是椭圆E 上一点,过P 作两条斜率之积为12地直线l 1,l 2.当直线l 1,l 2都与圆C 相切时,求P 地坐标. 【解析】(Ⅰ)由22420x y x +-+=,得22(2)2x y -+=.故圆C地圆心为点(2,0),从而可设椭圆E地方程为22221(0),x y a b a b +=>>其焦距为2c,由题设知22212,,24,12.2c c e a c b a c a ===∴===-=故椭圆E地方程为:221.1612x y +=(Ⅱ)设点p 地坐标为0(,)x y ,12,l l 地斜分率分别为12,.k k 则12,l l 地方程分别为1102020:(),:(),l y yk x x l y y k x x -=--=-且121.2k k=由1l与圆22:(2)2c x y -+=相切,得=即 222010020(2)22(2)20.x k x y k y ⎡⎤--+-+-=⎣⎦同理可得222020020(2)22(2)20x k x y k y ⎡⎤--+-+-=⎣⎦.从而12,k k 是方程022000(2)22(2)20x k x y k y ⎡⎤--+-+-=⎣⎦地两个实根,于是202200(2)20,8(2)20,x x y ⎧--≠⎪⎨⎡⎤∆=-+->⎪⎣⎦⎩①且20122222.(2)2y k k x -==--由220020201,161221(2)22x y y x ⎧+=⎪⎪⎨-⎪=⎪--⎩得2058360.xx --=解得02,x=或010.5x=由02x=-得03;y=±由0185x=得05y=±它们满足①式,故点P地坐标为(2,3)-,或(2,3)--,或18(5,或18(,5.【点评】本题考查曲线与方程、直线与曲线地位置关系,考查运算能力,考查数形结合思想、函数与方程思想等数学思想方法.第一问根据条件设出椭圆方程,求出,,c a b 即得椭圆E 地方程,第二问设出点P 坐标,利用过P 点地两条直线斜率之积为12,得出关于点P 坐标地一个方程,利用点P 在椭圆上得出另一方程,联立两个方程得点P 坐标. 22.(本小题满分13分) 已知函数f(x)=e x-ax ,其中a >0.(1)若对一切x ∈R ,f(x) ≥1恒成立,求a 地取值集合;(2)在函数f(x)地图像上去定点A (x 1, f(x 1)),B(x 2, f(x 2))(x 1<x 2),记直线AB 地斜率为k ,证明:存在x 0∈(x 1,x 2),使0()f x k '=恒成立. 【解析】解:(),x f x e a '=-令()0ln f x x a '==得.当ln x a <时()0,()f x f x '<单调递减;当ln x a >时()0,()f x f x '>单调递增,故当ln x a =时,()f x 取最小值(ln )ln .f a a a a =- 于是对一切,()1x R f x ∈≥恒成立,当且仅当ln 1a a a -≥. ①令()ln ,g t t t t =-则()ln .g t t '=-当01t <<时,()0,()g t g t '>单调递增;当1t >时,()0,()g t g t '<单调递减.故当1t =时,()g t 取最大值(1)1g =.因此,当且仅当1a =时,①式成立.综上所述,a 地取值集合为{}1. (Ⅱ)由题意知,21212121()().x x f x f x e e k a x x x x --==--- 令2121()(),x x x e e x f x k e x x ϕ-'=-=--则12112121()()1,x x x e x e x x x x ϕ-⎡⎤=----⎣⎦- 21221221()()1.x x x e x e x x x x ϕ-⎡⎤=---⎣⎦-令()1tF t e t =--,则()1t F t e '=-. 当0t <时,()0,()F t F t '<单调递减;当0t >时,()0,()F t F t '>单调递增.故当0t =,()(0)0,F t F >=即10.te t --> 从而2121()10x x e x x ---->,1212()10,x x e x x ---->又1210,x e x x >-2210,x e x x >- 所以1()0,x ϕ<2()0.x ϕ>因为函数()y x ϕ=在区间[]12,x x 上地图像是连续不断地一条曲线,所以存在012(,)x x x ∈使0()0,x ϕ=即0()f x k '=成立. 【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出()f x 取最小值(ln )ln .f a a a a =-对一切x ∈R ,f(x) ≥1恒成立转化为min ()1f x ≥从而得出求a 地取值集合;第二问在假设存在地情况下进行推理,然后把问题归结为一个方程是否存在解地问题,通过构造函数,研究这个函数地性质进行分析判断.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年普通高等学校招生全国统一考试(湖南卷)
数学(文)
一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设命题2
:,10p x R x ∀∈+>,则p ⌝为( )
200.,10A x R x ∃∈+> 2
00.,10B x R x ∃∈+≤ 200.,10C x R x ∃∈+< 200.,10D x R x ∀∈+≤
3.对一个容器为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为123,,p p p ,则( )
123.A p p p =< 231.B p p p =< 132.C p p p =< 123.D p p p ==
4.下列函数中,既是偶函数又在区间(,0)-∞上单调递增的是( )
21.()A f x x
=
2.()1B f x x =+
3.()C f x x = .()2x
D f x -=
6.若圆221:1C x y +=与圆22
2:680C x y x y m +--+=,则m =( )
.21A .19B .9C .11D -
7.执行如图1所示的程序框图,如果输入的[]2,2t ∈-,则输出的S 属于( ) A.
[]6,2--
B.[]5,1--
C.[]4,5-
D.[]3,6-
8.一块石材表示的几何体的三视图如图2所示,将学科 网石材切削、打磨、加工成球,则能得到的最大球的半径等于( )
A.1
B.2
C.3
D.4
9.若1201x x <<<,则( )
A.2121ln ln x
x
e e x x ->-
B.2121ln ln x
x
e e x x -<-
C.1221x
x
x e x e >
D.1221x
x
x e x e <
10.在平面直角坐标系中,O 为原点,()1,0A -,()03
B ,,()30
C ,
,动点D 满足 1CD =u u u r ,则OA OB OD ++u u u r u u u r u u u r
的取值范围是( )
A.[]46,
B.19-119+1⎡⎤⎣⎦
,
C.2327⎡⎤⎣
⎦
, D.7-17+1⎡⎤⎣
⎦
,
二.填空题:本大题共5小题,每小题5分,共25分. 3i
+
12.在平面直角坐标系中,曲线
2 2
2
:
2
1
2
x t
C
y t
⎧
=+
⎪⎪
⎨
⎪=+
⎪⎩
(t为参数)的普通方程为___________.
13.若变量y
x,满足约束条件
⎪
⎩
⎪
⎨
⎧
≥
≤
+
≤
1
4
y
y
x
x
y
,则y
x
z+
=2的最大值为_________.
14.平面上以机器人在行进中始终保持与点()0
1,
F的距离和到直线1-
=
x的距离相等.若机器人接触不到过点()0
1,
-
P且斜率为k的直线,则k的取值范围是___________.
15.若()(
)
ax e
x f x
++=1ln 3是偶函数,则=a
____________.
三、解答题:本大题共6小题,学科 网共75分.解答应写出文字说明,证明过程或演算过程. 16.(本小题满分12分)
已知数列{}n a 的前n 项和*∈+=N n n
n S n ,2
2. (I )求数列{}n a 的通项公式;
(II )设()n n
a
n a b n 12-+=,求数列{}n b 的前n 2项和.
17.(本小题满分12分)
某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年 研发新产品的结果如下:
()()
()()()()()()()()(
)
()()
()()
b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a ,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,ρρρρρρ
ρ
ρρρ 其中a a ρ
,分别表示甲组研发成功和失败;b b ρ,分别表示乙组研发成功和失败.
(I )若某组成功研发一种新产品,则给改组记1分,否记0分,试计算甲、乙两组研 发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;
18.(本小题满分12分) 如图3,已知二面角MN α
β--的大小为60o ,菱形ABCD 在面β内,,A B 两点在棱MN 上,
60BAD ∠=o ,E 是AB 的中点,DO ⊥面α,垂足为O .
(1)证明:AB ⊥平面ODE ;
(2)求异面直线BC 与OD 所成角的余弦值.
19.(本小题满分13分)
如图4,在平面四边形ABCD 中,3
2,2,7,1,π=
∠==
=⊥ADC EA EC DE AB DA , 3
π
=
∠BEC
(1)求CED ∠sin 的值; (2)求BE 的长
20.(本小题满分13分)
如图5,O 为坐标原点,双曲线221112211:1(0,0)x y C a b a b -=>>和椭圆22
2222222
:1(0)
x y C a b a b -=>>均过点23
(
,1)3
P ,且以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形. (1)求12,C C 的方程;
(2)是否存在直线l ,使得l 与1C 交于,A B 两点,与2C 只有一个公共点,且||||OA OB AB +=u u u r u u u r u u u r
?证明
21.(本小题满分13分) 已知函数()cos sin 1(0)f x x x x x =-+>.
(1)求
()f x 的单调区间;
(2)记i x 为
()f x 的从小到大的第(*)i i N ∈个零点,证明:对一切*n N ∈,有
222
121112
3
n x x x +++<L。