第6章连续小波变换

合集下载

第六章小波分析基础ppt课件

第六章小波分析基础ppt课件
1、多分辨分析(MRA)的概念[5]
由母小波按如下方式的伸缩平移可构成L2(R)空间的标准正交基
j
j,k (t) 2 2 (2 j t k),j, k Z,t R
(3.1)
如何构造母小波呢?1989年,Mallat和Meyer提出了按多分辨分析 的思想来构造母小波,其基本思想是:
现构造一个具有特定性质的层层嵌套的闭子空间序列{Vj}jZ, 这个闭子空间序列充满了整个L2(R)空间。 在V0子空间找一个函数g(t),其平移{g(t-k)}k Z构成V0子空间的 Riesz基。
如图1所示的LENA图像f(x,y),假设图像的大小是512x512,量 化级是256,即
0 f (x, y) 255 0 x, y 511
y
x
2、L2(R)空间的正交分解和变换[1] 对 f(t)L2(R) , 存 在 L2(R) 的 一 组 标 准 正 交 基 gi(t) , t R ,
一、认识小波
1、预备知识 从数学的角度讲,小波是构造函数空间正交基的基本单元,
是在能量有限空间L2(R) 上满足允许条件的函数,这样认识小波 需要L2(R) 空间的基础知识,特别是内积空间中空间分解、函数 变换等的基础知识。
从信号处理的角度讲,小波(变换)是强有力的时频分析(处理) 工具,是在克服傅立叶变换缺点的基础上发展而来的,所以从信 号处理的角度认识小波,需要傅立叶变换、傅立叶级数、滤波器 等的基础知识。
小波变换有效地克服了傅立叶变换的这一缺点,信号变换到 小波域后,小波不仅能检测到高音与低音,而且还能将高音 与低音发生的位置与原始信号相对应,如图所示。
例2、信号逼近:如图(a)和(b)是原始信号,其余的是逼近信号。
因此我们需要这样一个数学工具:既能在时域很好地刻画信号的局部性,

小波分析连续小波变换

小波分析连续小波变换

小波分析连续小波变换小波分析是一种用于信号处理和数据分析的强大工具,可以在时频域上对信号进行局部化分析。

连续小波变换是小波分析的一种常用方法,它将信号分解成不同频率和尺度的小波成分,从而揭示出信号的时间和频率特征。

在本文中,我们将介绍连续小波变换的原理、方法和应用,并对其进行详细分析。

连续小波变换的原理可以用数学公式表示为:CWT(a,b) = \int f(t)\psi_{a,b}(t)dt\]其中,\(CWT(a,b)\)表示连续小波变换的系数,\(f(t)\)表示原始信号,\(\psi_{a,b}(t)\)表示小波基函数。

小波基函数可以由母小波函数进行缩放和平移得到,其中缩放因子\(a\)控制小波的频率,平移因子\(b\)控制小波的相位。

连续小波变换有许多不同的小波基函数可供选择,常用的有Morlet 小波、Haar小波、Daubechies小波等。

每种小波基函数都有自己的频率和尺度特性,适用于不同类型的信号分析。

连续小波变换方法的基本步骤如下:1.选择合适的小波基函数和尺度范围。

2.将原始信号进行滤波和下采样,得到不同尺度的近似信号。

3.将原始信号与小波基函数进行卷积,得到不同频率和尺度的细节信号。

4.重复步骤2和步骤3,直到得到满足要求的小波系数。

连续小波变换的应用十分广泛,包括信号分析、图像处理、模式识别等领域。

下面我们将以信号分析为例,详细介绍连续小波变换的应用。

在信号分析中,连续小波变换可以用来检测信号中的瞬时特征、变化点和周期变化。

通过对信号进行小波变换,可以得到不同尺度的频谱信息,从而揭示出信号的时频特征。

例如,在生物医学信号分析中,连续小波变换可以用来检测心电图中的心跳和呼吸节律,从而帮助医生对心脏和呼吸系统的功能进行评估和诊断。

同时,连续小波变换还可以用于脑电图分析、肌电图分析等领域。

在工程领域,连续小波变换也有重要的应用。

例如,在机械故障诊断中,连续小波变换可以用来分析振动信号,从而检测机械设备中的故障和异常。

第6章 气象上常用小波及其应用

第6章  气象上常用小波及其应用

第6章 气象上常用小波及其应用实例(1)前面五章讲述了小波分析方法的由来和原理,这些基本知识为气象上实际应用奠定了基础。

本章将介绍气象上常用的几种小波,特别是Haar 小波和墨西哥帽(Mexihat )小波,以及小波分析的应用实例。

6.1 二进小波二进小波的产生基于第4章的“二分法”。

它的基本思路是把连续型函数)(t f 及其连续小波变换),(b a W f 离散化,以便于实际应用。

作为一种方便和常用的形式,是对小波参数中的放(伸)缩因子a 进行二进制离散。

若小波函数系的表达式{}Zm,n n t am∈-- ),(ψ(••) 中的放缩因子)(2Z j a j ∈=,则称)(t ψ为二进小波。

把经过这种离散化后的二进小波的变换,称为二进小波变换。

强调说明:在应用时所用的小波函数系(式(••))与前面第4章第3节的式(•)有所不同。

比照这两式:),()(),2(2)(,2/,b at a t k t t b a jj kj -=-=ψψψψ或(•)),()(,n t at mn m -=-ψψ(••) 可以看出,二者主要的不同点是t 的系数a 指数正负号恰好相反。

所以,用式(•)的小波作变换时,随着a (或者j )的增大,W 曲线变窄;而用式(••)的小波作变换时,随着a (或者j )的增大,W 曲线变宽。

定义6.1 函数)()(2R L t ∈ψ被称为二进小波,若存在两个常数∞<≤<B A 0,使得:∑∈-≤≤Zj j B A .)2(ˆ2ωψ(6.1)上述条件式(6.1)称为稳定性条件;若A =B ,则称最稳定条件。

而函数序列{}Zj j f W ∈2称为二进小波变换,其中,,d 2)(21)()(22b b t t f t f t f W Rjjjj ⎰⎪⎭⎫⎝⎛-=*=ψψ(6.2)这里j a 2=是放缩因子,b 是平移因子。

由卷积定理知:)2(ˆ)(ˆ)(ˆ2ωψωωj f f W j ⋅= (6.3) 据此,稳定性条件等价于:对任意)()(2R L t f ∈,有:∑∈≤≤Zj fB fW fA j 2020220(6.4)下面定理说明,二进小波一定是允许小波。

小波变换

小波变换

第五章 小波变换 Wavelet Transform小波理论是20世纪80年代后期发展起来的一门新兴应用数学分支,在法国学者莫列特(J.morlet )马莱特(S.Mallat )杜比垂丝(I.Daubechies )努力下,小波理论及其在工程中的应用迅猛发展,打破了积分变换领域长期以来付氏变换一统天下的格局,开创了一个划时代的局面。

小波变换被认为是信号分析工具和方法上的重大突破。

由于小波变换可看成是傅氏变换的发展,所以与傅氏变换一样具有极广的应用面。

目前,在通信、图像、语言、地震、雷达、声纳、机械振动分析、信号检测、特征提取、故障诊断、滤波、数据压缩等多方面都得到了应用。

小波变换的应用研究正方兴未艾。

小波变换之所以有如此好的局面,源于它具有的多分辨特性——多尺度特征,可以把小波变换看成是一组品质因数相同具有良好选频特性的带通滤波器,通过适当地选择尺度因子和平移因子和基本小波,可以得到一个伸缩窗使得小波变换在时域和频域都具有表征信号局部特征的能力——称为数学显微镜本章不对小波变换进行完整的数学讲述。

只从信号处理的角度对小波变换的基本理论和方法作一简单的介绍。

突出其定性的概念,建立起对小波的一点概念和兴趣,为今后的应用研究打下基础。

主要讲:连续小波变换、多分辨分析、Mallat 算法、小波包分析。

5.1 傅立叶变换到小波变换5.1.1傅立叶变换的局限性傅立叶变换: ()()j t x j x t e dt ωω∞--∞=⎰ (5-1) ()()12j t x t x e d ωωωπ∞-∞=⎰ (5-2)一个信号可表示成一系列正弦和余弦函数之和,叫做傅立叶展开式1.揭示了时间函数与频谱函数之间的内在联系(时域 频域)2.反映了信号在“整个”时间范围内的“全部”频谱成分。

注解:(1)积分区间都是无穷的,所以傅氏变换是对无穷区间函数的分析。

注解:(2)用傅氏变换的方法是提取信号频谱时,需要利用信号的全部时域信号。

现代数字信号处理6章(new1)

现代数字信号处理6章(new1)

现代数字信号处理6章(new1)通信专业基础知识Chapter6小波分析(WaveletAnalyi)小波分析在数学中占有独特的地位。

而在信号处理领域中,如计算机视觉和图象处理中的多分辩率技术、语言和图象压缩中的子带编码技术等,很好地运用了“小波”这种特殊的数学工具。

本章主要从信号处理工程应用角度对小波分析的基本理论、基本概念和主要方法进行扼要介绍。

重点是讨论小波变换的概念和性质、算法及其实现,以及在信号处理中的典型应用。

其中涉及到的数学理论,大多只引用重要结论,而不与推导、证明。

先介绍几个数学概念(符号)⒈Z:整数集theetofinteger⒉R:实数集theetofrealnumber⒊L2(R):表示定义在实轴上的可测的平方可积函数空间thevectorpaceofmeaurablequare-integrable⒋g(u),f(u)g(u)f(u)du:g(u)和f(u)的内积g(u),f(u)L2Rf(u):f(u)的复共轭⒌||f||2|f(u)|2du在L2(R),f(u)的范数⒍f(u)某g(u)f(u)g(tu)duf某g(t)[f(u)某g(u)](t)⒎f(w)f(t)ejwtdt,j1,ji2令L(R)表示定义在实轴上的可测的平方可积函数空间,该空间中的任何函数f(t)是可测的且满足|f(t)|2dt这样的函数可用来表示能量有限的连续时间信号or模拟信号。

通信专业基础知识§6.1窗口付里叶变换(WindowedFourierTranformWFT)or短时付里叶变换(Short-TimeFourierTranformSTFT)信号的局部发生变化,会影响到信号的整个频谱。

例如一个低频信号如果在某一时刻t0增加一个冲激,那么它的频谱立刻变成宽带频谱。

但这个宽带频谱只能辨别信号中存在着冲激,但却无从确定这个冲激发生的时间位置。

说明付里叶分析没有时间定位或时间局域化的能力。

现代信号处理第6章连续小波变换

现代信号处理第6章连续小波变换
分形
小波
小波分形技术原理与离散信号盒维数的计算
设离散信号 是n维欧氏空间Rn上的闭集。将Rn划分成尽可能细的Δ网格,若是网格宽度N Δ为Δ的离散空间上集合X的网格计数。盒维数定义为 :
由于离散信号的最高分辩率为采样间隔Δ t,所以上式的极限是无法按其定义Δ→0求出。实际计算时一般采用近似方法,即将Δ网格视为最小网格,然后逐步放大为kΔ网格,k∈Z+,令
6.1.5 谐波小波应用
小波分形技术原理与离散信号盒维数的计算
分形的自相似仿射算子r与小波变换的伸缩因子a是作用相同,小波变换从低分辨到高分辨的过渡原则与分形过程的从总体向局部、从宏观向微观深化分析原则是一致的,小波和分形都具有自相似性,两者结合是可行的。 小波分形技术原理是应用小波包变换将机械振动信号分解到正交的、独立的频带内,然后分别计算出每个频带信号的盒维数, 用盒维数衡量小波包分解每个频带信号的复杂程度 由于一维离散信号的盒维数是介于1和2之间的一个实数,信号越复杂维数越大
谐波小波滤波能够在低频频带和高频频带内都具有足够的数据点数。
6.1.4 谐波小波滤波
6.1.4 谐波小波滤波
谐波小波实际上是一个完全理想的带通滤波器 ,可以用下面的方法定义谐波小波
其中m, n决定了谐波小波变换的尺度(j),且n = 2m,当m = 0时,n = 1。
谐波小波的光滑性,“盒形”谱特性,零相移特性以及明显的数学表达式,使得我们可构造出不同尺度下各频段序列数据点数不变、采样频率不变的算法,最终成功应用于转子轴心轨迹分析
谐波小波的定义及正交性
谐波小波的定义及正交性
实偶函数we(t)和实奇函数wo(t) , 它们的傅里叶变换分别为
谐波小波的定义及正交性

连续小波变换的定义

连续小波变换的定义

连续小波变换的定义连续小波变换(Continuous Wavelet Transform,CWT)是一种数学工具,用于在时域和频域之间转换信号。

它通过将信号与母小波进行卷积来分析信号的频率成分和时域特征。

连续小波变换在诸多领域中得到广泛应用,如信号处理、图像处理、模式识别等。

一、母小波母小波是连续小波变换中的基函数,用于分析信号的局部特征。

母小波必须满足一定的数学条件,其中最重要的是零平均性和正交性。

零平均性要求母小波的积分为零,这样可以排除信号的直流成分。

正交性要求母小波与不同尺度和平移的版本之间具有正交性,以便在不同频率和时间上分析信号。

一些常用的母小波包括Morlet小波、Haar小波以及高斯小波。

每种母小波都有其特定的频率响应和时域特性,适用于不同类型的信号分析。

二、连续小波变换的计算步骤连续小波变换可以通过以下步骤进行计算:1.选择合适的母小波函数。

根据信号的特征选择适合的母小波函数,例如需要较好的时域分辨率时可以选择Morlet小波。

2.对母小波函数进行尺度变换和平移变换。

通过缩放和平移母小波函数,生成在不同时间尺度下的小波函数。

3.将信号与小波函数进行卷积。

对信号和不同尺度下的小波函数进行卷积运算,得到连续小波系数。

4.可选的信号重建。

根据需要,可以通过反向连续小波变换将小波系数重构为原始信号。

三、连续小波变换的特点连续小波变换相比于离散小波变换具有以下特点:1.连续性:连续小波变换可以在时间域上连续地变换信号,不需要进行离散化处理。

这使得连续小波变换对信号的时域特征更加敏感。

2.尺度可调性:连续小波变换可以通过改变母小波的尺度来分析不同频率成分的信号。

不同尺度的小波函数可以捕捉信号在不同频率范围内的变化。

3.多分辨率分析:连续小波变换可以提供多个尺度下的频谱信息,从而实现对信号的多尺度分析。

这有助于对信号中的局部特征进行更详细的分析和处理。

4.良好的时-频局部化特性:连续小波变换可以在时-频平面上对信号进行局部化分析,对信号的瞬时频率和局部时域特征进行更准确的刻画。

python ;连续小波变换

python ;连续小波变换

python ;连续小波变换(实用版)目录1.介绍 Python 编程语言2.连续小波变换的概念和原理3.Python 中实现连续小波变换的方法和常用库4.应用案例:使用 Python 实现连续小波变换正文1.介绍 Python 编程语言Python 是一种广泛使用的高级编程语言,以其简洁的语法和强大的功能受到广大开发者的喜爱。

Python 具有丰富的第三方库和工具,可以快速地进行数据分析、图像处理、机器学习等领域的开发。

在科学计算和数据处理方面,Python 的表现尤为出色,因此成为了许多研究和工程项目的首选编程语言。

2.连续小波变换的概念和原理连续小波变换(Continuous Wavelet Transform, CWT)是一种信号处理方法,可以用来分析信号的时频特性。

与离散小波变换(Discrete Wavelet Transform, DWT)不同,连续小波变换可以在连续的时间尺度上进行信号分析。

连续小波变换的原理是将一个信号分解为一系列不同尺度、位置和频率的小波函数,从而得到信号的详细特征。

3.Python 中实现连续小波变换的方法和常用库在 Python 中,可以使用 SciPy 库中的 signal 模块实现连续小波变换。

SciPy 提供了一系列信号处理工具,包括小波变换、傅里叶变换等。

要使用 SciPy 实现连续小波变换,需要首先安装 SciPy 库,然后按照其文档中的示例代码进行操作。

需要注意的是,SciPy 中的信号处理函数需要输入信号的样值,因此需要先对信号进行采样。

4.应用案例:使用 Python 实现连续小波变换假设有一个信号如下:```x = np.array([0, 1, 0, -1, 0, 1, 0, -1, 0])```首先,需要对这个信号进行采样,假设采样频率为 1000:```t = np.arange(0, len(x), 1/1000)```然后,可以使用 SciPy 的 signal 模块中的 wavelet 函数实现连续小波变换:```wavelet_coefficients = signal.wavelet(x, t, "gauss", level=3) ```这里,"gauss"表示使用高斯小波,level=3 表示分解到第三层。

数字信号处理-时域离散随机信号处理(丁玉美)第6章.

数字信号处理-时域离散随机信号处理(丁玉美)第6章.

则此时窗口傅里叶变换演变成了戈伯(Gabor)变换:
GT
x
(t
,
Ω)
(x( )e jΩ
)g
(
t)d
(6.2.4)
第六章 小波分析的基本原理及其应用
不论是短时傅里叶变换还是戈伯变换,由于使用了一个可 移动的时间窗函数,使其具有了一定的时间分辨率。但是,它 们还存在一些自身的问题,其中最主要的就是时间分辨率与频 率分辨率之间的矛盾。根据海森堡的测不准原理, 我们不可能 知道在任何一个时刻存在何种频率分量,最多我们可以了解在 某一个时间段上存在的频谱分量。对于时间,我们可以准确地 确定某一个时间点,但是频率则是另外的一个概念,它指的是 在一个时间段内,某一个量的变化次数,这从频率的定义中就 可以看得到。
(a) (b) (c)
图 6.2.1 不同窗宽下分段正弦信号的短时傅里叶变换结果
第六章 小波分析的基本原理及其应用 6.2.2 连续小波变换
1. 连续小波变换的定义
设x(t)是平方可积函数,记作 x(t) L2 (R) ,ψ(t)是基小波
或“母小波函数”,则
WTx (a, )
1 a
x(t)
*

第六章 小波分析的基本原理及其应用
6.2 连续小波变换
6.2.1 从短时傅里叶变换到小波变换
由第五章时频分析部分的介绍可知,短时傅里叶变换通过
引入一个滑动的窗函数w(t),然后对窗函数内的信号与窗函数
的乘积进行傅里叶变换,再让窗函数沿时间轴移动, 就可得 到信号频谱随时间变化的规律。
这样, 信号x(t)对于给定的窗口函数w(t)的短时傅里叶变换:
a= 0.001 1
ga(t)
ga(t)

连续小波变换公式

连续小波变换公式

连续小波变换公式连续小波变换(Continuous Wavelet Transform,CWT)是信号处理中一种用于分析非平稳信号的方法。

它是由子带滤波技术发展而来, 相对于传统的傅里叶变换更适用于分析时域变化的信号。

连续小波变换公式描述了如何通过小波函数对信号进行分解和重构。

CWT(a, b) = \int_{-\infty}^{\infty} f(t) \cdot \psi_{a,b}(t) dt\]其中,\(f(t)\) 表示输入信号,\(\psi_{a,b}(t)\) 是小波函数,\(a\) 和 \(b\) 是小波函数的尺度和平移参数。

小波函数是一种可以自适应调整尺度和平移的函数。

在连续小波变换中,小波函数的尺度参数\(a\)控制着小波函数的频率,而平移参数\(b\)控制着小波函数相对于时间轴的位置。

通过调整尺度和平移参数,可以对不同频率和时域位置的信号成分进行分析。

在连续小波变换中,小波函数通常选择为母小波(mother wavelet),它是一个能够完备描述信号的特征的函数。

常用的母小波包括Morlet小波、Haar小波、Daubechies小波等。

不同的小波函数具有不同的频率和时域分辨率特性,适用于不同类型的信号分析。

为了实现小波变换,通常采用数值方法进行离散化计算。

离散小波变换(Discrete Wavelet Transform,DWT)是连续小波变换的一种离散近似方法,通过对连续小波变换公式进行离散采样和求和来表示信号的小波变换。

DWT是一种非常高效的信号分析方法,被广泛应用于图像处理、信号压缩和模式识别等领域。

除了连续小波变换和离散小波变换,还有一种相对较新的小波变换方法,称为连续小波包变换(Continuous Wavelet Packet Transform,CWPT)。

连续小波包变换是连续小波变换的扩展,通过对小波系数进行进一步的分解,可以获得更高分辨率的小波变换结果。

小波变换课件 第6章 连续小波变换

小波变换课件 第6章 连续小波变换

第6章 连续小波变换6.1 小波及连续小波变换● 定义6.1 设函数12()()()t L R L R ψ∈ ,并且ˆ(0)0ψ=,既()0t dtψ+∞-∞=⎰,则称为一个基本小波或母小波。

对母小波()t ψ做伸缩平移得,()a b t b t a ψ-⎛⎫=⎪⎝⎭(6-1) 称为,()a b t ψ小波函数,简称小波。

其中0a ≠,b 、t 均为连续变量:1) a 为尺度因子,b 为平移因子。

变量a 反映了函数的宽度,b 反映了小波在t 轴上的平移位置,小波函数,()a b t ψ是基本小波函数()t ψ先b 做移位再由a 做伸缩,,a b 不断变化产生的一组函数,又称作小波基函数,或小波基。

2) 母小波的能量集中在原点,小波函数,()a b t ψ的能量集中在b 点。

3)一般,尺度因子0a >,作用是使小波()t ψ做伸缩,a 越大,()t aψ越宽,既小波的持续时间随aa 变化时保持小波,()ab t ψ的能量相等,既2,()a b t ψ2()t ψ=(保范性质)。

● 定义 6.2 设12()()()t L R L R ψ∈ ,且满足条件2ˆ()c d ψψωωω+∞-∞=<∞⎰(6-2) 则称()t ψ为允许小波,上式为允许条件。

由c ψ<+∞知,ˆ(0)0ψ=,既()0t dt ψ+∞-∞=⎰,因此允许小波一定是基本小波;反之,若()t ψ满足1()(1)(0)t c t εψε--≤+>,且ˆ(0)0ψ=,其中c 是一个常数,则式(6-2)成立。

这表明允许条件与()0t dt ψ+∞-∞=⎰几乎是等价的。

从小波的定义知,小波要求由振荡性,既包含着某些频率特征,还要求具有一定的局部性,既它在一定的区间上恒等于零或很快收敛到零。

● 设()t ψ是一个基本小波,,()b a t ψ是连续小波函数,对于()f t 2()L R ∈,其连续小波变换定义为(,)f WT ab ()*t b f t dt a ψ+∞-∞-⎛⎫=⎪⎝⎭,,a b f ψ= (6-3)其中,0a ≠,b 、t 均为连续变量,*()t ψ表示()t ψ的共轭。

小波变换基本方法

小波变换基本方法

小波变换基本方法小波变换是一种时频分析方法,它将信号分解为不同频率的组成部分。

它有很多基本方法,以下是其中几种常用的方法。

1.离散小波变换(DWT):离散小波变换是小波变换最常用的方法之一、它将信号分解为不同的频带。

首先,信号经过低通滤波器和高通滤波器,并下采样。

然后,重复这个过程,直到得到所需的频带数。

这样就得到了信号在不同频带上的分解系数。

这种方法的好处是可以高效地处理长时间序列信号。

2.连续小波变换(CWT):连续小波变换是在时间和尺度两个域上进行分析的方法。

它使用小波函数和尺度来描述信号的局部变化。

CWT得到的结果是连续的,可以提供非常详细的时频信息。

然而,CWT的计算复杂度较高,不适用于处理长时间序列信号。

3.基于小波包的变换:小波包变换是一种对信号进行更细粒度分解的方法。

它通过在每个频带上进行进一步的分解,得到更详细的时频信息。

小波包变换比DWT提供更多的频带选择,因此可以更准确地描述信号的时频特征。

4.奇异谱分析(SSA):奇异谱分析是一种基于小波变换的信号分析方法,它主要用于非平稳信号的时频分析。

它通过将信号分解成一组奇异函数,然后通过对奇异函数进行小波变换得到奇异谱。

奇异谱可以用于描述信号在频域上的变化。

5.小波包压缩:小波包压缩是一种利用小波变换进行信号压缩的方法。

它通过选择一个适当的小波基函数和分解层次来减少信号的冗余信息。

小波包压缩可以用于信号压缩、特征提取和数据降维等应用。

以上是小波变换的几种基本方法,每种方法都有其适用的领域和特点。

在实际应用中,可以根据需求选择合适的方法来进行信号分析和处理。

工程振动测试技术_天津大学中国大学mooc课后章节答案期末考试题库2023年

工程振动测试技术_天津大学中国大学mooc课后章节答案期末考试题库2023年

工程振动测试技术_天津大学中国大学mooc课后章节答案期末考试题库2023年1.阻抗头的主要用途是测。

参考答案:原点传递函数2.关于主振型矩阵和正则振型矩阵的关系是()。

参考答案:将主振型矩阵的各列除以其对应主质量矩阵元素的平方根,得到的振型就是正则振型3.一般来说,对于同一个振动系统来说,工程振动的特点是( )。

参考答案:振动频率低,振幅较大。

振动频率高,振幅较小4.机械振动是指物体在其稳定的平衡位置附近所做的()运动。

参考答案:往复5.在做模态实验时,只需要测得传递函数的就可以获得全部模态信息。

参考答案:一行或一列6.在实验过程中,已知振动信号中的频率信号分别为15Hz、30Hz、60Hz、130Hz、180Hz利用小波变换将其进行分解,若选取采样频率为400Hz,两个频率信号无法分开。

参考答案:130Hz和180Hz7.微分电路中RC的应用范围为。

(其中T为输入电压的时间周期)参考答案:小于0.1T8.关于压电式加速度传感器的频率特性,以下说法正确的是。

参考答案:其灵敏度在固有频率附近会发生急剧变化9.振动系统按运动微分方程形式分为线性和()两种形式。

参考答案:非线性10.关于多自由度系统振动问题的求解方法,下列说法错误的是()。

参考答案:根据单自由度系统的求解理论和方法,求得用主坐标和正则坐标表示的响应就结束了11.在建立单自由度弹簧—质量系统的运动微分方程时,当选择物块的静平衡位置为坐标原点,假设x轴方向垂直向下,则物块的位移、速度和加速度方向如何确定()。

参考答案:都垂直向下12.在有阻尼系统的衰减振动中,【图片】黏性阻尼系数,【图片】为系统的固有圆频率,【图片】为系统的质量,【图片】,其中【图片】称为衰减系数,下面关于【图片】和【图片】的说法错误的是()。

参考答案:时,称系统处于小阻尼的情形,此时物块在平衡位置附近做往复运动,具有振动的性质,振幅仍然是常数13.一般的多自由度振动系统(正定系统)中,n个固有频率互不相等,其中第一阶固有圆频率的含义是()。

同步压缩小波变换及其在地震资料处理中的应用研究

同步压缩小波变换及其在地震资料处理中的应用研究

摘要同步压缩小波变换(Synchrosqueezing Wavelet Transform,SSWT)是在小波变换(Wavelet Transform,CWT)基础上发展而来的时频分析方法,结合了重排算法的思想,可以获得较高的时频分辨率,同时可以实现信号的重构。

文中基于CWT和重排算法系统地介绍了SSWT的方法原理,并通过示例对其时频分析效果和重构效果进行了分析。

另外,针对与SSWT算法思想类似的几种改进和推广算法,如:压缩短时傅里叶变换、二阶压缩短时傅里叶变换以广义同步压缩变换等,文中对其方法原理一一进行了介绍,并用模型信号和实际地震信号进行了分析对比。

由于SSWT以CWT为基础,因此也一样受测不准原理限制,针对这一问题,本文将互补集合经验模态分解(Complementary Empirical Mode Decomposition,CEEMD)与SSWT结合,首先利用CEEMD将信号自适应分解为一系列的经验模态分量(Intrinsic Mode Function,IMF),然后根据各个分量频率范围采用不同的压缩小波系数,最后将各个分量的时频结果相加得到原信号的时频谱结果,从而改善SSWT的时频分辨率。

地震信号是典型的非平稳信号,SSWT可以获得良好的时频表征,因此该方法是对地震信号进行处理分析的有效工具。

文中基于该方法主要研究了以下几个方面的具体应用:基于SSWT的谱模拟反褶积提高地震资料分辨率;基于SSWT的Q估计和反Q补偿衰减地震信号;基于SSWT的随机噪声压制以及利用SSWT进行低频阴影检测。

通过模型和实际资料测试,并与其他方法对比,证明了该时频分析方法在地震资料处理中应用的有效性和优越性。

关键词:时频分析;同步压缩小波变换;提高分辨率;去噪;储层预测Synchrosqueezing Wavelet Transform and ItsApplication in Seismic Data ProcessingZhang Yan(School of Geosciences)Directed by Prof. Li ZhenchunAbstractSynchrosqueezing Wavelet Transform is a time-frequency analysis method developed on the basis of Wavelet Transform (CWT). Combining with the idea of Reassignment Method (RM), it can obtain higher time-frequency resolution and signal reconstruction at the same time.In this paper, the principle of SSWT is systematically introduced based on CWT and RM, and the effect of time-frequency analysis and reconstruction results are analyzed through examples. In addition, several improvements and generalizations similar to those of the SSWT algorithm, such as: synchrosqueezing short-time Fourier transform, second-order synchrosqueezing transform and generalized synchrosqueezing transform, etc. Introduced and compared using the model signal and the actual seismic signal.Since the SSWT is based on CWT, it is also subject to the principle of unqualified measurement. To solve this problem, this paper combines Complementary Empirical Mode Decomposition (CEEMD) with SSWT, and first uses CEEMD to decompose signals adaptively. For a series of empirical modal components (IMF), then use different compression wavelet coefficients according to the frequency range of each component, and finally add the time-frequency results of each component to obtain the time-frequency spectrum of the original signal, thereby improving the SSWT. Time-frequency resolution.Seismic signals are typical non-stationary signals. SSWT can obtain good time-frequency characterization. Therefore, this method is an effective tool for processing and analyzing seismic signals. Based on this method, the paper mainly studied the following applications: spectral modeling deconvolution based on SSWT to improve the resolution of seismic data; SSWT-based Q-estimation and anti-Q compensation for attenuated seismic signals; and SSWT-based noise suppression and utilization The SSWT performs low-frequency shadow detection. Through the model and real data tests, and compared with other methods, the validity andsuperiority of this time-frequency analysis method in seismic data processing are proved.Key words: time-frequency analysis; Synchrosqueezing Wavelet Transform; improving resolution; Denoising; Reservoir prediction.目录第一章绪论 (1)1.1选题的目的与意义 (1)1.2国内外研究现状 (1)1.3论文的研究内容及成果 (3)第二章同步压缩小波变换 (5)2.1常用时频分析方法 (5)2.1.1短时傅里叶变换 (5)2.1.2 连续小波变换 (6)2.1.3 广义S变换 (8)2.1.4 Wigner Ville分布及平滑伪Wigner Ville 分布 (9)2.1.5 时频分析方法效果对比分析 (11)2.2 SSWT (17)2.2.1 时频谱重排 (17)2.2.2 SSWT的基本原理 (18)2.3 SSWT时频分析及重构示例 (21)2.3.1 模型信号SSWT示例 (21)2.3.2实际地震信号SSWT示例 (23)2.4 小结 (25)第三章SSWT的推广及改进方法 (26)3.1 压缩短时傅里叶变换 (26)3.1.1 方法原理 (26)3.1.2 模型信号时频表征及重构示例 (27)3.1.3 实际地震信号时频表征及重构示例 (28)3.2 二阶压缩短时傅里叶变换 (30)3.2.1 方法原理 (30)3.2.2 模型信号示例 (31)3.2.3 实际地震信号示例 (32)3.3 广义同步压缩变换 (34)3.3.1 广义解调 (34)3.3.2 广义同步压缩变换的原理 (35)3.3.3 模型信号示例 (37)3.4 小结 (39)第四章基于CEEMD的同步压缩小波变换 (41)4.1 CEEMD (41)4.1.1 CEEMD及算法流程 (41)4.1.2 CEEMD分解测试 (43)4.2 基于CEEMD分解的同步压缩小波变换 (46)4.2.1 方法原理 (46)4.2.2 模型信号测试 (49)4.2.3 实际地震信号测试 (50)4.3 小结 (51)第五章SSWT在地震数据处理中的应用 (53)5.1 基于SSWT的时变谱模拟反褶积提高地震资料分辨率 (53)5.1.1 谱模拟反褶积方法原理 (53)5.1.2 基于SSWT的谱模拟反褶积 (54)5.1.3 实际地震资料测试 (57)5.2 基于SSWT的Q提取及反Q补偿 (59)5.2.1 Q提取及反Q补偿原理 (59)5.2.2 基于SSWT的Q提取及反Q补偿模型测试 (61)5.2.3 实际地震资料测试 (68)5.3 基于SSWT压制随机噪声 (70)5.3.1 方法原理 (70)5.3.2 模型信号测试 (71)5.3.3 实际地震资料测试 (73)5.4 基于SSWT的谱分解低频阴影检测 (75)5.4.1 模型资料测试 (75)5.4.2 实际地震资料测试 (77)5.5 小结 (79)结论与讨论 (80)参考文献 (81)攻读硕士期间取得的学术成果 (86)致谢 (87)中国石油大学(华东)硕士学位论文第一章绪论1.1选题的目的与意义地震波在地下介质中传播时,会发生吸收衰减及散射等现象,这都和频率相关,这导致接受到的地震波时频关系较为复杂,为典型的非平稳信号。

06小波变换压缩算法

06小波变换压缩算法
法国科学家Y.Meyer创造性地构造出具有一定衰减性的光滑函数, 用缩放(dilations)与平移(translations)均为 2的j次幂的倍数构造 了平方可积的实空间L2(R)的规范正交基,使小波得到真正的发 展.
S.Mallat于1988年在构造正交小波基时提出了多分辨率分析 (multiresolution analysis)的概念, 从空间上形象地说明了小波的 多分辨率的特性,提出了正交小波的构造方法和快速算法,叫做 Mallat算法。
38
小波变换实例
一维哈尔小波变换
哈尔函数定义
(x)
1 0
0 x 1 其他
小波变换实例
一维哈尔小波变换
哈尔函数定义
1 0 x 1
(x) 0 其他
基函数
一组线性无关的函数,以用来构造任意给定的 信号
小波变换实例
一维哈尔小波变换
哈尔基函数
最简单的基函数
ij (x) (2 j x i)
DCT 压缩的优点
简单、 便于硬件实现
3
小波变换用于图像压缩的理由
DCT 压缩的缺点
图像是分块处理, 沿块的边界方向相关性被破坏,出现 “blocking
artifacts”
4
傅里叶变换
信号表示
多种方式信号的描述:
例如一个函数表达式,这就是信号的时域表示,
傅里叶变换
1822年,傅里叶提出频率的概念: 通过傅里叶正变换将信号在频 域分解,获得信号的频谱,再通过反变换重建原始信号。
Gabor变换: 时窗函数=Gauss函数时 时窗函数的Fourier变换仍然是Gauss函数,保证了窗口傅立
叶变换在频域内也有局域化的功能。
窗口傅里叶变换

现代信号处理思考题(含问题详解)

现代信号处理思考题(含问题详解)

第一章 绪论1、 试举例说明信号与信息这两个概念的区别与联系。

信息反映了一个物理系统的状态或特性,是自然界、人类社会和人类思维活动中普遍存在的物质和事物的属性。

信号是传载信息的物理量是信息的表现形式,如文字、语言、图像等。

如人们常用qq 聊天,即是用文字形式的信号将所要表达的信息传递给别人。

2、 什么是信号的正交分解?如何理解正交分解在机械故障诊断中的重要价值?P9正交函数的定义信号的正交分解如傅里叶变换、小波分解等,即将信号分解成多个独立的相互正交的信号的叠加。

从而将信号独立的分解到不同空间中去,通常指滤波器频域内正交以便于故障分析和故障特征的提取。

傅里叶变换将信号分解成各个正交的傅里叶级数,将信号从时域转换到频域从而得到信号中的各个信号的频率。

正交小波变换能够将任意信号(平稳或非平稳)分解到各自独立的频带中;正交性保证了这些独立频带中状态信息无冗余、无疏漏,排除了干扰,浓缩了了动态分析与监测诊断的信息。

3、 为什么要从内积变换的角度来认识常见的几种信号处理方法?如何选择合适的信号处理方法? 在信号处理各种运算中内积变换发挥了重要作用。

内积变换可视为信号与基函数关系紧密程度或相似性的一种度量。

对于平稳信号,是利用傅里叶变换将信号从时域变为频域函数实现的方式是信号函数x (t )与基函数i t e ω 通过内积运算。

匹配出信号x (t )中圆频率为w 的正弦波.而非平稳信号一般会用快速傅里叶变换、离散小波变换、连续小波变换等这些小波变换的内积变换内积运算旨在探求信号x (t )中包含与小波基函数最相关或最相似的分量。

“特征波形基函数信号分解”旨在灵活运用小波基函数 去更好地处理信号、提取故障特征。

用特定的基函数分解信号是为了获得具有不同物理意义的分类信息。

不同类型的机械故障会在动态信号中反应出不同的特征波形,如旋转机械失衡振动的波形与正弦波形有关,内燃机爆燃振动波形是具有钟形包络的高频波;齿轮轴承等机械零部件出现剥落。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

−∞
−∞
小波分析:
小波滤波:
尺度与频率: 注意: 在连续小波变换的情况下,没有要求小波有相应的尺度函数.
2009-5-19
清华大学计算机系 孙延奎
设函数 ψ (t ) ∈ L1(R) ∩ L2 (R) , 若
∫ cψ =
+∞ ψˆ (ω ) 2 dω < +∞ −∞ ω
则称 ψ (t) 为一个允许小波。
−∞
a
f ,ψ a,b
连续小波变换
∫ WTf (a,b) =
1 a
+∞ −∞
f
(t)ψ ∗(t
− b)dt a
=
a 1/2
f
∗ψ
a
(b)
ψ a (t ) = a ( ψ −1 * −t / a)
性质: 线性性质 平移不变性
在实际工程应用中,常假设a>0.
……….
∫ ∫ 连续卷积的定义:(h ∗ f ) (t) = +∞ h (u) f (t − u) du = +∞ f (u) h(t − u)du
允许条件等价于: ψˆ (0) = 0 (波动性),与
( ) ψ (t ) ≤ c 1+ t −1−ε ,ε > 0 (衰减性)
允许条件是保证正、逆变换存在的条件。
∫ ∫ f (t) = 1 +∞ cψ −∞
+∞ −∞
1 a2
WTf
(a, b)ψ
a,b
(t)dadb
2009-5-19
清华大学计算机系 孙延奎
4. Morlet小波
ψ (t) = e−t2 / e2 iω0t
ψˆ (ω ) = π2 e−(ω−ω0 )2 / 2
Morlet小波不存在尺度函数; 快速衰减但非紧支撑.
在Matlab中, morlet 小波的定义为
ψ (t) = e−t2 /2 cos 5t
问 ψˆ (ω) = ?
2009-5-19
,则称 ψ (t) 为一个基本小波或母小波。
ψ a,b (t) =
1 ψ(t −b)
aa
a,b ∈ R a ≠ 0
(连续)小波函数
a和b的意义
ψ a,b (t) 2 = ψ (t) 2
2009-5-19
清华大学计算机系 孙延奎
∫ WTf (a,b) =
1 a
+∞ f (t)ψ ∗(t − b)dt =
清华大学计算机系 孙延奎
Morlet小波
Morlet小波是Gabor 小波的特例。
( ) ( ) g
t
=
σ π − t2
1 2σ 2 e 2 1/ 4
ψ (t ) = g (t ) eiηt
σ = 1,η = 5
清华大学计算机系 孙延奎
常用的基本小波
1. Haar小波
⎧1
ψ
(t
)
=
⎪ ⎨
−1
⎪⎩0
0 ≤ t <1/2 1/2 ≤ t <1
其它
ψˆ (ω) = i 4 e−iω /2 sin2 (ω / 4)
ω
1 ψ (t)
01
1
2
−1
2009-5-19
清华大学计算机系 孙延奎
2. Daubechies小波
+∞
−∞ W f
a;b1, b2
ψ
⎛ ⎜⎝
x
− a
b1
,
y − b2 a
⎞⎟⎠db1db2
∫∫ ( ) 其中,cψ
=
1
4π 2
2
ψˆ ωx ,ωy
ωx2
+பைடு நூலகம்
ω
2 y
dωxdωy
当 a = 2 j 时,得出二进二维连续小波变换:
∫ ∫ ( ) Wf (b1,b2 ) =
+∞ −∞
+∞ f ( x, y ) 2− jψ ∗
第6章 连续小波变换
• 小波及连续小波变换 • 常用的基本小波 • 时频分析 • 连续小波变换的计算 • 小波变换的分类
2009-5-19
清华大学计算机系 孙延奎
目的
• 熟悉连续小波变换的定义 • 深入理解小波时频分析的思想和方法
清华大学计算机系 孙延奎
小波及连续小波变换
∫ 设函数 ψ (t ) ∈ L1(R) ∩ L2 (R) ,并且 ψˆ (0) = 0 ,即 +∞ψ (t)dt = 0 −∞
h=
1 2
⎩⎧⎨18
,
1 2
,
3 4
,
1 2
,
1 8
⎫⎬ ⎭
h=
1 2
⎧3 ⎨⎩16
,

3 4
,
5 16
,
5 2
,5 16
,

3 4
,3 16
⎫ ⎬ ⎭
常用于图形学中。其中尺度函数是一 个三次B样条。
Bior2.4
双正交小波解决了线性相位和正交性要求的矛盾。
2009-5-19
清华大学计算机系 孙延奎
−∞
2− j ( x − b1 ) , 2− j ( y − b2 ) dxdy
2009-5-19
清华大学计算机系 孙延奎
当 a = 2− j , b1 = al, b2 = am;l, m ∈ Z 时,得出二维
离散小波变换:
∫ ∫ ( ) Wf ( j,l, m) = 2 j
+∞ −∞
+∞ f ( x, y)ψ ∗
(7-5)小波滤波器:
⎧ ⎪ ⎪
p0
=
4q2 8q2
−3 −2
⎪ ⎪ ⎪
p1
=
4q22 + 5q2 −1 8q2 − 2
⎪ ⎪ ⎨
p2
=
4q2 +1 16q2 − 4
⎪ ⎪ ⎪ ⎪ ⎪
p3
=
4q22 + q2 2 − 8q2
q0 = 1− 2q2
⎪ ⎪ ⎩
q1
=
1 2
~
pn = 2 hn , qn = 2hn
二维连续小波变换与离散小波变换
设 f ( x, y) ∈ L2 ( R2 ), ψ ( x, y) 满足条件
称积分
∫ ∫+∞ +∞ψ ( x, y)dxdy = 0 −∞ −∞
∫ ∫ Wf (a;b1,b2 ) =
+∞ −∞
+∞ −∞
f
( x,
y)

a

⎛ ⎝⎜
x
− b1 a
,
y
− b2 a
⎠⎞⎟dxdy
为 f ( x, y) 的二维连续小波变换,称 ψ ( x, y) 为二维
基本小波函数。
ψ
a;b1 ;b2
(
x,
y)
=

a
⎛ ⎝⎜
x
− b1 a
,
y
− b2 a
⎞ ⎠⎟
2009-5-19
清华大学计算机系 孙延奎
相应的反演公式为
∫ ∫ ∫ f ( x, y) = 1

( ) +∞ da
0 a3
+∞ −∞
2009-5-19
D4尺度函数与小波
1.4
1.2
1
0.8
0.6
0.4
0.2
0
-0.2
-0.4
0
1
2
3
4
5
2
1.5
1
0.5
0
-0.5
-1
-1.5
-2
-1
0
1
2
3
D6尺度函数与小波
清华大学计算机系 孙延奎
3、双正交小波 双正交B样条小波(5-3)、 (9-7)小波滤波器
bior2.2, bior4.4
−∞
2 j x − l, 2 j y − m dxdy
如果再把小波函数 ψ ( x, y) 取为变量可分离的二元函数:
ψ ( x, y) =ψ 1 ( x)ψ 2 ( y)
它可以通过一维多分辨分析得出二维多分辨分析。
附注:有更一般的二维连续小波变换的定义,它在尺度可伸缩的同时还可 以旋转。
2009-5-19
相关文档
最新文档