对称式与轮换对称式教案资料
轮换对称方程组及其解法-2019年精选文档
轮换对称方程组及其解法-2019年精选文档轮换对称方程组及其解法一、轮换式与对称式1.1轮换式与对称式的概念如果把一个多元多项式中的所有字母(元),依某种顺序进行轮换(即第一个字母换成第二个字母,第二个字母换成第三个字母,……,第n个字母换成第一个字母),多项式保持不变,则称它是轮换对称多项式,简称轮换式。
例如 x+y ,a2(b-c)+b2(c-a)+c2(a-b),x2y+y2z+z2x等都是轮换式如果把一个多元多项式中的任意两个字母(元)对调,多项式都保持不变,我们就称它是对称多项式,简称对称式例如 a+b 称为二元一次对称式ab 称为二元二次对称式a3+b3+c3-abc 称为三元三次对称式1.2轮换式与对称式的性质轮换式的和、差、积、商(整除时)仍是轮换式。
对称式的和、差、积、商(整除时)仍是对称式。
特别地,轮换式与对称式的积、商(整除时)是轮换式由此可知,对称式的因式一定是对称式;轮换式的因式一定是轮换式(或对称式)。
这个特征对对称式、轮换式的因式分解尤为重要。
1.3轮换式与对称式的解法轮换式与对称式多用于因式分解。
例分解因式 a3(b-c)+b3(c-a)+c3(a-b)解:原式是三元四次齐次轮换式。
易见,当 a=b时,原式=0,由此,由因式定理知,它有因式a-b,再由轮换式的性质,经字母轮换式b-c,c-a也是它的因式,由于(a-b)(b-c)(c-a)是三次齐次轮换式,所以原式还应有一个一次因式,显然必为a+b+c(否则原式至少为六次式,例如,若a+b+-c 是它的因式,则a+c-b,b+c-a亦是)。
令a3(b-c)+b3(c-a)+c3(a-b)原式=k(a-b)(b-c)(c-a)(a+b+c) 取 a=0,b=1,c=2代入上式得k=-1。
所以原式=-(a-b)(b-c)(c-a)(a+b+c)二、轮换对称方程组轮换对称方程组是一类重要的方程组,常见于各种数学竞赛中。
由于轮换对称方程组具有特殊的性质,所以,用常规方法解不易奏效。
10. 因式分解技巧-轮换式与对称式 -单墫
10 .轮换式与对称式关于x 、y 的多项式)1(,,,*,,223322 xy y x y x y x xy y x ++++在字母x 与y 互换时,保持不变.这样的多项式称为x 、y 的对称式.类似地,关于x 、y 、z 的多项式,,,,333222z y x zx yz xy z y x z y x ++++++++)2(,,22/2222 xyz y z x z x y z y z x y x +++++在字母x 、y 、z 中任意两字互换时,保持不变.这样的多项式称为x 、y 、z 的对称式.关于x 、y 、z 的多项式,,,,333222z y x zx yz xy z y x z y x ++++++++)3(,,,222222 xyz zx yz xy x z z y y x ++++在将字母x 、y 、z 轮换(即将x 换成y ,y 换成z ,z 换成x )时,保持不变,这样的多项式称为x 、y 、z 的轮换式,显然,关于x 、y 、z 的对称式一定是x 、y 、z 的轮换式.但是,关于x 、y.z 的轮换式不一定是对称式.例如,x z z y y x 222++就不是对称式,次数低于3的轮换式同时也是对称式,两个轮换式(对称式)的和、差、积、商(假定被除式能被除式整除)仍然是轮换式(对称式). 轮换式与对称式反映了数学的美.它们的因式分解也是井然有序,可以按照一定的规律去做的.10.1 典 型 方法例1 分解因式:).()()(222y x z x z y z y x -+-+- 解 )()()(222y x z x z y z y x -+-+-是关于x 、y 、z 的轮换式.如果把)()()(222y x z x z y z y x -+-+-看作关于x 的多项式,那么在y x= 时,它的值为 .0)()()(222=-+-+-y y z y z y z y y因此,根据第8单元,y x -是)()()(222y x z x z y z y x -+-+-的因式.由于)(y x z x z y z y x -+-+-222)()(是x 、y 、z 的轮换式,所以可知z y -与x z -也是它的因式,从而它们的积))()((x z z y y x --- (4)是 )()()(222y x z x z y z y x -+-+- (5)的因式.由于(4)、(5)都是x 、y 、z 的三次多项式,所以两者至多相差一个常数因数k ,即有).)()(()()()(222x z z y y x k y x z x z y z y x ---=-+-+- (6)现在我们来确定常数k 的值.为此,比较(6)的两边y x 2的系数:左边系数为1,右边系数为-k ,因此,于是 )()()(222y x z x z y z y x -+-+-).)()((x z z y y x ----=例2 分解因式:).()()(333b a c a c b c b a -+-+-解 )()()(333b a c a c b c b a -+-+-是关于a 、b 、C 的轮换式.与例1类似,它有三次因式 ).)()((a c c b b a ---由于原式是a 、b 、c 的四次式,所以还应当有一个一次因式.原式是a 、b 、c 的四次齐次式,所以这个一次因式也是a 、b 、c 的一次齐次式,即它的常数项是0(否则,它的常数项与三次式))()((a c c b b a ---相乘得到一个三次式).这个一次齐次式是a 、b 、c 的轮换式,它的形状应当是k c b k ),(++α是常数.即有)()()(333b a C a c b c b a -+-+-).)()()((a c c b b a c b a k ---++= (7)比较两边b a 3的系数,得k=-1.于是 )()()(333b a c a c b c b a -+-+-).)()()((a c c b b a c b a ---++-=上面求k 的方法是比较系数,也可以改用另一种方法,即适当选一组使0))()()((=/---++a c c b b a c b a的数代替a 、b 、c ,从而定出k ,例如,令,0,1,2===c b a把它代入(7),得),2(3028-⋅⋅=+-k即 .1-=k以上两种确定系数的方法可以结合起来使用.例3 分解因式.)()()()(3333c b a b a c a c b C b a -+--+--+-++解 在0=a 时,原式的值为,0)()()()(3333=----+-+c b b c c b c b所以a 是原式的因式.由于原式是a 、b 、c 的轮换式,所以b 、c 也是它的因式,从而有,)()()()(3333kabc c b a b a c a c b c b a =-+--+--+-++ (8)其中k 是待定系数.令,1===c b a 得,11133333k =---即 ,24=k所以.24)()()()(3333abc c b a b a c a c b c b a =-+--+--+-++在(3)中列出的各式称为基本的轮换式.每一个轮换式都能由它们组成,例如:一次齐次的轮换式是);(z y x l ++二次齐次的轮换式是);()(222zx yz xy m z y x l +++++三次齐次的轮换式是.)()()(222222333kxyz zx yz xy n x z z y y x m z y x l +++++⋅++++这里,L 、m 、n 、k 都是待定的常数.10.2 齐 次 与 非 齐 次例4 分解因式:.)()()(555y x x z z y -+-+- 解 用上面的方法易知原式有因式).)()((x z z y y x ---因为原式是x 、y 、z 的五次齐次轮换式,所以还有一个因式是二次齐次轮换式,我们设555)()()(y x x z z y -+-+-)].()()[)()((222zx yz xy m z y x l x z z y y x +++++---= (9)令,0,1,2===z y x 得),25(21321m l +-=+-即 .1525=+m l (10)令,1,0,1-===z y x 得),2(21321m l --=+-即 .152=-m l (11)由(10)、(11)这两个方程,解得⎩⎨⎧-==,5,5m l 于是 555)()()(y x x z z y -+-+-)](5)(5)[)()((222zx yz xy z y x x z z y y x ++-++---=).)()()((5222zx yz xy z y x x z z y y x ---++---=在例4中,任给一组x 、y 、z 的值(当然不能使(x- y) (y-z) (z-x)为0),都可以得到一个形如(10)或(11)的方程,不过为了便于计算,以较小的值代人为好.在例4中,如果注意到,5)(455 +-=-z y y z y那么比较(9)式两边z y 4的系数,可以得 ,5l -=-再结合(10)或(11)中的任一个,可以得出.5-=m 这种做法更简单一些.例5 分解因式:.)(555b a b a ---解 原式在a 、b 互换时变号,它不是a 、b 的轮换式(二元的对称式与轮换式是一致的).但是,如果改记-b 为c ,那么原式成为,)(555c a c a +-+是a 、c 的轮换式,因而也可以采用前面的方法去处理.不过,应当注意到,更简单的办法是在例4中令,,b C x z a z y -==-=-那么 ,a b y x -=-555)(b a b a ---555)()()(y x x z z y -+-+-=))()()((5222zx yz xy z y x x z z y y x ---++---=2)()()().(5222x z z y y x b a ab -+-+--= 2)().(5222a b b a b a ab -++-= ).)((522ab b a b a ab -+-=由此可以看出,做题的时候应当充分利用已有的结果.例6 分解因式:).1)(()1)(1)((2222yz x z xz xy z y +-+++-).1)(1)(()1(22zy zx y x yx ++-++ 解 这是x 、y 、z 的轮换式,容易知道它有因式),)()((y x x z z y ---但是另一个因式是什么呢?原式并非齐次式,为了便于处理,我们按照次数把它整理一下.由于,1)()1)(1(+++⋅=++z y x x xyz xz xy所以 )1)(1)(()1)(1)((2222yx yz x z xz xy z y ++-+++-)1)(1)((22zy zx y x ++-+ )]()()([222222y x z x z y z y x xyz -+-⋅+-=)]()()[(222222y x x z z y -+-+-+)])(())(())(([222222y x y x z x z x z y z y z y x -++-++-++)]()()([222222y x z x x y z y x xyz -+-+-= )].)(())(())(([222222y x y x z x z x z y z y z y x -++-++-++于是,例题中的非齐次式化为两个齐次式的和,用前面所说的方法可得齐次式)()()(222222y x z x z y z y x -+-+-),)()((x z z y y x ---=))(())(())((222222y x y x z x z x z y z y z y x -++-++-+).)()()((z y x x z z y y x ++---=所以得)1)(1)(()1)(1)((2222yx yz x z xz xy z y ++-+++-)1)(1)((22zy zx y x ++-+).)()()((z y x xyz x z z y y x +++---=10.3 abC C b a 3333-++例7 分解因式:.3333abc c b a -++解 在)(c b a +-=时,有abc C b a 3333-++)(3)(333c b bc C b c b +++++-=2233322333)33(bc c b C b c bc c b b +++++++-=,0=所以c b a ++是abc c b a 3333-++的因式,显然,abc c b a 3333-++是a 、b 、c 的三次齐次轮换式,我们设abc C b a 3333-++)].()()[(222ca bc ab m C b a l c b a +++++++=(12) 比较两边3a 的系数得,1=l 比较abc 的系数得,33m =-即 ,1-=m所以 abc c b a 3333-++ ).)((222ca bc ab c b a c b a ---++++= (13)有的时候也把(13)写成abc c b a 3333-++)13].(2)()())[((2122a c c b b a c b a -+-+-++=(13)与)13(/也可以作为公式来使用.例8 分解因式:-+--++-++-+b a b a c a c b c b a (3)()()(333).)()(b a c a c b c -+-+ 解 由公式),13(/得333)()()(b a c a c b c b a -++-++-+))()((3b a c a c b c b a -+-+-+-)].()()[(21b a c a c b c b a -++-++-+=22)]()[()](){[(b a c a c b a c b c b a -+--++-+--+})]()[(2c b a b a c -+--++ ])(4)(4)(4)[(21222b c a b c a c b a -+-+-++= ])()())[((2222b c a b c a c b a -+-+-++=).)((4222Ca bc ab C b a C b a ---++++=本题的结果表明将abc c b a 3333-++中的a 、b 、c 分别用a+b-c 、b a c a c b -+-+、代替后,所得的式子为原来的4倍,从(13)可以看出,如果,0=++c b a 那么,3333abc c b a =++这也是一个有用的结论.例9 分解因式:.)()()(333y x x z z y -+-+- 解 因为 ,0)()()(=-+-+-y x x z z y所以 333)()()(y x x z z y -+-+- ).)()((3y x x z z y ---=10.4 焉 用 牛 刀例10 分解因式:.2)()()(222333xyz y x z x z y z y x z y x -++++++---解 在z y x +=时,有原式)(2)2()2()()(22333z y yz z y z y z y z y z y z y +-++++++--+-=β)(2)]2([)]2([2323z y yz z y z z y z y y +-++-+++-=y z z y z z y z y y z y 222222)2()2(---++-+=y zz y y x z y 22222222 ⋅--+= ,0=所以,x- y-z 是原式的因式.由于原式为x 、y 、z 的三次轮换式,我们设xyz y x z x z y z y x z y x 2)()()(222333-++++++--- ),)()((y x z x z y z y x k ------=比较3x 的系数,得k=-1,于是 xyz y x z x z y z y x z y x 2)()()(222333-++++++---))()((y x z x z y z y x -------=).)()((z y x y x z x z y -+-+-+=例11 分解因式:.3222222xyz zx yz xy x z z y y x ++++++解 这个三次式如果能分解,那么它必有一次因式,这一次因式是齐次的轮换式,即x+y+z .事实上,把x 用一(y+z)代入后原式为0.不过,没有必要去验证这一点,因为原式不难直接分解.由 ),(22z y x xy xyz xy y x ++=++),(22z y x yz xyz yz z y ++=++),(22z y x zx xyz zx x z ++=++可得 xyz zx yz xy x z z y y x 3222222++++++ )./)((zx yz xy z y x ++++=杀鸡焉用牛刀!特殊的问题可以用特殊的方法处理,并不是每一道题都非得用一般的方法去对付不可.10.5 整 除 问 题例12 证明:322243222432224)()()(c b a c b a C b a c b a -++-++-+能被222222444222a c c b b a c b a ---++整除.证明 由第4单元例6,可得222222444222a c c b b a c b a ---++),)()()((c b a b a c a c b C b a -+-+-+++-=因此,只要证明 ))()()((c b a b a c a c b c b a -+-+-+++是.)()()(322243222432224C b a c b a c b a C b a -++-++-+ (14)的因式即可,在a=b+c 时,(14)式的值为4222432224])([])([)(b c b C b c b c b c b -++++-++32224])[(c b c b c -+++32432434)22()22()2()(bc b c bc cb bc c b ++++-+= 343334433)(8)(8)(8c b c b c b c b c b c b +++++-=])([)(8333c b c b C b c b +++-+=,0=所以c b a --是(14)的因式.由于在a 变号时,(14)的值不变,所以)(c b a +-=时,(14)的值仍然为0.即c b a ++也是(14)的因式.(14)是a 、b 、c 的轮换式;因而b a c a c b ----、也是它的因式,从而))()()((b a c a c b c b a c b a ------++是(14)的因式,这就是要证明的结论.例13 n 是大于1的自然数,证明n n n n n n n z y x y x x z z y z y x 2222222)()()()(++++-+-+-++ )15(能被4444444)()()()(z y x y x x z z y z y x ++++-+-+-++ (16)整除,证明 在x=0时,(15)的值为,0)()(222222=++--+-+n n n n n n z y y z z y z y因此,x 是(15)的因式.在)(z y x +-=时,(15)的值为,0)()(222222=--++--+-n n n n n n z y z y z y z y因此,z y x ++是(15)的因式.由于(15)是轮换式,所以)(z y x xyz ++ (17)是它的因式.特别地,在n=2时得到(17)是(16)的因式.(16)与(17)都是四次式,因此它们至多相差一个常数.(15)能够被(17)整除,所以(15)也能够被(16)整除,10.6 原 来 是 零例14 分解因式: -----+-+-c c b b a b a a c c b ()()9)()()(22666(----332)()(2)c a b a a .)()(2)()(23333b c a c a b c b ----- )18( 解 易知b a =时(18)为0,从而导出(18)有因式).)()((a c c b b a ---在a=0时,(18)的值为333333222666)(2)(22)(9)(b c c b c b c b c b c b b c c b -------++-)2()(9]22)[()(33662223333c b c b c b c b c b c b c b -++--+---=-+--+--+--=32223332233)(9]2233[)(b c b c b c b C bc c b b c b (23)cbc b c b c b c b c b bc b c c b +-+---+--=2222222333)()(9)]33()[()((22)c +2222223)[()()](3))([()(c bc b c b b c bc b bc c b c c b ++-+-+++--=])3(2bc -22222224)(3()()4()(c bc b bc c bc b c b b bc c c b +++++-+++--=)3bc -)4()()4()(224224C bc b c b b bc C c b ++-+++--=,0=于是a 是(18)的因式,从而))()((a c c b b a abc ---是(18)的因式.由于(18)的次数为6,所以设222666)()()(9)()()(a c c b b a b a a c c b -----+-+-333333)()(2)()(2)()(2b c a c a b c b c a b a ---------).)()((a c c b b a kabc ---=令,1,2,3===c b a 得3333222666)1(.122122119121-⨯⨯-⨯⨯-⨯⨯⨯-++33)1()2(2-⨯-⨯-,12k -=即 ,012=-k于是 ,0=k从而 222666)()()(9)()()(a c c b b a b a a c c b -----+-+-333333)()(2)()(2)()(2b c a c a b c b c a b a ---------.0=表面上(18)是一个6次式,实质上,它等于0,这是有一点出乎意料的.0无需进行分解,每一个(非零)多项式都是它的因式.例15 分 解 因 式:).2()()2()()2()(333c b a b a b a c a c a c b c b -+-+-+-+-+-解 容易验证在a=0与a=b 时,原式的值为0.因此,a(a-b)是它的因式,由于原式是a 、b 、c 的轮换式,所以))()((a c c b b a abc --- (19)是它的因式.但(19)是6次式,而原式的次数≤4,这说明原式必须为0,即.0)2()()2()()2()(333=-+-+-+-+-+-c b a b a b a c a c ac b c b )20( 例16 证明.0)2)(()2)(()2)((333=-+-+-+-+-+-z y x y x y x z x z x z y z y分析 本题可以按照例15的办法处理.不过,更简单地是在(20)中令,,,y x c x z b z y a -=-=-=便得到)33()2()33()2(33x x y z x y z x y z --++--+)33()2(3x y z x y --++,0=从而导出了要证明的结论.10.7 四 元 多项 式例17 分解因式:.)())(()(44d b a c d a c b d a c b --++----+).)(()())((4d c b a d c b a d b a c ----++--解 原式是a 、b 、c 的轮换式,用前面的方法易知它有因式 ).)()((a c c b b a ---另一方面,把原式看成d 的多项式,在d=a 时,易知它的值为0.因此,原式有因式d -a .再由轮换性,它也有因式d-b ,d-c 于是))()()()()((c d b d a d a c c b b a ------是它的因式,因为原式是a 、b 、c 、d 的6次式,我们设 ))(()())(()(44d b a c d b a c d a c b d a c b ----++----+))(()(4d c b a d c b a ----++ ).)()()()()((c d b d a d a c c b b a k ------=令,2,1,0,1=-===d c b a 得.16=k 即原式 ).)()()()()((16c d b d a d a c c b b a ------=例18 分解因式:).)(())()((222222a d d c a d c b d d c c b d c b ------)()(222a d b a k c a -- ).)()(())((222a c c b b a c b a d b b a ------解 原式是a 、b 、c 的轮换式,和上题类似,可得))()()()()((c d b d a d a c c b b a ------是它的因式,则))()(())()(([222222c a a d d c a d c b d d c c b d c b -------)(222a d b a d -+)])()(())((222a c c b b a c b a d b b a ------))()([(a c c b b a ---÷)])()((c b b d a d ---所得商式是a 、b 、c 、d 的三次齐次式,并且,在a 、b 、c 、d 中,任意两个字母互换时,商式保持都不变(请读者自己观察一下),说明商式是a 、b 、c 、d 的三次齐次对称式.又原式对每一个字母来说,都是四次多项式,----d a c c b b a )()()(())()(c d b d a --对每一个字母来说,都是三次多项式,所以商式对每个字母来说,是一次多项式,因此,商式的形式是).(dab cda bcd abc l +++由待定系数法易知L=l ,于是原式).)()()()()()((dab cda bcd abc c d b d a d a c c b b a +++------=小 结轮换式与对称式的分解通常是:首先,把它看成一个字母的多项式,用第8单元的方法导出一些因式;然后,根据轮换式的特点,导出更多的因式;最后,用待定系数法求出其余的因式.非齐次的轮换式可以先按照次数分为几个齐次轮换式的和,对每个齐次轮换式进行分解,再相加后分解.特殊的轮换式可能有比较简便的特殊的方法,不一定非用一般的方法去分解.))((3222333ca bc ab C b a C b a abc c b a ---++++=-++可以作为一个公式使用,在0=++c b a 时,.3333abc C b a =++这两个结论都有不少应用.习 题10将以下各式分解因式:1 ).()()(b a ab a c ca c b bc -+-+-2 .2222222abc ab b a ca a c bc c b ++++++3 .2222222abc bc c b ac c a ab b a -++-+-4 ).()()(222222b a c a C b c b a -+-+-5 .)(3333z y x z y x ---++6 .))(())(())((222b a b a a c a c c b c b +-++-++-7 ).())()(())()((b a a c b a c b a c c b a c b a c b -+-++--+-++--)(b a c +-).(b a c -+8 .4)()()(222xyz y x z x z y z y x -+++++9 ).)(()()()(222b a c a c b c b a c b a c b a c b a -+-+--++-++-+).(c b a -+ 10 ).)(()()()(222b a c a c b c b a c b a c b a c b a -+-++-++-++-+).(c b a -+11 ).())(())((a c b c a c b c b a b c b a b a c a -++-+-++-+-+)()(a c b b a c -++-+ ).)((c b a b a c -+-+12 ).)(())(())((5333b c a c c a b c b b c a b a a abc C b a ---------+++ 13 ).()()(333b a ab a c ca C b bc C b a ++++++++14 +--+-++-++-+))((2)2()2()2(22222c a b a c b a c b a c b a c b a ))((222a b c b -- ).)((222b c a C --+15 .1333-++ab b a16 .8)1(1827)1(2332+++-+y x y x 17 .)()()(333333bx ay C az cx b cy bz a -+-+-18 .)()()(333b a c a c b c b a -+-+-19 .))(())(())((333b a b a a c a c c b c b +-++-++-20 )()()()()(222222222c b a c b a abc b a c a c b c b a +++++++++++).(ca bc ab ++ 21 ).()()(444b a c a c b c b a -+-+-22 ).()()(222222b a b a a c a c c b c b -+-+- 23 ).()()(444444b a c a c b c b a -+-+-24 .)(555b a b a --+25 .)(5555z y x z y x ---++26 .)()()()(5555c b a b a C a c b c b a -+--+--+-++ 27 .)()()(323232y x z x z y z y x -+-+-28 .))(())(())((444b a b a a c a c c b c b +-++-++- 29 ).)(())()(())()((222b c a c c a c a b c b b c b c a b a a +++-+++-++).(b a -30 ++++-++-++-+)()()()(222232323C b a abc c b a c b a c b a c b a ab c b a -++222( ).)()()(c b a b a c a c b ca bc -+-+-+--31 ).()()(224224224b a c a c b c b a -+-+-32 ).()()(555b a c a c b c b a -+-+- 33 .)()()(555b a c a c b c b a -+-+-34 .)2()2()()(4222322b a b a b a b ab a ++--++35 .)(777y x y x +-+36 ).()()(333333b a b a a c a c c b c b -+-+- 37 ).()()(663663663y x z x z y z y x -+-+-38 ).)(())()(())()((333b a a d c c a a d d c b b d d c c b a --+-------3)(d d b --)(b a - ).)((a c c b --习题答案。
对称式与轮换对称式.doc
八年级实验班竞赛专题-------对称式与轮换对称式1. 基本概念【定义1】一个n 元代数式12()n f x x x ,,,,如果交换任意两个字母的位置后,代数式不变,即对于任意的i j ,(1i j n ≤<≤),都有11()()i j n j i n f x x x x f x x x x =,,,,,,,,,,,,那么,就称这个代数式为n 元对称式,简称对称式。
例如,222x y x y xy x y z xy yz zx xy++++++,,,,都是对称式。
如果n 元对称式是一个多项式,那么称这个代数式为n 元对称多项式。
由定义1知,在对称式中,必包含任意交换两个字母所得的一切项,例如,在对称多项式()f x y z ,,中,若有3ax 项,则必有33ay az ,项;若有2bx y 项,则必有2bx z ,2222by z by x bz x bz y ,,,项,这些项叫做对称式的同形项,同形项的系数都相同。
根据对称多项式的定义,可以写出含n 个字母的对称多项式的一般形式,例如,含有三个字母x y z ,,的二次对称多项式的般形式是:222()()()a x y z b xy yz zx c x y z d +++++++++【定义2】如果一个n 元多项式的各项的次数均等于同一个常数r ,那么称这个多项式为n 元r 次齐次多项式。
由定义2知,n 元多项式12()n f x x x ,,,是r 次齐次多项式,当且仅当对任意实数t 有 1212()()r n n f tx tx tx t f x x x =,,,,,,。
例如,含三个字母的三元三次齐对称式为:333222222()()a x y z b x y x z y x y z z x z y cxyz +++++++++。
【定义3】一个n 元代数式12()n f x x x ,,,,如果交换任意两个字母的位置后,代数式均改变符号,即对于任意的i j ,()1i j n ≤<≤,都有 11()()i j n j i n f x x x x f x x x x =-,,,,,,,,,,,,那么就称这个代数式为n 元交代式。
高中数学轮换对称规则教案
高中数学轮换对称规则教案
一、教学目标:
1.了解轮换对称的概念和性质。
2.掌握轮换对称的相关规则和运用方法。
3.能够熟练应用轮换对称进行数学推导和计算。
二、教学重点:
1.轮换对称的定义和特征。
2.轮换对称规则的应用。
三、教学难点:
1.理解轮换对称的数学概念。
2.掌握轮换对称规则的运用方法。
四、教学过程:
1.引入:通过一个实际问题引导学生思考轮换对称的概念,如何应用轮换对称规则解决问题。
2.基础知识讲解:介绍轮换对称的定义、性质和规则,通过例题演示轮换对称的运用方法。
3.练习与检测:让学生进行练习,巩固轮换对称规则的运用,并进行检测,检查学生掌握
情况。
4.拓展应用:引导学生将轮换对称规则应用到更复杂的数学问题中,提高学生的理解能力
和应用能力。
五、课后作业:
1.完成相关的练习题目,加深对轮换对称规则的理解和运用。
2.尝试应用轮换对称解决其他数学问题,提升解决问题的能力。
六、教学反思:
1.针对学生掌握情况进行调整教学内容和方法,帮助学生更好地理解和运用轮换对称规则。
2.及时总结教学经验,完善教案内容,提高教学效果。
对称式与轮换对称式
竞赛专题-------对称式与轮换对称式1.基本概念 【定义1】一个n 元代数式12()n f x x x ,,,,如果交换任意两个字母的位置后,代数式不变,即对于任意的i j ,(1i j n ≤<≤),都有那么,就称这个代数式为n 元对称式,简称对称式。
例如,222x y x y xy x y z xy yz zx xy++++++,,,,都是对称式。
如果n 元对称式是一个多项式,那么称这个代数式为n 元对称多项式。
由定义1知,在对称式中,必包含任意交换两个字母所得的一切项,例如,在对称多项式()f x y z ,,中,若有3ax 项,则必有33ay az ,项;若有2bx y 项,则必有2bx z ,2222by z by x bz x bz y ,,,项,这些项叫做对称式的同形项,同形项的系数都相同。
根据对称多项式的定义,可以写出含n 个字母的对称多项式的一般形式,例如,含有三个字母x y z ,,的二次对称多项式的般形式是:【定义2】如果一个n 元多项式的各项的次数均等于同一个常数r ,那么称这个多项式为n 元r 次齐次多项式。
由定义2知,n 元多项式12()n f x x x ,,,是r 次齐次多项式,当且仅当对任意实数t 有 1212()()r n n f tx tx tx t f x x x =,,,,,,。
例如,含三个字母的三元三次齐对称式为:333222222()()a x y z b x y x z y x y z z x z y cxyz +++++++++。
【定义3】一个n 元代数式12()n f x x x ,,,,如果交换任意两个字母的位置后,代数式均改变符号,即对于任意的i j ,()1i j n ≤<≤,都有那么就称这个代数式为n 元交代式。
例如,()()()x y x y x y y z z x x y-----+,,均是交代式。
【定义4】如果一个n 交代数式12()n f x x x ,,,,如果将字母12n x x x ,,,以2x 代1x ,3x 代2n x x ,,代11n x x -,代n x 后代数式不变,即那么称这个代数式为n 元轮换对称式,简称轮换式。
江苏省高三一轮复习轮换对称法求最值教案
轮换对称法求最值常规武器库3、(机关枪)----ay=x+x 型----对勾函数模型4、(大 炮)-----分式求和型----分母双换元法我们发现通过以上方法最后取得最值时,必有某两个变量相等三、武器研发-----(猜测与探究)1、浙江高考)22若实数,满足1,则求的最大值?x y x y xy x y ++=+以后求最值时是否可以直接让某两个变量相等,直接计算答案呢?嗯,我们需要威力更强大的武器23xy x y x y x y()1(),(当且仅当时取得)23210xy x y x y x y(2)(2)1(),2(当且仅当2时取得) 2225第1秒------------ ①取值范围相同第2秒--------- ②条件整式中互换位置不改变整式结构轮换对称法----战斗机第3秒-------- ③结论中互换位置不改变结论结构或不影响结果五、小试牛刀----三秒口算法解压轴题镇江一模)14.若实数,x y满足22224444x xy y x y-++=,则当2x y+取得最大值时,xy的值为六、下节预告听说下节课要上终极大招了?嗯,让敌人闻风丧胆,所到之处寸草不生不会是万能判别式法吧?嘘.......七、靶场训练---秒杀压轴题南通二模)14.设实数a ,b ,c 满足a 2+b 2 ≤c ≤1,则a +b +c 的最小值为 .无锡期末)14、若第一象限内的动点P (x ,y )满足1131,22R xy xy xy++==,则以P 为圆心R 为半径 且面积最小的圆的方程为 . C镇江期末)⒕已知0,0>>y x ,若不等式)(33y x kxy y x +≥+恒成立,则实数k 的最大值为盐城三模)14.若实数x ,y 满足1x ≥-,1y ≥-且2244x y x y +=+,则2222x y y x --+的 最小值是 x2016.1114.已知正实数,满足22ln ln ,则2y 月无锡期中)x y y x y x +-=+=。
轮换对称教学设计方案
教学设计方案
课程
课题:轮换对称
课程标准
初步掌握轮换对称的题型
教学内容
分析
新人教版
教学目标
认识轮换对称的规律并应用
学习目标
认识轮换对称的规律并应用
学情分析
学生基础比较差
重点、难点
计算后的规律探索
教与学的媒体选择
PPT,实物投影
课程实施
类型
备注
教学活动步骤
序号
名称
技术资源
PPT,实物投影
常规资源
Kk摄像机
活动概述
老师讲授,师生互动
教与学的策略
在“规律”二字下文章,抓住计算题的特征,引导学生应用到实际中,让学生感受规律的作用。同时对于第二道复杂计算题,引导学生根据规律,结合“换元”思想进行转化,把复杂问题转化为简单的计算题目。
反馈评价
通过这道计算题的设计,让学生感受“规律”的好处,从而达到学生接受数学的规律美,感受数学的美。
课堂教学环节/学习活动环节
长度
1
1.计算下列两式,探索其中的规律。
老师讲授
5分钟
2
2.探索规律:根据题目的要求,对计算结果进行探索。
老师讲授
师生互动
10分钟
3
3.练习:计算下列各式。
师生互动
10分钟
4
5
……
教学活动详情
教学活动1:*******
活动目标
认识轮换对称的规律并应用
解决问题
计算后的规律探索
教学活动2:*******
活动目标
认识轮换对称的规律并应用
解决问题
计算后的规律探索
技术资源
Mp4转换器
常规资源
七年级数学尖子生培优竞赛专题辅导第二讲讲对称式和轮换对称式(含答案)
第二讲讲对称式和轮换对称式趣题引路】若正数召,心“,“书入.同时满足= 空込泊=2, 沁色=3,X] 吃“兀泊空£ = 6, 土込竺=9,则X,+X,+X3+X4+X5+A-6的值是多少?若将六式左右分别相乘得(X1W4X5A6)4 =64 ,因此XMP)兀乓兀=6,将已知式分别代入上式可得X| = "\/6 , = \/^» A"j = 5/2" , X4 = , X5 =1 ------- ,兀6 = • Ml" 以2 3X, +A-2+x3+A-4+x5+x6=l + V2 + V3 + lb^视六数之积为整体,可巧妙地消元求解!对于具备特殊结6构的代数式或方程,我们也要学会运用特殊的解题策略.知识拓展】1.对称多项式观察"+ /? + c , ah + be + ca » 1/ + b' + c' —3ab — 3/>c —3ca » a'h + b z c + c2a + ab~ + be2 + ca z等多项式,如果任意互换两个元的位置,所得的多项式与原式恒等,像这样的多项式叫做对称多项式(简称对称式)• 上述四个式子也可分別称为三元对称多项式,又如A-4+(X+>-)4+/是二元对称多项式.2.轮换对称多项式一个关于儿八z…、w的多元多项式,若依某种顺序把字母进行轮换(如把x换成y, y换成z, w换成X),多项式不变,这种多项式叫做轮换对称多项式(简称轮换式)•例如x'y + y'z + Fx , (“一b+c)( b—c+")( c—a+b)都是三元轮换对称式.显然,对称多项式都是轮换对称多项式,而轮换对称多项式则不一上是对称多项式,如:+ + 是轮换式,但因互换儿y得到的是bx + Fz + Fy已不是原式,所以原式不是对称式.同样对(b-c)(c-a)(a-b)^是如此,即该式是轮换对称式而不是对称式.但只含有两个字母的轮换对称式都是对称式.3.对称式的性质(1)关于小y的对称式总可以用x+y和小来表示.(2)两个对称式的和、差、积、商也是对称式(3)齐次对称多项式的积、幕仍是齐次对称多项式.4.对称多项式和轮换多项式的因式分解:运用因式分解定理和待立系数法.一、对称式、轮换对称式的求值技巧例1已知卩一尤一),=4,贝|J(Q —1)2_2疋〉,一2心2+十+〉,2+6卩—2x —2y的值等于____ .解析可引导学生观察已知等式和所求式的特点,易见,它们都是关于x、y的对称式,根据对称式的性质,所求式可用x+y和卩来表示,先化简后再求值.解设x+y=“,AJ=V,由题设得vr=4,贝IJ原式=(Ay-1)2 - 2AJ(X +y) + [(牙 + y)2 - Zyy] + 6xy- 2(x + y)=(v—If—2vz/+if—2v+6v~2w=v2-2 vu+/+2 ” 一2 u +1=(v—w+l)==25 ・点评:对称换元有利于简化解题过程.例2 计算:(x+y-iz)(xy+yz+zx).解析因为x+y+z和xy+w+旷都是轮换对称式,所以它们的积也是轮换对称式.因此,做这种乘法运算时可只把第一个因式的第一个字母乘以第二个因式各项,然后根据轮换对称性写岀其余各项.解:T x(xy-\-yz+vc)=+y+xyz+vC,原式+yz+yzx+xy^+厶+砂+yf=x:y+y:z+zH+亍+yz"+zx' + 3QZ ■点评:由已知代数式的对称性,可知其展开式亦是对称的,从而可由一项写出对称的英他,这样解题就会既简明又准确.二、对称式的因式分解例3 分解因式:z)+y'(z—x)+z'(x—刃.解析这是一个关于八y. 2的四次齐次轮换对称式,当x=y时,原式的值为零,根据余式泄理知x —y是它的一个因式.由轮换对称的性质知y—z和z—x也是它的因式.因为(x—y)(y—z)(z—x)是三次轮换对称式,所以原式还应有一个一次齐次轮换对称的因式,不妨设为Hr+y+z),从而有x(y—z)+yXz~x)+z(x—y)=k(x+y+z)(x—y)(y~x)(z—x)・取x=2t y=l, z=0,得k= — l.:.x(y—z)+y(z—x)+z z(x—y)= —(x+y+z)(x—y)(y—z)(z—x)・点评:由对称性来探究可能分解出的因式,这是因式分解的一种十分有趣的方法.例4把2+U+)A+y分解因式.解析这是一个二元对称多项式,分解因式时一般将原式用x+y> xy表示出来再进行分解.解:£+(x+y)'+h=(r+)」)+(x+)A=(F+『亍一2汐+(x+)A=[(x+y)'—2xyf一2xy+(A4-y):=2(x+y)1- 4x)<x+y)3+ 2xy=2[(x+yY-xy]2=2(卫+小+护)2・点评:实际上任何一个二元对称式都可以用x+y、小表示出来,对于给泄的对称式,往往是寻求这种具体表示方法.在解决本题时;实际可以直接由(x+)y的展开形式,宜接将屮+讯用x+y、心来表示,即x4+y* = (x+)y — 4・py — 6xV — 4巧3 = (x+y)4-4xy(x+y)2 + 2(Q)2.例5 分解因式:(X->')5+(.V-X)5+(Z-A)5.解析这是一个5次轮换对称多项式,只要找到它的一个因式就能找到与它同类型的期两个因式,若在原多项式中令x=y,则原式= (x-zP+(z-x)5=0.根据因式泄理,则x-y是原式的一个因式,于是y 一z、z-x也是它的因式.解:因为当x=y时,(x—yp+(y—xp+(z—xp=O,所以原多项式有因式(x~y)Cv—z)(z—x).由于原多项式是5次轮换对称式,根据其特点可设(x—y)5+(v—z)5+(z—X)5=(x—y)(y—z)(z—x)[“("+尸+z2)+b(Ay+yx+zx)]①其中“、〃是待立系数.取x=lt y= — L z=0代入①式得2d—b=\5・②取x=2, y=l, z=0代人①式得5a+2b=15・③将②、③两式联立解得“=5, b=-5.所以(x-y)5+(y-z)5 + (z-x)5=5 (x—y)(y—z)(z—x)(x2+y2+z?—xy—yx—zx)・点评:在解本题的过程中,设了一个因式为“(界+尸+刊+风巧+严+旳,若不是这种形式,不妨设为0_y2 + z2,由轮换式,就会有另两个因式严一Q+W及艺一川+尸,这样原式就至少为9次,从而由对称式的特点只能设另一个因式为“(工+护+刃+反巧+皿+旷).也就是说三个字母的轮换对称多项式若次数<3,则也一立为对称多项式.三、综合应用例6 已知“+b>c b+c>a> u+c>b,求证:c)2—b(c—6/)2—c(t/—b)2—4</Z?c<0.解析要证明多项式的值小于0,可先将它分解因式,只要判左各个因式的符号就能对原多项式的符号作出判定.证明:设T= a3+Z?3+c3—1/(/?—c)2—h(c~a)2—c(a~b)2—4cibc・把该多项式看作是关于“的3次多项式,令"=b+c,则T= (b+cP+沪+R—(b+c)(b—c)2—沪一R—4(b+c)bc=2(,+")+32c+3bc2— 2(夕+c3)+Qc+be2—4b2c—4bc2=0.由因式泄理知,"一(b+c)是T的一个因式.又由于丁是一个轮换对称式,于是b —(c+“),c-(a+b)也是7的因式,因为T是关于"、b、c的3 次式,所以可设T— k(a—b—c)(b—c—a)(c—a~b)・比较两边/的系数可得k=\.故T= (a—b—c)(b—c—a)(c—a—b)・根据题意"+b>c, d +则有c—a—b<0, a—b—c<0, b—a—c<0.所以TVO.即原不等式成立.例7设△ABC的三边长分别为心b、c,且上二L+ —+上二£=0,试判断ZBC的形状.1 + ah \+bc 1 + ca解析已知等式去分母,得(t/—Z?)( 14- bc)( 1 + ca) 4- (/?—c)( 1 +c“)(l +")+(c—")(1 +")(1 +处)=0・上式的左边是关于a、b、c的轮换对称式,把,(a—b)(l+bc)(l+ca)展开、整理,得a-b—b2c-}-ca2+ "2力一於C2•根据轮换对称式的性质,可直接写出其余各项.由此,上式可写为a~b~ b2c+"+a2bc2—al^c2+b—c—c2a+ah2+b2ca2—berer+c—a —a2b+be2+crab1— ca2b2=0 ・整理,得ab2+be2+ca2—a2b—b2c—c2a=0.设M=ab2 -b be2+ca2—a2b—b2c—c2a ・当"=b时,A/=0,由因式泄理知"一b是M的一个因式.而M是关于“、b、c的三次齐次轮换对称式,故M含有因式(a—b)(h—c)(c—u).又(“一b)(b—c)(c—a)也是三次齐次轮换对称式,则M还应有一个常因子,于是可设ab2+be2+ca2—erb — b2c•—(rci=k(a~b)(b—c)(c ~a).取a=2, h=\9 c=0,得k=\.M=(a — b)(b—c*)(c—a)=0 ・:・u=b或b=e或c=a,即"、b、c中至少有两个相等.故△ABC必为等腰三角形.好题妙解】佳题新题品味例分解因式l)(y-z)+Ay+ l)(z-x)+z3(z+ l)(x~y)・解析由于原式是X, y, z的轮换式但不是齐次式,所以当求得©—2)(z-x)仗一刃的因式后,剩下的因式是A(x2+y2+z2)+B(yz+zx+xy)+CC¥+y+z)+£)・解:当时,原式=0..・・y-z是原式的一个因式.设原式=(y~z)(z—x)(x—y)[ A("+y2+z2)+B(yz+乙t+xy)+C(x+y+z)+D]・由于原式最低为四次项,.・.D=0.•••原式=(y—z)(z—x)(x—y)[ A(x2 -+-y24-z2)+B(yz++C(x+y+z)].令x=h y= —L z=0 得2A—B= —1;①令x=-h y=0, z=2 得5A-2B+C=-4;②令x=l; y=-L z=2 得6A-B+2C=-7・③解①,②,③组成的方程组,得A=B=C=-1.故原^=—(y—z)(z—x)(x—y)(x2+y1+z1+yz+zx+xy+x+y+z)・中考真题欣赏例(陕西省中考题)分解因式:6兀一6),—9W+18•巧一9屮一1.解析关于X, y的对称式可用含x+y, x-y,小的式子表示,考虑分组.解:6x—6y—9W+ 18小一9)卫一1 = — (9X2— 18xy+9)^)+(6x—6y) — 1=—[9(工一Zxy+〉') _ 6(x _ y) + 1 ]=一[9(A—y)2-2X 3(x-y) +1]= -[3(xp)— IF= _(3x_3y_ 1)2.竞赛样题展示例分解因式(a-\-b+c)5—a5—b5—c5・解析这是一个五次对称多项式,只要找到它的一个因式,就能找岀与它同类型的另两个因式.如果在多项式中令a = -b,则原式=c5-c5=O,根据因式上理,则“+b是原式的一个因式,于是(b+c)、(c +")也是它的因式.解:因为当"=—b时,(a+b+cp—cP—“5—芒=0,所以原式有因式(a+b)(b+c)(c+a)・由于原式是5次对称多项式,根据英特点,可设(“ + b + c)5 — "5—/一小=(“+b)(b+c)(c+a)[k(cr+b?+c?)+m(ab+bc+ca)]・①其中£、加是有待确左的系数.令么=1, b=l, c=0,代人①式得30=2("+〃?),即2k+m=15・又令“=0, b=\, c=2,代人①式得210=6(5£+加),即5«+加= 35.由此解得k=5t m=5.所以(a+b-^c)s—a5—b5—c5=5(a+b)(h+c)(c+a)(a2-^b2+c2+ab-\-bc-^ca)点评:先找出一个因式,再利用对称式的性质得出同型的另外一些因式,再运用待立系数法确定剩下的其他因式.过关检测】A级1.在下列四个式子中,是轮换多项式的有( )① 3x+2y+z ②+y 彳+z4 + 巧』z?③jty2 + y2^+④卫+y3+z3—x2—y2—z2A. 0个B・1个C・2个D・3个2.x2y+xy2+y2z+yz2+z2x+zx24-3xy f z=y+z)(xy'-\-yz+zx),则k 的值是( )A. 1 B・ 1 C・ 3 D・一123•设Of=xi+X2+X3, 0 =X1X2+X2X3+X3AS / =A1X2X3> 用Q、卩、丫表示岀X)3+x23+x33的结果是( )A. a'— 3a卩+3?B・0‘一3矽+3卩C・ a'+3a0—3/ D・ 0'—3a0+3y4 ・分解因式:xy^x2一y2) +yz(y2—z2)+zx(z2—x2)・5.分解因式:Ty+^+Wz+^+FCv+y)—W+h+R-Zryz.6.化简:“(b+c—“)2+b(c+“一Z?)2+d"+/?—c)2+(b+c—")(©+" —b)(“+b—c)・7.已知"+b+c+〃=O, R+b3+c3+〃3=3.(1)求证:(a+b)34-(c+J)3=0:(2)求证:ab(c+J)+cd(a+Z?) = 1 ・1.若——-—— + ——-—— + ——-——=1,则儿八x的取值情况是()(X + z)(y + z) (>■ + x)(z + A) (z + y)(x + y)A.全为零B.只有两个为零C.只有一个为零D.全不为零2.已知⑴b、c均为正数,设p=“+b+c 尸竺+竺+竺,则“与g的大小关系是( )a h cA・P>q B・ p<q C・ pPq D・pWq3.已知x+y=3,戏+尸_小=4,则十+屮+兀3$+与,3的值等于 _____________ ・4.如图2-1,正方体的每一个面上都有一个正整数,已知相对的两个而上二数之和都相等.如果13、9、3的对面的数分别是"、b、c9试求a1+b2+c1—ab—bc—ca的值,5・分解因式:(x+y)(y+z)(z+x)+xyz.6.分解因式:G(a+ l)(b—c)+b'(b+ l)(c—”)+c3(c+ \)(a~b).第二讲对称式和轮换对称式A级1. B2. B3. A4.-(x+/H-z)(x-y)(y-z)5.- (x-y-z)(/-z-a)(z - x - y).提示:令丁= y原式为0;同理7 =x十乙时,原式为0;z” ”时,原式为0・设原式-A(x- -y)-6.4a6c提示:当a=0时,原式=0;故设原式= kabj取a = 6=c=U.得&=4・7・ a,46’+c?+d'=(a+6)'-3a6(a・6) + (c • -3cJ(c+d).又a 十6 = 一(c + d),所以(a *b)‘ + (c+/)‘ =0•故3 =3a6(c + d) +3cd(a +6),即a6(c +d) +cd(c+6) = 1B级L・C提示:化简已知等式得xyz=0.2.D提示:运用作差比较.3・ 36 ^4.76 提示:原式=y[(a-6)2 + (6-c)2 + (c-a)2]5.(x+y+«) (xy+-yz+a)6・一(a - 6)(6*-c)(c-a)(a2+c2十 ab + be +co + a+ 6 +c)提示:原:式为非齐次轮换式,可视作以a为主元的多项式.当a M时,原式=0.所以a・6是原式的一个因式.由对称性知也是原式的因式.剰下的因式应是非齐次对称性•设原式=(a-6)(6-c)(c-a)(A:(a2 + + c2) +2( a6 + 6c 4-ca) +m(a+6 + c) +a]・取恃值求得A = - 1 fI = -l,m = =1』=0.。
七年级数学尖子生培优竞赛专题辅导第二讲 讲对称式和轮换对称式(含答案)
第二讲 讲对称式和轮换对称式趣题引路】若正数123456,,,,,x x x x x x .同时满足2345611x x x x x x =,3456122x x x x x x =,4561233x x x x xx =,5612344x x x x x x =,6123456x x x x x x =,1234569x x x x xx =,则123456x x x x x x +++++的值是多少? 若将六式左右分别相乘得44123456()6x x x x x x =,因此1234566x x x x x x =,将已知式分别代入上式可得61=x ,32=x ,23=x ,264=x ,15=x ,366=x .所以6611321654321+++=+++++x x x x x x 视六数之积为整体,可巧妙地消元求解!对于具备特殊结构的代数式或方程,我们也要学会运用特殊的解题策略.知识拓展】 1.对称多项式观察a b c ++,ab bc ca ++,333333a b c ab bc ca ++---,222222a b b c c a ab bc ca +++++等多项式,如果任意互换两个元的位置,所得的多项式与原式恒等,像这样的多项式叫做对称多项式(简称对称式).上述四个式子也可分别称为三元对称多项式,又如444()x x y y +++是二元对称多项式. 2.轮换对称多项式一个关于x 、y 、z…、w 的多元多项式,若依某种顺序把字母进行轮换(如把x 换成y ,y 换成z ,w 换成x ),多项式不变,这种多项式叫做轮换对称多项式(简称轮换式).例如222x y y z z x ++,(a -b +c )( b -c +a )( c -a +b )都是三元轮换对称式.显然,对称多项式都是轮换对称多项式,而轮换对称多项式则不一定是对称多项式,如:222x y y z z x ++是轮换式,但因互换x 、y 得到的是222y x x z z y ++已不是原式,所以原式不是对称式.同样对(b -c )(c -a )(a -b )也是如此,即该式是轮换对称式而不是对称式.但只含有两个字母的轮换对称式都是对称式. 3.对称式的性质(1)关于x 、y 的对称式总可以用x +y 和xy 来表示. (2)两个对称式的和、差、积、商也是对称式 (3)齐次对称多项式的积、幂仍是齐次对称多项式.4.对称多项式和轮换多项式的因式分解:运用因式分解定理和待定系数法.一、对称式、轮换对称式的求值技巧例1 已知4xy x y --=,则22222(1)22622xy x y xy x y xy x y ---+++--的值等于 . 解析 可引导学生观察已知等式和所求式的特点,易见,它们都是关于x 、y 的对称式,根据对称式的性质,所求式可用x +y 和xy 来表示,先化简后再求值. 解 设x +y =u ,xy =v ,由题设得v -u =4,则原式=22(1)2()()262()xy xy x y x y xy xy x y ⎡⎤--+++-+-+⎣⎦=(v -1)2-2vu +u 2-2v +6v -2u =v 2-2vu +u 2+2v -2u +1 =(v -u +1)2=25.点评:对称换元有利于简化解题过程.例2 计算:(x +y +z )(xy +yz +zx ).解析 因为x +y +z 和xy +yz +zx 都是轮换对称式,所以它们的积也是轮换对称式.因此,做这种乘法运算时可只把第一个因式的第一个字母乘以第二个因式各项,然后根据轮换对称性写出其余各项.解:∵x (xy +yz +zx )=x 2y +xyz +zx 2,∴原式=x 2y +xyz +zx 2+y 2z +yzx +xy 2+z 2x +zxy +yz 2=x 2y +y 2z +z 2x +xy 2+yz 2+zx 2+3xyz .点评:由已知代数式的对称性,可知其展开式亦是对称的,从而可由一项写出对称的其他,这样解题就会既简明又准确.二、对称式的因式分解例3 分解因式:x 3(y -z )+y 3(z -x )+z 3(x -y ).解析 这是一个关于x 、y 、z 的四次齐次轮换对称式,当x =y 时,原式的值为零,根据余式定理知x -y 是它的一个因式.由轮换对称的性质知y -z 和z -x 也是它的因式.因为(x -y )(y -z )(z -x )是三次轮换对称式,所以原式还应有一个一次齐次轮换对称的因式,不妨设为k (x +y +z ),从而有x 3(y -z )+y 3(z -x )+z 3(x -y ) =k (x +y +z )(x -y )(y -x )(z -x ). 取x =2,y =1,z =0,得k =-1. ∴x 3(y -z )+y 3(z -x )+z 3(x -y ) =-(x +y +z )(x -y )(y -z )(z -x ) .点评:由对称性来探究可能分解出的因式,这是因式分解的一种十分有趣的方法.例4 把x 4+(x +y )4+y 4分解因式.解析这是一个二元对称多项式,分解因式时一般将原式用x+y、xy表示出来再进行分解.解:x4+(x+y)4+y4=(x4+y4)+(x+y)4=(x2+y2)2-2x2y2+(x+y)4=[(x+y)2-2xy]2-2x2y2+(x+y)4=2(x+y)4-4xy(x+y)2+2x2y2=2[(x+y)2-xy]2=2(x2+xy+y2)2.点评:实际上任何一个二元对称式都可以用x+y、xy表示出来,对于给定的对称式,往往是寻求这种具体表示方法.在解决本题时;实际可以直接由(x+y)4的展开形式,直接将x4+y4用x+y、xy来表示,即x4+y4=(x+y)4-4x3y-6x2y2-4xy3=(x+y)4-4xy(x+y)2+2(xy)2.例5分解因式:(x-y)5+(y-x)5+(z-x)5.解析这是一个5次轮换对称多项式,只要找到它的一个因式就能找到与它同类型的另两个因式,若在原多项式中令x=y,则原式=(x-z)5+(z-x)5=0.根据因式定理,则x-y是原式的一个因式,于是y -z、z-x也是它的因式.解:因为当x=y时,(x-y)5+(y-x)5+(z-x)5=0,所以原多项式有因式(x-y)(y-z)(z-x).由于原多项式是5次轮换对称式,根据其特点可设(x-y)5+(y-z)5+(z-x)5=(x-y)(y-z)(z-x)[a(x2+y2+z2)+b(xy+yx+zx)] ①其中a、b是待定系数.取x=1,y=-1,z=0代入①式得2a-b=15.②取x=2,y=1,z=0代人①式得5a+2b=15.③将②、③两式联立解得a=5,b=-5.所以(x-y)5+(y-z)5+(z-x)5=5(x-y)(y-z)(z-x)(x2+y2+z2-xy-yx-zx).点评:在解本题的过程中,设了一个因式为a(x2+y2+z2)+b(xy+yx+zx),若不是这种形式,不妨设为x²-y2+z2,由轮换式,就会有另两个因式y²-z2+x2及z²-x2+y2,这样原式就至少为9次,从而由对称式的特点只能设另一个因式为a(x2+y2+z2)+b(xy+yz+zx).也就是说三个字母的轮换对称多项式若次数<3,则也一定为对称多项式.三、综合应用例6已知a+b>c,b+c>a,a+c>b,求证:a3+b3+c3-a(b-c)2-b(c-a)2-c(a-b)2-4abc<0.解析 要证明多项式的值小于0,可先将它分解因式,只要判定各个因式的符号就能对原多项式的符号作出判定.证明:设T =a 3+b 3+c 3-a (b -c )2-b (c -a )2-c (a -b )2-4abc . 把该多项式看作是关于a 的3次多项式,令a =b +c , 则T =(b +c )3+b 3+c 3-(b +c )(b -c )2-b 3-c 3-4(b +c )bc =2(b 3+c 3)+3b 2c +3bc 2-2(b 3+c 3)+b 2c +bc 2-4b 2c -4bc 2 =0.由因式定理知,a -(b +c )是T 的一个因式.又由于T 是一个轮换对称式,于是b -(c +a ),c -(a +b )也是T 的因式,因为T 是关于a 、b 、c 的3次式,所以可设T =k (a -b -c )(b -c -a )(c -a -b ).比较两边a 3的系数可得k =1. 故T =(a -b -c )(b -c -a )(c -a -b ). 根据题意 a +b >c ,b +c >a ,a +c >b . 则有c -a -b <0,a -b -c <0,b -a -c <0. 所以T <0.即原不等式成立.例7 设△ABC 的三边长分别为a 、b 、c ,且1a b ab -++1b c bc -++1c aca-+=0,试判断△ABC 的形状. 解析 已知等式去分母,得(a -b )(1+bc )(1+ca )+(b -c )(1+ca )(1+ab )+(c -a )(1+ab )(1+bc )=0.上式的左边是关于a 、b 、c 的轮换对称式,把(a -b )(1+bc )(1+ca )展开、整理,得a -b -b 2c +ca 2+a 2bc 2-ab 2c 2.根据轮换对称式的性质,可直接写出其余各项.由此,上式可写为a -b -b 2c +ca 2+a 2bc 2-ab 2c 2+b -c -c 2a +ab 2+b 2ca 2-bc 2a 2+c -a -a 2b +bc 2+c 2ab 2-ca 2b 2=0. 整理,得ab 2+bc 2+ca 2-a 2b -b 2c -c 2a =0. 设M =ab 2+bc 2+ca 2-a 2b -b 2c -c 2a .当a =b 时,M =0,由因式定理知a -b 是M 的一个因式.而M 是关于a 、b 、c 的三次齐次轮换对称式,故M 含有因式(a -b )(b -c )(c -a ).又(a -b )(b -c )(c -a )也是三次齐次轮换对称式,则M 还应有一个常因子,于是可设ab 2+bc 2+ca 2-a 2b -b 2c -c 2a =k (a -b )(b -c )(c -a ). 取a =2,b =1,c =0,得k =1. ∴M =(a -b )(b -c )(c -a )=0.∴a =b 或b =c 或c =a ,即a 、b 、c 中至少有两个相等. 故△ABC 必为等腰三角形. 好题妙解】佳题新题品味例分解因式x3(x+1)(y-z)+y3(y+1)(z-x)+z3(z+1)(x-y).解析由于原式是x,y,z的轮换式但不是齐次式,所以当求得(y-z)(z-x)(x-y)的因式后,剩下的因式是A(x2+y2+z2)+B(yz+zx+xy)+C(x+y+z)+D.解:当y=z时,原式=0.∴y-z是原式的一个因式.设原式=(y-z)(z-x)(x-y)[ A(x2+y2+z2)+B(yz+zx+xy)+C(x+y+z)+D].由于原式最低为四次项,∴D=0.∴原式=(y-z)(z-x)(x-y)[ A(x2+y2+z2)+B(yz+zx+xy)+C(x+y+z)].令x=l,y=-1,z=0得2A-B=-1;①令x=-1,y=0,z=2得5A-2B+C=-4;②令x=1;y=-1,z=2得6A-B+2C=-7.③解①,②,③组成的方程组,得A=B=C=-1.故原式=-(y-z)(z-x)(x-y)(x2+y2+z2+yz+zx+xy+x+y+z).中考真题欣赏例(陕西省中考题)分解因式:6x-6y-9x2+18xy-9y2-1.解析关于x,y的对称式可用含x+y,x-y,xy的式子表示,考虑分组.解:6x-6y-9x2+18xy-9y2-1=-(9x2-18xy+9y2)+(6x-6y)-1=-[9(x2-2xy+y2)-6(x-y)+1]=-[9(x-y)2-2×3(x-y)+1]=-[3(x-y)-1]2=-(3x-3y-1)2.竞赛样题展示例分解因式(a+b+c)5-a5-b5-c5.解析这是一个五次对称多项式,只要找到它的一个因式,就能找出与它同类型的另两个因式.如果在多项式中令a=-b,则原式=c5-c5=0,根据因式定理,则a+b是原式的一个因式,于是(b+c)、(c +a)也是它的因式.解:因为当a=-b时,(a+b+c)5-a5-b5-c5=0,所以原式有因式(a+b)(b+c)(c+a).由于原式是5次对称多项式,根据其特点,可设(a+b+c)5-a5-b5-c5=(a+b)(b+c)(c+a)[k(a2+b2+c2)+m(ab+bc+ca)].①其中k、m是有待确定的系数.令a=1,b=1,c=0,代人①式得30=2(2k+m),即2k+m=15.又令a=0,b=1,c=2,代人①式得210=6(5k+2m),即5k+2m=35.由此解得k=5,m=5.所以(a+b+c)5-a5-b5-c5=5(a+b)(b+c)(c+a)(a2+b2+c2+ab+bc+ca)点评:先找出一个因式,再利用对称式的性质得出同型的另外一些因式,再运用待定系数法确定剩下的其他因式.过关检测】A级1.在下列四个式子中,是轮换多项式的有( )①3x+2y+z②x2+y3+z4+x4y3z2③xy2+y2z3+z3x④x3+y3+z3-x2-y2-z2A.0个B.1个C.2个D.3个2.若x2y+xy2+y2z+yz2+z2x+zx2+3xyz=k(x+y+z)(xy+yz+zx),则k的值是( )A.12B.1 C.3 D.-13.设α=x1+x2+x3,β=x1x2+x2x3+x3x1,γ=x1x2x3,用α、β、γ表示出x13+x23+x33的结果是( ) A.3α-3αβ+3γB.3β-3αγ+3γC.3α+3αβ-3γD.3β-3αβ+3γ4.分解因式:xy(x2-y2)+yz(y2-z2)+zx(z2-x2).5.分解因式:x2(y+z)+y2(z+x)+z2(x+y)-(x3+y3+z3)-2xyz.6.化简:a(b+c-a)2+b(c+a-b)2+c(a+b-c)2+(b+c-a)(c+a-b)(a+b-c).7.已知a+b+c+d=0,a3+b3+c3+d3=3.(1)求证:(a+b)3+(c+d)3=0;(2)求证:ab(c+d)+cd(a+b)=1.B 级1.若()()xyx z y z +++()()yz y x z x +++()()zx z y x y ++=1,则x 、y 、x 的取值情况是( )A .全为零B .只有两个为零C .只有一个为零D .全不为零 2.已知a 、b 、c 均为正数,设p =a +b +c ,q =bc a +ca b +abc,则p 与q 的大小关系是( ) A .p >q B .p <q C .p ≥q D .p ≤q 3.已知x +y =3,x 2+y 2-xy =4,则x 4+y 4+x 3y +xy 3的值等于 .4.如图2-1,正方体的每一个面上都有一个正整数,已知相对的两个面上二数之和都相等.如果13、9、3的对面的数分别是a 、b 、c ,试求a 2+b 2+c 2-ab -bc -ca 的值,3913图2-15.分解因式:(x +y )(y +z )(z +x )+xyz .6.分解因式:a 3(a +1)(b -c )+b 3(b +1)(c -a )+c 3(c +1)(a -b ).。
待定系数法,对称式与轮换对称式
【例1】(太原市初中数学竞赛) 关于x,y的二次式x2+7xy+my2-5x+ 43y-24可分解为两个一次因式的乘积, 则m的值是_r是x的一次式的完全 立方式,求证3mr=n2。
【例3】用待定系数法分解因式: x5+x+1
对称式:
x、y多项式x+y,xy,x2+y2,x3+y3,x2y+ xy2,…在字母x与y互换时,保持不变。这样 的多项式称为x、y的对称式。 类似的,关于x、y、z的多项式x+y+z,x2+ y2+z2,xy+yz+zx,x3+y3+z3,x2y+x2z+ y2z+y2x+z2x+z2y,xyz,…在字母x、y、z中 任意两字互换时,保持不变,这样的多项式 称为x、y、z的对称式。
轮换式: 关于x、y、z的多项式x+y+z,x2+y2+z2, xy+yz+zx,x3+y3+z3,x2y+y2z+z2x,xy2 +yz2+zx2, xyz,…在将字母x、y、z轮换 (即将x换成y,y换成z,z换成x)时,保持不变。 这样的多项式称为x、y、z的轮换式。
1
显然,关于x、y、z的对称式一定是x、y、z 的轮换式。但是,关于x、y、z的轮换式不一 定是对称式。
例如,x2y+y2z+z2x就不是对称式。 次数低于3的轮换式同时也是对称式。
【例4】分解因式: a3(b-c)+b3(c-a)+c3(a-b)
【例5】分解因式: (y-z)5+(z-x)5+(x-y)5
2
高中数学轮换对称教学设计
高中数学轮换对称教学设计引言:在高中数学教学中,为了提高学生的学习兴趣和学习效果,教学设计的重要性不容忽视。
本文将以轮换对称为主题,探讨高中数学轮换对称教学的设计和实施。
通过合理的教学设计,可以激发学生的学习热情,增强他们对数学的理解和运用能力。
一、轮换对称的概念轮换对称是数学中一个重要的概念。
简单来说,轮换对称就是将一个对象的各个部分按照一定的规则依次轮换位置,使得对象整体保持不变。
在几何学中,轮换对称是指通过旋转、翻转等操作使得物体在平面上相对不动。
二、轮换对称在数学教学中的重要性1.培养学生的空间想象力:通过学习轮换对称的概念和操作,学生能够培养出较好的空间想象力,提高他们的几何思维能力。
2.拓宽数学思维:轮换对称是一种特殊的对称性,在数学领域有广泛的应用。
通过学习轮换对称,学生能够拓宽数学思维,提高他们解决问题的能力。
3.培养学生的创新思维:轮换对称的概念和操作相对复杂,要求学生在运用中灵活掌握,培养他们的创新思维,激发他们对数学的兴趣和发展潜力。
三、高中数学轮换对称教学设计为了有效地教授轮换对称的概念和操作,我们可以采取以下教学设计:1.引入轮换对称的概念:在教学开始时,可以通过示例和简单的图形来引入轮换对称的概念,让学生直观地感受轮换对称的特点和重要性。
2.学习轮换对称的基本操作:学生需要学习轮换对称的基本操作,如旋转、翻转等。
教师可以通过演示和实际操作来帮助学生理解和掌握这些操作。
3.练习轮换对称的应用:为了巩固学生对轮换对称的理解,可以设计一些练习题,要求学生运用所学的知识进行解答。
这些练习题可以包括几何图形的轮换对称和数学问题的应用等。
4.开展小组合作学习:将学生分为小组,让他们共同合作完成一些关于轮换对称的任务。
通过小组合作学习,学生可以互相交流,引发思维碰撞,提高解决问题的能力。
5.进行知识拓展:在轮换对称的教学中,也可以适时引入一些与之相关的知识,如轮换群的概念和性质等。
奥数-因式分解-3师
因式分解3:对称式、轮换式、及应用一、对称式和轮换对称式对称式和轮换对称式是特殊的代数式,根据其结构对称的特点,可以得到对称式和轮换对称式的一些特殊性质,利用这些性质,可以简便地解决有关对称的问题.(1) (完全)对称式如果把一个代数式中的字母对调,所得的代数式和原来的代数式恒等,那么就说原来的代数式关于这些字母呈对称,原来的代数式就是关于这些字母的对称式.例如,a b c ++,222x xy y ++,1ab,3333a b c abc ++-等都是对称式,但a b c --、1x y -、23a b c ++就不是对称式.(2) 轮换对称式把一个代数式里的字母按照某个秩序排列,然后依次把第一个字母换成第二个字母,把第二个字母换成第三个字母……把最后一个字母换成第一个字母,我们把这种变换字母的方法叫作轮换.如果通过轮换后所得到的代数式和原来的代数式恒等,那么就把原来的代数式叫作关于这些字母的轮换对称式.例如,222x y y z z x ++中将x 以y 代换,y 以z 代换,z 以x 代换,则得222y z z x x y ++,它与原式完全相同,所以222y z z x x y ++是关于x 、y 、z 的轮换对称式.(3)交代对称式:一个代数式中,如果把它所含的两个字母互换,得到的式子和原来的代数式只差一个符号,那么这个代数式就叫做关于这两个字母的交代式。
例如a b -,22a b -。
(4) 齐次轮换对称式如果轮换对称式中的各项的次数相等,那么就把这样的代数式叫作齐次轮换对称式.(5) 基本性质① 任何对称式都可以用它的基本对称式来表示.② 对称式的和、差、积、商也是对称式.③ 轮换对称式的和、差、积、商也是对称式.④ 齐次轮换对称式的和、差、积、商也是对称式.⑤ 一个m 次对称式乘一个n 次对称式,其积必为一个m n +次对称式.(6) 齐次轮换、对称式的因式分解:因式定理、待定系数法结合因式定理、待定系数法来分解因式,例如齐次轮换式()()()222a b c b c a c a b -+-+-,当a b =时,原式的值为0.根据因式定理可知:原式必有因式()a b -,同样的必有因式()b c -和()c a -,所以()()()()()()222a b c b c a c a b k a b b c c a -+-+-=---,可求得1k =-.例1 333()()()x y z y z x z x y -+-+-答案:33333333322()()()()()()()[()()]()()()()x y z y z x z x y x y z x z y zy z y y z x z zy y x zy y z y z z x x y x y z -+-+-=-+-+-=--++++=------例2 ()()ab bc ca a b c abc ++++-答案:上式中令0a b +=,则()()[()][())]0ab bc ca a b c abc ab b a c a b c abc abc abc ++++-=++++-=-=即a b +为上式中的一个因式,由轮换性知,,b c c a ++都是上式的一个因式 设()()()()()ab bc ca a b c abc k a b b c c a ++++-=+++ 待定系数法得1k =()()()()()ab bc ca a b c abc a b b c c a ++++-=+++例3 3333()x y z x y z ++---答案:上式中令0x y +=,则33333333()()0x y z x y z z x x z ++---=----=即x y +为上式中的一个因式,由轮换性知,,y z z x ++都是上式的一个因式设3333()()()()x y z x y z k x y y z z x ++---=+++待定系数法得3k =3333()3()()()x y z x y z x y y z z x ++---=+++例4 555()a b a b +--答案:法一: 55555554322344432234322322()()()()()()()[()()]()(555)5()()a b a b a b a b a b a b a a b a b ab b a b a b a a b a b ab b a b a b a b ab ab a b a ab b +--=+-+=+-+-+-+=++--+-+=+++=+++法二:555()a b a b +--分别令0,0,a b a b ===-,上式都为0,则()ab a b +为上式的因子设55522()()[()]a b a b kab a b m a b nab +--=+++ 分别令122,,,113a a a b b b =⎧==⎧⎧⎨⎨⎨==-=-⎩⎩⎩解答51k m n =⎧⎨==⎩即55522()5()()a b a b ab a b a b ab +--=+++例5 333()()()b c c a a b -+-+-=3(a-b )(b-c )(c-a )例6 3333x y z xyz ++-=(x+y+z)(x^2+y^2+z^2-xy-yz-zx);因为原式只能写出一次对称式和二次对称式的积,根据立方系数为1,用待定系数法可设(x+y+z)[x^2+y^2+z^2+k(xy+yz+zx)]例7 ()()()y z z x x y xyz ++++=(x+y+z)(xy+yz+zx) 因为原式只能写出一次对称式和二次对称式的积,根据无立方项,且其它各项系数为1,故显然为(x+y+z)(xy+yz+zx)例8 ()()a b c ab bc ca abc ++++-=(a+b )(b+c )(c+a ) 这是例7的变形,或者利用a=-b 是根例9.(2000年天津市竞赛题)分解因式:)()()(222222x z zx z y yz y x xy -+-+-解析:原式是四次轮换式,由因式定理,可知x z z y y x ---,,都是它的因式.由轮换性,它的另一个一次因式只能是z y x ++,不可能是别的形式,否则与次数为四次不符.设原式))()()((x z z y y x z y x k ---++=.令,2,1,0===z y x 解得1-=k .也可以比较等式两边同类项的系数,得出1-=k .故原式))()()((x z z y y x z y x ---++-=例10.(2005年北京市竞赛题)设c b a ,,是三角形的三边长,求证:04)()()(222333<-------++abc b a c a c b c b a c b a解析:考虑原式左边.令c b a +=,得到原式左边的代数式值为0,故c b a --是它的一个因式.由轮换对称性,b a c a c b ----,都是它的因式.因为原式左边是关于c b a ,,的三次式,故可设左边))()((b a c a c b c b a k ------=.比较两边的系数,或者设特殊值,可得1=k .所以左边))()((b a c a c b c b a ------=.由三角形两边之和大于第三边,原不等式可证.二、 因式分解的应用例1. 已知22223()()a b c a b c ++=++,求证:a b c ==例2:若n 为整数,求证:()()()222222111++=++++n n n n n n 分析:本题的证明是要把左边的代数式转化为右边的完全平方式显然要找到左边式子中符合完全平方展开试的结构式进行公式法因式分解。
(完整word版)对称式与轮换对称式
八年级实验班竞赛专题-------对称式与轮换对称式1. 基本概念【定义1】一个n 元代数式12()n f x x x g g g ,,,,如果交换任意两个字母的位置后,代数式不变,即对于任意的i j ,(1i j n ≤<≤),都有11()()i j n j i n f x x x x f x x x x =g g g g g g g g g g g g g g g g g g ,,,,,,,,,,,,那么,就称这个代数式为n 元对称式,简称对称式。
例如,222x yx y xy x y z xy yz zx xy++++++,,,,都是对称式。
如果n 元对称式是一个多项式,那么称这个代数式为n 元对称多项式。
由定义1知,在对称式中,必包含任意交换两个字母所得的一切项,例如,在对称多项式()f x y z ,,中,若有3ax 项,则必有33ay az ,项;若有2bx y 项,则必有2bx z ,2222by z by x bz x bz y ,,,项,这些项叫做对称式的同形项,同形项的系数都相同。
根据对称多项式的定义,可以写出含n 个字母的对称多项式的一般形式,例如,含有三个字母x y z ,,的二次对称多项式的般形式是:222()()()a x y z b xy yz zx c x y z d +++++++++【定义2】如果一个n 元多项式的各项的次数均等于同一个常数r ,那么称这个多项式为n 元r 次齐次多项式。
由定义2知,n 元多项式12()n f x x x g g g ,,,是r 次齐次多项式,当且仅当对任意实数t 有1212()()r n n f tx tx tx t f x x x =g g g g g g ,,,,,,。
例如,含三个字母的三元三次齐对称式为:333222222()()a x y z b x y x z y x y z z x z y cxyz +++++++++。
2024年中班数学对称教案
2024年中班数学对称教案一、教学内容本节课选自2024年中班数学教材第四章第三节,详细内容为“对称”。
通过本节课的学习,让学生了解对称的概念,掌握对称的性质,学会识别和创造对称图形。
二、教学目标1. 让学生理解对称的概念,知道对称是一种几何变换,能描述对称图形的特点。
2. 使学生掌握对称的性质,能判断一个图形是否为对称图形,并找出对称轴。
3. 培养学生的观察能力和动手操作能力,能创作出具有对称美的作品。
三、教学难点与重点教学难点:对称轴的判断与寻找。
教学重点:对称的概念、性质及在实际生活中的应用。
四、教具与学具准备1. 教具:对称图形卡片、剪刀、彩纸、磁性黑板。
2. 学具:对称图形练习册、彩笔、剪刀、彩纸。
五、教学过程1. 实践情景引入(5分钟)利用磁性黑板展示一些生活中的对称现象,如:剪刀、衣服、窗户等,引导学生观察并提问:“这些物品有什么共同之处?”从而引出对称的概念。
2. 例题讲解(15分钟)3. 随堂练习(10分钟)发给学生对称图形练习册,让学生独立完成练习,巩固对称的知识。
4. 动手操作(10分钟)分组进行实践活动,让学生用彩纸、剪刀创作对称作品,培养动手操作能力。
六、板书设计1. 对称的概念2. 对称的性质3. 对称图形的识别与创造4. 生活中的对称现象七、作业设计答案:见附录。
2. 附加题:创作一个具有对称美的作品,并介绍其创作思路。
八、课后反思及拓展延伸1. 课后反思:本节课学生对对称的概念和性质掌握情况较好,但在寻找对称轴方面存在一定难度。
今后教学中,应加强对对称轴的讲解和练习。
2. 拓展延伸:引导学生关注生活中的对称现象,发现对称美,提高审美能力。
同时,鼓励学生尝试运用对称知识进行创作,培养学生的创新能力。
附录:(1)正方形:是对称图形,有4条对称轴。
(2)长方形:是对称图形,有2条对称轴。
(3)等边三角形:是对称图形,有3条对称轴。
(4)等腰梯形:是对称图形,有1条对称轴。
对称式和轮换对称式的性质及其应用
- ( b - c) a4 - ( c ( a - b) ( b 2 = k ( a + b2 + c2 ) +
4 4 a) b - ( a - b) c c) ( c - a)
故
a b c + + + b+ c+ d c+ d+ a d+ a+ b d a+ b+ c
2
2
2
2
p ( ab + bc + ca) .
c3 d3 + = 49 B - 68 . d+ a+ b a+ b+ c
2. 5 解对称方程组
解对称方程组时 , 可以通过对称替换把原 方程组化简 . 例 8 求方程组 数解 .
故
1
xy + 2 z
+
1
yz + 2 x
+
1
zx + 2 y
© 1994-2009 China Academic Journal Electronic Publishing House. All rights reserved.
4
中 等 数 学
=
1
( x - 2) ( y - 2) ( y - 2) ( z - 2) ( z - 2) ( x - 2) z- 2+ x- 2+ y- 2 = ( x - 2) ( y - 2) ( z - 2 ) x+y+z- 6 = xyz - 2 ( xy + yz + zx ) + 4 ( x + y + z) - 8
对称式与轮换对称式
1.基本概念【定义1】一个n 元代数式f(X 1, X 2,皿 X n ),如果交换任意两个字母的位置后, 代数式不变,即对于任意的i , j (1 <i c j < n ),都有f (X1… Xi … Xj ,HlXn)= f(X1,n] Xj ,血 Xi,工 Xn)那么,就称这个代数式为 n 元对称式,简称对称式。
x + y 2 2 2例如,x + y , xy ,—— ,X +y +z , xy + yz+zx 都是对称式。
xy如果n 元对称式是一个多项式,那么称这个代数式为n 元对称多项式。
由定义1知,在对称式中,必包含任意交换两个字母所得的一切项,例如,在对称多项 式f (X ,y , z)中,若有ax 3项,则必有ay 3, az 3项;若有bx 2y 项,则必有bx 2z ,2 2 2 2by Z, by x , bz x , bz y 项,这些项叫做对称式的同形项,同形项的系数都相同。
根据对称多项式的定义,可以写出含n 个字母的对称多项式的一般形式, 例如,含有三 个字母X, y ,z 的二次对称多项式的般形式是:a(x 2 +y 2 +z 2) + b(xy + yz + zx) + c(x + y + z) + d【定义2】如果一个n 元多项式的各项的次数均等于同一个常数 r ,那么称这个多项式为n 元r 次齐次多项式。
【定义3】一个n 元代数式f(X i , X 2,口 X n ),如果交换任意两个字母的位置后,代数 式均改变符号,即对于任意的i , j (1<i c j < n ),都有f(X i, 口 X i ,Q, X j, 口 X n )=—f(X 1 胆 X j,JL, X i ,, X n )那么就称这个代数式为 n 元交代式。
例如,X - y,(x-y)( y-z)(z 均是交代式。
X + y【定义4】如果一个n 交代数式f (X ,, X 2 口 X n ) ,如果将字母X i , X 2——,X n 以X 2代竞赛专题对称式与轮换对称式nc Xj, 由定义2知,n 元多项式X 2,D,X n )是r 次齐次多项式,当且仅当对任意实数t 有 f(tX i , tX 2,口 tX n )=t r f(X i , X 2口,X n )。
轮换对称式的值问题(教案版)
轮换对称式的值问题(教案版)————————————————————————————————作者:————————————————————————————————日期:轮换对称式的最值问题学生姓名 授课日期 教师姓名授课时长知识定位在不等式和求最值的问题中,轮换对称式是十分常见的。
自招、竞赛中出现的不等式证明或代数式求最值问题以轮换对称式为主,而这一类有关轮换对称式的问题也以其简洁优美的数学形式和较为灵活多变的解决方法成为自招竞赛中的一大难点。
本章节列举了处理几类轮换对称式问题和几种常见处理方法,希望同学们在考场上见到这类问题时能够有思路有针对性地着手处理,而不是盲目地尝试变形求解(证)。
知识梳理1. 不等式对称和轮换对称式的定义在一个不等式中,若把其中任何两个字母(),,1,2,...,i j a a i j n i j =≠且对调位置后,这个不等式不变(如①32a b c b c c a a b ++≥+++,其中,,0a b c >), 我们便称此不等式是关于12,,...,n a a a 对称的。
如果把不等式中的字母12,,...,n a a a 按一定顺序依次轮换(如1a 换成2a ,2a 换成3a ,...,1n a -换成n a )后不等式不变(如②2222220,,,0c a a b b c a b c b c c a a b ---++≥>+++其中),我们便称此类不等式是关于12,,...,n a a a 轮换对称的。
2. 对称式与轮换对称不等式的性质由定义易知,对称的不等式一定是轮换对称的(如①),而轮换对称的不等式却不一定是对称的(如②就不是对称的)。
关于12,,...,n a a a 对称的不等式,由于,i j a a 互换后原不等式不变,因此要想怎么排列他们的大小顺序,只要调换其位即可,故我们可任意排列12,,...,n a a a 的大小顺序(如在①中可设a b c ≥≥),而关于12,,...,n a a a 是轮换对称的不等式则不能任意排列其字母的大小顺序,而只能做较弱的排列,如1n a a ≥,2n a a ≥,...,1n n a a -≥,即某一个是其中的最大或最小(如②中可设a c ≥,a b ≥),因为我们总可以通过轮换把某个字母调整到最小或最大的位置。
轮换对称式的最值问题(教案版)
轮换对称式的最值问题学生姓名 授课日期 教师姓名授课时长知识定位在不等式和求最值的问题中,轮换对称式是十分常见的。
自招、竞赛中出现的不等式证明或代数式求最值问题以轮换对称式为主,而这一类有关轮换对称式的问题也以其简洁优美的数学形式和较为灵活多变的解决方法成为自招竞赛中的一大难点。
本章节列举了处理几类轮换对称式问题和几种常见处理方法,希望同学们在考场上见到这类问题时能够有思路有针对性地着手处理,而不是盲目地尝试变形求解(证)。
知识梳理1. 不等式对称和轮换对称式的定义在一个不等式中,若把其中任何两个字母(),,1,2,...,i j a a i j n i j =≠且对调位置后,这个不等式不变(如①32a b c b c c a a b ++≥+++,其中,,0a b c >), 我们便称此不等式是关于12,,...,n a a a 对称的。
如果把不等式中的字母12,,...,n a a a 按一定顺序依次轮换(如1a 换成2a ,2a 换成3a ,...,1n a -换成n a )后不等式不变(如②2222220,,,0c a a b b c a b c b c c a a b ---++≥>+++其中),我们便称此类不等式是关于12,,...,n a a a 轮换对称的。
2. 对称式与轮换对称不等式的性质由定义易知,对称的不等式一定是轮换对称的(如①),而轮换对称的不等式却不一定是对称的(如②就不是对称的)。
关于12,,...,n a a a 对称的不等式,由于,i j a a 互换后原不等式不变,因此要想怎么排列他们的大小顺序,只要调换其位即可,故我们可任意排列12,,...,n a a a 的大小顺序(如在①中可设a b c ≥≥),而关于12,,...,n a a a 是轮换对称的不等式则不能任意排列其字母的大小顺序,而只能做较弱的排列,如1n a a ≥,2n a a ≥,...,1n n a a -≥,即某一个是其中的最大或最小(如②中可设a c ≥,a b ≥),因为我们总可以通过轮换把某个字母调整到最小或最大的位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
, , , , , , , x n , , , ,, , , , , , 例如, x - y ,x - y)( y - z )( z - x), 八年级实验班竞赛专题-------对称式与轮换对称式1. 基本概念【定义 1】一个 n 元代数式 f ( x ,x ggg ,x ) ,如果交换任意两个字母的位置后,代数 1 2 n式不变,即对于任意的 i ,j (1 ≤ i < j ≤ n ),都有f ( x ggg ,x ggg ,x ggg ,x ) = f ( x ggg ,x ggg ,x ggg ,x ) 1i j n 1 j i n那么,就称这个代数式为 n 元对称式,简称对称式。
例如, x + y ,xy , + y ,x 2 + y 2 + z 2,xy + yz + zx 都是对称式。
xy如果 n 元对称式是一个多项式,那么称这个代数式为 n 元对称多项式。
由定义 1 知,在对称式中,必包含任意交换两个字母所得的一切项,例如,在对称多项式 f ( x ,y ,z ) 中 ,若 有 ax 3 项 ,则 必有 ay 3,az 3 项 ; 若有 bx 2y 项 , 则必 有 bx 2 z ,by 2 z ,by 2 x ,bz 2 x ,bz 2 y 项,这些项叫做对称式的同形项,同形项的系数都相同。
根据对称多项式的定义,可以写出含 n 个字母的对称多项式的一般形式,例如,含有三个字母 x ,y ,z 的二次对称多项式的般形式是:a( x 2 + y 2 + z 2 ) + b ( x y + yz + zx) + c( x + y + z ) + d【定义 2】如果一个 n 元多项式的各项的次数均等于同一个常数 r ,那么称这个多项式为 n 元 r 次齐次多项式。
由定义 2 知, 元多项式 f ( x ,x ggg ,x ) 是 r 次齐次多项式,当且仅当对任意实数 t 有 1 2 nf (tx ,tx ggg ,tx ) = t r f ( x ,x ggg ,x ) 。
12 n 1 2 n例如,含三个字母的三元三次齐对称式为:a( x 3 + y 3 + z 3 ) + b ( x 2 y + x 2 z + y 2 x + y 2 z + z 2 x + z 2 y) + cxyz 。
【定义 3】一个 n 元代数式 f ( x ,x ggg ,x ) ,如果交换任意两个字母的位置后,代数 1 2 n式均改变符号,即对于任意的 i ,j (1 ≤ i < j ≤ n ),都有f ( x ggg ,x ggg ,x ggg ,x ) = - f ( x ggg ,x ggg ,x ggg ,x ) 1 i j n 1 j i n那么就称这个代数式为 n 元交代式。
(x - y x + y 均是交代式。
, , , , , ( x ,x ,gg ,x ) = ∑ x g ( x ,x , ,x ) = ∑ ggg g gg n ,【定义 4】如果一个 n 交代数式 f ( x ,x ggg ,x ) ,如果将字母 x ,x ggg ,x 以 x 代 1 2 n 1 2 n 2x , x 代 x ggg ,x 代 x ,x 代 x 后代数式不变,即 1 3 2 n n -1 1 nf ( x ,x ggg ,x ) ≡ f ( x ,x ggg ,x ,x ) 1 2 n 2 3 n 1那么称这个代数式为 n 元轮换对称式,简称轮换式。
显然,对称式一定是轮换式,但轮换式不一定是对称式。
例如, a( x 2 + y 2 + z 2 ) 是对称式也是轮换式; b ( x 2 y + y 2 z + z 2 x ) 是轮换式,但不是对称式。
对称式、交代式、轮换式之间有如下性质:(1)两个同字母的对称式的和、差、积、商仍是对称式;(2)两个同字母的交代式的和、差是交代式它们的各、商是对称式;(3)同字母的对称式与交代式的积、商是交代式;(4)两个同字母的轮换式的和、差、积、商是交代式;(5)多变无的交代多项式中必有其中任意两变元之差的因式。
【定义 5】下面 n 个对称多项式称为 n 元基本对称多项式。
σσ 1 2 1 2 n i 1 2 nn i =1 n x x i j 1≤i < j ≤n ………σk ( x ,x ,, x ) = 1 2 n ∑ 1≤i 1<i 2 <ggg <i k ≤n x x gggx i 1 i 2 i k ……… σn ( x ,x ggg,x ) = x x gggx 1 2 n 1 2 n 例如,二元基本对称多项式是指 x + y ,xy ,三元基本对称式是指 x + y + z ,xy + yz + zx ,xyz当你学完了高等代数的时候就会知道,任何一个 n 元对称多项式都可以表示为基本对称多项式的多项式。
这个结论对解题的指导作用。
(2.对称式、轮换式、交代式在解题中的应用为了初中学生学习的需要,我们在本讲里主要介绍二元和三元的情形,对于多元的情形,只需作类似的处理即可。
下面是利用对称式、轮换式、交代式解题的一些常用技巧(1)若 f ( x ,y ,z ) 是对称式,则在解题中可设 x ≤ y ≤ z 。
(为什么?)(2)若 f ( x ,y ,z ) 是对称式,则当 x ,y 满足性质 p 时, x ,z ;y ,z 也满足性质 p 。
(3)若 f ( x ,y ,z ) 是轮换式,则在解题中可设 x 最大(小),但不能设 x ≤ y ≤ z 。
为什么?)(4)若 f ( x ,y ,z ) 是轮换式,且 x ,y 满足性质 p ,则 y ,z ;z ,x 也满足性质 p 。
(5)若 f ( x ,y ,z ) 是交代多项式,则 x - y ,y - z ,z - x 是 f ( x ,y ,z ) 的因式,即其中 g ( x ,y ,z) 是对称式。
f ( x ,y ,z) = ( x - y)( y - z)( z - x)g ( x ,y ,z )其中 g ( x ,y ,z) 是对称式。
在利用对称式作因式分解时,齐次对称多项式,齐次轮换对称多项式,齐次交代多项式是常用的。
齐次对称多项式的一般形式:(1)二元齐次对称多项式一次: a( x + y) ,二次: a( x 2 + y 2 ) + bxy三次: a( x 3 + y 3 ) + bxy( x + y)(2)三元齐次对称多项式一次: a( x + y + z)二次: a( x 2 + y 2 + z 2 ) + b ( x y + yz + zx)三次: a( x 3 + y 3 + z 3 ) + b ⎡⎣ x 2 ( y + z) + y 2 ( z + x) + z 2 ( x + y)⎤⎦ + cxyz判定 mx + ny + rz 是否为多项式 f ( x , y , z) ,的因式的方法是:令mx + ny + rz = 0 ,计算 f ( x ,y ,z ) ,如果 f ( x ,y ,z)=0 ,那么mx + ny + rz 就是 f ( x ,y ,z ) 的因式,在实际操作时,可首先考虑 mx + ny + rz 的如下特殊情形:x,x+y,x-y,x+y+z,x-y+z【例1】:已知多项式f(x,y,z)=xy(x2-y2)+yz(y2-z2)+zx(z2-x2)(1)求证:f(x,y,z)是齐次式;(2)求证:f(x,y,z)是轮换式;(3)求证:f(x,y,z)是交代式;(4)分解因式f(x,y,z)。
(4)∵f(x,y,z)是交代多项式,∴(x-y)(y-z)(z-x)是它的因式。
又因为f(x,y,z)是4次齐次式,所以它还有一个一次对称式因式x+y+z。
于是,f(x,y,z)可表示为【例2】:分解因式f(x,y,z)=x3+y3+z3-3xyz。
【例3】:分解因式f(x,y,z)=2(x2y2+y2z2+z2x2)-(x4+y4+z4)。
【例4】:分解因式f(x,y,z)=(x+y+z)5-x5-y5-z5【例5】:分解因式f(x,y)=x4+y4+(x+y)4。
【例6】:分解因式(y2-z2)(1+xy)(1+xz)+(z2-x2)(1+yz)(1+yx)+(x2-y2)(1+zx)(1+zy)。
)=(x-y)(y-z)(z-x)(xyz+x+y+z)故f(x,y,z对称式与轮换对称式练习题:1.已知f(x,y,z)=(x-y)5+(y-z)5+(z-x)5(1)求证:f为5次齐次式;(2)求证:f为轮换式;(3)求证:f为交代式;(4)分解因式f。
2.分解因式(1)f(x,y)=(x2+xy+y2)2-4x y(x2+y2)(2)f(x,y,z)=(x+y+z)4+x4+y4+z4-(y+z)4-(z+x)4-(x+y)4(3)f(x,y,z)=(x-y)3+(y-z)3+(z-x)3(xy+yz+zx)(x+y+z)-xyz(4)f(x,y,z)=(y-z)+y4(z-x)+z4(x-y)(5)f(x,y,z)=x4( ) ( ) ( )( )(6) f ( x ,y ,z) = (x + y + z )3 - x 3 - y 3 - z 3(7) f ( x ,y ,z) = x 3 + y 3 + z 3 - x y 2 + z 2 - y z 2 + x 2 - z x 2 + y 2 + 2xyz(8) f ( x ,y ,z) = x 2 y + xy 2 + x 2 z + xz 2 + y 2 z + yz 2 + 3xyz(9) f ( x ,y ,z) = x 2 ( y + z )+ y 2 (z + x )+ z 2 (x + y )- x3 + y 3 + z 3 - 2xyz (10) f (a ,b ,c ,d ) = (bcd + cda + dab + abc )2 - (bc - ad )(cd - ab )(db - ac )练习答案与提示:1. 5( x - y)( y - z )( z - x)( x 2 + y 2 + z 2 - xy - yz - zx)2.(1)可设 f = k ( x 2 + Axy + y 2 )( x 2 + Bxy + y 2 ) ,可求得 k = 1,A = B = -1(2)可设 f = kxyz( x + y + z) ,可求出 k = 12(3)可设 f = k ( x - y)( y - z)( z - x) ,可求出 k = 3(4)可设 f = k ( x + y)( y + z)( z + x) ,可求出 k = 1(5) f = ( x - y)( y - z)( z - x) ⎡⎣ A( x 2 + y 2 + z 2 ) + B( xy + yz + zx)⎤⎦ ,可求出 A = B = 1(6) 3(x + y)( y + z)( z + x)(7) ( x - y - z)( y - z - x)( z - x - y)(8) ( x + y + z)( x y + yz + zx)⎣ ⎦(9) ( x + y - z)( y + z - x)( z + x - y)(10)当 a = b = c = d 时, f = 0 ,∴ f 有 abcd 的因式,可设f = abcd ⎡ A(a 2 + b 2 + c 2 + d 2 ) + B(ab + bc + cd + da + ac + bd )⎤ ,可求得 A = 1,B = 2 ,∴ f = abcd (a + b + c + d )2。