ANSYS模态分析实例
ANSYS循环对称结构的模态分析
循环对称结构的模态分析主要用在如齿轮,涡轮,叶轮等的具有循环对称结构物体的模态分析。
它通过模拟结构的一个扇区,通过分析这个扇区,从而扩展到整个模型。
它的步骤主要有6个。
1,建立基本扇区模型,也就是只建1/n的模型,一个齿活一个叶片的模型。
2,确定循环对称面(可以自动确定,也可以手动选择)。
3,施加边界条件。
4,制定分析类型和分析选项。
5,通过cycop命令指定循环求解选项,并用solve求解。
6,通过/cyexpand将振型扩展到全部360度范围,观察整个结果。
由于选择的谐波指数的关系,固有频率在排列上会有一些凌乱。
以前的ansys版本把谐波指数这个概念叫做节径,现在的都叫做谐波指数了。
按照整体结构分析,系统会把频率按照从小到大排列。
而用谐波指数这样计算出来的频率,他在排列的时候是按照谐波指数的增加而排列的,因此,相对应的固有频率有大有小,不规则(但是数值一样,就是排列不同)。
解决的办法是,你把这个结果提取出来,自己把它按照从小到大排列一下就可以了。
另外求解这个过程有一些注意的地方。
a在建立基本扇区的时候要在柱坐标系,你把csys置1就可以,b另外,扇区角选择能被360整除的。
c选择循环对称面时选择节点,好像其他特征不行(原因别人和我讲了,忘了)。
ac比较重要,b稍微注意一下就好。
然后就是求解方面了。
循环对称模态分析结果提取一般的结构模态分析完成后,要提取相应阶次结果,就用下面命令*GET,PARA,MODE,i,FREQ对于循环对称结构,取单个扇区进行分析,指定谐波指数The harmonic index,数值上谐波指数可以通过下面计算得到,The harmonic index= N/2 (N为偶数)The harmonic index=(N-1)/2 (N为奇数)上式中,N为总体模型分成的扇区总数。
然后对每次谐波设定提取模态阶次,分析的时候,ansys在原来扇区有限元模型的基础上,叠加一个完全相同的模型,通过谐波指数控制不同的傅里叶级数展开,从而扩展得到全模型的结果,对于这样计算的模态结果,ansys计算的时候,默认从0谐波开始计算,每次谐波按照一个载荷步(LSstep)进行,对应每次谐波下提取的固有频率按照子步substep给出,要提取所有谐波指数下的模态解,可采用下面命令/POST1*dim,frq_0,,7,10*do,i,1,7*do,j,1,10SET,i,j*GET,frq_0(i,j),ACTIVE,,SET,FREQ*enddo*enddo解释:按照谐波指数提取结构固有频率到数组frq_0中,i代表计算的LSstep,循环对称结构模态分析中,其最大值在数值上等于谐波指数+1,比如说,提取6次谐波,就需要7步计算;j代表每次谐波提取的固有频率个数。
原创的ANSYS教材10叶轮模态
第N章风机叶轮模态分析案例下面介绍某核电厂用空调风机叶轮模型使用ANSYS WOKBENCH 14.0 机械设模块模态分析功能进行分析,演示其基本操作过程。
1.5.1案例介绍模态分析的经典定义是:将线性定常系统振动微分方程组的物理坐标变换为模态坐标,使方程解耦成为一组以模态坐标及模态参数描述的独立方程以便求出系统的模态参数。
坐标变换的变化矩阵为模态矩阵其每列为模态阵型。
模态分析的最终目标在于改变机械结构系统由经验、类比和静态设计方法为动态、优化设计方法;在于借助于实验与理论分析相结合的方法对已有结构系统进行识别、分析和评价,从中找出结构系统在动态性能上所存在的问题,确保工程结构能安全可靠及有效的工作;在于根据现场测试的数据来诊断和预报振动故障和进行噪声控制。
通过这些方法为老产品的改进和新产品的设计提供可靠的依据。
系统各个阶模态对相应的贡献量或者权系数是不相同的,它与激励的频率结构有关。
一般低阶模态比高阶模态有较大的权系数。
对于实际结构而言,我们感兴趣的往往是它的前几阶或者十几阶模态,更高阶的模态常常被抛弃。
这样尽管会造成一定的误差,单频相应函数的矩阵阶数将大大减少,使计算量大为减少。
实践证明这是完全可取的,这也是模态分析的一大优点,这种处理方式成为模态截断。
可以使用质量点:质点在模态分析中是只有质量(无硬度)的存在,其会降低结构自由振动的频率。
材料属性:杨氏模量,泊松比,和密度是必需的。
由于在结构上没有激励作用,因此振型只是与自由振动相关的相对值。
此次我们使用某核电厂用空调风机的叶轮部件进行模态分析查看其前5阶阵型为结构改进与动力学分析做准备。
1.5.2导入模型(1) 我们使用实际生产图的模型进行分析。
在模型简化上仅仅删除了轮毂与轮盘连接用的铆钉,其他部分未经简化,其与实际模型完全相同。
首先打开SW,并打开模型文件。
如图-1以及图-2所示。
图-1 打开SW 图-2打开模型文件。
(2)打开ANSYS WORKBENCH 程序接口导入模型文件。
ANSYS 模态分析
ANSYS 模态分析中如何提取指定方向的模态问题::一个圆形梁结构,一端固定,另一端自由。
在进行模态分析时,分析出来的结果包括绕轴向(假设为X轴)的扭转振动、另两个方向的弯曲振动,沿轴向的纵向振动,有没有办法从所有频率中提取出某个特定方向的振动频率,如只提取绕Y 轴的弯曲振动频率?回答:在求解模态的过程中,接近求解结束时,求解器会输出各个模态在6 个自由度方向的参与因子、有效质量等数据,可以用来判断不同固有频率的主要振动方向,就可以满足你的要求了。
如下是我做的一个试验模型,各固有频率在X 方向的相应数据,其中:第4 列- 参与因子partic.factor、第5 列- RATIO 比率倒数第2 列- EFFECTIVE MASS 有效质量都可以用来判断该自由度方向的主要振动频率。
其中数值较大的频率即为x 方向的主要振动频率:***** PARTICIPATION FACTOR CALCULATION ***** X DIRECTION - X 方向参与因子计算CUMULATIVEMODE FREQUENCY PERIOD PARTIC.FACTOR RATIO EFFECTIVE MASS MASSFRACTION1 0.222317E-02 449.81 0.39705E-07 0.000000 0.157649E-14 0.628139E-232 0.331743E-02 301.44 14588. 1.000000 0.212818E+09 0.8479573 0.332245E-02 300.98 0.86343E-06 0.000000 0.745503E-12 0.8479574 0.413432E-02 241.88 0.11602E-08 0.000000 0.134596E-17 0.8479575 0.451291E-02 221.59 6143.4 0.421117 0.377411E+08 0.9983346 0.544085E-02 183.79 0.50899E-09 0.000000 0.259072E-18 0.9983347 0.982385E-02 101.79 -0.48139E-08 0.000000 0.231739E-16 0.9983348 0.109711E-01 91.148 -0.11082E-09 0.000000 0.122817E-19 0.9983349 0.146079E-01 68.456 -542.28 0.037172 294063. 0.99950510 0.152870E-01 65.415 -0.93445E-09 0.000000 0.873195E-18 0.99950511 0.153817E-01 65.012 0.48326E-09 0.000000 0.233540E-18 0.99950512 0.194497E-01 51.415 352.40 0.024156 124187. 1.0000013 0.203595E-01 49.117 0.83660E-07 0.000000 0.699905E-14 1.0000014 0.216013E-01 46.293 -0.29377E-06 0.000000 0.863011E-13 1.0000015 0.221281E-01 45.191 0.10871E-05 0.000000 0.118169E-11 1.00000SUM OF EFFECTIVE MASSES= 0.250978E+09例如,使用其中的有效质量(EFFECTIVE MASS) 来判断X 方向的主要振动模态,即几个有效质量较大的模态,在此为频率2,5,9,12。
ANSYS实例分析-飞机机翼
ANSYS实例分析——模型飞机机翼模态分析一,问题讲述。
如图所示为一模型飞机机翼,其长度方向横截面形状一致,机翼的一端固定在机体上,另一端为悬空自由端,试对机翼进行模态分析并显示机翼的模态自由度。
是根据一下的参数求解。
机翼材料参数:弹性模量EX=7GPa;泊松比PRXY=0.26;密度DENS=1500kg/m3。
机翼几何参数:A(0,0);B(2,0);C(2.5,0.2);D(1.8,0.45);E (1.1,0.3)。
问题分析该问题属于动力学中的模态分析问题。
在分析过程分别用直线段和样条曲线描述机翼的横截面形状,选择PLANE42和SOLID45单元进行求解。
求解步骤:第1 步:指定分析标题并设置分析范畴1.选取菜单途径Utility Menu>File>Change Title2.输入文字“Modal analysis of a model airplane wing”,然后单击OK。
3.选取菜单途径Main Menu>Preferences.4.单击Structure选项使之为ON,单击OK。
主要为其命名的作用。
第2 步:定义单元类型1.选取菜单途径:MainMenu>Preprocessor>Element Type>Add/Edit/Delete。
2.Element Types对话框将出现。
3.单击Add。
Library ofElement Types对话框将出现。
4.在左边的滚动框中单击“Structural Solid”。
5.在右边的滚动框中单击“Quad 4node 42”。
6.单击Apply。
7.在右边的滚动框中单击“Brick 8node 45”。
8.单击OK。
9.单击Element Types对话框中的Close按钮。
第3 步:指定材料性能1.选取菜单途径Main Menu>Preprocessor>MaterialProps>-Constant-Isot ropic。
ANSYS模态分析
七、模态分析7.1问题描述如图所示为一根长度为L 的等截面直杆,一端固定,一端自由。
已知杆材料的弹性模量E=2*10e11N/m2,密度m 3/kg 7800=ρ,杆长L=0.1m,要求计算直杆纵向振动的固有频率。
7.2求解步骤1、建立工作名和工作标题2、定义单元类型:拾取菜单Main Menu→Preprocessor →Element Type→Add/edit/delete 。
弹出对话框,单击"Add "按钮:弹出对话框,在左侧列表中选择"Structural/Solid ,在右侧列表中选择"Brick 20node 186",单击"OK"按钮:单击close。
3、定义材料特性:Main Menu→Preprocessor→Material Props→Material Models 弹出对话框,在右侧列表中依次双击"Structural "、leaner,elastic"、"Isotropic",弹出对话框,在"EX"文本框中输入2ell (弹性模量),在"PRXY"文本中输入0.3(泊松比),单击"OK"按钮;再双击右侧列表中"Structural"下"Density ",弹出对话框,在"DENS"文本框中输入7800〈密度),单击"OK"按钮。
然后关闭对话框。
4、建立几何网络模型1)拾取菜单Main Menu →Preprocessor →Modeling →Create →Volumes→Block→By Dimension,参数如图所示,单击OK。
拾取菜单UtilityMenu→PlotCtrls→Pan Zoom Rotate在弹出的对话框中,依次单击"Iso"、"Fit"按钮。
ANSYS模态分析教程及实例讲解
准备工作
哪种分析类型?
当您选择了结构分析,接下来的问题是: 静力还是动力分析? 线性还是非线性分析? 要回答这些问题,先要知道物体承受什么样的 激励(载荷),因为下述三种类型的力决定了 它的响应 静力(刚?
静力与动力分析的区别 静力分析假定只有刚度力是重要的。 动力分析考虑所有三种类型的力。
频率分析的相关知识
固有频率(以钟摆为例) 钟摆的振动所经过的时间越来越小,最后停了下来。 这是因为空气的阻碍、磨擦的阻碍等的阻力妨碍了钟摆的摆动(振 动)。 因为这样的阻力作用使振动衰减的力而起作用,被称为衰减力。
钟摆在没有外部而来的强迫它摆动的力(重力除外)作用下的振动 称为自由振动。 与此相对应,地震和汽车因为地基能、发动机等的强迫力作用下的 振动称为强迫振动。 任何结构都具有其固有频率(固有周期),其值由其本身的结构所决定 自由振动是一种无衰减力的振动状态,它将永远不停地振动下去。
频率分析的相关知识
静力分析中,节点位移是主要的未知量。[K]d=F中[K]为刚度 矩阵,d为节点位移的未知量,而F为节点载荷的已知量。 在动力学分析中,增加阻尼矩阵[C]和质量矩阵[M]
上式为典型的在有阻尼的交迫振动方程。当缺少阻尼及外力 时,该缺少阻尼及外力时(自由振动),该方程式简化为
频率分析的相关知识
应力
应变
内容简介 模态分析的背景简介 ANSYS模态分析功能介绍 模态分析实例操作演示
学习要点
频率分析的相关知识
什么是振动 固有频率 固有振动模态 共振
频率分析的相关知识
什么是振动?
钟摆和秋千的摆动,是我们身边最典型的振动现象。 乐器的弦振动而发出声音。 小提琴用弓拉弦,吉他用手指或拨片拨弦,在钢琴上敲 击琴键则小锤打击琴弦而使琴弦振动起来。 洗衣机在脱水时也会突突突地产生很大的振动现象。 按摩机是机械的振动,地震则是大地的振动。 如果在不平整的地上或公路上开车的话,也会感到让人 心情变坏的烦人的振动。
ANSYS模态分析教程及实例讲解(共74张PPT)
准备工作
哪种分析类型?
静力与动力分析的区别 静力分析假定只有刚度力是重要的。 动力分析考虑所有三种类型的力。
例如:考虑跳水板的分析 ➢如果潜水者静止地站在跳水板上,做 一个静力分析已经足够了。
➢ 但是如果潜水者在跳水板上下跳动,必须 进行动力分析
准备工作
为了改变结构的固有频率在危险范围外,可通过改变产品 的几何结构、材料、避震特性或在适当的地方添加质量单 元。
➢ 对于结构的固有频率,如果结构变刚,则频率高,如果变柔, 则频率低。
➢ 另外,振动部件的重量重,则频率变低,重量轻,频率变高。
➢ 结构要变刚,即提高结构的刚性,可以加厚构件,可以加 入补强材。
模态提取 是用来描述特征值和特征向量计
算的术语。
模态分析的用途
有预应力的结构进行模态分析。例如旋转的涡轮叶片 。
循环对称结构模态分析。允许对循环对称结构的一部 分进行建模,而分析产生整个结构的振型。
ANSYS的模态分析都是线性分析。 ANSYS中的模态提取方法:
➢ Block Lanzos(默认)、子空间、PowerDynamics、缩减法 、非对称法、阻尼法和QR 阻尼法。后两种允许结构中包含阻 尼。
➢ 钟摆越长周期越长,钟摆越短周期越短。
频率分析的相关知识
固有频率(以钟摆为例) ➢ 钟摆的振动所经过的时间越来越小,最后停了下来。
➢ 这是因为空气的阻碍、磨擦的阻碍等的阻力妨碍了钟摆的摆动(振 动)。
➢ 因为这样的阻力作用使振动衰减的力而起作用,被称为衰减力。
➢ 钟摆在没有外部而来的强迫它摆动的力(重力除外)作用下的振动称 为自由振动。
应力
应变
内容简介
(完整版)ANSYS模态分析实例和详细过程
均匀直杆的子空间法模态分析1.模态分析的定义及其应用模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。
同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。
ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。
前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。
ANSYS提供的模态提取方法有:子空间法(subspace)、分块法(block lancets),缩减法(reduced/householder)、动态提取法(power dynamics)、非对称法(unsymmetric),阻尼法(damped), QR阻尼法(QR damped)等,大多数分析都可使用子空间法、分块法、缩减法。
ANSYS的模态分析是线形分析,任何非线性特性,例如塑性、接触单元等,即使被定义了也将被忽略。
2.模态分析操作过程一个典型的模态分析过程主要包括建模、模态求解、扩展模态以及观察结果四个步骤。
(1).建模模态分析的建模过程与其他分析类型的建模过程是类似的,主要包括定义单元类型、单元实常数、材料性质、建立几何模型以及划分有限元网格等基本步骤。
(2).施加载荷和求解包括指定分析类型、指定分析选项、施加约束、设置载荷选项,并进行固有频率的求解等。
指定分析类型,Main Menu- Solution-Analysis Type-New Analysis,选择Modal。
指定分析选项,Main Menu-Solution-Analysis Type-Analysis Options,选择MODOPT(模态提取方法〕,设置模态提取数量MXPAND.定义主自由度,仅缩减法使用。
(完整版)ANSYS模态分析实例和详细过程
均匀直杆的子空间法模态分析1.模态分析的定义及其应用模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。
同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。
ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。
前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。
ANSYS提供的模态提取方法有:子空间法(subspace)、分块法(block lancets),缩减法(reduced/householder)、动态提取法(power dynamics)、非对称法(unsymmetric),阻尼法(damped),QR阻尼法(QR damped)等,大多数分析都可使用子空间法、分块法、缩减法。
ANSYS的模态分析是线形分析,任何非线性特性,例如塑性、接触单元等,即使被定义了也将被忽略。
2.模态分析操作过程一个典型的模态分析过程主要包括建模、模态求解、扩展模态以及观察结果四个步骤。
(1).建模模态分析的建模过程与其他分析类型的建模过程是类似的,主要包括定义单元类型、单元实常数、材料性质、建立几何模型以及划分有限元网格等基本步骤。
(2).施加载荷和求解包括指定分析类型、指定分析选项、施加约束、设置载荷选项,并进行固有频率的求解等。
指定分析类型,Main Menu-Solution-Analysis Type-New Analysis,选择Modal。
指定分析选项,Main Menu-Solution-Analysis Type-Analysis Options,选择MODOPT(模态提取方法〕,设置模态提取数量MXPAND.定义主自由度,仅缩减法使用。
《有限元教程》20例ANSYS经典实例
《有限元教程》20例ANSYS经典实例有限元方法在工程领域中有着广泛的应用,能够对各种结构进行高效精确的分析和设计。
其中,ANSYS作为一种强大的有限元分析软件,被广泛应用于各个工程领域。
下面将介绍《有限元教程》中的20个ANSYS经典实例。
1.悬臂梁的静力分析:通过加载和边界条件,研究悬臂梁的变形和应力分布。
2.弯曲梁的非线性分析:通过加载和边界条件,研究受弯曲梁的非线性变形和破坏。
3.柱体的压缩分析:研究柱体在压缩载荷作用下的变形和应力分布。
4.钢筋混凝土梁的受弯分析:通过添加混凝土和钢筋材料属性,研究梁的受弯变形和应力分布。
5.圆盘的热传导分析:根据热传导方程,研究圆盘内部的温度分布。
6.输电线杆的静力分析:研究输电线杆在风载荷和重力作用下的变形和应力分布。
7.轮胎的动力学分析:通过加载和边界条件,研究轮胎在不同路面条件下的变形和应力分布。
8.支架的模态分析:通过模态分析,研究支架的固有频率和振型。
9.汽车车身的碰撞分析:通过加载和边界条件,研究汽车车身在碰撞中的变形和应力分布。
10.飞机翼的气动分析:根据飞机翼的气动特性,研究翼面上的气压分布和升力。
11.汽车车身的优化设计:通过参数化建模和优化算法,寻找最佳的车身结构设计。
12.轮毂的疲劳分析:根据材料疲劳寿命曲线,研究轮毂在不同载荷下的寿命。
13.薄膜材料的热应力分析:根据热应力理论,研究薄膜材料在不同温度下的应变和应力。
14.壳体结构的模态分析:通过模态分析,研究壳体结构的固有频率和振型。
15.地基基础的承载力分析:通过加载和边界条件,研究地基基础的变形和应力分布。
16.水坝的稳定性分析:根据水力和结构力学,研究水坝的稳定性和安全性。
17.风机叶片的动态分析:通过加载和边界条件,研究风机叶片在不同风速下的变形和应力分布。
18.圆筒容器的蠕变分析:根据蠕变理论,研究圆筒容器在持续加载下的变形和应力。
19.桥梁结构的振动分析:通过模态分析,研究桥梁结构的固有频率和振型。
最新ANSYS模态分析教程及实例讲解PPT课件
➢ 钟摆的形状(长度)决定了其固有的数值。 ➢ 钟摆越长周期越长,钟摆越短周期越短。
频率分析的相关知识
固有频率(以钟摆为例) ➢ 钟摆的振动所经过的时间越来越小,最后停了下来。 ➢ 这是因为空气的阻碍、磨擦的阻碍等的阻力妨碍了钟摆的摆动(振 动)。 ➢ 因为这样的阻力作用使振动衰减的力而起作用,被称为衰减力。
静力分析中,节点位移是主要的未知量。[K]d=F中[K]为刚度 矩阵,d为节点位移的未知量,而F为节点载荷的已知量。
在动力学分析中,增加阻尼矩阵[C]和质量矩阵[M]
上式为典型的在有阻尼的交迫振动方程。当缺少阻尼及外力 时,该缺少阻尼及外力时(自由振动),该方程式简化为
频率分析的相关知识
固有振动模态(以弦的振动为例)
要点:振动的形式(振形)称为振动模态。 一般从低频开始,称为1阶、2阶、3阶……固有频率,并且具
什么是振动 固有频率 固有振动模态 共振
频率分析的相关知识
什么是振动?
➢ 钟摆和秋千的摆动,是我们身边最典型的振动现象。 ➢ 乐器的弦振动而发出声音。 ➢ 小提琴用弓拉弦,吉他用手指或拨片拨弦,在钢琴上敲
击琴键则小锤打击琴弦而使琴弦振动起来。 ➢ 洗衣机在脱水时也会突突突地产生很大的振动现象。 ➢ 按摩机是机械的振动,地震则是大地的振动。 ➢ 如果在不平整的地上或公路上开车的话,也会感到让人 为便于心理解情振变动坏现的象烦,我人们的从振了动解。固有频率(固有周期),固有模态,
进 入 夏 天 ,少 不了一 个热字 当头, 电扇空 调陆续 登场, 每逢此 时,总 会想起 那 一 把 蒲 扇 。蒲扇 ,是记 忆中的 农村, 夏季经 常用的 一件物 品。 记 忆 中 的故 乡 , 每 逢 进 入夏天 ,集市 上最常 见的便 是蒲扇 、凉席 ,不论 男女老 少,个 个手持 一 把 , 忽 闪 忽闪个 不停, 嘴里叨 叨着“ 怎么这 么热” ,于是 三五成 群,聚 在大树 下 , 或 站 着 ,或随 即坐在 石头上 ,手持 那把扇 子,边 唠嗑边 乘凉。 孩子们 却在周 围 跑 跑 跳 跳 ,热得 满头大 汗,不 时听到 “强子 ,别跑 了,快 来我给 你扇扇 ”。孩 子 们 才 不 听 这一套 ,跑个 没完, 直到累 气喘吁 吁,这 才一跑 一踮地 围过了 ,这时 母 亲总是 ,好似 生气的 样子, 边扇边 训,“ 你看热 的,跑 什么? ”此时 这把蒲 扇, 是 那 么 凉 快 ,那么 的温馨 幸福, 有母亲 的味道 ! 蒲 扇 是 中 国传 统工艺 品,在 我 国 已 有 三 千年多 年的历 史。取 材于棕 榈树, 制作简 单,方 便携带 ,且蒲 扇的表 面 光 滑 , 因 而,古 人常会 在上面 作画。 古有棕 扇、葵 扇、蒲 扇、蕉 扇诸名 ,实即 今 日 的 蒲 扇 ,江浙 称之为 芭蕉扇 。六七 十年代 ,人们 最常用 的就是 这种, 似圆非 圆 , 轻 巧 又 便宜的 蒲扇。 蒲 扇 流 传 至今, 我的记 忆中, 它跨越 了半个 世纪, 也 走 过 了 我 们的半 个人生 的轨迹 ,携带 着特有 的念想 ,一年 年,一 天天, 流向长
ansys轴模态分析教程实例
APDL: smrt,1 mshape,1,3D mshkey,0 vmesh,all
⑦施加重力载荷
GUI: Main Menu/Solution/Define Loads/Apply/Structural/Inertia/Gravity/Global,在
弹出的对话框中根据图中所示的坐标系,选择正确的重力加速度的方向,此处为 -Y方向,所以在对话框中的ACELY设置为-9.8,单击OK。
⑮观察模态应力 GUI: Main Menu/General Postproc/Plot Result/Nodal Solu,在弹出的节点求解数 据云图对话框,按照下图设置,单击OK,得到下图显示。
APDL: PLNSOL,S,EQV
⑯按照上述方法,查看各阶自然频率下的振型和模态应力,如下图(仅 为第十阶自然频率的)
APDL: mp,ex,1,2e11 prxy,1,0.3 dens,1,7800
④建立主轴模型 GUI: Main/Preprocessor/Modeling/Create/Volumes/Cylinder/By Dimensions 在弹出的对话框中填上图中数据,单击apply,继续输入下面几张图片中的数 据,依次单击apply,最后关闭对话框
APDL: da,7,all da,8,all da,19,all da,20,all
⑪进行求解 GUI: Main/Solution/Solve/Current LS,即可弹出求解对话框,单击OK,进行求解。 警告窗口单击Yes,后出现Solution is done. ,单击Close关闭对话框,关闭求解对 话框。 APDL: /solu solve
APDL: SET,,, ,,, ,4
⑭观察Y方向上的第四阶频率下的振型 GUI: Main Menu/General Postproc/Plot Result/Nodal Solu,在弹出的节点求解数据 云图对话框,按照下图设置,单击OK,得到下图显示。 APDL: PLNSOL, U,Y, 0,1.0
ANSYS循环对称结构模态分析
ANSYS循环对称结构的模态分析如果结构呈现出循环对称(例如,风轮或正齿轮)特点,则可以通过仅对它的一部分建模来计算结构整体的固有频率和振型。
这一被称为“循环对称结构模态分析”的特征可以节省大量人力和计算时间。
另一个好处是只需建部分模型便可以观察整个结构的振型。
循环对称结构模态分析只在ANSYS/Multiphysics、ANSYS/Mechanical和ANSYS/Structural中可用。
1、基本扇区循环对称结构中用于建模的部分叫做基本扇区。
正确的基本扇区应该满足这样的特点:即若在全局柱坐标空间(CSYS=1)中将其重复n次,则能生成整个模型(见图4)。
图4循环对称结构实例2、节径理解循环对称结构模态分析的过程,需要理解节径这个概念(这里的“节”是振动术语,而不是有限元中的节点的“节”)。
“节径”这个术语源于简单的几何体,如圆盘,在某阶模态下振动时的表现。
这时,大多数振型中将包含如图5所示的横穿整个圆盘表面的板外位移为零的线,通常称为节径。
图5节径的一些例子对具有循环对称特征的复杂结构(如涡轮叶片组件),在振型中也许观察不到零位移线。
因此ANSYS中关于节径的数学定义是广义的,未必和横穿结构的零位移线条数相符。
节径数是确定在以等于扇区角的周向角间隔开的点处的单一自由度(DOF)值的变化的整数。
若节径数等于ND,此变化可用函数COS(ND*THETA)表示。
按上面的定义,对给定的节径数,只要满足在以扇区角隔开的点处的自由度(DOF)按COS(ND*THETA)变化,则沿周向可以存在可变数目的振动波。
例如,节径=0且扇区角=60度的扇区将产生沿周向有0,6,12,…,6n个波形的模态。
(在某些参考文献中,“模态”这个术语被用于替代上面定义的节径,而术语节径则代表实际可观察到的沿结构周向的波形数。
)3、标准(无应力)循环对称结构模态分析过程标准(无应力)循环对称结构模态分析的过程如图6所示。
有无预应力,循环模态分析都是可以使用的。
实验:ANSYS模态分析
高速旋转轮盘模态分析在进行高速旋转机械的转子系统动力设计时,需要对转动部件进行模态分析,求解出其固有频率和相应的模态振型。
通过合理的设计使其工作转速尽量远离转子系统的固有频率。
而对于高速部件,工作时由于受到离心力的影响,其固有频率跟静止时相比会有一定的变化。
为此,在进行模态分析时需要考虑离心力的影响。
通过该实验掌握如何用ANSYS 进行有预应力的结构的模态分析。
一.问题描述本实验是对某高速旋转轮盘进行考虑离心载荷引起的预应力的模态分析,求解出该轮盘的前5阶固有频率及其对应的模态振型。
轮盘截面形状如图所示,该轮盘安装在某转轴上以12000转/分的速度高速旋转。
相关参数为:弹性模量EX =2.1E5Mpa ,泊松比PRXY =0.3,密度DENS =7.8E-9Tn/mm 3。
1-5关键点坐标:1(-10, 150, 0)2(-10, 140, 0)3(-3, 140, 0)4(-4, 55, 0)5(-15, 40, 0)L=10+(学号×0.1)RS=5二.分析具体步骤1. 定义工作名、工作标题、过滤参数①定义工作名:Utility menu > File > Jobname②工作标题:Utility menu > File > Change Title (个人学号)2. 选择单元类型本实验将选用六面体结构实体单元来分析,但在建模过程中需要使用四边形平面单元,所有需要定义两种单元类型:PLANE42和SOLID45,具体操作如下: Main Menu >Preprocessor > Element Type > Add/Edit/Delete①“ Structural Solid”→“ Quad 4node 42”→Apply(添加PLANE42为1号单元)②“ Structural Solid”→“ Quad 8node 45”→ok(添加六面体单元SOLID45为2号单元)在Element Types (单元类型定义)对话框的列表框中将会列出刚定义的两种单元类型:PLANE42、SOLID45,关闭Element Types (单元类型定义)对话框,完成单元类型的定义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高速旋转轮盘模态分析在进行高速旋转机械的转子系统动力设计时,需要对转动部件进行模态分析,求解出其固有频率和相应的模态振型。
通过合理的设计使其工作转速尽量远离转子系统的固有频率。
而对于高速部件,工作时由于受到离心力的影响,其固有频率跟静止时相比会有一定的变化。
为此,在进行模态分析时需要考虑离心力的影响。
通过该实验掌握如何用ANSYS进行有预应力的结构的模态分析。
一.问题描述本实验是对某高速旋转轮盘进行考虑离心载荷引起的预应力的模态分析,求解出该轮盘的前5阶固有频率及其对应的模态振型。
轮盘截面形状如图所示,该轮盘安装在某转轴上以12000转/分的速度高速旋转。
相关参数为:弹性模量EX=2.1E5Mpa,泊松比PRXY=0.3,密度DENS=7.8E-9Tn/mm3。
1-5关键点坐标:1(-10, 150, 0)2(-10, 140, 0)3(-3, 140, 0)4(-4, 55, 0)5(-15, 40, 0)L=10+(学号×0.1)RS=5二.分析具体步骤1.定义工作名、工作标题、过滤参数①定义工作名:Utility menu > File > Jobname②工作标题:Utility menu > File > Change Title(个人学号)2.选择单元类型本实验将选用六面体结构实体单元来分析,但在建模过程中需要使用四边形平面单元,所有需要定义两种单元类型:PLANE42和SOLID45,具体操作如下:Main Menu >Preprocessor > Element Type > Add/Edit/Delete①“ Structural Solid”→“ Quad 4node 42” →Apply(添加PLANE42为1号单元)②“ Structural Solid”→“ Quad 8node 45” →ok(添加六面体单元SOLID45为2号单元)在Element Types (单元类型定义)对话框的列表框中将会列出刚定义的两种单元类型:PLANE42、SOLID45,关闭Element Types (单元类型定义)对话框,完成单元类型的定义。
3.设置材料属性由于要进行的是考虑离心力引起的预应力作用下的轮盘的模态分析,材料的弹性模量EX 和密度DENS必须定义。
①定义材料的弹性模量EXMain Menu >Preprocessor > Material Props > Material Models> Structural > Linear >Elastic >Isotropic弹性模量EX=2.1E5泊松比PRXY=0.3②定义材料的密度DENSMain Menu >Preprocessor > Material Props > Material Models>densityDENS =7.8E-94.实体建模对于本实例的有限元模型,首先需要建立轮盘的截面几何模型,然后对其进行网格划分,最后通过截面的有限元网格扫描出整个轮盘的有限元模型。
具体的操作过程如下。
①创建关键点操作:Main Menu > Preprocessor > Modeling > Create > Keypoints > In Active CS 列出各点坐标值Utility menu >List > Keypoints >Coordinate only②由关键点生成线的操作:Main Menu > Preprocessor > Modeling > Create > Lines > Lines > In Active Coord③建立圆角:Preprocessor > Modeling > Create > Lines > Lines > Lines Fillet④生成面:Main Menu > Preprocessor > Modeling > Create >Areas >Arbitrary >By Lines(逆时针选线)5.划分网络Main Menu >Preprocessor >Meshing >MeshTool①对全局进行设置。
单击Size Controls (尺寸控制区)全局设置项(Global)的Set按钮,将弹出Global Element Sizes单元尺寸全局设置对话框在对话框中输入Element edge Length (单元边长度)为6。
②单击Size Controls (尺寸控制区) Lines (线设置项)的按钮,将弹出Element Size on Picked Lines (在所选线上定义单元尺寸)的拾取对话框。
用鼠标左键在图形输出窗口中拾取圆角对应的线。
单击ok按钮,将弹出Element Size on Picked Lines (在所选线上定义单元尺寸)对话框,在对话框中输入No. of element divisions (每条线将要分成的单元数)为1,设定圆角处对应的线只分一个单元。
(由于是模态分析,只要能反应出需要知道的前几阶模态就行,而不需要知道具体的应力值,所以不需要对此处进行单元细化。
)③对分网进行控制。
在分网控制区的Mesh下拉框中选定分网类型为Area (面),Shape (网格形状)设置为Quad (四边形),分网方式设置为Free (自由分网)。
④对面进行分网。
在MeshTool (分网工具)对话框中单击Mesh按钮,将弹出Mesh Aeras (对面划分网格)拾取对话框。
从图形输出窗口中拾取创建的面,单击ok按钮。
完成网格划分。
6. 出整个轮盘的有限元模型通过将面绕轴旋转成有限元实体模型的功能,将前面建立的轮盘截面有限元网格,围绕定义的旋转轴扫掠成整个轮盘的实体有限元模型。
具体的操作过程如下。
①定义旋转轴。
可以通过定义旋转轴所在轴线上的两个关键点来,指定旋转轴的位置。
Main Menu >Preprocessor >Modeling >Create >Key points >In Active CS生成两个关键点20、21。
关键点20:X,Y,Z位置分别为-10,0,0关键点21:X,Y,Z位置分别为10,0,0②设置单元生成选项Main Menu >Preprocessor >Modeling >Operate >Extrude >Elem Ext Opts,弹出Element Extrusion Options (单元挤出选项)对话框,在对话框中的Element type number (单元类型序号)下拉框中选择2号单元SOLID45。
单元尺寸选项中的分割单元数(V AL1 NO. Elem Divs)设置为18,即在挤压出的每个体上将沿周向被分成18份。
拉伸比例为0,保持等截面拉伸。
将Clear area(s) after ext (删除原始面)设置为Yes,在挤压的单元完成之后将删除原来的面以及其上的单元。
单击ok按钮,完成对单元选项的设置。
③绕轴旋转截面Main Menu >Preprocessor >Modeling >Operate >Extrude >Areas >About Axis,将弹出Sweep Areas about Axis (绕轴扫描面)的拾取对话框。
从图形输出窗口中选择创建好的平面网格,单击拾取对话框中的按钮。
然后从图形窗口中选取定义旋转轴的关键点20,21,单击ok按钮,将弹出Sweep Areas about Axis对话框,在对话框中输入旋转角度为(Arc length in degrees)360,No. of volume segments(一周创建体的数目)为4,单击ok按钮。
创建如图所示的整个盘的有限元模型。
④观察创建的网格形式。
Utility Menu >Plot >Element,图形窗口中将会显示出由平面网格扫掠而成的实体单元网格情况。
存盘,SAVE_DB。
至此,完成了创建轮盘有限元模型的所有工作。
7. 节点的坐标变换根据轮盘的工作情况其约束条件为盘心轴向和周向约束,这种约束条件在直角坐标系下无法定义,而柱坐标下可以非常方便地定义。
根据ANSYS程序中坐标系的定义规则,需要将柱坐标系的Z轴和旋转轴重合,Y轴表示转角,X轴表示径向。
ANSYS程序提供的全局柱坐标系不满足要求。
通常可以有两种办法来解决这个问题:a.将所建有限元模型进行旋转使其轴向和柱坐标Z轴方向一致。
b.重新建立一个柱坐标系使其的Z向和旋转轴一致。
本实例采用第二种方法。
具体操作过程如下:①Utility Menu >WorkPlane >Offset WP by Increments,弹出Offset WP (工作平面偏移)菜单,拖动Degrees滑动条,将Degrees (旋转角度)值设置为90。
单击按钮,使工作平面绕Y 轴正向旋转90度,单击ok按钮,将工作平面的WZ轴和总体坐标系的X轴方向重合,。
②在工作平面原点创建柱坐标系。
Utility Menu >WorkPlane >Local Coordinate Systems >Create Local CS >At WP Origin,将弹出Create Local CS at WP Origin (在工作平面原点创建本地坐标系)对话框,Ref number of new coord sys (新坐标系的参考序号)缺省值为11,一般就使用缺省值,也可自己设定。
在Type of coordinate system(坐标系类型)下拉框中选取Cylindrical 1 (柱坐标系),其它设置为缺省值。
单击ok按钮。
将完成要求的柱坐标系的创建,并且将新建坐标系定义为当前激活坐标系。
③将所有节点移到当前柱坐标系中。
Main Menu >Preprocessor >Modeling >Create >Nodes >Rotate Node CS >To Active CS将弹出Rotate Nodes into CS菜单。
在菜单中单击按钮,将所有的节点都移到当前激活柱坐标系下。
8. 进行静力分析由于对轮盘模态的分析需要考虑离心力引起的应力对模态的影响,所以需要先对其进行静力分析,求解出离心力产生的应力,及其对刚度阵的影响,将结果写入数据库文件。