刘鸿文主编(第4版) 高等教育出版社《材料力学》课件全套
刘鸿文主编-材料力学课件
各向同性假设
总结词
各向同性假设认为材料在不同方向上具有相同的性质 和行为。
详细描述
各向同性假设是材料力学中的另一个重要假设。它意味 着材料在不同方向上具有相同的性质,如弹性模量、泊 松比等。这一假设使得我们可以用统一的数学模型来描 述材料的性质和行为,简化计算过程。在实际应用中, 对于一些各向同性较好的材料,可以采用统一的标准来 近似获得其整体性质。需要注意的是,各向同性材料并 不是指所有方向上的性质都完全相同,而是在一定范围 内可以近似认为各向同性。
机械零件设计
材料力学在机械领域中应用于各 种机械零件的设计,如轴、轴承
、齿轮等。
设备强度分析
对机械设备的强度进行分析,确保 设备在各种工况下的安全运行。
疲劳寿命预测
利用材料力学知识,预测机械零件 的疲劳寿命,提高设备的使用寿命 。
航空航天领域
飞行器结构分析
材料力学在航空航天领域 中应用于飞行器的结构分 析,确保飞行器的安全性 和稳定性。
详细描述
弹性力学理论是材料力学的基本理论之一,主要研究材料在弹性范围内受力时的变形和内力关系。该 理论基于胡克定律,即材料在弹性范围内受力时发生的形变与外力成正比,并引入了应变和应力等概 念来描述材料的变形和受力情况。
塑性力学理论
总结词
描述材料在超过弹性极限后发生塑性形 变时的应力-应变关系。
VS
根据船舶的工作环境和要求,选择具 有优良力学性能的材料。
05
材料力学的未来发展
新材料的研发
高强度轻质材料
如碳纤维复合材料、钛合金等, 在航空、汽车、体育器材等领域
有广泛应用前景。
智能材料
如形状记忆合金、压电陶瓷等, 具有自适应、自修复等特性,可 用于制造智能传感器、执行器等
刘鸿文版材料力学课件(全套)
目录
§2.1
轴向拉伸与压缩的概念和实例
受力特点与变形特点:
作用在杆件上的外力合力的作用线与 杆件轴线重合,杆件变形是沿轴线方向的伸 长或缩短。
拉(压)杆的受力简图
拉伸
F F F
压缩
F
目录
§2.1
轴向拉伸与压缩的概念和实例
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m F m F FN FN F
类似地,可以定义 y , z
M点在xy平面内的切应变为: lim ( LM N ) MN 0 2 ML 0
, 均为无量纲的量。
目录
§1.5 变形与应变
例 1.2
已知:薄板的两条边 固定,变形后a'b, a'd 仍为直线。
250
c
200
b
0.025
求:ab 边的m 和 ab、ad 两边夹 角的变化。 解:
F
a b
a
c
c d
F
b
d
FN dA
A
dA A
A
FN A
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
FN A
该式为横截面上的正应力σ计 算公式。正应力σ和轴力FN同号。 即拉应力为正,压应力为负。
圣 维 南 原 理
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
剪切变形
目录
§1.6 杆件变形的基本形式
扭转变形
弯曲变形
目录
第二章
拉伸、压缩与剪切(1)
目录
第二章
§2.1 §2.2
拉伸、压缩与剪切
轴向拉伸与压缩的概念和实例 轴向拉伸或压缩时横截面上的内力和应力
材料力学ppt(刘鸿文第四版含课后答案)
l1
A' l3
(3) 物理关系
A
l1
N1l
E1A1 cos
l1 l2 A' l3
(1) 静平衡方程
N1 N2
(1)
N3 2N1 cos P 0 (2)
(2) 变形协调方程 l1 l源自 l3 cos (3)(3) 物理关系
l1
N1l
E1A1 cos
0.52 104 (m)
AB杆的变形
lAB lBD lCD lAC 1.05104(m)
例 2 (书例2. 7) 已知: BC杆: d=20mm, BD杆: 8号槽钢。[]= 160 MPa, E=200GPa, P=60kN。 求:校核强度及B点位移。 解:(1) 求轴力
Al
l Nl Pl 胡克定律的
EA EA
另一种形式
EA 抗拉(或抗压)刚度
注意:上式只在应力不超过比例极限时成立。
推广: (1) 阶梯轴
l Nili
Ei Ai
(2) 变截面轴
l
l
N ( x) EA(x)
dx
l1
l2
l3
A1
A2
A3
x
N(x)+dN(x)
N(X)
应力 A2 1024.8106 m2
1
N1 A1
143MPa
[ ] 160MPa
2
N2 A2
73.2 MPa
[ ] 160MPa
(3) 计算杆的变形
BC杆变形
l1
BB1
N1l1 EA1
材料力学(刘鸿文版)全套课件 PPT
850 750 650 550
104
105
106
107
108
N
从图可以得出三点结论:
(1)对于疲劳,决定寿命的 最重要因素是应力幅 。
(2)材料的疲劳寿命N 随应力幅 的增大而减小。
(3)存在这样一个应力幅,低于该应力幅,疲劳破坏不会发生,该应力幅
称为疲劳极限,记为 -1 。
目录
对于铝合金等有色金属,其S-N曲线没有明显的水平部分,一般规定
Δ
max
m in
O t
目录
通常用以下参数描述循环应力的特征
(1)应力比 r
r min max
r = -1 :对称循环 ; r = 0 :脉动循环 。
r < 0 :拉压循环 ; r > 0 :拉拉循环 或压压循环。
(2)应力幅
max min
(3)平均应力 m
B L
解: ⑴ 弯矩方程
F
A
M (x) M e Fx
Me
⑵ 变形能
V
L
M 2 (x) dx 2EI
L
1 2EI
(M
e
Fx)2 dx
M
2 e
L
M e FL2
F 2 L2
2EI 2EI 6EI
B L
F
⑶ 当F和M0分别作用时
A M0
V 1
MeL 2EI
F 2 L3 V 2 6EI
例:试求图示悬臂梁的应变能,并利用功
能原理求自由端B的挠度。
F
解:
l
x
M (x) F x
V
材料力学全ppt课件
切应变(角应变)
M点处沿x方向的应变: M点在xy平面内的切应变为:
x
lim
x0
s x
g lim ( LM N)
MN0 2
ML0
类似地,可以定义 y , z ,g 均为无量纲的量。
目录
§1.5 变形与应变
例 1.2
c
已知:薄板的两条边
4、稳定性:
在载荷 作用下,构 件保持原有 平衡状态的 能力。
强度、刚度、稳定性是衡量构件承载能力 的三个方面,材料力学就是研究构件承载能力 的一门科学。
目录
§1.1 材料力学的任务
三、材料力学的任务
材料力学的任务就是在满足强度、刚度 和稳定性的要求下,为设计既经济又安全的构 件,提供必要的理论基础和计算方法。
目录
§1.3 外力及其分类
按外力与时间的关系分类
静载: 载荷缓慢地由零增加到某一定值后,就保持不变或变动很不显著, 称为静载。
动载: 载荷随时间而变化。
如交变载荷和冲击载荷
交变载荷
冲击载荷
目录
§1.4 内力、截面法和应力的概念
内力:外力作用引起构件内部的附加相互作用力。 求内力的方法 — 截面法
传统具有柱、梁、檩、椽的木 制房屋结构
建于隋代(605年)的河北赵州桥桥 长64.4米,跨径37.02米,用石2800 吨
目录
§1.1 材料力学的任务
古代建筑结构
建于辽代(1056年)的山西应县佛宫寺释迦塔 塔高9层共67.31米,用木材7400吨 900多年来历经数次地震不倒,现存唯一木塔
目录
§1.1 材料力学的任务
架的变形略去不计。计算得到很大的简
化。
C
δ1
刘鸿文版材料力学课件全套4ppt课件
解:(1)计算横截面的形心、 面积、惯性矩
F 350 F
F 350
M
y1 z0 y
FN
z1
150
A 15000mm2 z0 75mm z1 125 mm I y 5.31107 mm4
50 (2)立柱横截面的内力
FN F
M F 350 75103
50
150
425F 103 N m
10-1
压弯组合变形
目录
§8-1 组合变形和叠加原理
组合变形工程实例
拉弯组合变形
目录
§8-1 组合变形和叠加原理
组合变形工程实例
弯扭组合变形
目录
§8-1 组合变形和叠加原理
叠加原理
构件在小变形和服从胡克定理的条件下, 力的独立性原理是成立的。即所有载荷作用 下的内力、应力、应变等是各个单独载荷作 用下的值的叠加
r4
M8-4 扭转与弯曲的组合
r3
M 2 T 2
W
W d 3
32
d 3 32
M2 T2
3
32
1762 3002 100106
32.8103 m 32.8mm
目录
小结
1、了解组合变形杆件强度计算的基本方法 2、掌握斜弯曲和拉(压)弯组合变形杆件
0 -极限切应力,由单向拉伸实验测得
0 s /2
目录
7-11 四种常用强度理论
最大切应力理论(第三强度理论)
屈服条件 强度条件
1
3
s
ns
低碳钢拉伸
低碳钢扭转
目录
7-11 四种常用强度理论
最大切应力理论(第三强度理论) 实验表明:此理论对于塑性材料的屈服破坏能够得到 较为满意的解释。并能解释材料在三向均压下不发生
材料力学课件-刘鸿文
FmaxA
Fmax
W
sin
W
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
0.8m
B C
Fmax
FRCx C FRCy
d
由三角形ABC求出
1.9m
sin BC 0.8 0.388
A
AB 0.82 1.92
Fmax
W
sin
15 0.388
38.7kN
斜杆AB的轴力为
FN Fmax 38.7kN
圣 维 南 原 理
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
A 1
例题2.2
图示结构,试求杆件AB、CB的
应力。已知 F=20kN;斜杆AB为直
径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
45° B
C
2
FN 1
F
y
FN 2 45° B x
目录
§2.1 轴向拉伸与压缩的概念和实例
受力特点与变形特点:
作用在杆件上的外力合力的作用线与 杆件轴线重合,杆件变形是沿轴线方向的伸 长或缩短。
拉(压)杆的受力简图
拉伸
F
FF
压缩
F
目录
§2.1 轴向拉伸与压缩的概念和实例
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m
F m
F
FN
FN
Fx 0
目录
§1.1 材料力学的任务
{弹性变形 — 随外力解除而消失 塑性变形(残余变形)— 外力解除后不能消失 刚度:在载荷作用下,构件抵抗变形的能力。 3、内力:构件内由于 发生变形而产生的相 互作用力。(内力随 外力的增大而增大) 强度:在载荷作用下, 构件抵抗破坏的能力。
材料力学课件(刘鸿文)
(2) 若先在C截面加P2 ,然后B截面加P1。 若先在C截面加P 然后B截面加P 在C截面加P2 后, P2 作功 截面加P
A B
a
P (a + b) 2EA
2 2
P1
C
b
在B截面加P1后, P1作功 截面加P
P2
Pa 2EA
2 1
加 P1引起 C 截面的位移
A
P1a EA 在加P 过程中P 作功(常力作功) 在加P1 过程中P2作功(常力作功)
a
B
P1
C
b
P1P2 a EA
P2
1 1 Vε =W = P1δB1 + P2δc2 + P1δB2 2 2
a P2(a + b) P1P2 a P = + 2 + 2EA 2EA EA
2 1
注意: 注意:
(1) 计算外力作功时,注意变力作功与常力作功的 计算外力作功时,
区别。 区别。 (2) 应变能 Vε只与外力的最终值有关,而与加载过 只与外力的最终值有关, 程和加载次序无关。 程和加载次序无关。
能量方法
§13—1 概述 13—
一、能量方法:
利用功能原理 Vε = W 来求解可变形固体的位移、变形和内 来求解可变形固体的位移、 力等的方法。 力等的方法。 二、外力功 固体在外力作用下变形,引起力作用点沿力作用方向位移, 固体在外力作用下变形,引起力作用点沿力作用方向位移, 外力因此而做功,则成为外力功。 外力因此而做功,则成为外力功。
l 2
P A C
l 2
m
δ1
δ2
B
梁中点的挠度为 梁右端的转角为
= Pl + ml δ1 48EI 16EI =θ = Pl + ml δ2 16EI 3EI
材料力学课件第四版刘鸿文
材料在超过弹性限度后呈现出 塑性变形,应力与应变不再呈 线性关系。
材料的断裂行为
断裂机理
材料的断裂行为受多个因 素影响,包括应力集中、 缺陷和材料的强度等。
破裂韧性
破裂韧性是评价材料抗断 裂性能的指标,高破裂韧 性意味着材料更难破坏。
断裂表征
通过破裂表征参数,如断 口形貌和断面变形等,可 以了解材料的断裂特点。
发展历程
材料力学作为一门学科,经历了数百 年的发展和演变,与工程学、力学和 材料科学等学科有着密切的联系。
材料力学的基本原理
胡克定律
弹性材料在小应变范围内的应力与应变之间的线性关系,即胡克定律。
应力平衡原理
一个物体在静力平衡条件下,各部分受到的内力与外力之间必须满足力的平衡条件。
材料强度理论
根据材料的强度理论,可以预测材料在不同应力状态下的破坏行为。
材料力学课件第四版刘鸿 文
本课件介绍材料力学的定义、基本原理、应用领域、材料强度的计算方法、 材料的受力行为、应力与应变关系以及材料的断裂行为。
材料力学的定义
1
重要性
2
通过材料力学的研究,我们可以了解
材料的性能特点,为材料的设计、选
择和使用提供科学部的应力、应 变、变形和断裂等力学行为的学科。
材料力学的应用领域
桥梁工程
材料力学在桥梁工程中的应用 主要包括桥梁的设计、结构分 析和材料的选择。
航空航天
航空航天领域对材料性能有着 非常高的要求,材料力学在飞 机制造和航天器设计中扮演着 重要角色。
汽车工程
材料力学在汽车工程领域的应 用包括车身结构设计、碰撞安 全性评估和发动机材料选择。
材料强度的计算方法
1
变形理论
word课件 材料力学
word课件材料力学材料力学刘鸿文主编(第4版) 高等教育出版社制作者:张力显2021-4-21第一章绪论§1.1 材科力学的任务工程结构成机械的各组成部,如建筑物的梁和柱、机床的轴等统称为构件。
当工程结构或机械工作时,构件将受到载荷的作用。
例如,车床主轴受齿轮啮合力和切削力的作用,建筑物的梁受自身重力和其他物体重力的作用。
构件一船由固体制成。
在外力作用下,固体有抵抗破坏的能,但这种能力又是有限度的。
而且,在外力作用下,固体的尺寸和形状还将发生变化,称为变形。
为保证工程结构或机械的正常工作,构件应有足够的能力负担起应当承受的载荷。
因此,它应当满足以下要求:1.强度要求在规定载荷作用下的构件当然不应破坏。
例如冲床曲轴不可折断,储气罐不应爆破。
强度要求就是指构件应有足够的抵抗破坏的能力。
2.刚度要求在载荷作用下,构件即使有足够的强度,但若变形过大,仍不能正常工作。
例如,若齿轮轴变形过大将造成齿轮和轴承的不均匀磨损,引起噪音。
机床主轴变形过大,将影响加工精度。
刚度要求就是指构件应有足够的抵抗变形的能力。
3.稳定性要求有些受压力作用的细长杆,如千斤顶的螺杆、内燃机的挺杆等应始终维持原有的直线平衡状态,保证不被压弯,稳定性要求就是指构件应有足够的保持原有平衡形态的能力。
若构件横截面尺寸不足或形状不合理,或材料选用不当,将不能满足上述要求,从而不能保证工程就够或机械的安全工作。
相反,也不应不恰当地加大横截面尺寸或选用优质材料,这虽然满足了上述要求,却多使用了材料和增加成本,造成浪费。
材料力学的任务就是在满足强度、刚度和稳定性酌要求下,为设计既经济又安全的构件,提供必要的理论基础和计算方法。
在工程问题中,一般说,构件都应有足够的强度、刚度和稳定性,但对具体构件又往往有所侧重。
例如,储气罐主要是要保证强度,车床主轴主要是要具备一定的刚度,而受压的细长杆则应保持稳定性。
此外,对某些特殊构件还可能有相反的要求。
材料力学课件(第四版)刘鸿文(3)
m
q
例6--7 求静不定梁的挠曲线方程
m 2 1 ql 3 q 4 EJy x x x 2 6 2 24 xl
L
ml 2 ql 4 ql 4 EJy 0 2 12 24 ql 2 m 12 比静定梁变形小5倍 ql 2 x 2 qlx3 qx 4 EJy 24 12 24 Deformation is less than 5 times in comparison with determinate beam. l x 2 EJy
p B
a
a
求梁B点的挠度, 转角.
M 0 3 pa, Q0 2 p 1 1 1 2 2 2 EJ b M 0 x Q0 x p[ x a] 3 pa(2a) p(2a) p[2a a] 2 2 2 1 2 5 2 2 2 6 pa 4 pa pa pa 2 2 1 1 1 2 3 3 3 8 3 1 EJyb M 0 x Q0 x p[ x a] 6 pa pa pa3 2 3! 3! 3 6 7 3 pa 2
查p190(9)
pa 11 pa 3 fl [3(4a) 2 4a 2 ] 48 EJ 12 EJ 2
查p189(5)
pa(4a) 2 pa 3 fl 16 EJ EJ B 2 11 pa 3 pa 3 pa 3 fl 12 EJ EJ 12 EJ 2
例6--11 等强度梁受力p的作用,变形读数f,梁长L,厚为t ft 证明:梁顶上任一点的应变 和挠度f满足: l2 证明:
t L
p
t M M 1 2 2 Mt E f J 2J EJ E t 2x x 2 f C1 f C1 x C2 tE tE l 2 l2 ft x 0, f 0, f 0 f x l 2 tE t l
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
受力如图:
列平衡方程:
M
Y 0 FN P
Mo(F) 0
FN
Pa M 0
M Pa
目录
§1.4 内力、截面法和应力的概念
为了表示内力在一点处的强度,引入内力集度,
即应力的概念。
F A
pm
F A
—— 平均应力
C
p lim F A0 A
径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
B 解:1、计算各杆件的轴力。 (设斜杆为1杆,水平杆为2杆)
F 用截面法取节点B为研究对象
Fx 0 FN1 cos 45 FN2 0
x
Fy 0 FN1 sin 45 F 0
FN1 28.3kN
FN 2 20kN
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m
F m
F
FN
FN
Fx 0
FN F 0 FN F
2、轴力:截面上的内力
F
由于外力的作用线
与杆件的轴线重合,内
力的作用线也与杆件的
轴线重合。所以称为轴
力。 F 3、轴力正负号:
拉为正、压为负
4、轴力图:轴力沿杆 件轴线的变化
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
例题2.1
A
F1
若:构件横截面尺寸不足或形状
不合理,或材料选用不当
___ 不满足上述要求,
不能保证安全工作.
若:不恰当地加大横截面尺寸或
选用优质材料
___ 增加成本,造成浪费
}均 不 可 取
研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。因此在 进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和 手段。
取一微正六面体
y
两种基本变形:
线变形
L
—— 线段长度的变化
角变形
——线段间夹角的变化 o
M
x
L'
x+s
M' N
N'x
目录
§1.5 变形与应变 y
3.应变 L'
正应变(线应变)
L
x方向的平均应变:
xm
s x
x+s
oM
x
M' N
N'
x
切应变(角应变)
M点处沿x方向的应变: M点在xy平面内的切应变为:
F4
25 CD段
FN 2 F1 F2 10 20 10kN
Fx 0
FN3 F4 25kN
x 2、绘制轴力图。
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
杆件的强度不仅与轴力有关,还与横截面面 积有关。必须用应力来比较和判断杆件的强度。
A
该式为横截面上的正应力σ计
算公式。正应力σ和轴力FN同号。 即拉应力为正,压应力为负。
圣 维 南 原 理
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
A 1
45°
C
2
FN 1
y
FN 2 45° B
F
例题2.2
图示结构,试求杆件AB、CB的
应力。已知 F=20kN;斜杆AB为直
0.025 125106 200
a'
ab, ad 两边夹角的变化:
即为切应变 。
tan 0.025 100106 (rad ) 250
目录
§1.6 杆件变形的基本形式
杆件的基本变形:拉伸(压缩)、剪切、扭转、弯曲
拉压变形
剪切变形
目录
§1.6 杆件变形的基本形式
扭转变形
弯曲变形
目录
第二章 拉伸、压缩与剪切(1)
目录
§1.1 材料力学的任务
一、材料力学与工程应用
古代建筑结构
传统具有柱、梁、檩、椽的木 制房屋结构
建于隋代(605年)的河北赵州桥桥 长64.4米,跨径37.02米,用石2800 吨
目录
§1.1 材料力学的任务
古代建筑结构
建于辽代(1056年)的山西应县佛宫寺释迦塔 塔高9层共67.31米,用木材7400吨 900多年来历经数次地震不倒,现存唯一木塔
在外力作用下,一切固体都将发生变形, 故称为变形固体。在材料力学中,对变形固体 作如下假设: 1、连续性假设: 认为整个物体体积内毫无空隙地充满物质 灰口铸铁的显微组织 球墨铸铁的显微组织
目录
§1.2 变形固体的基本假设
2、均匀性假设: 认为物体内的任何部分,其力学性能相同 普通钢材的显微组织 优质钢材的显微组织
FmaxA
W
Fmax sin
W
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
0.8m
B C
Fmax
FRCx C FRCy
d
由三角形ABC求出
1.9m
sin BC 0.8 0.388
A
AB 0.82 1.92
Fmax
W
sin
15 0.388
38.7kN
斜杆AB的轴力为
FN Fmax 38.7kN
目录
§1.1 材料力学的任务
四川彩虹桥坍塌
目录
§1.1 材料力学的任务
比萨斜塔
美国纽约马尔克大桥坍塌
§1.1 材料力学的任务
二、基本概念 1、构件:工程结构或 机械的每一组成部分。 (例如:行车结构中的 横梁、吊索等) 理论力学—研究刚体,研究力与运动的关系。 材料力学—研究变形体,研究力与变形的关系。 2、变形:在外力作用下,固体内各点相对位置的 改变。(宏观上看就是物体尺寸和形状的改变)
目录
§1.3 外力及其分类
按外力与时间的关系分类
静载: 载荷缓慢地由零增加到某一定值后,就保持不变或变动很不显著, 称为静载。
动载: 载荷随时间而变化。
如交变载荷和冲击载荷
交变载荷
冲击载荷
目录
§1.4 内力、截面法和应力的概念
内力:外力作用引起构件内部的附加相互作用力。
求内力的方法 — 截面法
(1)假想沿m-m横截面将
目录
§1.2 变形固体的基本假设
3、各向同性假设: 认为在物体内各个不同方向的力学性能相同
(沿不同方向力学性能不同的材料称为各向异性 材料。如木材、胶合板、纤维增强材料等)
4、小变形与线弹性范围
A
认为构件的变形极其微小,
比构件本身尺寸要小得多。
如右图,δ远小于构件的最小尺寸,
所以通过节点平衡求各杆内力时,把支
4、稳定性:
在载荷 作用下,构 件保持原有 平衡状态的 能力。
强度、刚度、稳定性是衡量构件承载能力 的三个方面,材料力学就是研究构件承载能力 的一门科学。
目录
§1.1 材料力学的任务
三、材料力学的任务
材料力学的任务就是在满足强度、刚度 和稳定性的要求下,为设计既经济又安全的构 件,提供必要的理论基础和计算方法。
目录
§1.1 材料力学的任务
四、材料力学的研究对象 构件的分类:杆件、板壳*、块体*
材料力学主要研究杆件
{ 直杆—— 轴线为直线的杆 曲杆—— 轴线为曲线的杆
{等截面杆——横截面的大小 形状不变的杆 变截面杆——横截面的大小 或形状变化的杆 等截面直杆 ——等直杆
目录
§1.2 变形固体的基本假设
目录
§2.1 轴向拉伸与压缩的概念和实例
目录
§2.1 轴向拉伸与压缩的概念和实例
目录
§2.1 轴向拉伸与压缩的概念和实例
受力特点与变形特点:
作用在杆件上的外力合力的作用线与 杆件轴线重合,杆件变形是沿轴线方向的伸 长或缩短。
拉(压)杆的受力简图
拉伸
F
FF
压缩
F
目录
§2.1 轴向拉伸与压缩的概念和实例
刘鸿文主编(第4版) 高等教育出版社《材 料力学》课件全套
材料力学
刘鸿文主编(第4版) 高等教育出版社
目录
第一章 绪论
目录
第一章 绪论
§1.1 材料力学的任务 §1.2 变形固体的基本假设 §1.3 外力及其分类 §1.4 内力、截面法及应力的概念 §1.5 变形与应变 §1.6 杆件变形的基本形式
0.8m
B C
Fmax
FRCx C FRCy
d
1.9m
例题2.2 悬臂吊车的斜杆AB为直径 d=20mm的钢杆,载荷W=15kN。当W
A 移到A点时,求斜杆AB横截面上的 应力。
解:当载荷W移到A点时,斜杆AB
受到拉力最大,设其值为Fmax。
讨论横梁平衡 Mc 0
W
Fmax Fmax sin AC W AC 0
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m
F m
F
FN
FN
Fx 0
FN F 0 FN F
1、截面法求内力
F (1)假想沿m-m横截面将
杆切开
(2)留下左半段或右半段
F (3)将弃去部分对留下部分
的作用用内力代替
(4)对留下部分写平衡方程 求出内力即轴力的值
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
目录
第二章 拉伸、压缩与剪切
§2.1 轴向拉伸与压缩的概念和实例 §2.2 轴向拉伸或压缩时横截面上的内力和应力 §2.3 直杆轴向拉伸或压缩时斜截面上的应力 §2.4 材料拉伸时的力学性能 §2.5 材料压缩时的力学性能 §2.7 失效、安全因数和强度计算 §2.8 轴向拉伸或压缩时的变形 §2.9 轴向拉伸或压缩的应变能 §2.10 拉伸、压缩超静定问题 §2.11 温度应力和装配应力 §2.12 应力集中的概念 §2.13 剪切和挤压的实用计算