二项式定理解题技巧
二项式定理11种题型解题技巧
二项式定理知识点及11种答题技巧【知识点及公式】1.二项式定理:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。
②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n rr n C a b -叫做二项式展开式的通项。
用1r n r rr nT C a b -+=表示。
3.注意关键点:①项数:展开式中总共有(1)n +项。
②顺序:注意正确选择a ,b ,其顺序不能更改。
()n a b +与()nb a +是不同的。
③指数:a 的指数从n 逐项减到0,是降幂排列。
b 的指数从0逐项减到n ,是升幂排列。
各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r nn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。
4.常用的结论:令1,,a b x == 0122(1)()n r r n nn n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122rnn n n n n n C C C C C ++++++=,变形式1221r nn n n n n C C C C +++++=-。
二项式定理求常数项技巧
二项式定理求常数项技巧
1. 嘿呀,你知道吗?先把二项式展开,仔细观察各项呀!就像在一堆宝藏中找珍珠一样。
比如算(x+1)^3 时,展开后就能找到那关键的常数项啦,是不是很有趣?
2. 哇塞,要善于利用通项公式啊!这可真是个厉害的法宝,就如同有了一把万能钥匙。
像求(2x-3)^4 中的常数项,通过通项公式就能轻松搞定呀!
3. 注意哦,特殊值法有时候超好用的呀!就好像走了一条捷径。
比如求
(a+b+c)^10 中含有 a^2b^3c^5 的项,代入特殊值试试,说不定就能找
到答案呢,多神奇啊!
4. 别忘了啊,组合数也很重要呀!这就像搭积木一样,要一块块组合好。
算(x+2y)^5 时,利用组合数就能算出常数项啦,你说妙不妙?
5. 嘿,有时候从整体去考虑呀!别只盯着局部,把整个式子当成一个整体,不就像观察一幅画要看到全景嘛。
像(x^2+3x+2)^4 ,从整体角度就能找
到常数项啦!
6. 哎呀呀,要细心耐心呀!不能马虎哦,就像雕刻一件艺术品一样要精心。
在算二项式定理求常数项时,一点小错误都可能前功尽弃呢,可不能大意呀!
7. 哈哈,多做几道题练练手呀!实践出真知嘛,就像练武功要多切磋。
做熟了不就信手拈来啦,是不是很有成就感?
8. 记住啦,掌握这些技巧,二项式定理求常数项就不再难啦!就如同掌握了魔法咒语,随时都能解开难题呀!
我的观点结论是:只要熟练运用这些技巧,二项式定理求常数项就会变得超级简单又有趣!。
高中数学之二项式定理应用基本方法三大方法总结到位
高中数学之二项式定理应用基本方法三大方法总结到位二项式定理是高中数学中的重要内容,主要用于解决与二项式有关的问题。
以下是二项式定理应用的三大基本方法:
1. 展开式应用:利用二项式定理将二项式展开,可以得到其展开式。
对于形如 (a+b)^n 的二项式,其展开式中的每一项都可以根据二项式定理计算出来。
2. 系数提取:在解决某些问题时,可以通过提取二项式中的系数来简化问题。
例如,在求(a+b)^n 的展开式中某一项的系数时,可以通过提取适当的因
子来简化计算。
3. 等价转换:在解决与二项式有关的问题时,有时可以将问题等价转换为其他形式,从而利用二项式定理或其他已知公式进行求解。
例如,在求
(a+b)^n 的展开式中某一项的系数时,可以将问题等价转换为组合数问题,利用组合数的性质进行计算。
以上是二项式定理应用的三大基本方法,熟练掌握这些方法可以有效地解决与二项式有关的问题。
同时,要注意不断总结经验,探索更多应用二项式定理的技巧和方法。
二项式定理问题的常见题型及其解题策略
二项式定理问题的常见题型及其解题策略
二项式定理问题的常见题型及其解题策略
二项式定理是高中数学中最重要的定理之一,它可以用来解决各种概
率问题,常被广泛应用于数学竞赛中。
但是,学习二项式定理的学生
总会遇到困难,因为它的解题方法多变,而且容易出现各种错误。
下
面我们就来讨论一下二项式定理中的常见题型及其解题策略。
一是给定总体的概率计算问题,这类问题的解题策略是先用二项式定
理把概率问题转换成组合问题,再根据组合原理计算出概率。
二是给定概率计算总体的问题,这类问题的解题策略是先把概率转换
成组合数,然后利用组合原理求出总体的元素数量。
三是给定元素的特征计算概率的问题,这类问题的解题策略是先把特
征转换成组合数,然后根据组合原理计算出概率。
以上三类问题是二项式定理中最常见的题型,通过掌握这些解题策略,学生们就可以轻松应对二项式定理中的题目了。
二项式定理题型及解题方法
二项式定理题型及解题方法摘要:1.二项式定理的概念及意义2.二项式定理的基本形式3.二项式定理的应用场景4.解题方法的步骤与技巧5.典型例题分析正文:一、二项式定理的概念及意义二项式定理是数学中一个重要的定理,它揭示了二项式展开式的规律。
二项式定理的基本形式如下:(a + b)^n = C(n, 0)a^n + C(n, 1)a^(n-1)b + C(n, 2)a^(n-2)b^2 + ...+ C(n, n)b^n其中,a、b为实数或复数,n为自然数,C(n, k)表示组合数,即从n个元素中取k个元素的组合数。
二、二项式定理的基本形式我们已经了解了二项式定理的基本形式,接下来看看如何利用这个定理解决问题。
三、二项式定理的应用场景1.求解二项式展开式的特定项或特定项的系数。
2.求解极限问题,如当a、b趋于0时,(a + b)^n的极限值。
3.求解不等式问题,如求(a + b)^n > 1的解集。
4.求解恒成立问题,如证明(a + b)^n = C(n, 0)a^n + C(n, 1)a^(n-1)b + ...+ C(n, n)b^n。
四、解题方法的步骤与技巧1.确定问题类型,判断是否适用于二项式定理。
2.根据问题,选取合适的二项式定理形式。
3.利用组合数公式计算特定项或特定项的系数。
4.化简式子,求解问题。
五、典型例题分析例题1:求(2x - 1)^5的展开式中,x^2的系数。
解:根据二项式定理,展开式为:(2x - 1)^5 = C(5, 0)(2x)^5 - C(5, 1)(2x)^4 + C(5, 2)(2x)^3 - C(5, 3)(2x)^2 + C(5, 4)(2x)^1 - C(5, 5)展开式中,x^2的系数为-C(5, 3) * 2^2 = -40。
例题2:求极限:当x趋于0时,(1 + x)^(1/x)的极限值。
解:根据二项式定理,(1 + x)^(1/x) = (1 + x)^(x/x) = (1 + x)^(1/x) * (1 - 1/x + 1/x^2 - 1/x^3 + ...)当x趋于0时,(1 + x)^(1/x)趋于e(自然对数的底),即极限值为e。
高中数学解题技巧之二项式定理求解
高中数学解题技巧之二项式定理求解在高中数学中,二项式定理是一个非常重要的概念。
它是关于多项式展开的一个定理,可以用来求解各种数学问题。
本文将重点介绍二项式定理的求解方法,并通过具体的例子来说明其应用。
二项式定理的表述如下:$$(a+b)^n = C_n^0 a^n b^0 + C_n^1 a^{n-1} b^1 + C_n^2 a^{n-2} b^2 + \dots +C_n^n a^0 b^n$$其中,$C_n^k$表示从n个元素中选取k个元素的组合数,也称为二项系数。
首先,我们来看一个简单的例子。
假设我们要求解$(x+2)^3$的展开式。
根据二项式定理,展开式为:$$(x+2)^3 = C_3^0 x^3 2^0 + C_3^1 x^2 2^1 + C_3^2 x^1 2^2 + C_3^3 x^0 2^3$$化简后得到:$$(x+2)^3 = x^3 + 3x^2 2 + 3x 4 + 8$$通过二项式定理,我们可以快速求解出展开式的每一项。
接下来,我们来看一个稍微复杂一些的例子。
假设我们要求解$(a+b)^4$的展开式。
根据二项式定理,展开式为:$$(a+b)^4 = C_4^0 a^4 b^0 + C_4^1 a^3 b^1 + C_4^2 a^2 b^2 + C_4^3 a^1 b^3 + C_4^4 a^0 b^4$$化简后得到:$$(a+b)^4 = a^4 + 4a^3 b + 6a^2 b^2 + 4ab^3 + b^4$$通过这个例子,我们可以看到展开式的每一项都是由$a$和$b$的幂次组成的,其中$a$的幂次从$n$开始递减,$b$的幂次从0开始递增。
而系数则由二项系数决定。
除了求解展开式,二项式定理还可以用来求解组合数。
例如,我们要求解$C_5^2$,即从5个元素中选取2个元素的组合数。
根据二项式定理的定义,我们可以得到:$$C_5^2 = \frac{5!}{2!(5-2)!} = \frac{5 \times 4}{2 \times 1} = 10$$通过二项式定理,我们可以快速计算出组合数。
二项式定理各种题型解题技巧知识讲解
二项式定理1.二项式定理:011()()n n n r n r r n nn n n n a b C a C a b C a b C b n N --*+=+++++∈L L ,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。
②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项rn rr n C a b -叫做二项式展开式的通项。
用1r n r rr nT C a b -+=表示。
3.注意关键点:①项数:展开式中总共有(1)n +项。
②顺序:注意正确选择a ,b ,其顺序不能更改。
()n a b +与()nb a +是不同的。
③指数:a 的指数从n 逐项减到0,是降幂排列。
b 的指数从0逐项减到n ,是升幂排列。
各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.rnn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。
4.常用的结论:令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈L L5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n nn n n n n C C C C C ++++++=L L , 变形式1221r n nn n n n C C C C +++++=-L L 。
二项式定理高考常见题型及其解法
第二讲 二项式定理高考常见题型及解法二项式定理的问题相对较独立,题型繁多,虽解法灵活但较易掌握.二项式定理既是排列组合的直接应用,又与概率理论中的三大概率分布之一的二项分布有着密切联系.二项式定理在每年的高考中基本上都有考查,题型多为选择题,填空题,偶尔也会有大题出现. 本讲将针对高考试题中常见的二项式定理题目类型一一分析如下,希望能够起到抛砖引玉的作用. 【知识要点】1、二项式定理:∑=-∈=+nk kkn k nnn b aCb a 0*)()(N2、二项展开式的通项: )0(1n r b a C T r r n r n r ≤≤=-+它是展开式的第r +1项.3、二项式系数:).0(n r C r n ≤≤4、二项式系数的性质: ⑴ ).0(n k C C k n n k n ≤≤=-⑵ ).10(111-≤≤+=---n k C C C k n k n k n ⑶ 若n 是偶数,有n nn nn n nn C CC C C >>><<<-1210,即中间一项的二项式系数2nn C 最大.若n 是奇数,有n nn nn n n n nnC C C C C C >>>=<<<-+-1212110 ,即中项二项的二项式系数212+n n nn C C 和相等且最大.⑷ 各二项式系数和:0122n r nn n n n n C C C C C =++++++⑸在二项展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和即:021312n n n n n C C C C -++=++=【典型考题】一、求二项展开式:1.“(a +b )n”型的展开式例1.求4)13(x x +的展开式.解:原式=4)13(xx +=24)13(xx +=])3()3()3()3([14434224314442CCCCC x x x x x ++++=)112548481(12342++++x x x x x=54112848122++++xxx x小结:这类题目直接考查二项式定理掌握,高考一般不会考到,但是题目解决过程中的这种“先化简再展开”的思想在高考题目中会有体现的. 2. “(a -b )n ”型的展开式例2.求4)13(xx -的展开式.分析:解决此题,只需要把4)13(x x -改写成4)]1(3[xx -+的形式然后按照二项展开式的格式展开即可.本题主要考察了学生的“问题转化”能力. 3.二项式展开式的“逆用”例3.计算cC C C n nnnn n n 3)1( (279313)21-++-+-;解:原式=nnnn n n n n C C C C C )2()31()3(....)3()3()3(3332211-=-=-++-+-+-+小结:公式的变形应用,正逆应用,有利于深刻理解数学公式,把握公式本质. 二、通项公式的应用:1.确定二项式中的有关元素 例4.已知9)2(x xa -的展开式中x 3的系数为49,常数a 的值为解:9239299912)1()2()(----+⋅⋅⋅-=-=r rr rr rr r r x aC x x aC T令3923=-r ,即8=r ,依题意,得492)1(894889=⋅⋅---aC ,解得1-=a2.确定二项展开式的常数项例5.103)1(x x -展开式中的常数项是解:rr rr rr r xCxx C T 65510310101)1()1()(--+⋅-=-= ,令0655=-r ,即6=r .所以常数项是210)1(6106=-C小结:可以讲2011陕西高考题—例1⑴ 3.求单一二项式指定幂的系数 例6.(03全国)92)21(xx -展开式中x 9的系数是 .解:29191()()2rr rr T x xC -+=-=182911()()2rr r r x xC --=18391()2rr x x C --令,9318=-x 则3=r ,从而可以得到9x 的系数为:339121()22C -=-,∴填212-三、求几个二项式的和(积)的展开式中的条件项的系数例7.5432)1()1()1()1()1(-+---+---x x x x x 的展开式中,x 2的系数等于 解:2x 的系数是四个二项展开式中4个含2x 的,则有20)()1()1()1()1(35241302335224113002-=+++-=-+---+--C C C C C C C C例8.(02全国)72)2)(1-+x x (的展开式中,x 3项的系数是 . 解:在展开式中,3x 的来源有:⑴第一个因式中取出2x ,则第二个因式必出x ,其系数为667)2(-C ; ⑵第一个因式中取出1,则第二个因式中必出3x ,其系数为447)2(-C3x ∴的系数应为:∴=-+-,1008)2()2(447667C C 填1008.四、利用二项式定理的性质解题 1、求中间项例9.求101的展开式的中间项;解:,)1()(310101r r r r xx T C -=-+ ∴展开式的中间项为5555610(252x C =-.小结: 当n 为奇数时,nb a )(+的展开式的中间项是212121-+-n n n n baC 和212121+-+n n n n baC ;当n 为偶数时,nb a )(+的展开式的中间项是222nnnnb a C . 2、求有理项 例10.求103)1(xx -的展开式中有理项共有 项;解:341010310101)1()1()(r rr rrr r xxr T CC--+-=-=∴当9,6,3,0=r 时,所对应的项是有理项.故展开式中有理项有4项.小结:⑴当一个代数式各个字母的指数都是整数时,那么这个代数式是有理式;⑵当一个代数式中各个字母的指数不都是整数(或说是不可约分数)时,那么这个代数式是无理式.3、求系数最大或最小项 ⑴ 特殊的系数最大或最小问题例11.(2000上海)在二项式(x -1)11的展开式中,系数最小的项的系数是 . 解:rrr r xT C)1(11111-=-+∴要使项的系数最小,则r 必为奇数,且使C r11为最大,由此得5=r ,从而可知最小项的系数为5511(1)462C-=- ⑵一般的系数最大或最小问题例12.求84)21(xx +展开式中系数最大的项;解:记第r 项系数为r T ,设第k 项系数最大,则有 ⎩⎨⎧≥≥+-11k kk k T T T T 又1182.+--=r r r CT ,那么有⎪⎩⎪⎨⎧≥≥-+--+--+--k k k k k k k k C C C C 2.2.2.2.8118228118即8!8!2(1)!.(9)!(2)!.(10)!8!8!2(1)!.(9)!!(8)!k k k k k k k k ⎧≥⨯⎪----⎪⎨⎪⨯≥⎪---⎩1212219k k k k ⎧≥⎪⎪--⇒⎨⎪≥⎪-⎩,解得43≤≤k ,故系数最大的项为第3项2537x T =和第4项2747x T =. ⑶系数绝对值最大的项例13.在(x -y )7的展开式中,系数绝对值最大项是 .解:求系数绝对最大问题都可以将“n b a )(-”型转化为")("n b a +型来处理, 故此答案为第4项4347y x C ,和第5项5257y x C -.五、利用“赋值法”求部分项系数,二项式系数和(参考例题2) 例14.若443322104)32(x a x a x a x a a x ++++=+,则2312420)()(a a a a a +-++的值为 . 解: 443322104)32(x a x a x a x a a x ++++=+令1=x ,有432104)32(a a a a a ++++=+, 令1-=x ,有)()()32(314204a a a a a +-++=+-故原式=)]()).[((3142043210a a a a a a a a a a +-++++++=44)32.()32(+-+=1)1(4=-小结:在用“赋值法”求值时,要找准待求代数式与已知条件的联系,一般而言:0,1,1-特殊值在解题过程中考虑的比较多.例15.设0155666...)12(a x a x a x a x ++++=-,则=++++6210...a a a a .分析:解题过程分两步走;第一步确定所给绝对值符号内的数的符号;第二步是用赋值法求的化简后的代数式的值. 解:rrr r x T C)1()2(661-=-+∴65432106210...a a a a a a a a a a a +-+-+-=++++=)()(5316420a a a a a a a ++-+++=0六、利用二项式定理求近似值例16.求0.9986的近似值,使误差小于0.001;分析:因为6998.0=6)002.01(-,故可以用二项式定理展开计算.解:6998.0=6)002.01(-=621)002.0(...)002.0.(15)002.0.(61-++-+-+001.000006.0)002.0(15)002.0.(22263<=-⨯=-=C T ,且第3项以后的绝对值都小于001.0,∴从第3项起,以后的项都可以忽略不计.∴6998.0=6)002.01(-)002.0(61-⨯+≈=988.0012.01=-小结:由122(1)1...nn n n n n x x x x C C C +=++++,当x 的绝对值与1相比很小且n 很大时,n x x x ,....,32等项的绝对值都很小,因此在精确度允许的范围内可以忽略不计,因此可以用近似计算公式:nx x n+≈+1)1(,在使用这个公式时,要注意按问题对精确度的要求,来确定对展开式中各项的取舍,若精确度要求较高,则可以使用更精确的公式:22)1(1)1(x n n nx x n -++≈+.利用二项式定理求近似值在近几年的高考没有出现题目,但是按照新课标要求,对高中学生的计算能力是有一定的要求,其中比较重要的一个能力就是估算能力.所以有必要掌握利用二项式定理来求近似值. 七、利用二项式定理证明整除问题 例17.求证:5151-1能被7整除. 证明:15151- =1)249(51-+=12.2.49.....2.49.2.49.49515151505051249251501515151-+++++C C C C C=49P +1251-(*∈N P ) 又 1)2(1217351-=-=(7+1)171-=01216171716151717171717.7.7.7.....71C C C C C +++++- =7Q (Q *∈N ))(77715151Q P Q P +=+=-∴15151-∴能被7整除.小结:在利用二项式定理处理整除问题时,要巧妙地将非标准的二项式问题化归到二项式定理的情境上来,变形要有一定的目的性,要凑 出相关的因数. 八、知识交汇型在知识点的交汇处命题,已成为新高考命题的一个趋势.二项式定理可以与组合、数列极限、杨辉三角等知识进行综合,而设计出新题. 例18 如图,在由二项式系数所构成的杨 辉三角形中,第_____行中从左至右第14 与第15个数的比为2:3.分析:本题是杨辉三角与二项式定理的交汇题,而本题的解题关键在于将表格语言转化为组合数语言. 解:设所求的行数为n ,将条件转换为组合数语言,得 131423n nC C =,即142133n =-,解得n =34.第0行 1 第1行 1 1 第2行 1 2 1 第3行 1 3 3 1 第4行 1 4 6 4 1 第5行 1 5 10 10 5 1 …… …… ……二项式定理中的五大热点二项式定理有关知识是每年高考必考内容之一,本文总结出了近年高考中的五大热点题型,供参考. 一、通项运用型凡涉及到展开式的项及其系数(如常数项,x 3项的系数等)及有理项,无理项,或逆向问题,常是先写出其通项公式1r T +=r n r r n C a b -,然后再据题意进行求解,有时需建立方程才能得以解决. 例1 9)12(xx -的展开式中,常数项为 .(用数字作答).解:由99921991(2)(1)2rrr r rr r r r T C x C x ----+⎛⎫=-=-∙∙∙ ⎝. 令9-r -2r =0,得r =6.故常数项为63679(1)2672T C =-∙∙=.故填672.练习:1.10112x ⎛⎫+ ⎪⎝⎭的二项展开式中x 3的系数为_______.[15]2.(x -1)-(x -1)2+(x -1)3-(x -1)4-(x -1)5的展开式中,x 2的系数是_______.[-20]3.9a x ⎛-⎝展开式中x 3的系数为94,常数a =______.[4] 二、系数配对型是指求两个二项式的积或可化两个二项式的积的展开式中某项的系数问题,通常转化为乘法分配律问题来解决.例2 (x 2+1)(x -2)7的展开式中x 3项的系数是______.解: 由x 3项的系数分别来自两个二项式的展开式中两项乘积的系数,应为如下表搭配:因此,x 3项的系数是()4472C -+()6672C -=1008.练习:(x +2)10(x 2-1)的展开式中x 10的系数为____________(用数字作答).[179]三、系数和差型是指求二项展开式系数的和或差等问题,常可用赋值法加以解决. 例3 若2004220040122004...(12)x a a x a x a x -=++++(x ∈R ),则=++++++++)(...)()()(20040302010a a a a a a a a (用数字作答).解:取x =0,得a 0=1;取x =1,得a 0+a 1+a 2+…+a 2004=(1-2)2004=1.故010********...()()()()a a a a a a a a ++++++++ =2003a 0+(a 0+a 1+a 2+…+a 2004)=2003+1=2004.评注:若f (x )=a 0+a 1x +a 2x 2+…+a n x n.则有①a 0=f (0),②a 0+a 1+a 2+…+a n =f (1);③a 0-a 1+a 2-…=f (-1);④a 0+a 2+a 4+…=(1)(1)2f f +-;a 1+a 3+a 5+…=(1)(1)2f f --.练习:若(),32443322104x a x a x a x a a x ++++=+则()()2312420a a a a a +-++的值为_________.[1]四、综合应用型应用意识是数学的归宿,二项式定理主要应用于近似计算、证明整除、证明不等式、证明组合数恒等式、求组合数及求余数等问题.例4 9192除以100的余数是_______. 解:9192=(90+1) 92=0929290C +1919290C +…+9029290C +919290C +9292C=M ×102+92×90+1(M 为整数) =100M +82×100+81. ∴ 9192除以100的余数是81.练习:⑴求0.9986近似值(精确到0.001).[0.998]⑵设*∈N n ,则=++++-12321666n n n n n n C C C C _________.[1(71)6n-]五、知识交汇型在知识点的交汇处命题,已成为新高考命题的一个趋势.二项式定理可以与组合、数列极限、杨辉三角等知识进行综合,而设计出新题.例5 如图,在由二项式系数所构成的杨 辉三角形中,第_____行中从左至右第14 与第15个数的比为2:3.分析:本题是杨辉三角与二项式定理的交汇题,而本题的解题关键在于将表格语言转化为组合数语言. 解:设所求的行数为n ,将条件转换为组合数语言,得第0行 1第1行 1 1 第2行 1 2 1 第3行 1 3 3 1 第4行 1 4 6 4 1 第5行 1 5 10 10 5 1 …… …… ……131423n nC C =,即142133n =-,解得n =34.练习:若(1-2x )9展开式的第3项为288,则2111lim ()nx xxx→∞+++的值是_________.[2]。
二项式定理求解技巧和方法
二项式定理求解技巧和方法二项式定理是高中数学中一个很重要的概念,它描述了一个二次多项式的展开式中,每一项的系数和指数的关系。
在解题过程中,我们可以利用二项式定理来求解一些复杂的多项式表达式。
下面我将介绍一些二项式定理求解的技巧和方法。
1. 使用二项式定理展开二项式定理可以表达为:$ (a+b)^n = C_n^0a^n + C_n^1a^{n-1}b + C_n^2a^{n-2}b^2 + \\ldots + C_n^na^0b^n $。
这个定理可以帮助我们将一个二元系数的多项式展开为单项式的和。
我们可以利用这个定理来求解一些复杂的多项式表达式,例如 $(x+1)^n$ 或者 $(2x+3y)^n$。
2. 利用二项式系数的性质二项式系数$C_n^k$ 的计算公式为:$C_n^k = \\frac{n!}{k!(n-k)!}$。
在计算二项式系数时,我们可以利用其性质来简化计算。
例如,对于$C_n^k$ 来说,如果$k>n-k$,我们可以使用$C_n^k = C_n^{n-k}$ 来简化计算。
另外,由于$C_n^k = C_n^{n-k}$,我们也可以利用对称性简化计算。
3. 利用二项式定理求解系数和指数在一些问题中,我们需要求解多项式展开式中某一项的系数和指数。
对于二项式定理,可以通过将多项式展开式中各项的系数和指数与二项式系数进行配对,来求解。
例如,对于$(a+b)^7$ 的展开式,我们要求解其中系数为 35 的项的指数是多少,可以使用二项式系数的计算公式,得到 $C_7^k = 35$,然后求解 $k$ 的值。
4. 应用二项式定理进行变形有时候,在解决实际问题时,我们需要对给定的表达式进行变形,以便更好地应用二项式定理。
在变形过程中,我们可以使用二项式定理的展开式,将表达式转化为二项式定理的形式。
例如,对于表达式 $(x+y)^4 - (x-y)^4$,我们可以将其变形为$(u+v)^4 - (u-v)^4$ 的形式,然后应用二项式定理进行展开。
高中数学二项式定理解题技巧
高中数学二项式定理解题技巧高中数学中,二项式定理是一个非常重要的概念和定理。
它在代数运算、排列组合、数列等多个数学领域都有广泛的应用。
掌握二项式定理的解题技巧对于高中数学的学习至关重要。
本文将介绍几种常见的二项式定理解题技巧,并通过具体的例子来说明。
一、二项式定理的基本形式二项式定理的基本形式是:$(a+b)^n = C_n^0 a^n b^0 + C_n^1 a^{n-1} b^1 + C_n^2 a^{n-2} b^2 + ... + C_n^n a^0 b^n$其中,$C_n^k$表示组合数,即从n个不同元素中选取k个元素的组合数。
二、二项式定理的展开在解题过程中,我们经常需要将一个二项式展开成多项式。
这时,我们可以利用二项式定理来简化计算。
例如,要将$(x+y)^4$展开成多项式,我们可以直接应用二项式定理:$(x+y)^4 = C_4^0 x^4 y^0 + C_4^1 x^3 y^1 + C_4^2 x^2 y^2 + C_4^3 x^1 y^3 + C_4^4 x^0 y^4$展开后,我们可以得到:$(x+y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4$三、二项式定理的应用1. 二项式系数的性质二项式系数具有一些重要的性质,我们可以利用这些性质来简化计算。
例如,对于任意正整数n,我们有:$C_n^0 = C_n^n = 1$$C_n^k = C_n^{n-k}$这些性质可以帮助我们快速计算二项式系数。
2. 组合数的性质组合数具有一些重要的性质,我们可以利用这些性质来解决排列组合问题。
例如,对于任意正整数n和k,我们有:$C_n^k + C_n^{k+1} = C_{n+1}^{k+1}$这个性质可以帮助我们求解排列组合问题中的一些特殊情况。
3. 数列的应用二项式定理在数列中也有广泛的应用。
例如,我们可以利用二项式定理来求解二项式系数的和。
例如,要求解$\sum_{k=0}^{n} C_n^k$,我们可以利用二项式定理展开:$\sum_{k=0}^{n} C_n^k = \sum_{k=0}^{n} C_n^k a^k b^{n-k}$其中,我们可以取a=b=1,得到:$\sum_{k=0}^{n} C_n^k = (1+1)^n = 2^n$这个结果告诉我们,二项式系数的和等于2的n次方。
二项式定理各种题型解题技巧
,由题意 ,
则含有 的项是第 项 ,系数为 。
练:求 展开式中 的系数
解: ,令 ,则
故 的系数为 。
题型三:利用通项公式求常数项;
例:求二项式 的展开式中的常数项
解: ,令 ,得 ,所以
练:求二项式 的展开式中的常数项
解: ,令 ,得 ,所以
练:若 的二项展开式中第 项为常数项,则
⑥系数的最大项:求 展开式中最大的项,一般采用待定系数法。设展开式中各项系数分别
为 ,设第 项系数最大,应有 ,从而解出 来。
6.二项式定理的十一种考题的解法:
题型一:二项式定理的逆用;
例:
解: 与已知的有一些差距,
练:
解:设 ,则
题型二:利用通项公式求 的系数;
例:在二项式 的展开式中倒数第 项的系数为 ,求含有 的项的系数
解:因为二项式的幂指数 是奇数,所以中间两项( )的二项式系数相等,且同时取得最大值,从而有 的系数最小, 系数最大。
例:若展开式前三项的二项式系数和等于 ,求 的展开式中系数最大的项
解:由 解出 ,假设 项最大,
,化简得到 ,又 , ,展开式中系数最大的项为 ,有
练:在 的展开式中系数最大的项是多少
练:在 的展开式中,二项式系数最大的项是多少
解:二项式的幂指数是偶数 ,则中间一项的二项式系数最大,即 ,也就是第 项。
练:在 的展开式中,只有第 项的二项式最大,则展开式中的常数项是多少
解:只有第 项的二项式最大,则 ,即 ,所以展开式中常数项为第七项等于
例:写出在 的展开式中,系数最大的项系数最小的项
二项式定理各种题型解题技巧
二项式定理
1.二项式定理:
利用二项式定理展开多项式的方法和技巧
利用二项式定理展开多项式的方法和技巧在数学中,二项式定理是一种非常有用的工具。
它可以用于展开任意次数的多项式,从而简化复杂的计算过程。
本文将介绍利用二项式定理展开多项式的方法和技巧。
一、二项式定理的表达式和理解二项式定理的一般表达式如下:$$(a + b)^n = C_n^0 a^n b^0 + C_n^1 a^{n-1} b^1 + C_n^2 a^{n-2}b^2 + ... + C_n^r a^{n-r} b^r + ... + C_n^n a^0 b^n$$其中,$$C_n^r$$是组合数,表示从n个元素中选取r个元素的组合数。
理解二项式定理的关键是明确其中的模式。
在定理的展开式中,每一项都有两个分量:一个是$$a^{n-r}$$,另一个是$$b^r$$。
这两个分量的幂次之和一定为n,且随着r的增大而交替变化,从而产生类似于二项式的形式。
二、利用二项式定理展开多项式的方法和技巧1. 确定多项式的次数要利用二项式定理展开一个多项式,首先需要确定该多项式的次数n。
这个次数决定了展开式中的项数。
2. 确定各项的系数展开后的每一项都有一个系数,这个系数可以通过组合数$$C_n^r$$来确定。
3. 识别多项式中的各项分解给定的多项式,并识别每一项的形式。
例如,对于$$ (2x +3)^3$$,可以识别出三项为$$2x^3$$,$$3^3$$和$$3 * 2x^2$$。
4. 利用二项式定理展开多项式根据二项式定理展开式的形式,将识别出的各项分别展开,并相加得到最终的展开式。
例如,上述的$$ (2x + 3)^3$$可以展开为:$$C_3^0 (2x)^3 3^0 + C_3^1 (2x)^2 3^1 + C_3^2 (2x)^1 3^2 + C_3^3 (2x)^0 3^3$$以上就是利用二项式定理展开多项式的方法和技巧。
通过理解二项式定理的表达式和模式,并运用展开式中各项的系数和形式,我们可以简化多项式的计算过程,从而更高效地进行数学运算。
(完整版)二项式定理题型及解题方法
二项式定理题型及解题方法【学习目标】1.理解并掌握二项式定理,了解用计数原理证明二项式定理的方法.2.会用二项式定理解决与二项展开式有关的简单问题.【要点梳理】要点一:二项式定理1.定义一般地,对于任意正整数n ,都有:n n n r r n r n n n n n n b C b a C b a C a C b a +++++=+-- 110)((*N n ∈),这个公式所表示的定理叫做二项式定理, 等号右边的多项式叫做n b a )(+的二项展开式.式中的r n r r n C a b -做二项展开式的通项,用T r+1表示,即通项为展开式的第r+1项:1r n r r r n T C a b -+=, 其中的系数r n C (r=0,1,2,…,n )叫做二项式系数,2.二项式(a+b)n 的展开式的特点:(1)项数:共有n+1项,比二项式的次数大1;(2)二项式系数:第r+1项的二项式系数为r n C ,最大二项式系数项居中;(3)次数:各项的次数都等于二项式的幂指数n .字母a 降幂排列,次数由n 到0;字母b 升幂排列,次数从0到n ,每一项中,a ,b 次数和均为n ;3.两个常用的二项展开式:①011()(1)(1)n n n r r n r r n n n n n n n a b C a C a b C a b C b ---=-++-⋅++-⋅(*N n ∈) ②122(1)1n r r n n n n x C x C x C x x +=++++++要点二、二项展开式的通项公式二项展开式的通项:公式特点:①它表示二项展开式的第r+1项,该项的二项式系数是r n C ;②字母b 的次数和组合数的上标相同;③a 与b 的次数之和为n.要点诠释:(1)二项式(a+b)n 的二项展开式的第r+1项r n r r n C a b -和(b+a)n 的二项展开式的第r+1项r n r r n C b a -是有区别的,应用二项式定理时,其中的a 和b 是不能随便交换位置的.(2)通项是针对在(a+b)n 这个标准形式下而言的,如(a -b)n 的二项展开式的通项是1(1)r r n r r r n T C a b -+=-(只需把-b 看成b 代入二项式定理).要点三:二项式系数及其性质1.杨辉三角和二项展开式的推导.在我国南宋,数学家杨辉于1261年所著的《详解九章算法》如下表,可直观地看出二项式系数. n b a )(+展开式中的二项式系数,当n 依次取1,2,3,…时,如下表所示:1)(b a +………………………………………1 12)(b a +……………………………………1 2 13)(b a +…………………………………1 3 3 14)(b a +………………………………1 4 6 4 15)(b a +……………………………1 5 10 10 5 16)(b a +…………………………1 6 15 20 15 6 1…… …… ……上表叫做二项式系数的表, 也称杨辉三角(在欧洲,这个表叫做帕斯卡三角),反映了二项式系数的性质.表中每行两端都是1,而且除1以外的每一个数都等于它肩上的两个数的和.用组合的思想方法理解(a+b)n 的展开式中n r r a b -的系数rn C 的意义:为了得到(a+b)n 展开式中n r r a b -的系数,可以考虑在()()()n a b a b a b +++这n 个括号中取r 个b ,则这种取法种数为r n C ,即为n r r a b -的系数.2.()n a b +的展开式中各项的二项式系数0n C 、1n C 、2n C …nn C 具有如下性质: ①对称性:二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即r n n r n C C -=;②增减性与最大值:二项式系数在前半部分逐渐增大,在后半部分逐渐减小,在中间取得最大值.其中,当n 为偶数时,二项展开式中间一项的二项式系数2n n C 最大;当n 为奇数时,二项展开式中间两项的二项式系数21-n n C ,21+n n C 相等,且最大.③各二项式系数之和为2n ,即012342n n n n n n n n C C C C C C ++++++=;④二项展开式中各奇数项的二项式系数之和等于各偶数项的二项式系数之和,即15314202-=+++=+++n n n n n n nC C C C C C . 要点诠释:二项式系数与展开式的系数的区别二项展开式中,第r+1项r r n r n b a C -的二项式系数是组合数rn C ,展开式的系数是单项式r r n r n b a C -的系数,二者不一定相等.如(a -b)n 的二项展开式的通项是1(1)r r n r r r n T C a b -+=-,在这里对应项的二项式系数都是r n C ,但项的系数是(1)r r n C -,可以看出,二项式系数与项的系数是不同的概念.3.()na b c ++展开式中p q r a b c 的系数求法(,,0p q r ≥的整数且p q r n ++=) r q q r n q r n r n r r n r n n n c b aC C c b a C c b a c b a ----=+=++=++)(])[()( 如:10)(c b a ++展开式中含523c b a 的系数为!5!2!3!105527310⨯⨯=C C C 要点诠释:三项或三项以上的展开式问题,把某两项结合为一项,利用二项式定理解决.要点四:二项式定理的应用1.求展开式中的指定的项或特定项(或其系数).2.利用赋值法进行求有关系数和.二项式定理表示一个恒等式,对于任意的a ,b ,该等式都成立.利用赋值法(即通过对a 、b 取不同的特殊值)可解决与二项式系数有关的问题,注意取值要有利于问题的解决,可以取一个值或几个值,也可以取几组值,解决问题时要避免漏项等情况.设2012()()n n n f x ax b a a x a x a x =+=++++(1) 令x=0,则0(0)n a f b ==(2)令x=1,则012(1)()n n a a a a f a b ++++==+(3)令x=-1,则0123(1)(1)()n n n a a a a a f a b -+-+-=-=-+ (4)024(1)(-1)2f f a a a ++++= (5)135(1)-(-1)2f f a a a +++= 3.利用二项式定理证明整除问题及余数的求法:如:求证:98322--+n n 能被64整除(*N n ∈)4.证明有关的不等式问题:有些不等式,可应用二项式定理,结合放缩法证明,即把二项展开式中的某些正项适当删去(缩小),或把某些负项删去(放大),使等式转化为不等式,然后再根据不等式的传递性进行证明.①nx x n +>+1)1(;②22)1(1)1(x n n nx x n -++>+;(0>x ) 如:求证:n n )11(2+< 5.进行近似计算:求数的n 次幂的近似值时,把底数化为最靠近它的那个整数加一个小数(或减一个小数)的形式. 当||x 充分小时,我们常用下列公式估计近似值: ①nx x n +≈+1)1(;②22)1(1)1(x n n nx x n -++≈+; 如:求605.1的近似值,使结果精确到0.01;。
二项式定理三种常见考题精妙解题方法
二项式定理三种常见考题精妙解题方法
大家好,我是青颜,从事教育领域已经有五年的时间!是一个永远热情洋溢永远乐观的内心十八的小姐姐!每日分享快速解题技巧、高考出题规律、高考咨询、志愿规划等,欢迎大家的交流哦!
二项式定理是高中数学的一个重要内容,题型比较稳定,主要围绕其展开式及其通项公式而展开,一般集中在求特殊项、二项式系数、整除、余数、近似值等问题上,试题较灵活.解决二项式定理问题,主要有三种方法。
青颜整理的63套常见常考基础考点的解题方法大全,关于二项式定理梳理了三种解题题型,求展开式中指定的项、求展开式中某一项的系数或二项式系数、求展开式中的系数和等。
整个高中数学解题方法大全都一一将常见解题方法进行归纳了万能的解题模板,让大家通用学会!
全系列总共梳理了63套考点常见的解题方法!二项式定理的三种必考题型及解题模板作为独立一个专题来介绍!
类型一求展开式中指定的项或某一项的系数或二项式系数
类型二二项式系数的性质与各项系数和
类型三二项式定理的应用。
二项式定理—解题技巧
二项式定理1.二项式定理:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念: 项数:共(1)r +项通项:1r n r r r n T C a b -+=展开式中的第1r +项r n r rn C a b -叫做二项式展开式的通项。
3.注意关键点:①项数:展开式中总共有(1)n +项。
②顺序:注意正确选择a ,b ,其顺序不能更改。
()n a b +与()nb a +是不同的。
③指数:a 的指数从n 逐项减到0,是降幂排列。
b 的指数从0逐项减到n ,是升幂排列。
各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.rnn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。
4.常用的结论:(令值法)令1,,a b x == 0122(1)()n r r n nn n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122rnn n n n n n C C C C C ++++++=,变形式1221r nn n n n n C C C C +++++=-。
③奇数项的二项式系数和=偶数项的二项式系数和:0242132111222r r n n n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=⨯=④各项的系数的和:()()nbx a x g +=.令(1)奇数项系数和:()()[]1121-+g g 偶数项系数和:()()[]1g -1g 21⑤二项式系数的最大项:如果n 是偶数时,则中间项(第12n+)的二项式系数项2nn C 取得最大值。
二项式定理问题的五大方法
二项式定理问题的五大方法学习二项式定理,应对二项式定理问题的五大方法倍加关注,其中五大方法的具体内容是:1.常规问题通项分析法 例1.如果在(x421x)n的展开式中,前三项系数成等差数列,求展开式中的有理项解:展开式中前三项的系数分别为1,2n ,8)1(-n n ,由题意得2×2n =18)1(-n n ,得n =8设第r 1项为有理项,T 1+r =C r 8·r21·4316r -,则r 是4的倍数,所以r =0,4,8有理项为T 1=4,T 5=835,T 9=22561x 评述:求展开式中某一特定的项的问题常用通项公式,1=C r n a n-r b rn∈N,r=0,1,2,2,…,n )中含有a,b,n,r,T r1五个元素,只要知道其中的四个元素,就可以求出第五个元素.在有关二项式定理的问题中,常常遇到已知这五个元素中的若干个,求另外几个元素的问题(如判断和计算二项展开式中的特殊项),这类问题一般是正确使用通项公式,要清楚其中的相关字母的意义,利用等价转化的思想方法把问题归结为解方程(组).2.系数和差型赋值法例2.已知(-xa )8展开式中常数项为1120,其中实数a是常数,则展开式中各项系数的和是B.38 或38 或28解析:T1 r =C r8·8-r·(-a-1)r=(-a)r C r8·8-2r令8-2r=0,∴r=4∴(-a)4C48=1120∴a=±2当a=2时,令=1,则(1-2)8=1当a=-2时,令=-1,则(-1-2)8=38答案:C例3.若(1)6(1-2)5=a0a1a22…a1111求:(1)a1a2a3…a11;(2)a0a2a4…a10解:(1)(1)6(1-2)5=a0a1a22…=1,得a0a1a2…a11=-26,①又a0=1,所以a1a2…a11=-26-1=-65(2)再令=-1,得a0-a1a2-a3…-a11=0②①②得a0a2 (10)21(-260)=-32评述:在解决此类奇数项系数的和、偶数项系数的和的问题中常用赋值法,令其中的字母等于1或-13.近似问题截项法例4.求10的近似值(精确到)解:10=()10=310-10×39×45×38××37×210×36×…=…≈评述:用二项展开式作近似计算,注意底数的变形,以及考查对精确度有影响的某些项。
高考数学技巧如何利用二项式定理解决问题
高考数学技巧如何利用二项式定理解决问题在高考数学中,二项式定理是一项非常重要的知识点,它为我们解决一些复杂的数学问题提供了有力的工具。
通过灵活运用二项式定理的技巧,我们可以更加高效地解决各类数学问题。
本文将通过几个实例,向大家介绍如何利用二项式定理解决高考数学中的难题。
首先, 让我们来看一个典型的例子:已知(a+b)^2 = a^2 + 2ab + b^2,我们可以利用这个二项式定理的公式来解决问题。
假设我们要求解(a+1)^2,首先我们可以将(a+1)^2 拆解为 (a+1)(a+1),然后按照分配律,我们有:(a+1)(a+1) = a(a+1) + 1(a+1)= a^2 + a + a + 1= a^2 + 2a + 1通过这种方法,我们可以快速地求得(a+1)^2的结果,并且不需要展开整个式子。
这种技巧在高考数学中经常会遇到,掌握了二项式定理,我们可以更加灵活地运用相关的公式,从而提高解题速度。
除了上述的例子,二项式定理还可以帮助我们解决组合数学中的问题。
下面,让我们来看一个组合数学的问题:如果有8个人参加一个比赛,其中取3个人进行比赛,问有多少种可能的选择方式?我们可以通过使用二项式定理中的组合公式来解决这个问题:C(8, 3) = 8! / (3!(8-3)!)= 8! / (3!5!)= 8 * 7 * 6 / (3 * 2 * 1)= 56因此,共有56种可能的选择方式。
通过利用二项式定理中的组合公式,我们可以快速计算出组合数的结果,帮助我们解决类似的问题。
除了上述的例子,二项式定理还可以在高考数学的概率问题中发挥重要作用。
下面,让我们来看一个概率问题的例子:某班级有10个学生,其中3个人喜欢音乐,7个人喜欢体育。
如果我们从这个班级随机选择3个学生,问至少选择到一个喜欢音乐的学生的概率是多少?通过利用二项式定理中的概率公式,我们可以解决这个问题:P(X≥1) = 1 - P(X=0)= 1 - C(7, 3) / C(10, 3)= 1 - (7! / (3!4!)) / (10! / (3!7!))= 1 - 4 / 10= 6 / 10= 0.6因此,至少选择到一个喜欢音乐的学生的概率是0.6。
二项式定理各种题型解题技巧
二项式定理1.二项式定理:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。
②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项rn rr n C a b -叫做二项式展开式的通项。
用1r n r rr nT C a b -+=表示。
3.注意关键点:①项数:展开式中总共有(1)n +项。
②顺序:注意正确选择a ,b ,其顺序不能更改。
()n a b +与()nb a +是不同的。
③指数:a 的指数从n 逐项减到0,是降幂排列。
b 的指数从0逐项减到n ,是升幂排列。
各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.rnn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。
4.常用的结论:令1,,a b x == 0122(1)()n r r n nn n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122rnn n n n n n C C C C C ++++++=,变形式1221r nn n n n n C C C C +++++=-。
《二项式定理》题型突破
《二项式定理》题型突破1.二项式定理的应用正用:将()n a b +展开,得到一个多项式,即二项式定理从左到右使用是展开.对较复杂的式子,可先对其化简再用二项式定理展开.逆用:将多项式整理成()n a b +的展开式的形式,再逆用二项式定理,即二项式定理从右到左使用是合并.对于化简、求和、证明等问题的求解,要熟悉公式的特点,例如项数、各项幂指数的规律以及各项系数的规律.对于化简多个式子的和时,可以考虑二项式定理的逆用. 2.二项展开式的通项的理解对于1C k n k kk n T ab -+=,应注意: (1)它表示()n a b +的展开式的第1k +项,而不是第k 项. (2)式中a 和b 的位置不能颠倒,且a 与b 的指数和为n .(3)它表示二项展开式中的任意项,只要n 和k 确定,1k T +这一项也随之确定,当k 依次取0,1,2,,n 时,得到展开式的第1,2,,1n +项.(4)对于()n a b -的二项展开式的通项,应是1k T +=(1)C k k n k kn ab --. (5)()n a b +的展开式的通项中,C (0,1,2,,)k n k n =是“二项式系数”,而不是“项的系数”,如在7(12)x +的展开式中,第4项37333343177C 1(2)8C T T x x -+==⨯⨯=,该项的二项式系数为37C ,而项的系数是378C .3.二项式系数与项的系数(1)二项展开式的二项式系数是指01C ,C ,,C n n n n 这些组合数,即()na b +的展开式的通项1C k n k kk n T ab -+=中的C (0,)k n k n k ≤≤∈N .求二项展开式中某一项的二项式系数,关键是要确定k 的值,要注意通项为展开式的第1k +项.(2)项的系数即该项中除变量外的常数部分,求二项展开式的指定项的系数,可直接写出二项展开式的通项,并令该项的次数与指定项的次数相等,求出k 的值,则指定项的系数就是把k 代入组合数式和常数式的乘积计算后所得的值.4.求二项展开式的特定项的常见题型:(1)求第1k +项,1C k n k kk n T ab -+=;(2)求含p x 的项(或p q x y 的项);(3)求常数项;(4)求有理项. 5.求二项展开式的特定项的常用方法(1)对于常数项,隐含条件是项的字母的指数为0(即0次项).(2)对于有理项,一般是先写出展开式的通项,然后令其所有的字母的指数都等于整数.解这类问题必须合并通项中同一字母的指数,根据具体要求,令其为整数,进而求解.典型例题剖析题型1二项式定理的应用例1(1)52322x x ⎛⎫- ⎪⎝⎭的展开式为______.(2)1212C 4C 2C n nn n n ++++=_______.解析:(1)5051455232C (2)C (2)2x x x x ⋅⎛⎫-=+ ⎪⎝⎭23233255222333C (2)C (2)222x x x x x ⎛⎫⎛⎫⎛⎫-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭454552552233180C (2)C 3212022x x x x x x ⎛⎫⎛⎫-+-=-+- ⎪ ⎪⎝⎭⎝⎭4710135405243832x x x +- (2)原式01122C C 2C 2C 2(12)n nn n n n n =++++=+3n =.答案:(1)52471018013540524332120832x x x x x x -+-+- (2)3n变式训练1化简:543(2)5(2)10(2)x x x -+-+-+210(2)5(2)x x -+-.答案:原式051423555C (2)C (2)C (2)x x x =-+-+-+3245555C (2)C (2)C 1x x -+-+-56[(2)1]1(1) 1.x x =-+-=--题型2求二项展开式中的特定项或特定项的系数例2在7x ⎛- ⎝的展开式中,含4x 的项为_______.解析:x ⎛⎝的展开式的通项为1k T +=3772772C C (0,1,,7)3kkk k k k x x k --⎛⎛⎫=-= ⎪ ⎝⎭⎝.今3742k -=,解得2k =.中含4x 的项为22447228C 33x x ⎛⎫-⨯= ⎪⎝⎭.答案:6283x 解析:写出二项展开式的通项,令x 的指数等于4,求得k 的值,再求出含4x 的项. 总结归纳利用化简后的二项展开式的通项求常数项,只需令字母的指数为0;求有理项,只需令其所有的字母的指数都等于整数.变式训练2求91x x ⎛⎫- ⎪⎝⎭的展开式中3x 的系数.答案:91x x ⎛⎫- ⎪⎝⎭的展开式的通项是919C k k k T x -+=.9291(1)C kk k kx x -⎛⎫-=- ⎪⎝⎭.由题意,得923k -=,所以3k =.因此,展开式中3x 的系数为339(1)C 84-⨯=-.解析:利用二项式定理求展开式中的某一项的系数,可以通过二项展开式的通项进行求解.题型3多项展开式问题例3(1)已知5(1)(1)ax x ++的展开式中2x 的系数为5,则a =_____. A.4- B.3- C.2-D.1-(2)5(12)(2)x x -+的展开式中3x 的系数是______.解析:(1)5(1)x +的展开式的通项为15C k k k T x +=, 令1,2k =得1222535C ,C T x T x ==,因此5(1)(1)ax x ++的展开式中含2x 的系数为2155C C 5a +=,解得1a =-.(2)由多项式乘法的运算法则,可知5(12)(2)x x -+的展开式中3x 的系数是5(12)x -的展开式中3x 的系数的2倍与5(12)x -的展开式中2x 的系数的和.因为5(12)x -的展开式的通项为15(2)C k k kk T x +=-, 令3k =,得到3x 的系数为358C 80-⨯=-,令2k =,得到2x 的系数为254C 40⨯=, 所以5(12)(2)x x -+的展开式中3x 的系数是80-⨯240120+=-. 答案:(1)D (2)120- 规律总结1.形如()()m n a b c d ++的展开式中的特定项问题(1)分别对()m a b +与()n c d +的二项展开式进行分析,发现它们各自项的特点. (2)找到构成展开式中特定项的组成部分. (3)分别求解再相乘,求和即可. 2.形如()n a b c ++的展开式问题应根据式子a b c ++的特点,将其转化为可以直接使用二项式定理的形式来解决(有些题目也可转化为计数问题解决),转化的方法通常为配方、因式分解、项与项结合,项与项结合时要注意合理性和简捷性.变式训练3 512x x ⎛++ ⎝的展开式中的常数项为______(用数字作答).答案:2解析:551122x x x x ⎡⎛⎛⎫+=+ ⎪⎢⎝⎝⎭⎣,且它的展开式的通项为521512C (0,1,,5)2kk k k x T k x -+⎛⎫=+= ⎪⎝⎭.设512kx x -⎛⎫+ ⎪⎝⎭的展开式的通项为515C r k rr k T x--+-=.5552522C (05,)k r r k r r r k k x x r k r -++-+----=-∈N . 令520r k --=,则25k r +=,可得1,2k r ==或3,1k r ==或5k =,0r =.当1,2k r ==时,所求常数项为1122254C 2C 2-⨯⨯⨯=2; 当3,1k r ==时,所求常数项为31152C C 2-⨯⨯=当5,0k r ==时,所求常数项为55C ⨯=综上,512x x ⎛+ ⎝+=. 题型4整除或近似计算例4 8386+被49除所得的余数是( ) A.14- B.0 C.14 D.35解析:由二项式定理展开,得838386(71)6+=++83182812828383837C 7C 7C 716=+⨯++⨯+⨯++278377M =+⨯+(M 是正整数)494912M =+⨯49N =(N 是正整数) 所以8386+被49除所得的余数是0. 答案:B变式训练4计算61.05=_______(精确到0.01). 答案:1.34解析6621.05(10.05)160.05150.05=+=+⨯+⨯++610.0510.30.0375 1.34⨯≈++≈.规律方法总结1.要牢记C k n k kn ab -是展开式的第1k +项,而非第k 项. 2.求解形如()()m n a bcd ++的展开式问题的思路 (1)若,m n 中有一个比较小,可考虑把它展开,如()222()()2()n n a b c d a ab b c d ++=+++,然后根据已知条件求解.(2)观察()()a b c d ++是否可以合并,如57(1)(1)x x +-⋅()55222[(1)(1)](1)1(1)x x x x x =+--=--.(3)分别得到(),()m n a b c d ++的二项展开式的通项,综合考虑. 3.二项式定理应用的常见题型及求解策略(1)整除问题和求近似值是能运用二项式定理解决的两类常见问题,整除问题中关注展开式的最后几项,而求近似值则关注展开式的前几项.(2)二项式定理的应用基本思路是正用或逆用,注意选择合适的形式. (3)利用二项式定理进行近似计算:当n 不很大,||x 比较小时,0011(1)C C 1n n n x x x nx +≈+=+.若精确度要求较高,则可使用更精确的公式0011(1)C C n n n x x x +≈++222(1)C 12n n n x nx x -=++.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二项式定理1.二项式定理:011()()n n n r n r r n nn n n n a b C a C a b C a b C b n N --*+=+++++∈ ,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。
②二项式系数:展开式中各项的系数rnC (0,1,2,,)r n =⋅⋅⋅.③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r rn C a b -叫做二项式展开式的通项。
用1r n r r r nT C a b -+=表示。
3.注意关键点:①项数:展开式中总共有(1)n +项。
②顺序:注意正确选择a ,b ,其顺序不能更改。
()n a b +与()nb a +是不同的。
③指数:a 的指数从n 逐项减到0,是降幂排列。
b 的指数从0逐项减到n ,是升幂排列。
各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.rnn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。
4.常用的结论: 令1,,ab x == 0122(1)()n r r n nn n n n n x C C x C x C x C x n N *+=++++++∈令1,,a b x ==- 0122(1)(1)()nr r n n nn n n n n x C C x C x C x C x n N *-=-+-+++-∈5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n nC C =, (1)k k n n C C -= ②二项式系数和:令1ab ==,则二项式系数的和为0122r nn n n n n n C C C C C ++++++= ,变形式1221r nn nn n n C C C C +++++=- 。
③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-= ,从而得到:0242132111222r r nn nn n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=⨯= ④奇数项的系数和与偶数项的系数和:0011222012012001122202121001230123()()1, (1)1,(1)n n n n n nn n n n n n n n n n n n n n n n n n n n n n a x C a x C a x C a x C a x a a x a x a x x a C a x C ax C a x C a x a x a x a x a x a a a a a a x a a a a a a ----+=++++=+++++=++++=++++=++++=+---------=--+-++=----- 令则①令则024135(1)(1),()2(1)(1),()2n n n n nn a a a a a a a a a a a a ----++-++++=+---+++= ②①②得奇数项的系数和①②得偶数项的系数和⑤二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2n nC 取得最大值。
如果二项式的幂指数n 是奇数时,则中间两项的二项式系数12n n C-,12n nC+同时取得最大值。
⑥系数的最大项:求()na bx +展开式中最大的项,一般采用待定系数法。
设展开式中各项系数分别为121,,,n A A A +⋅⋅⋅,设第1r +项系数最大,应有112r rr r A A A A +++≥⎧⎨≥⎩,从而解出r 来。
6.二项式定理的十一种考题的解法: 题型一:二项式定理的逆用; 例:12321666 .n n nn n n C C C C -+⋅+⋅++⋅=解:012233(16)6666nnn n n n n n C C C C C +=+⋅+⋅+⋅++⋅ 与已知的有一些差距,123211221666(666)6nn nn n n n n n n n C C C C C C C -∴+⋅+⋅++⋅=⋅+⋅++⋅ 0122111(6661)[(16)1](71)666n n nn n n n n C C C C =+⋅+⋅++⋅-=+-=-练:1231393 .n n nn n n C C C C -++++= 解:设1231393n nnn n n nS C C C C -=++++ ,则122330122333333333331(13)1n n n nn n n n n n n n n n n S C C C C C C C C C =++++=+++++-=+- (13)14133n n n S +--∴==题型二:利用通项公式求nx 的系数;例:在二项式3241()nx x+的展开式中倒数第3项的系数为45,求含有3x 的项的系数? 解:由条件知245n nC -=,即245n C =,2900n n ∴--=,解得9()10n n =-=舍去或,由2102110343411010()()r r r rrr r T C x x C x--+--+==,由题意1023,643r r r --+==解得, 则含有3x 的项是第7项6336110210T C x x +==,系数为210。
练:求291()2xx-展开式中9x 的系数? 解:291821831999111()()()()222r rr r r r r r r r r T C x C x x C x x ----+=-=-=-,令1839r -=,则3r =故9x 的系数为339121()22C -=-。
题型三:利用通项公式求常数项; 例:求二项式2101()2xx+的展开式中的常数项?解:52021021101011()()()22r rrrrr r T C x C xx--+==,令52002r -=,得8r =,所以88910145()2256T C == 练:求二项式61(2)2x x-的展开式中的常数项? 解:666216611(2)(1)()(1)2()22r r r r r r r r r r T C x C x x ---+=-=-,令620r -=,得3r =,所以3346(1)20T C =-=- 练:若21()n x x +的二项展开式中第5项为常数项,则____.n =解:4244421251()()n n n n T C x C x x--==,令2120n -=,得6n =. 题型四:利用通项公式,再讨论而确定有理数项; 例:求二项式93()x x -展开式中的有理项?解:12719362199()()(1)r r rrrr r T C x x C x--+=-=-,令276rZ -∈,(09r ≤≤)得39r r ==或, 所以当3r=时,2746r -=,334449(1)84T C x x =-=-, 当9r =时,2736r -=,3933109(1)T C x x =-=-。
题型五:奇数项的二项式系数和=偶数项的二项式系数和; 例:若2321()n x x -展开式中偶数项系数和为256-,求n .解:设2321()n x x -展开式中各项系数依次设为01,,,n a a a ⋅⋅⋅1x=-令,则有010,n a a a ++⋅⋅⋅=①,1x =令,则有0123(1)2,n n n a a a a a -+-+⋅⋅⋅+-=②将①-②得:1352()2,n a a a +++⋅⋅⋅=-11352,n a a a -∴+++⋅⋅⋅=-有题意得,1822562n --=-=-,9n ∴=。
练:若35211()nx x+的展开式中,所有的奇数项的系数和为1024,求它的中间项。
解:0242132112r r n nn n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅= ,121024n -∴=,解得11n =所以中间两个项分别为6,7n n ==,56543551211()()462nT C x x x-+==⋅,611561462T x -+=⋅题型六:最大系数,最大项; 例:已知1(2)2n x +,若展开式中第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大项的系数是多少? 解:46522,21980,nn n C C C n n +=∴-+= 解出714n n ==或,当7n =时,展开式中二项式系数最大的项是45T T 和34347135()2,22T C ∴==的系数,434571()270,2T C ==的系数当14n =时,展开式中二项式系数最大的项是8T ,7778141C ()234322T ∴==的系数。
练:在2()na b +的展开式中,二项式系数最大的项是多少?解:二项式的幂指数是偶数2n ,则中间一项的二项式系数最大,即2112nn T T ++=,也就是第1n +项。
练:在31()2nx x-的展开式中,只有第5项的二项式最大,则展开式中的常数项是多少? 解:只有第5项的二项式最大,则152n +=,即8n =,所以展开式中常数项为第七项等于6281()72C = 例:写出在7()a b -的展开式中,系数最大的项?系数最小的项?解:因为二项式的幂指数7是奇数,所以中间两项(4,5第项)的二项式系数相等,且同时取得最大值,从而有34347T C a b=-的系数最小,43457T C a b =系数最大。
例:若展开式前三项的二项式系数和等于79,求1(2)2n x +的展开式中系数最大的项? 解:由01279,n n n C C C ++=解出12n =,假设1r T +项最大,12121211(2)()(14)22x x +=+1111212111212124444r r r r r r r r r r r r A A C C A A C C --+++++⎧≥≥⎧⎪∴=⎨⎨≥≥⎪⎩⎩,化简得到9.410.4r ≤≤,又012r ≤≤ ,10r ∴=,展开式中系数最大的项为11T ,有121010101011121()4168962T C x x ==练:在10(12)x +的展开式中系数最大的项是多少? 解:假设1r T +项最大,1102r r r r T C x +=⋅111010111121010222(11)12(10)22,r r r r r r r r r r r r C C A A r r A A r r C C --+++++⎧≥≥-≥⎧⎧⎪∴=⎨⎨⎨≥+≥-≥⎩⎪⎩⎩解得,化简得到6.37.3k ≤≤,又010r ≤≤ ,7r ∴=,展开式中系数最大的项为7777810215360.T C x x ==题型七:含有三项变两项; 例:求当25(32)x x ++的展开式中x 的一次项的系数?解法①:2525(32)[(2)3]xx x x ++=++,2515(2)(3)rr r r T C x x -+=+,当且仅当1r =时,1r T +的展开式中才有x 的一次项,此时124125(2)3r T T C x x +==+,所以x 得一次项为1445423C C x 它的系数为1445423240C C =。