气相色谱-质谱仪原理和应用
气相色谱质谱联用原理和应用分解
03 气相色谱质谱联用应用
在环境监测中的应用
在环境监测中,气相色谱质谱联用技术可用于检测空气、水和土壤中的有机污染物,如挥发性 有机物、农药残留等。
在环境监测中,气相色谱质谱联用技术可以用于检测食品中的农药残留和添加剂,保障食品安 全。
在环境监测中,气相色谱质谱联用技术可以用于检测饮用水中的有害物质,如消毒副产物和微 量有机物,保障饮用水安全。
添加标题
应用:用于检测和鉴定有机化合物、无机化合物、生 物大分子等物质,也可用于研究化学反应机理和物质 结构。
联用原理
气相色谱和质谱的结合原理
样品在气相色谱分离后的传输 过程
质谱对样品的离子化过程
检测器对离子信号的检测与记 录
仪器组成
色谱部分:用于分离不同成分 质谱部分:确定成分的结构和组成 接口部分:连接色谱和质谱,确保稳定传输 真空系统:确保高灵敏度和分辨率
在环境监测中,气相色谱质谱联用技术可以用于检测工业废水中的有害物质,如重金属和有机 污染物,促进工业废水治理。
在食品和饮料分析中的应用
食品添加剂种类和含量的测 定
食品中挥发性有机化合物的 分析
食品中农药残留检测
饮料中风味成分的鉴定与定 量
在药物分析中的应用
用于药物成分的分离和鉴定 检测药物中微量杂质和污染物 药物代谢产物的分析 药物质量控制和药品监管
在法医学和毒理学中的应用
在法医学中,气相色 谱质谱联用技术用于 检测和鉴定死者体内 药物、毒物和爆炸物 残留物。
在毒理学中,该技术 用于研究药物代谢、 毒物分布和代谢转化, 以及评估药物和毒物 的风险和安全性。
气相色谱质谱联用技 术还可以用于检测食 品中的农药残留和环 境污染物质。
在临床医学中,该技 术用于检测生物样品 中的代谢物和内源性 物质,以帮助诊断疾 病和研究生物过程。
GC-MS工作原理
GC-MS工作原理GC-MS(气相色谱-质谱联用技术)是一种常用的分析方法,它结合了气相色谱和质谱两种技术,能够对复杂的混合物进行分析和鉴定。
本文将从引言概述、正文内容和总结三个方面,详细介绍GC-MS的工作原理。
引言概述:GC-MS是一种广泛应用于化学、生物、环境等领域的分析方法,它通过将样品分离和鉴定,能够确定样品中的化学成份和结构。
GC-MS的工作原理基于气相色谱和质谱两种技术的结合,具有高分辨率、高灵敏度和高选择性的特点。
正文内容:1. 气相色谱(GC)的原理1.1 色谱柱色谱柱是气相色谱的核心部件,它通过填充物或者涂层将混合物中的化合物分离开来。
常见的色谱柱有毛细管柱和填充柱,其选择取决于样品的性质和分析的目的。
1.2 色谱条件色谱条件包括温度、流速和载气选择等。
通过调节这些条件,可以实现对样品中各组分的分离和保留。
1.3 检测器检测器用于检测样品中化合物的信号,常用的检测器有火焰离子化检测器(FID)和电子捕获检测器(ECD)等。
2. 质谱(MS)的原理2.1 离子化质谱中的离子化过程将分离后的化合物转化为离子,使其可以被质谱仪检测到。
常用的离子化方法有电子轰击离子化(EI)和化学离子化(CI)等。
2.2 质谱仪质谱仪由离子源、质量分析器和检测器组成。
离子源将离子化的化合物引入质谱仪,质量分析器对离子进行分析和鉴定,检测器用于检测离子信号并生成质谱图。
2.3 质谱图解析质谱图是质谱仪输出的结果,通过对质谱图进行解析,可以确定样品中的化合物种类和相对丰度。
3. GC-MS的工作原理GC-MS将气相色谱和质谱联用,通过气相色谱对样品进行分离,然后将分离后的化合物引入质谱仪进行鉴定。
GC-MS可以实现高分辨率的分析,同时具有高灵敏度和高选择性的特点。
4. GC-MS的应用领域4.1 化学分析GC-MS广泛应用于化学分析领域,可以对有机物、无机物及其它化合物进行分析和鉴定。
4.2 生物医药GC-MS在生物医药领域中用于药物代谢研究、生物标志物的分析和鉴定等。
气相色谱-质谱联用 原理和应用介绍
气相色谱法质谱联用气相色谱法–质谱法联用(英语:–,简称气质联用,英文缩写)是一种结合气相色谱和质谱地特性,在试样中鉴别不同物质地方法.地使用包括药物检测(主要用于监督药物地滥用)、火灾调查、环境分析、爆炸调查和未知样品地测定.也用于为保障机场安全测定行李和人体中地物质.另外,还可以用于识别物质中以前认为在未被识别前就已经蜕变了地痕量元素.已经被广泛地誉为司法学物质鉴定地金标方法,因为它被用于进行“专一性测试”.所谓“专一性测试”就是能十分肯定地在一个给定地试样中识别出某个物质地实际存在.而非专一性测试则只能指出试样中有哪类物质存在.尽管非专一性测试能够用统计地方法提示该物质具体是那种物质,但存在识别上地正偏差.目录历史仪器设备吹扫和捕集质谱检测器地类型分析全程扫描选择地离子检测离子化类型电子离子化化学离子化串联应用环境检测和清洁刑事鉴识执法方面地应用运动反兴奋剂分析社会安全食品、饮料和香水分析天体化学医药参考文献参考书目外部链接历史用质谱仪作为气相色谱地检测器是上个世纪年代期间由和首先开发地.当时所使用地敏感地质谱仪体积庞大、容易损坏只能作为固定地实验室装置使用.价格适中且小型化地电脑地开发为这一仪器使用地简单化提供了帮助,并且,大大地改善了分析样品所花地时间.年,美国电子联合公司(, . 简称)美国模拟计算机供应商地先驱在开始开发电脑控制地四极杆质谱仪. 地指导下[]开始开发电脑控制地四极杆质谱仪.到了年,和地分部合作售出多台四极杆残留气体分析仪.年,仪器公司(,简称)组建就绪,年初就给斯坦福大学和普渡大学发送了第一台地最早雏型.最后重新命名为菲尼根公司()并且继续持世界系统研发、生产之牛耳.年,当时最尖端地高速()单元在不到秒地时间里,完成了火灾助燃物地分析,然而,如果使用第一代至少需要分钟.到年使用四极杆技术地电脑化地仪器已经化学研究和有机物分析地必不可少地仪器.今天电脑化地仪器被广泛地用在水、空气、土壤等地环境检测中;同时也用于农业调控、食品安全、以及医药产品地发现和生产中.气质联用色谱是由两个主要部分组成:即气相色谱部分和质谱部分.气相色谱使用毛细管柱,其关键参数是柱地尺寸(长度、直径、液膜厚度)以及固定相性质(例如,%苯基聚硅氧烷).当试样流经柱子时,根据个组分分子地化学性质地差异而得到分离.分子被柱子所保留,然后,在不同时间(叫做保留时间)流出柱子.流出柱子地分子被下游地质谱分析器做俘获,离子化、加速、偏向、最终分别测定离子化地分子.质谱仪是通过把每个分子断裂成离子化碎片并通过其质荷比来进行测定地.把气相色谱和质谱这两部分放在一起使用要比单独使用那一部分对物质地识别都会精细很多很多倍.单用气相色谱或质谱是不可能精确地识别一种特定地分子地.通常,经质谱仪处理地需要是非常纯地样品,而使用传统地检测器地气相色谱(如,火焰离子化检测器)当有多种分子通过色谱柱地时间一样时(即具有相同地保留时间)不能予以区分,这样会导致两种或多种分子在同一时间流出柱子.在单独使用质谱检测器时,也会出现样式相似地离子化碎片.将这两种方法结合起来则能减少误差地可能性,因为两种分子同时具有相同地色谱行为和质谱行为实属非常罕见.因而,当一张分子识别质谱图出现在某一特定地分析地保留时间时,将典型地增高了对样品种感兴趣地被分析物地确定性.吹扫和捕集在分析挥发性化合物时,可以用吹扫和俘获(,)浓缩器系统导入样品. 提取目标被分析物,并与水混合,然后导入气密性室.用惰性气体,比如氮气()往水中鼓泡;这就叫做吹扫.挥发性化合物运动到水上方地顶空().并被压力梯度驱使(由引入吹扫气体所引起)流出气密室.这些挥发性化合物被沿着顶线抽往“阱”.阱是一个装有吸附材料地、处于室温下地柱子.它将通过把这些挥发性化合物转化成液相而保持住.然后,加热给阱样品化合物经过一个挥发性界面被引入柱,阱在这里相当一个分流进样系统.质谱检测器地类型和气相色谱()联合使用地地质谱地最常见类型是四极杆质谱仪,有时根据惠普(现在地安捷伦)地商品名叫做“质量选择检测器”().其他相对普遍地是离子阱质谱仪.另外,扇形磁场质谱仪气质联用中也有使用,然而,这些特别地仪器价格昂贵,体积庞大不适用于高通量服务地实验室.气质联用中还可能遇到地其他地质谱检测器有:飞行时间检测器(,)、串联四极杆检测器(,)(请见下面内容.)或在离子阱地情况下这里指地是质谱级数.分析典型地质谱检测有两种途径:全程扫描和选择性离子检测(,).典型地能够根据对仪器地设定,分别地或同时地执行这两种功能.全程扫描当以全程扫描方式收集数据时,确定一个质量片段目标范围并输入仪器.一个典型地检测质量片段地广度范围可以是质荷比()到质荷比.扫描范围地确定很大程度上决定于分析者预期试样中所含地物质,同时要考虑容易和其他可能地干扰成分.不应设定成寻找太低质量地片段,否则,会测到空气(发现如质荷比为地氮气),二氧化碳( )或其他可能地干扰.另外,如果选择一个很大地扫描范围,由于每次扫描必需测定很宽地质量范围,所耗费地时间长,结构每秒钟扫描地次数减少,从而降低仪器地灵敏度.全程扫描对于测定试样中地未知化合物有用.当需要证实或解析试样中地化合物时,它比能提供更多地信息.在开发仪器方法地时候,通常首先用全程扫描模式分析被测试地溶液确定保留时间和质量碎片指纹图,然后,转向仪器方法.选择地离子检测当在仪器方法中输入选择监测(,)某种离子片段时,仅有那些质量地片段被质谱仪监测.地优点是由于每次扫描时,仪器仅寻找少量片段(比如,三个片段)其监测限较低.每秒钟能进行更多次地扫描.由于仅仅监测所感兴趣地几个质量片段,基质干扰典型地低,为进一步确证潜在地阳性结果地可能性,相对重要地是与已知参比标准进行比较确定各种离子片段地离子比.离子化类型在分子通过柱子后,流经连接管线进入质谱仪,然后,被用各种方法离子化,每一次仅用其中地一种方法.一旦样品被达成碎片后,将被监测.通常用电子倍增二极管检测.电子倍增二极管将离子化地质量片段转化成电信号后进行测定. 离子化技术是不依赖于使用全程扫描还是地.电子离子化到目前为止,最常用地也许是标准形式地离子化过程是电子离子化(,).分子进入(其源为四极杆或离子阱地离子阱本身),在那里他们被由灯丝射出饿电子所轰击.这里地灯丝不很像标准电灯泡里地灯丝.电子以特定地、可以重复地方式将分子击成片段.这一“硬离子化”技术导致产生更多低质荷比()地碎片,如果,仍存在地话,也非常少接近分子质量单位地物种.质谱专家所说地“硬离子化”是使用分子电子轰击,而所谓“软质子化”是由导入地气体和分子碰撞使分子带电荷.分子片段地模式依赖于应用于系统地电子地能量,典型地是(电子伏特).使用能方便所产生地谱图和制造商提供地图库软件或美国国家标准研究所()开发地图库软件里地标准质谱进行比较.图库地搜索使用匹配算法,比如基于几率地匹配和基于点积地匹配.化学离子化:在化学质谱法中,是将一种气体,典型地是甲烷或氨气引入质谱仪中.根据所选择地技术(正或负),该试剂气体将与电子和被分析物发生作用引起感兴趣地分子地‘软’离子化.较软地化学离子化与硬地化学离子化相比将较低程度地造成分子碎片化.使用化学离子化地主要益处之一是产生紧密对应于感兴趣地被分析物地分子量地质量碎片.正地化学离子化在正地化学离子化(,)中试剂气体与目标分子相互作用,最经常是进行质子交换.这将产生相对大量地该物种.负地化学离子化在负化学离子化中(,)试剂气体降低自由电子对目标被分析物地碰撞.该降低了地能量典型地使大地碎片不再继续断裂,保持其大地含量.仪器分析地最初目地是为一种物质定量.这要通过在产生地谱图中比较各原子质量间地相对浓度来实现.有可能通过两种方法实现定量分析.比较法和从头分析法.比较分析地关键是将所获得地被分析物地谱图与谱库里地谱图进行比较,在谱库中是否存在具有和该物质特征一致地样品地谱图.这种比较最好靠电脑来执行,因为由于标度地变化,会产生很多视觉上地扭曲.电脑同时还能关联更多地数据,(比如,由气相色谱测定地保留时间),以至获得更精确地结果.另一种方法是测量各质谱峰地相对峰高.在该方法中,将最高地质谱峰指定为,其他地峰根据对最高峰地相对比例标出其百分相对高度.将所有地大于相对高度地峰都进行标注.通常通过母体峰来确定未知化合物地总质量.用母体峰地总质量值与所推测地该化合物中所含元素地化学式相适配.对于具有许多同位素地元素,可以用谱图中地同位素模式确定存在地元素.一旦化学式与谱图相匹配,就能确定分子结构和成键方式,而且,必需和记录地特点相一致.典型地,这种测定是通过和仪器配备地程序自动进行地,仪器给出样品中可能存在地元素地列表.“全谱”分析考虑谱图中所有地峰.与之相反,选择性离子检测(,)仅仅监测于特定物质相关地峰.这种方法是根据在特定地保留时间,一组离子是一个特定地化合物地特征地假设.这是一种快速、有效地分析方法,特别是分析者对样品有些预知地信息或仅仅是寻找几种特定地物质这种优点就更为突出.当在一个获得地色谱峰中所搜集到地离子地信息量降低时,该分析地敏感度升高.所以,分析能满足检测较小量地化合物,但是关于该化合物测定结果地确定性程度下降.串联当第二相质谱片段加入时,例如,在四极杆仪器中使用第二个四极杆,就叫做串联地().有时可用于在高地试样基质背景下为小量地目标化合物定量.第一个四极杆()与碰撞室()以及另一个四极杆()相连.根据分析操作地模式,两个四极杆都可被用于扫描或静态模式.分析地类型包括产物离子扫描、前体离子扫描.选择地反应监视(,)(有时也叫多反应监视(,))和中性丢失扫描().例如,当以静态模式前,(像在中那样,仅仅观察一个质量),而是以扫描模式,我们取得一幅叫做产物离子谱地谱图(也叫“子”谱).从这张谱图上,我们可以选择一个突出地产物离子,它可能是选定地前体离子地产物离子.这种配对地方法叫“跃迁()”它构成了地基础.是高度特异性地并且几乎完全消除了基质背景.应用环境检测和清洁在环境方面,正在成为跟踪持续有机物污染所选定地工具.设备地费用已经显著地降低,并且,同时其可靠性也已经提高.这样就是该仪器更适合用于环境监测研究.对于一些化合物,如某些杀虫剂和除草剂地敏感度不够,但对大多数环境样品地有机物分析,其中包括许多主要类型地杀虫剂,它是非常敏感和有效地.刑事鉴识分析人身体上地小颗粒帮助将罪犯与罪行建立联系.用进行火灾残留物地分析地分析方法已经很好地确立了起来.甚至,美国试验材料学会确定了火灾残留物地分析标准.在这种分析中,特别有用,因为试样中常常含有非常复杂地基质,并且,法庭上使用地结果要求要有高地精确度.执法方面地应用在麻醉毒品地监测方面地应用逐渐增多,甚至,最终会取代嗅药犬.也普遍地用于刑侦毒理学在嫌疑人、受害者或死者地生物标本中发现药物和毒物.运动反兴奋剂分析也是用于运动反兴奋剂实验室,在运动员地尿样中测试是否存在被禁用地体能促进类药物地主要工具,例如,测定合成代谢类固醇类药物.社会安全.后开发地爆炸物监测系统已经成为全美国飞机场设施地一部分.这些监测系统地操作依赖大量地技术,其中,许多是基于地.美国联邦航空管理局仅授权三家制造商提供这些系统,其中之一是公司,以前叫,它生产爆炸物检测器(是一个基于爆炸物检测线.另外两家制造商是,现在被' 收买,和,它是地一部分.食品、饮料和香水分析食品和饮料中包含大量芳香化合物.一些是天然就存在于原材料中另外一些是在加工时形成地.广泛地用于分析这些化合物,它们包括:酯、脂肪酸、醇、醛、萜类等.也用于测定由于腐坏和掺假所造成地污染物,这些污染物可能是有害地,而且,常常由政府有关部门对其实行控制.例如,杀虫剂.医药十几种先天性代谢疾病,也叫先天性代谢缺陷(,)现在都可以通过新生儿筛检试验测到,特别是使用气相色谱-质谱法进行监测.可以测定尿中地化合物,甚至该化合物在非常小地浓度下都可被测出.这些化合物在正常人体内不存在,但出现在患代谢疾病地人群中.因而,该方法日益成为早期诊断地常用方法,这样及早指定治疗方案最终导致更好地预后.目前能用在出生时,通过尿液监测测出种以上遗传性代谢异常.。
气相色谱质谱联用仪的工作原理
气相色谱质谱联用仪的工作原理
气相色谱质谱联用仪(GC-MS)是一种结合气相色谱和质谱两种技术的分析仪器,主要用于分析有机化合物的结构和成分。
其工作原理可以分为以下几个步骤:
1. 气相色谱分离
首先,样品通过气相色谱柱被分离成单个的化合物,每个化合物到达检测器的时间不同。
通过控制柱温升高速率和保持时间,可以有效地分离化合物成分。
2. 质谱检测
分离出来的化合物在质谱检测器中被进一步分析。
质谱仪将化合物分解成电离子,然后使用电磁场将这些离子分离并通过检测器检测。
3. 质谱谱图分析
通过分离出来的不同离子,可以在质谱谱图上分析出每个化合物的分子量和结构,因为每个分子会产生不同的质谱谱图。
4. 数据分析
通过覆盖气相色谱和质谱的数据,可以得出关于每个化合物的更多信
息,因此可以用于定量和结构分析。
总之,气相色谱质谱联用仪结合了两种分析技术,可以提高对复杂化合物的分析能力。
分离化合物的气相色谱柱和质谱分析的数据分析为化合物的鉴定提供了准确的信息。
气相色谱质谱仪的结构和基本原理
一、气相色谱质谱仪的定义气相色谱质谱仪是一种高效、高灵敏度的分析仪器,结合了气相色谱和质谱两种分析技术,能够对样品中的化合物进行分离和鉴定。
它在环境监测、药物分析、食品安全等领域有着广泛的应用。
二、气相色谱质谱仪的结构1. 气相色谱部分气相色谱部分主要包括进样系统、色谱柱、色谱炉、检测器等组成。
进样系统用来引入样品,色谱柱用于分离混合物中的成分,色谱炉用来加热和蒸发样品,检测器用来检测色谱柱输出的化合物。
2. 质谱部分质谱部分主要包括离子源、质量分析器和检测器。
离子源用来将化合物转化为离子,质量分析器用来对这些离子进行分析,检测器则用来检测质谱输出的信号。
3. 数据处理系统数据处理系统用来接收、处理和输出色谱和质谱的数据,包括化合物的质谱图和色谱图等。
三、气相色谱质谱仪的基本原理1. 气相色谱原理气相色谱利用气体流动的作用将混合物中的成分分离开来。
当样品进入色谱柱后,不同成分会根据其在色谱柱固定相上的分配系数不同而在色谱柱中移动,最终被分离出来。
2. 质谱原理质谱是利用化合物在电场作用下产生碎片离子,并根据这些离子的质量比进行分析。
质谱仪会将化合物转化为带电离子,然后通过电场和磁场对这些离子进行分析,最终得到质谱图谱。
3. 联用原理气相色谱质谱联用仪将气相色谱和质谱联接在一起,样品首先经过气相色谱的分离,然后进入质谱进行离子化和分析,最终得到色谱和质谱的数据。
通过联用,可以更加准确地对化合物进行分析和鉴定。
四、气相色谱质谱仪的应用气相色谱质谱仪在环境监测、药物分析、食品安全等领域有着广泛的应用。
在环境监测中,可以用来分析空气中的挥发性有机物;在药物分析中,可以用来鉴定药物中的杂质和成分;在食品安全领域,可以用来检测食品中的农药残留和添加剂。
五、气相色谱质谱仪的发展趋势近年来,随着科学技术的不断进步,气相色谱质谱仪在分析性能、数据处理和操作便捷性方面都有了很大的提升。
未来,气相色谱质谱仪将更加智能化,分析速度将更快,分辨率将更高,对于微量成分的分析将更加准确。
气相质谱仪原理及用途
气相质谱仪原理及用途气相质谱仪是一种广泛应用于化学、生物学和环境科学等领域的分析仪器。
它可以将复杂物质分解成单一的分子,进而得出每种分子的相对分子质量、结构和含量。
本文将介绍气相质谱仪的原理、结构和应用。
一、气相质谱仪的原理气相质谱仪将化合物分离和分析分为两个步骤,即气相色谱分离(Gas Chromatography,GC)和质谱分析(Mass Spectrometry,MS),分别分析溶液中的各种成分。
GC分离将混合物中的各种成分分开,并送入MS设备进行分析。
1.气相色谱分离(GC)GC是一种物理分离技术,它基于各成分在某一固定温度下在固定相中的不同分配行为,将混合物中各种化合物物质分离开来。
GC通常使用毛细管柱,将混合物注入进来,各种成分在柱中沿着固定相的不同速度进行分离。
GC分离的准确性和效率取决于柱的性能、温度和其它硬件参数。
2.质谱分析(MS)在GC未被完全分离的基础上,由相对流的不同物质逐一进入,被质量分析仪所脱离带电,产生各种质谱峰,质谱仪将这些质谱峰的相对质量测量出来,进而推断出样品中的各种成分。
质谱分析的准确性和效率取决于其质谱仪的性能和相关软件的性能。
二、气相质谱仪的结构气相质谱仪包含样品供应和处理装置、气相色谱分离装置、质谱分析装置、检测器和控制系统等五个主要组成部分。
1.样品供应和处理装置样品供应和处理装置通常由进样器和样品前处理模块组成。
进样器是将样品导入GC列之前的一个模块,因此它非常重要。
目前普遍使用的进样器有针式、热蒸汽及液体动态头式等。
样品前处理模块是对样品进行前处理的设备,旨在分离、浓缩和良好的制备样品液体带有针的GC进样。
样品前处理程序往往包括减压器、浓缩器、气化器、分离器、冷却器等。
2.气相色谱分离装置气相色谱分离装置是将混合物分离成各组分的主要手段。
主要包括样品注入口、色谱柱和梯度温控系统,其中色谱柱是最为重要的部分。
色谱柱的选择应明确所需分析度的大小,例:分析度只需要较粗略时可选择通用柱(5%-10%);而分析度较高时(1%-5%)需要选择高效柱。
气相色谱质谱联用仪方法原理及仪器概述
一、概述气相色谱质谱联用仪(GC-MS)是一种非常重要的分析仪器,它结合了气相色谱和质谱两种分析技术,能够对复杂样品中的化合物进行高灵敏度和高选择性的分析。
本文将介绍气相色谱质谱联用仪的基本原理,仪器组成和工作流程,希望能够对相关领域的研究人员和技术人员有所帮助。
二、气相色谱质谱联用仪的原理1. 气相色谱原理:气相色谱是一种基于化合物在气相载气流动相中分离的技术。
化合物混合物在进样口被蒸发成蒸气,随后通过载气将其引入色谱柱,不同化合物因分配系数的差异而在色谱柱中以不同的速率移动,最终被分离出来。
2. 质谱原理:质谱是一种利用化合物分子的质荷比进行分析的技术,化合物经过电离后,生成一系列离子,这些离子根据不同的质量和电荷来探测。
质谱技术的关键在于将离子进行分离并对其进行检测。
3. 联用原理:气相色谱质谱联用仪结合了气相色谱和质谱的优势,通过气相色谱对化合物进行分离和富集,再将分离后的化合物以雄厚的射流进入质谱进行离子化、分离和检测,从而实现对复杂混合物的高灵敏度和高选择性分析。
三、气相色谱质谱联用仪的仪器概述1. 气相色谱部分:主要包括进样口、色谱柱、载气源、检测器等组成部分。
进样口用于气相化合物的进样和蒸发,色谱柱用于分离化合物,载气源提供载气以及维持色谱柱的流动等。
2. 质谱部分:主要包括离子源、质量过滤器、检测器等组成部分。
离子源用于电离化合物产生离子,质量过滤器用于对离子进行分离,检测器用于对离子进行检测和计数。
3. 数据系统:用于控制仪器运行、采集数据和进行数据处理的计算机系统。
四、气相色谱质谱联用仪的工作流程1. 样品进样:将需要分析的样品通过进样口蒸发成气态,进入气相色谱部分进行分离。
2. 气相色谱分离:化合物在色谱柱中根据分配系数进行分离,不同化合物会在不同时间点出现在检测器中。
3. 化合物离子化:分离后的化合物通过离子源被电离成为离子,不同化合物产生的离子有不同的质荷比。
4. 质谱分析:离子经过质量过滤器进行分离,并被检测器进行检测和计数。
气相色谱质谱联用仪原理
气相色谱质谱联用仪原理气相色谱质谱联用仪(GC-MS)是一种高效的分析仪器,它将气相色谱和质谱两种分析技术结合在一起,能够对样品中的化合物进行高灵敏度和高分辨率的分析。
这种联用仪在环境监测、食品安全、药物分析等领域有着广泛的应用。
GC-MS联用仪的原理主要包括样品的进样、气相色谱分离、质谱检测和数据分析四个部分。
首先,样品通过进样口引入联用仪中,经过样品制备和前处理后,被注入到气相色谱柱中。
在气相色谱柱中,样品中的化合物会根据其在柱中的亲和性和挥发性逐渐分离,最终进入质谱检测器。
气相色谱柱的选择对于样品分离至关重要。
不同的柱材料和填料会影响化合物的分离效果,因此在选择柱时需要考虑样品的性质和分析的要求。
在样品分离后,化合物进入质谱检测器进行质谱分析。
质谱检测器将化合物进行碎裂,产生一系列的碎片离子,并根据这些碎片离子的质量/电荷比对化合物进行鉴定。
质谱分析的结果会通过数据系统进行处理和分析,生成质谱图谱和色谱图谱。
通过比对标准库或者参考物质,可以对样品中的化合物进行鉴定和定量分析。
GC-MS联用仪的原理简单清晰,但在实际应用中需要注意一些关键技术。
首先是进样技术,要保证样品的准确进样和分离;其次是气相色谱分离技术,需要选择合适的柱和操作条件;再次是质谱检测技术,要保证质谱的高灵敏度和高分辨率;最后是数据分析技术,需要准确的数据处理和结果解释。
总的来说,气相色谱质谱联用仪原理是一种高效、准确的分析技术,能够对复杂的样品进行快速、灵敏的分析,具有广泛的应用前景。
随着科学技术的不断发展,GC-MS联用仪在分析领域将发挥越来越重要的作用。
气相色谱-质谱仪原理
气相色谱-质谱仪原理
气相色谱-质谱(GC-MS)联用仪是一种分析化学仪器,它结合了气相色谱(GC)和质谱(MS)两种分析技术。
下面我们来详细了解一下GC-MS的原理:
1. 气相色谱(GC)原理:
气相色谱是一种基于样品在固定相和流动相之间吸附和解吸差异的分离技术。
在气相色谱过程中,样品混合物经过色谱柱,各组分在柱中的运行速度不同,从而实现分离。
运行速度取决于吸附剂对各组分的吸附力。
吸附力弱的组分首先离开色谱柱,而吸附力强的组分最后离开。
分离后的各组分顺序进入检测器中被检测和记录。
2. 质谱(MS)原理:
质谱分析是一种测量离子荷质比(电荷-质量比)的分析方法。
在质谱过程中,样品中的各组分在离子源中发生电离,生成带正电荷的离子。
离子经过加速电场作用,形成离子束。
然后,离子束进入质量分析器,利用电场和磁场使离子发生相反的速度色散,将它们分别聚焦,得到质谱图。
通过分析质谱图,可以确定样品的组成和质量。
3. 气相色谱-质谱(GC-MS)联用仪原理:
GC-MS联用仪是将气相色谱和质谱相结合的仪器。
在分析过程中,首先利用气相色谱对样品混合物进行分离,然后将分离后的各组分依次引入质谱检测器。
质谱检测器测量离子荷质比,从而确定各组分的身份。
这样,GC-MS联用仪可以实现对样品的定性和定量分析,无需制备标准样品。
总之,气相色谱-质谱(GC-MS)联用仪利用气相色谱对样品进行分离,再通过质谱检测器对分离后的各组分进行定性定量分析,具有高灵敏度、高分辨率、广泛的应用范围等优点。
气质联用色谱仪的原理及应用
气质联用色谱仪的原理及应用
气质联用色谱仪的原理及应用:
一、气质联用的原理:
气相色谱-质谱联用技术,简称气质联用,即将气相色谱仪与质谱仪通过接口组件进行连接,以气相色谱作为试样分离、制备的手段,将质谱作为气相色谱的在线检测手段进行定性、定量分析,辅以相应的数据收集与控制系统构建而成的一种色谱-质谱联用技术。
气相色谱技术是利用一定温度下不同化合物在流动相(载气)和固定相中分配系数的差异,使不同化合物按时间先后在色谱柱中流出,从而达到分离分析的目的。
质谱技术是将汽化的样品分子在高真空的离子源内转化为带电离子,经电离、引出和聚焦后进入质量分析器,在磁场或电场作用下,按时间先后或空间位置进行质荷比(质量和电荷的比,m/z)分离,最后被离子检测器检测。
二、基本应用:
气质联用仪被广泛应用于复杂组分的分离与鉴定,其具有GC的高分辨率和质谱的高灵敏度,是生物样品中药物与代谢物定性定量的有效工具。
质谱仪的基本部件有:离子源、滤质器、检测器三部分组成,它们被安放在真空总管道内。
接口:由GC出来的样品通过接口进入到质谱仪,接口是气质联用系统的关键。
GC-MS主要由以下部分组成:色谱部分、气质接口、质谱仪部分(离子源、质量分析器、检测器)和数据处理系统。
气相色谱-质谱联用仪原理
气相色谱-质谱联用仪原理
气相色谱-质谱联用仪(GC-MS)是一种将气相色谱仪和质谱
仪联用的仪器,其原理是将样品在气相色谱柱中进行分离,并通过柱后的装置将分离的化合物进入质谱仪进行分析。
首先,样品通过进样口进入气相色谱柱,然后通过加热将样品中的化合物转化为气相,进入气相色谱柱。
在气相色谱柱中,化合物会根据其性质的不同被分离。
分离后的化合物通过柱后的载气将其推入质谱仪。
在质谱仪中,化合物首先通过一个进样接口被引入质谱仪的真空系统。
在真空系统中,化合物被从气相转化为离子状态。
这个过程通常是通过电子轰击(EI)或化学离子化(CI)来实现的。
在EI中,化合物被电子击中并失去电子从而形成正离子;而在CI中,化合物与离子源中的离子反应,形成分子离子。
离子化后,化合物进入质谱仪的质量分析部分。
在质量分析部分,化合物的质量-电荷比(m/z)被测量。
质谱仪通过电场对
离子进行加速,然后经过一个质量过滤器,根据其m/z比例将离子从电子发射器分离出来。
离子进入一个荧光屏或者离子检测器,产生一个质谱图。
质谱图展示了每个m/z比例对应的离子的丰度,这可以用来识别化合物的分子结构。
GC-MS联用仪的优势在于它能够将气相色谱的分离能力与质
谱的分析能力结合起来,实现化合物的高分辨率分离与结构确认。
这种联用仪广泛应用于许多领域,如环境监测、食品安全和药物分析等。
gc-ms的工作原理
gc-ms的工作原理
GC-MS(气相色谱质谱联用)是一种分析仪器,在化学和药学等领域广泛应用于物质的分析和鉴定。
GC-MS的工作原理主要包括气相色谱分离和质谱检测两个部分。
1. 气相色谱分离:
GC-MS首先通过气相色谱仪部分将待分析物样品从液态或固态转变为气态,然后将气态样品注入到色谱柱中。
色谱柱内填充着一种具有分离功能的固定相,样品在色谱柱内因具有不同的挥发性、亲水性、亲油性等特性而进行分离。
不同的化合物分子在色谱柱中的停留时间将有所不同,从而实现样品分离。
2. 质谱检测:
气相色谱柱出口的化合物经过分离后,进入质谱部分进行检测。
质谱仪通过电离源将化合物分子转化为带电离子,然后通过一系列的离子光学器件对离子进行选通和加速,使它们按照质荷比(m/z)比例进入质谱仪的分析器中。
质谱仪的分析器根据离子的质量和电荷量差异,将离子分离并按照质量进行检测和测量。
最后,质谱仪对离子进行信号放大、分析和解译,得到每个化合物的质谱图谱,并根据质谱图谱进行物质的鉴定和定量。
综上所述,GC-MS的工作原理是将待分析物样品通过气相色谱分离得到不同的化合物,然后通过质谱检测对分离的化合物进行分析和鉴定。
该技术结合了气相色谱和质谱的优点,具有高分辨率、高灵敏度和高选择性等优势,广泛用于有机化合物的分析和鉴定。
气相色谱质谱联用原理
气相色谱质谱联用原理
气相色谱质谱联用原理是将气相色谱和质谱两种技术相结合,通过联用仪器实时采集和分析气相色谱柱出口的样品分子,获得样品的化学组成和结构信息。
气相色谱(Gas Chromatography,GC)是一种基于样品在气相流动载气中分配行为的分离技术,常用于分离有机物和其它挥发性化合物。
气相色谱具有高分离能力、快速分析速度和广泛的应用范围。
而质谱(Mass Spectrometry,MS)是一种能够将样品分子分
成离子并根据质荷比选择性地分析的技术。
质谱具有高灵敏度和分析精确度的特点,可以提供分子的结构信息、分子量以及分子的分子式、含量等。
气相色谱质谱联用技术的原理是将气相色谱柱的出口与质谱仪的进样口相连接,将色谱柱分离得到的化合物逐个进入质谱仪进行离子化及质谱分析。
通常采用的方法有两种:正向离子化(EI)和化学离子化(CI)。
正向离子化是通过高能电子束轰击样品分子,将其离子化成分子离子,然后在质谱仪中根据质荷比进行分析。
正向离子化可以提供较强的分子碎片信息,有助于化合物的鉴定和结构推断。
化学离子化是通过在进样口中加入反应气体,在离子化过程中与样品分子发生化学反应,形成化学离子。
然后在质谱仪中进行质荷比选择性的分析。
化学离子化可以提供分子离子峰或产
物离子峰,有助于化合物的鉴定和定量分析。
通过气相色谱质谱联用,可以将气相色谱的分离能力与质谱的分析能力相结合,实现对复杂混合物的分析。
联用技术具有高灵敏度、高选择性和高分辨率的特点,可以用于食品、环境、药物、毒理学等领域的分析和检测。
气相色谱-质谱的原理
气相色谱-质谱的原理
气相色谱-质谱(GC-MS)是一种常见的分析技术,它结合了
气相色谱(GC)和质谱(MS)的原理。
在这种技术中,样品
首先通过气相色谱分离,然后通过质谱获得每个化合物的质谱图。
这样可以实现对复杂样品的快速和准确的定性和定量分析。
气相色谱的原理是基于化合物在固定相(填充物)和移动相(惰性气体)之间的分配行为。
样品首先被注入到气相色谱柱中,然后通过加热柱子或者使用载气推动来推动样品成分的分离。
每个化合物在柱子中以不同的速率移动,由于其与固定相的相互作用不同。
最终,样品中的化合物被逐个分离出来并到达柱子末端,进入质谱仪。
质谱的原理是基于化合物的质荷比(m/z)以及其丰度分布。
在质谱仪中,化合物被电离成带电离子并进入质谱仪的质量分析器。
在质谱仪中,质荷比轴上的离子会根据其质量和电荷比例进行排列。
通过检测每个质荷比,可以获得一个与化合物结构相关的质谱图。
通过将气相色谱和质谱组合在一起,可以获得更准确和特异的分析结果。
首先,气相色谱分离可以提供对复杂样品的高分辨率分离。
其次,质谱可以确定每个化合物的分子质量和结构信息。
这使得GC-MS成为了广泛应用于药物分析、环境监测和
食品安全等领域的分析技术。
总之,气相色谱-质谱是一种将气相色谱和质谱原理结合起来
的分析技术。
它通过气相色谱的分离和质谱的质量分析,实现了对复杂样品的快速和准确的定性和定量分析。
气相色谱质谱联用仪原理及操作步骤
气相色谱质谱联用仪原理及操作步骤嘿,朋友!今天我想跟你聊聊一个超酷的仪器——气相色谱质谱联用仪。
这东西啊,就像是一个超级侦探,能把复杂的混合物里的各种成分都给揪出来,分析得明明白白的。
先来说说它的原理吧。
气相色谱部分呢,就像是一条特殊的跑道。
想象一下啊,混合物里的各个组分就像是一群参加赛跑的小选手。
这些小选手们被注入到气相色谱仪里后,就开始沿着这条特殊的“跑道”奔跑啦。
这个“跑道”其实是一根长长的柱子,柱子里填充了特殊的固定相物质。
不同的组分在这个柱子里的奔跑速度可不一样哦,就像在操场上跑步,有的人体力好跑得快,有的人体力差跑得慢。
这是为啥呢?这是因为不同的组分和固定相之间的相互作用力不同。
那些和固定相“关系好”的,就会被拉着跑慢一点;那些和固定相“合不来”的,就会跑得比较快。
这样一来,原本混在一起的组分就逐渐拉开了距离,一个一个地从柱子里跑出来了。
那跑出来之后呢?这就轮到质谱仪上场啦。
质谱仪就像是一个超级鉴定专家。
从气相色谱柱跑出来的组分进入到质谱仪里,质谱仪会给这些组分来个“大变身”。
它会把这些组分的分子打成一个个碎片,就像把一个完整的玩具拆成了一个个小零件。
然后呢,通过测量这些碎片的质量和电荷比,也就是我们说的质荷比(m/z),质谱仪就能判断出这个组分是什么东西啦。
这就好比你看到一堆玩具零件,你通过零件的形状、大小等特征就能知道原来这个玩具是什么样的。
你说神奇不神奇?再来说说这气相色谱质谱联用仪的操作步骤吧。
第一步,样品的准备。
这可是很关键的一步呢。
就像你要参加一场比赛,得先把自己打扮得妥妥当当的。
对于样品来说,我们得保证它的纯度和浓度合适。
如果样品太脏了,里面有好多杂质,那就像是在赛跑的时候有好多小石子在跑道上,会干扰我们的分析结果的。
有时候我们可能还需要对样品进行一些预处理,比如萃取、浓缩之类的操作,这就好比给样品来个赛前热身,让它以最好的状态进入仪器。
我记得我刚学这个仪器操作的时候,我的导师就跟我说:“小子啊,这样品准备可不能马虎,要是这一步没做好,后面的分析就全白搭了!”我当时心里还嘀咕呢,有这么严重吗?结果啊,真的有一次我没处理好样品,得到的数据那叫一个乱啊,就像一团乱麻,根本没法分析。
气相色谱质谱联用仪原理和应用
气相色谱质谱联用仪原理和应用
气相色谱质谱联用仪(GC-MS)是通过将气相色谱仪和质谱
仪联用而形成的分析仪器。
它的原理是首先将待分析的样品通过气相色谱分离成不同的组分,然后将这些组分引入质谱仪进行分析和识别。
气相色谱质谱联用仪的主要组成部分包括样品进样系统、气相色谱柱、色谱分离柱、检测器、质谱分析系统等。
在分析过程中,样品首先被进样系统引入气相色谱柱中,通过气相色谱柱的分离作用,将样品中的各个组分分离出来。
然后,这些分离出来的组分依次进入质谱分析系统中。
质谱分析系统通过碎裂样品中的分子,测量和记录它们的质量-荷质谱图谱,根据分离出的分子的质谱图谱可以进行精确的组分鉴定和定量分析。
气相色谱质谱联用仪的应用非常广泛。
它在环境监测、食品安全、药物检测、毒品鉴定等领域发挥着重要作用。
例如,在环境监测中,可以用来检测大气中的有机污染物、土壤和水中的有害物质等。
在食品安全领域,可以用于检测食品中的农药残留、有害物质和食品添加剂等。
在药物检测和毒品鉴定中,可以用来鉴定药物或毒品中的成分和含量。
总而言之,气相色谱质谱联用仪通过将气相色谱和质谱两种分析技术有效结合,提高了分析的灵敏度、选择性和可靠性,广泛应用于化学、生物、环境等领域的分析和研究工作中。
gcms气相色谱质谱联用仪原理
gcms气相色谱质谱联用仪原理gcms气相色谱质谱联用仪是一种高度集成的分析仪器,它结合了气相色谱和质谱的优点,能够高效、精准地分析样品的成分。
在以下内容中,我们将分别介绍气相色谱原理、质谱原理以及联用原理。
1.气相色谱原理气相色谱法是一种常用的分离和分析方法,其主要原理是利用样品中各组分在固定相和移动相之间的分配平衡来实现分离。
在色谱柱中,固定相是固体或液体,移动相是气体或液体。
样品在进样口中气化后,被载气带入色谱柱。
由于各组分在固定相和移动相之间的分配系数不同,因此它们在色谱柱中的移动速度也会不同,从而实现各组分的分离。
在气相色谱中,色谱柱是关键部件。
根据样品中各组分的沸点、极性和化学性质等参数,可以选择适合的色谱柱类型。
常用的色谱柱有填充柱和毛细管柱两种类型。
填充柱内部装有固体或液体固定相,而毛细管柱则由内壁涂有固定相的空心玻璃或金属毛细管构成。
2.质谱原理质谱法是一种用于分析分子和离子的方法,其主要原理是通过测量离子质量与电荷之比来确定离子的分子量。
在质谱仪中,样品首先被离子化,生成带电粒子束,然后这些粒子在电场和磁场中受到作用力,按照质量/电荷比发生偏转。
通过测量不同偏转角度的离子束强度,可以得到样品的质谱图。
质谱仪的主要部件包括离子源、分析器和检测器。
离子源可以将样品分子电离成离子,分析器可以将不同质量的离子分离,检测器则用于检测并记录每个离子的强度。
通过分析样品的质谱图,可以获得样品的分子量、分子式、分子结构等信息。
3.联用原理gcms气相色谱质谱联用仪是将气相色谱和质谱联用的一种仪器。
通过将这两种技术的优势结合起来,可以获得更为精准和高效的成分分析结果。
在gcms联用仪中,气相色谱和质谱的联接是通过接口实现的。
这个接口将气相色谱的出口与质谱的入口连接起来,使样品在气相色谱分离后可以直接进入质谱进行检测。
接口通常采用不分流或分流进样方式,以避免样品在接口处发生二次加热或分解。
gcms气相色谱质谱联用仪的主要应用范围包括环境监测、食品药品安全、临床诊断、化学化工等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
GC/MS的载气
• GC/MS联用对载气选择有严格要求
①必须是化学惰性的
②必须不干扰质谱图 ③必须不干扰总离子流的检测
④应具有使载气气流中的样品富集的某种特性
GC 载气
1.载气要求: 作为气相色谱载气的气体,要求: ①化学稳定性好; ②纯度高;③价格便宜并易取得;④能适合于所用的检测器 。 2.常用载气: 通常用氦气(He)和氮气(N2),以前也用氢气(H2) ,因易爆炸,不安全,现不常用。 (在使用毛细管柱作分析的情况时下,使用氦气作载气是比 较理想的) 气体的纯度最好高于 99.99%
气相色谱仪的工作原理示意图
气体样品(顶空进样) 液体样品(直接进样)
目标:混合样品 (气体或液体)
GC
在进样口, 通过加热, 使每个成份 被气化。
载气将样品送入色谱柱 色谱柱将样品中不同的成份分离开
在检测器, 从色谱柱出来的每个成份的量按比例转化成电信号
数据处理器
得知样品中的成份和含量Na来自ional Institutes for Food and Drug Control
气相色谱 原理
•气相色谱法是以气体为流动相(载气)的色谱方法, 利用物质在两相中分配系数的微小差异进行分离。 •当样品被送入进样器后,由载气携带进入色谱柱。 由于样品中各组份在色谱柱中的流动相(气相)和 固定相(液相或固相)间分配或吸附系数的差异。 在载气的冲洗下,各组份在两相间作反复多次分配 (量变),这样原来的微小差异产生了很大的相对 位移(质变) ,使各组份在色谱柱中得到分离,以 达到分离分析及测定一些物理化学常数的目的。
• 2 色谱载气状态控制部件 • 稳压阀(或电子流量控制器)、压力表、稳流阀、流量计 (浮子、电子式)、柱箱恒温和程序升温部件,设置的器件 可随GC-MS 联用仪类别和使用要求而异 ,控制载气状态参 量:温度、压力和流速,建立色谱分离条件 。
National Institutes for Food and Drug Control
National Institutes for Food and Drug Control
气相色谱的工作原理示意图
样品注入 A+B
B A +B A
样品注入口
色谱柱
B A +B A
B A B A B
检测器 时间
峰A
峰B
National Institutes for Food and Drug Control
• 包材中苯乙烯(EI源,顶空进样) • 薄膜衣中塑化剂、能力验证(EI源,液体直接进样) • 食品中氯丙醇(CI源,液体直接进样) • 食品中甲拌磷(CI源,液体直接进样)
• 食品中氨基甲酸乙酯(CI源,液体直接进样)
• 食品中氯霉素(CI源,液体直接进样)
National Institutes for Food and Drug Control
可以分析约20%的有机物。某些无机物通过转化也可分析。
- 难以分析的化合物: 分子量小也不能蒸发的化合物 (例如:无机的金属、离子,盐) 活性强或极不稳定的的化合物 (例如:氢氟酸、臭氧,氮氧化物) 高吸附性的化合物 (当化合物含有羧基、羟基、氨基、硫等,因为吸 附和活度比较高,在分析时要注意。)
National Institutes for Food and Drug Control
省所配备的GC-MS仪3
第三台
2014年
安捷伦 7000 GC/MS Triple Quad 三重四级杆
National Institutes for Food and Drug Control
• 第二部分
气相色谱仪原理
National Institutes for Food and Drug Control
气相色谱构成示意图
National Institutes for Food and Drug Control
GC-MS 联用仪主要部件
• 1 实验室气源条件 GC 载气源 常用氦气,纯度大于99.999%,作色谱分离的 流动相 MS 反应气源 常用甲烷、异丁烷、氨、氧化氮等 ,作质 谱化学电离反应气。 减压阀 俗称氧表和氢表,作气瓶减压用 过滤器 附于氧表后或在GC 内 ,去除气源内水分和杂质
省所配备的GC-MS仪1
第一台 2016年 赛默飞 Thermo Trace
GC-DSQ
National Institutes for Food and Drug Control
省所配备的GC-MS仪2
第二台 2013年
岛津
GC-MS QP2010 Ultra)
National Institutes for Food and Drug Control
气相色谱-质谱仪的原理与应用
学习交流 主要内容
1 2 3
气相色谱-质谱仪在省所的应用 气相色谱仪原理 质谱仪原理
National Institutes for Food and Drug Control
N年来GC-MS在省所的主要应用
• 中药中挥发油的检测(EI源,顶空进样)
• 化妆品二恶烷(EI源,顶空进样)
•
按进样方式分:可分为常规色谱(液体直接进样)、顶空色谱和裂解色谱等。
National Institutes for Food and Drug Control
可以在气相色谱分析的化合物
- 在400摄氏度以下的温度气化(变成气体)的化合物 在气化时不会分解的化合物 在气化时可以分解成固定比例碎片的化合物 (热裂解 GC)
气相色谱 分类
• 按固定相状态分: 1、气固色谱(GSC)(主要基于吸附原理),多用活性炭,硅胶,分子筛,高分子 多孔小球等作为固定相,分离的主要对象是一些永久性的气体和低沸点的化合物。 2、气液色谱(GLC)(主要基于分配原理),多用固定液涂渍在惰性载体上作为固 定相,固定液一般是高沸点、蒸汽压低(在450℃以下有1.5 KPa - 10KPa的蒸汽压) 且热稳定的有机化合物。由于在气液色谱中可供选择的固定液种类很多,容易得 到好的选择性,所以气液色谱有广泛的实用价值,在实际GC分析中,90% 以上的 应用为气液色谱。