(完整)八年级上册数学大题重点
八年级上册数学分式重点难点题型全覆盖试卷附详细答案

八年级上册数学分式重点难点题型全覆盖试卷附详细答案一、单选题(共12题;共24分)1.如果关于x的方程无解,则m的值等于()A. −3B. −2C. −1D. 32.已知1a −1b=4,则a−2ab−b2a−2b+7ab的值等于A. 6B. −6C. 215D. −273.若方程=0有增根,则增根可能是()A. 0或2B. 0C. 2D. 14.已知=3,则分式的值为()A. B. ﹣ C. D. ﹣5.化简,其结果是()A. B. C. D.6.若x+2x2−2x+1的值为正数,则x的取值范围是( )A. x<-2B. x<1C. x>-2且x≠1D. x>17.如果(a-1)0=1成立,则()A. a≠1B. a=0C. a=2D.a=0或a=28.如果x+yy =74,那么xy的值是( )A. 32B. 23C. 43D. 34 9.在式子 1a ,2xy π,3a 2b 3c 4, 56x , x 7+y8 ,10xy ﹣2 ,x 2x中,分式的个数是( )A. 5B. 4C. 3D. 210.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为 x 千米/时,则可列方程( )A. 10030+x =6030−x B. 100x+30=60x−30 C. 10030−x =6030+x D. 100x−30=60x+3011.某工程队铺设一条480米的景观路,开工后,由于引进先进设备,工作效率比原计划提高50%,结果提前4天完成任务.若设原计划每天铺设x 米,根据题意可列方程为( ) A. 480(1+50%)x -480x=4 B.480x-480(1-50%)x =4C.480x -480(1+50%)x=4 D.480(1-50%)x -480x=412.当x 分别取﹣2015、﹣2014、﹣2013、…,、﹣2、﹣1、0、1、 12 、 13 、…、 12013 、 12014 、 12015 时,计算分式x 2−1x 2+1的值,再将所得结果相加,其和等于( )A. ﹣1B. 1C. 0D. 2015二、填空题(共6题;共7分)13.分式表示一个整数时,整数m 可取的值共有________个.14.已知实数a ,b ,c 满足 ab+c +bc+a +ca+b =1 ,则 a 2b+c+b 2c+a +c 2a+b = ________. 15.当x________1时,分式 的值为负数.16.当x________时,分式的值为1;当x________时,分式的值为-1.17.已知 1x −1y =1 ,则分式 3x+4xy−3y2x−5xy−2y = ________. 18.阅读材料:分离整数法就是将分式拆分成一个整式与一个分式(分子为整数)的和的形式.如: ① x+1x−1=x−1+2x−1=x−1x−1+2x−1=1+2x−1 ; ②x 2+1x−3 =x 2−9+10x−3=x 2−9x−3+ 10x−3 =x+3+10x −3.解答问题.已知x 为整数,且分式3x−4x−2为整数,则x 的值为________.三、计算题(共8题;共70分)19.已知abc≠0且a+b+c=0,求a (1b +1c)+b (1c+1a)+c (1a+1b)的值.20.已知a、b、c均为非零的实数,且满足a+b−cc = a−b+cb= −a+b+ca,求(a+b)(b+c)(c+a)abc的值.21.先化简,再求值:a3−aa2+2a+1÷a−12a+2+(1+2a−a+1a−2)⋅2a3−4a2a+1,其中a的值在0,1,﹣1,2,5中选出一个合适的值.22.解方程:(1)x−2x+2−12x2−4=1(2)21+x−31−x=6x2−123.分式计算: (1)3ab+a 2a 2−b 2÷a+3b a−b(2)(−ab )2⋅(ba 2)2÷(−2ab)2(3)22a+3+33−2a +2a+154a 2−9(4)先化简,再求值: (m +4m+4m)÷m+2m 2,其中m=1.24.先化简再求值: x 2−2x x 2−1÷(x −1−2x−1x+1) ,其中 x =12.25.先化简,再求值:(3x−1−x−1)÷x−2x2−2x+1,其中x=2.26.计算:(1)2a5a2b +3b10ab2(2)(m3n)−2(2m−2n−3)−2(3)81−a2a2+6a+9÷a−92a+6⋅a+3a+9(4)(a2b−c )3⋅(c2−ab)2÷(bca)4四、解答题(共5题;共35分)27.阅读下面的解题过程: 已知 xx 2+1 = 13 ,求x 2x 4+1的值.解:由 xx 2+1 = 13 知x≠0,所以x 2+1x=3,即x+ 1x =3.所以x 4+1x 2=x 2+ 1x 2 = (x +1x )2 -2=32-2=7.故x 2x 4+1的值为 17 .该题的解法叫做“倒数求值法”,请你利用“倒数求值法”解下面的题目: 若 xx 2−3x+1 = 15 ,求 x 2x 4+x 2+1的值.28.先化简:x 2+x x 2−2x+1÷(2x−1﹣1x ),再从﹣2<x <3的范围内选取一个你最喜欢的值代入,求值.29. (1)先化简,再求值:( aa+2 + 1a 2−4 )÷ a−1a+2 + 1a−2 ,其中a=2+ √2 ;(2)化简:aa2−4• a+2a2−3a﹣12−a,并求值,其中a与2,3构成△ABC的三边,且a为整数;(3)先化简,再求值:(xx−2﹣4x2−2x)÷ x+2x2−x,其中x满足x2﹣x﹣2=0.30.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?31.已知x3﹣x2﹣x+1=(x﹣1)(x2﹣1)且x是整数,求证:是整数.五、综合题(共19题;共191分)32.化简:(1);(2)33.某工厂计划在规定时间内生产24 000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24 000个零件的生产任务,求原计划安排的工人人数.34.请仔细阅读下面材料,然后解决问题:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”.例如:x−1x+1,x2x−1;当分子的次数小于分母的次数时,我们称之为“真分式”,例如:1x+1,2x+1x2−1.我们知道,假分数可以化为带分数,例如:135=10+35=2+35=235,类似的,假分式也可以化为“带分式”(整式与真分式和的形式),例如:x+1x−1=x−1+2x−1=1+2x−1.(1)将分式2x+1x−1化为带分式;(2)当x取哪些整数值时,分式2x+1x−1的值也是整数?(3)当x的值变化时,分式2x2+7x2+2的最大值为________.35.定下面一列分式:(其中x≠0)(1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式.36.海拉尔区某中学在友谊大厦购进A、B两种品牌的足球,购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌足球多花30元。
八年级上册数学重点题型

八年级上册数学重点题型数学就像一个神秘的魔法世界,八年级上册的数学重点题型那可多啦。
一、三角形相关题型1. 三角形内角和的题型。
这就像是一个基本的数学魔法规则,三角形内角和是180度。
比如说给你两个角的度数,让你求第三个角。
就像有一个三角形,一个角是50度,另一个角是70度,那第三个角就是180 - 50 - 70 = 60度。
这就是利用最基础的内角和定理。
2. 等腰三角形的题目。
等腰三角形两腰相等,两底角也相等。
比如告诉你一个等腰三角形的顶角是80度,那你得知道底角就是(180 - 80)÷2 = 50度。
还有等腰三角形三线合一的题型,要是知道等腰三角形底边上的高,那这条高也是底边上的中线和顶角的平分线呢。
3. 全等三角形的判定。
SSS(边边边)、SAS(边角边)、ASA (角边角)、AAS(角角边)、HL(直角、斜边、直角边)这些判定方法可重要啦。
比如说给你两个三角形,已知两条边相等,夹角也相等,那就能用SAS判定它们全等。
二、整式的乘除与因式分解题型1. 同底数幂相乘。
底数不变,指数相加。
就像a的m次方乘以a的n次方等于a的(m + n)次方。
例如2的3次方乘以2的4次方,那就是2的(3 + 4) = 2的7次方。
2. 整式乘法中的单项式乘以单项式。
系数相乘,同底数幂相乘。
比如3x²乘以4x³,就是3乘以4得到12,x²乘以x³得到x的5次方,结果就是12x的5次方。
3. 因式分解中的提公因式法。
找到多项式各项的公因式,然后提出来。
像2x²+ 4x,公因式是2x,提出来就变成2x(x + 2)。
三、分式题型1. 分式有意义的条件。
分母不能为0。
比如分式1/(x - 1),那x就不能等于1,不然这个分式就没意义啦。
2. 分式的化简求值。
先化简分式,再代入求值。
比如化简(x²- 1)/(x + 1),化简后就是x - 1,要是告诉你x = 3,那代入就得到2。
2024年八年级数学上册《全等三角形》及答案解析

第十二章全等三角形(单元重点综合测试)班级_________姓名________学号__________分数__________考试范围:全章的内容;考试时间:120分钟;总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.下列说法中,正确的有()①形状相同的两个图形是全等形;②面积相等的两个图形是全等形;③全等三角形的周长相等,面积相等;④若△ABC≌△DEF,则∠A=∠D.A.1个B.2个C.3个D.4个2.下列各组图形中,是全等形的是()A. B.C. D.3.如图,点B在线段AD上,△ABC≌△EBD,AB=2cm,BD=5cm,则CE的长度为()A.2cmB.2.5cmC.3cmD.5cm4.小红用如图所示的方法测量小河的宽度.她利用适当的工具,使AB⊥BC,CD⊥BC,BO=OC,点A、O、D在同一直线上,就能保证△ABO≌△DCO,可作为证明△ABO≌△DCO的依据的是()A.SSSB.ASAC.SASD.HL5.如图,在△ABC和△DEF中,点A,E,B,AC∥DF,AC=DF,能判定△ABC≌△DEF的是()A.BC=DEB.AE=DBC.∠A=∠DEFD.∠ABC=∠D6.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中全等三角形有()A.1对B.2对C.3对D.4对7.现要在一块三角形形状的草坪上安装一个洒水龙头,要使洒水龙头到草坪三条边的距离相等,洒水龙头的位置应选在( )处A.三角形三边的垂直平分线的交点B.三角形的三条角平分线的交点C.三角形的三条高所在直线的交点D.三角形的三条中线的交点8.如图,在△ABC中,CD平分∠ACB,DE⊥BC于点E,S△ABC=30,DE=4,BC=10,则AC的长是()A.5B.6C.7D.89.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF,给出下列五个结论:①DE=DF;②BC=2DB;③AD⊥BC;④AB=3BF;⑤S△ADB=2S△BDF;其中正确的结论共有()A.4个B.3个C.2个D.1个10.新定义:已知三条平行直线,相邻两条平行线间的距离相等,我们把三个顶点分别在这样的三条平行线上的三角形称为“格线三角形”.如图,a∥b∥c,相邻两条平行线间的距离为m,等腰Rt△ABC为“格线三角形”,且∠BAC=90°,则△ABC的面积为()A.5m2 B.2m2 C.5m2 D.4m22二、填空题(本大题共6小题,每小题3分,共18分)11.如图,AD=AB,∠C=∠E,∠CDE=50°,则∠ABE=.12.如图,四边形ABCD≌四边形A B C D .若∠B=90°,∠C=60°,∠D =105°,则∠A的大小为度.13.如图,D,E是边BC上的两点,BD=CE,∠ADB=∠AEC,现要直接用“AAS”定理来证明△ABD≌△ACE,请你再添加一个条件:.14.已知△ABC面积为24,将△ABC沿BC的方向平移到△A B C 的位置,使B 和C重合,连接AC 交A C于D,则△C DC的面积为.15.如图,△ABC中∠A=66°,点M、N是∠ABC与∠ACB三等分线的交点,则∠BMN的度数是.16.如图,CA⊥AB,垂足为点A,射线BM⊥AB,垂足为点B,AB=15cm,AC=6cm.动点E从A点出发以3cm/s的速度沿射线AN运动,动点D在射线BM上,随着E点运动而运动,始终保持ED=CB.若点E的运动时间为t秒t>0,则当t=秒时,△DEB与△BCA全等.三、(本大题共4小题,每小题6分,共24分)17.已知:如图,AB=AE,∠1=∠2,∠C=∠D.求证:BC=ED.18.如图,已知AB∥CD,AB=CD.(1)求证:△ABC≌△CDA;(2)判断BC与AD的位置关系,并说明理由.19.如图,已知AB=CD,AD=BC,O为AC的中点,过O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.(1)图中共有几对全等三角形?请把它们都写出来;(2)求证:∠MAE=∠NCF.20.如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B(1)求证:△ABC≌△CDE(2)若∠A=55°,求∠BCD的度数.四、(本大题共3小题,每小题8分,共24分)21.如图,△ABC中,点D在边BC延长线上,∠ACB=106°,∠ABC的平分线交AD于点E,过点E作EH⊥BD,垂足为H,且∠CEH=53°.(1)求∠ACE的度数;(2)求证:AE平分∠CAF;(3)若AC+CD=16,AB=10,且S△ACD=24,则△ABE的面积.22.问题提出:如图1,在四边形ABCD中,∠BAD与∠BCD互补,∠B与∠D互补,AB=AD,∠BAD=x°0<x<180,∠ACB=y°,数学兴趣小组在探究y与x的数量关系时,经历了如下过程:实验操作:(1)数学兴趣小组通过电脑软件“几何画板”进行探究,测量出部分结果如下表所示:x⋯304050607080β130y757065α555040θ这里α=,β=,θ=.猜想证明:(2)根据表格,猜想:y与x之间的关系式为;数学兴趣小组发现证明此猜想的一种方法:如图2,延长CB到E,使BE=DC,连接AE,⋯,请你根据其思路将证明过程补充完整,并验证(1)中结论的正确性.应用拓广:(3)如图3,若x+y=135,AC=10,求四边形ABCD的面积.23.(1)【问题解决】如图①,∠AOB=∠DFE=90°,OC平分∠AOB,点F在OC上,∠DFE的两边分别与OA,OB交于点D,E.当FE⊥OB,FD⊥OA时,则FD与FE的数量关系为;(2)【问题探究】如图②,在(1)的条件下,过点F作两条相互垂直的射线FM,FN,分别交OA,OB于点M,N,判断FM与FN的数量关系,说明理由;(3)【迁移应用】某学校有一块四边形的空地ABCD,如图③所示,∠DAB=∠DCB=90°,AC是∠DAB的平分线,AB= 50m,AD=30m,直接写出该空地的面积.五、(本大题共2小题,每小题12分,共24分)24.综合探究:如题图1是一种用刻度尺画角平分线的方法,在OA、OB上分别取点C、E、D、F,使得OC=OD,OE=OF,连接CF、DE,交点为P,则射线OP为∠AOB的角平分线.【验证】(1)试说明OP平分∠AOB,且PE=PF;【应用】(2)如题图2,若C、E、D、F分别为OA、OB上的点,且OC=OD,CF⊥OA,DE⊥OB,试用(1)中的原理说明OP平分∠AOB;【猜想】(3)如题图3,P是∠AOB角平分线上一点,C、D分别为OA、OB上的点,且PC=PD,请补全图形,并直接写出∠PCO与∠PDO的数量关系.25.【模型呈现】(1)如图1,∠BAD=90°,AB=AD,BC⊥CA于点C,DE⊥AE于点E.求证:BC=AE.【模型应用】(2)如图2,EA⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形ABCDE的面积.【深入探究】(3)如图3,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC、DE,且BC⊥AF于点F,DE与直线AF交于点G.①求证DG=GE;②若BC=21,AF=12,求△ADG的面积.第十二章全等三角形(单元重点综合测试)班级_________姓名________学号__________分数__________考试范围:全章的内容;考试时间:120分钟;总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.下列说法中,正确的有()①形状相同的两个图形是全等形;②面积相等的两个图形是全等形;③全等三角形的周长相等,面积相等;④若△ABC≌△DEF,则∠A=∠D.A.1个B.2个C.3个D.4个【答案】B【分析】根据全等形的定义,全等三角形的判定与性质,即可判断.【详解】解:能够完全重合的两个图形叫做全等形,即形状和大小相同的两个图形是全等形,故①②说法错误;全等三角形能够完全重合,所以全等三角形的周长相等,面积相等,故③说法正确;若△ABC≌△DEF,∠A的对应角为∠D,所以∠A=∠D,故④说法正确;说法正确的有③④,共2个.故选:B.【点睛】本题考查全等形,理解能够完全重合的两个图形叫做全等形是解题关键.2.下列各组图形中,是全等形的是()A. B.C. D.【答案】B【分析】本题考查全等形,掌握能完全重合的两个图形是全等形是解题的关键.【详解】观察发现:A,C,D选项中两个图形不能完全重合,不是全等形;B选项中两个图形能完全重合,是全等形,故选B.3.如图,点B在线段AD上,△ABC≌△EBD,AB=2cm,BD=5cm,则CE的长度为()A.2cmB.2.5cmC.3cmD.5cm【答案】C【分析】此题考查了全等三角形的性质,解题的关键熟练掌握性质的应用.根据全等三角形的对应边相等,再利用线段和差即可求解.【详解】∵△ABC≌△EBD,∴BE=AB=2cm,BC=BD=5cm,∴CE=BC-BE=3cm,故选:C.4.小红用如图所示的方法测量小河的宽度.她利用适当的工具,使AB⊥BC,CD⊥BC,BO=OC,点A、O、D在同一直线上,就能保证△ABO≌△DCO,可作为证明△ABO≌△DCO的依据的是()A.SSSB.ASAC.SASD.HL【答案】B【分析】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题的关键.直接利用全等三角形的判定方法即可得出答案.【详解】解:∵AB⊥BC,CD⊥BC,∴∠ABO=∠DCO=90°,在△ABO和△DCO中,∠ABO=∠DCOBO=OC=CO∠BOA=∠COD,∴△ABO≌△DCO ASA∴证明△ABO≌△DCO的依据的是ASA,故选:B.5.如图,在△ABC和△DEF中,点A,E,B,AC∥DF,AC=DF,能判定△ABC≌△DEF的是()A.BC=DEB.AE=DBC.∠A=∠DEFD.∠ABC=∠D【答案】B【分析】本题考查三角形全等的判定,先根据平行线的性质得到∠A=∠D,加上AC=DF,则可根据全等三角形的判定方法对各选项进行判断即可,掌握全等三角形的判定方法:SSS、SAS、ASA、AAS,HL是解题的关键.【详解】解:∵AC∥DF,∴∠A=∠D,∵AC=DF,A、添加BC=DE,不能判定△ABC≌△DEF;B、添加AE=DB,能判定△ABC≌△DEF;C、添加∠A=∠DEF,不能判定△ABC≌△DEF;D、添加∠ABC=∠D,不能判定△ABC≌△DEF;故选:B.6.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中全等三角形有()A.1对B.2对C.3对D.4对【答案】C【分析】本题主要考查三角形全等的判定定理,角平分线的性质,熟练掌握三角形全等的判定方程是解题的关键.根据全等三角形的判定分别证明△AOP≌△BOP(SAS),Rt△P AE≌Rt△PBF HL,△OEP≌△OFP (AAS),即可得到答案.【详解】解:∵OP平分∠MON,∴∠AOP=∠BOP,∵OA=OB,OP=OP,∴△AOP≌△BOP(SAS);∴AP=BP,∵OP平分∠MON,PE⊥OM,PF⊥ON∴PE=PF,∵PE⊥OM于点E,PF⊥ON于点F,∴Rt△P AE≌Rt△PBF HL;∵OP平分∠MON,∴∠AOP=∠BOP,又∵∠OEP=∠OFP=90°,OP=OP,∴△OEP≌△OFP(AAS).∴图中全等三角形有3对故选C.7.现要在一块三角形形状的草坪上安装一个洒水龙头,要使洒水龙头到草坪三条边的距离相等,洒水龙头的位置应选在( )处A.三角形三边的垂直平分线的交点B.三角形的三条角平分线的交点C.三角形的三条高所在直线的交点D.三角形的三条中线的交点【答案】B【分析】本题考查的是三角形的角平分线的性质,掌握角平分线上的点到角的两边的距离相等是解题的关键.根据角平分线上的点到角的两边的距离相等解答即可.【详解】解:要使洒水龙头到草坪三条边的距离相等,则洒水龙头的位置应选在三角形三条角平分线的交点,故选:B8.如图,在△ABC 中,CD 平分∠ACB ,DE ⊥BC 于点E ,S △ABC =30,DE =4,BC =10,则AC 的长是()A.5B.6C.7D.8【答案】A 【分析】本题主要考查了角平分线的性质定理.过点D 作DF ⊥AC 于点F ,根据角平分线的性质可得DE =DF =4,再由S △ABC =S △DBC +S △DAC ,即可求解.【详解】解:如图,过点D 作DF ⊥AC 于点F ,∵CD 平分∠ACB ,DE ⊥BC ,DF ⊥AC ,DE =4,∴DE =DF =4,∵S △ABC =S △DBC +S △DAC ,S △ABC =30,BC =10,∴30=12DE ×BC +12DF ×AC ,∴30=12×4×10+12×4×AC ,∴AC =5,故选:A .9.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE =2BF ,给出下列五个结论:①DE =DF ;②BC =2DB ;③AD ⊥BC ;④AB =3BF ;⑤S △ADB =2S △BDF ;其中正确的结论共有()A.4个B.3个C.2个D.1个【答案】A 【分析】本题考查了全等三角形判定和性质,角平分线的性质,等腰三角形的判定和性质,由角平分线的性质和平行线的性质可证∠ACB=∠ABC,可得AC=AB,由等腰三角形的性质可得AD⊥BC,CD= BD,由“ASA”可证△CDE≌△BDF,可得S△CDE=S△BDF,CE=BF,DE=DF,即可求解.【详解】解:∵BC恰好平分∠ABF,∴∠ABC=∠CBF,∵BF∥AC,∴∠ACB=∠CBF,∴∠ACB=∠ABC,∴AC=AB,且AD是△ABC的角平分线,∴AD⊥BC,BC=2DB,故②,③正确,符合题意;在△CDE和△BDF中,∠ACB=∠CBF CD=BD∠CDE=∠BDF,∴△CDE≌△BDF ASA,∴S△CDE=S△BDF,CE=BF,DE=DF,故①正确,符合题意;∵AE=2BF,∴AC=3BF=AB,故④正确,符合题意;∵BD=CD,∴S△ADB=S△ACD,∵AE=2BF,∴S△ADB=S△ACD=3S△CDE=3S△BDF,故⑤错误,不符合题意;故选:A.10.新定义:已知三条平行直线,相邻两条平行线间的距离相等,我们把三个顶点分别在这样的三条平行线上的三角形称为“格线三角形”.如图,a∥b∥c,相邻两条平行线间的距离为m,等腰Rt△ABC为“格线三角形”,且∠BAC=90°,则△ABC的面积为()A.52m2 B.2m2 C.5m2 D.4m2【答案】A【分析】本题主要考查平行线间的距离,全等三角形的判定与性质,过点B作BE⊥直线a于点E,延长EB交直线c于点F,过点C作CD⊥直线a于点D,证明△CDA≌△AEB(AAS),得出AE=CD=2m,AD=BE=m,CF=DE=AD+AE=m+2m=3m,再根据=S四边形DEFE-S△ACD×2-S△BCF求解即可【详解】解:过点B作BE⊥直线a于点E,延长EB交直线c于点F,过点C作CD⊥直线a于点D,则∠CDA=∠AEB=90°,如图,∵a∥b∥c,相邻两条平行线间的距离为m,∴BF⊥直线c,CD=2m,BE=BF=m,∵∠CAB=90°,∠CDA=90°∴∠DCA+∠DAC=90°,∴∠DCA=∠EAB,在△CDA和△AEB中,∠DCA=∠EAB∠CDA=∠AEBAC=AB,∴△CDA≌△AEB(AAS),∴AE=CD=2m,AD=BE=m,∴CF=DE=AD+AE=m+2m=3m∴△ABC的面积=S四边形DEFE -S△ACD×2-S△BCF=3m×2m-12×2m×m×2-12×3m×m=52m2故选:A二、填空题(本大题共6小题,每小题3分,共18分)11.如图,AD=AB,∠C=∠E,∠CDE=50°,则∠ABE=.【答案】130°/130度【分析】本题考查了全等三角形的性质与判定,邻补角的定义,掌握全等三角形的性质与判定是解题的关键.证明△ADC≌△ABE AAS得出∠ADC=∠ABE,根据邻补角即可求解.【详解】解:∵在△ADC和△ABE中,∠C=∠E∠A=∠AAD=AB,∴△ADC≌△ABE AAS,∴∠ADC=∠ABE,∵∠CDE=50°,∴∠ADC=180°-50°=130°,∴∠ABE=130°.故答案为:130°.12.如图,四边形ABCD≌四边形A B C D .若∠B=90°,∠C=60°,∠D =105°,则∠A的大小为度.【答案】105【分析】本题考查了全等图形的性质和四边形内角和公式,解题的关键在于熟练掌握全等图形的性质.根据全等的性质求出∠D=∠D ,利用四边形的内角和公式求出∠A的度数即可.【详解】解:∵四边形ABCD≌四边形A B C D .∴∠D=∠D ,∵∠D =105°,∴∠D=105°,∵∠B=90°,∠C=60°,∴∠A=360°-90°-60°-105°=105°,故答案为:105.13.如图,D,E是边BC上的两点,BD=CE,∠ADB=∠AEC,现要直接用“AAS”定理来证明△ABD≌△ACE,请你再添加一个条件:.【答案】∠BAD=∠CAE【分析】在△ABE与△ACD中,已知AE=AD,∠AED=∠ADE,即已知一角及角的一边对应相等,根据“AAS”的判定方法,可以添加已知边的对角对应相等即可.本题考查了全等三角形的判定定理:AAS:两角及其中一个角的对边对应相等的两个三角形全等.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.根据已知结合图形及判定方法选择条件是正确解答本题的关键.【详解】解:可添加一个条件:∠BAD=∠CAE,使△ABD≌△ACE.理由:在△ABD与△ACE中,∠BAD=∠CAE∠AED=∠ADEBD=CE,∴△ABD≌△ACE(AAS).故答案为∠BAD=∠CAE14.已知△ABC面积为24,将△ABC沿BC的方向平移到△A B C 的位置,使B 和C重合,连接AC 交A C于D,则△C DC的面积为.【答案】12【分析】根据平移的性质可得AC=A C ,BC=B C ,AC∥A C ,证明△ADC≌△C DA ,得到AD=C D,则S△C DC =12S△ACC,再推出S△ABC=S△ACC=24,则S△C DC=12S△ACC=12.【详解】解:由平移的性质可得AC=A C ,BC=B C ,AC∥A C ,∴∠DCA=∠DA C ,∠DAC=∠DC A ,∴△ADC≌△C DA ASA,∴AD=C D,∴S△C DC =12S△ACC,∵BC=CC ,△ABC的面积为24,∴S△ABC=S△ACC=24,∴S△C DC =12S△ACC=12.故答案为:12.【点睛】本题主要考查了平移的基本性质,全等三角形的性质与判定,三角形中线的性质,熟知平移的性质是解题的关键:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.15.如图,△ABC中∠A=66°,点M、N是∠ABC与∠ACB三等分线的交点,则∠BMN的度数是.【答案】52°/52度【分析】本题考查与角平分线有关的三角形的内角和定理.过点N作NG⊥BC于G,NE⊥BM于E,NF⊥CM于F,根据角平分线上的点到角的两边的距离相等可得NE=NG=NF,再根据到角的两边距离相等的点在角的平分线上判断出MN平分∠BMC,然后根据三角形内角和等于180°求出∠ABC+∠ACB,再根据角的三等分求出∠MBC+∠MCB的度数,然后利用三角形内角和定理求出∠BMC的度数,从而得解.【详解】解:如图,过点N作NG⊥BC于G,NE⊥BM于E,NF⊥CM于F,∵点M、N是∠ABC与∠ACB三等分线的交点,∴BN平分∠MBC,CN平分∠MCB,∴NE=NG,NF=NG,∴NE=NF,∴MN平分∠BMC,∴∠BMN=12∠BMC,∵∠A=66°,∴∠ABC+∠ACB=180°-∠A=180°-66°=114°,∴∠MBC+∠MCB=23∠ABC+∠ACB=76°,在△BMC中,∠BMC=180°-∠MBC+∠MCB=180°-76°=104°∴∠BMN=12∠BMC=52°.故答案为:52°.16.如图,CA⊥AB,垂足为点A,射线BM⊥AB,垂足为点B,AB=15cm,AC=6cm.动点E从A点出发以3cm/s的速度沿射线AN运动,动点D在射线BM上,随着E点运动而运动,始终保持ED=CB.若点E的运动时间为t秒t>0,则当t=秒时,△DEB与△BCA全等.【答案】3或7或10【分析】本题考查全等三角形的性质,关键是要分情况讨论.分情况,当E在线段AB上,或当E在线段AB延长线上,由HL即可求解.【详解】解:∵CA⊥AB,BM⊥AB,∠CAB=∠DBE=90°,∵ED=CB,当E在线段AB上时,若BE=AC,∴Rt△DEB≌Rt△BCA(HL),∵AE=3tcm,∴BE=AB-AE=15-3tcm,∴15-3t=6,∴t=3;若BE=AB,∴Rt△DEB≌Rt△CBA(HL),∴AE=0,∴t=0(舍去),当E在线段AB延长线上时,若BE=AC,∴Rt△DEB≌Rt△BCA(HL),∵AE=3t=AB+BE=15+6=21(cm),∴t=7,若BE=AB,∴Rt△DEB≌Rt△CBA(HL),∵AE=3t=AB+BE=15+15=30(cm),∴t=10,∴当t=3或7或10秒时,△DEB与△BCA全等.故答案为:3或7或10.三、(本大题共4小题,每小题6分,共24分)17.已知:如图,AB=AE,∠1=∠2,∠C=∠D.求证:BC=ED.【答案】见解析【分析】本题考查了全等三角形的判定与性质,由∠1=∠2可得∠EAD=∠BAC,再根据条件AB=AE,∠C=∠D,可利用AAS证明△ABC≌△AED AAS,再根据全等三角形对应边相等即可得出结论.【详解】证明:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即∠EAD=∠BAC,在△EAD和△BAC中,∠C=∠D∠BAC=∠EADAB=AE,∴△ABC≌△AED AAS,∴BC=ED.18.如图,已知AB∥CD,AB=CD.(1)求证:△ABC≌△CDA;(2)判断BC与AD的位置关系,并说明理由.【答案】(1)见解析(2)BC∥AD,理由见解析【分析】本题考查了全等三角形的判定与性质,解决本题的关键是得到△ABC≌△CDA.(1)利用SAS证明△ABC≌△CDA即可;(2)由△ABC≌△CDA,得∠BCA=∠CAD,进而可以判断BC与AD的位置关系.【详解】(1)证明:∵AB∥CD,∴∠BAC=∠ACD,在△ABC与△CDA中,AB=CD∠BAC=∠ACDAC=CA,∴△ABC≌△CDA SAS;(2)解:BC∥AD,理由如下:∵△ABC≌△CDA,∴∠BCA=∠CAD,∴BC∥AD.19.如图,已知AB=CD,AD=BC,O为AC的中点,过O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.(1)图中共有几对全等三角形?请把它们都写出来;(2)求证:∠MAE=∠NCF.【答案】(1)4;△ABC≌△CDA,△AMO≌△CNO,△OAE≌△OCF,△AME≌△CNF(2)证明见解析【分析】本题主要考查了全等三角形的性质与判定,找出判定三角形全等的条件是解题的关键.(1)结合已知条件,再根据全等三角形的四个判定方法,即可找出所有的全等三角形;(2)先证明△AME≌△CNF SSS,即可证明∠MAE=∠NCF.【详解】(1)解:有4对全等三角形,分别为:△ABC≌△CDA,△AMO≌△CNO,△OAE≌△OCF,△AME≌△CNF,理由如下:∵AB=CD,BC=AD=DA,AC=CA,∴△ABC≌△CDA SSS,∴∠BAC=∠DCA,即∠MAO=∠NCO,∵O为AC的中点,∴OA=OC,又∵∠AOM=∠CON,∴△AMO≌△CNO ASA,∴AM=CN,OM=ON,∵OA=OC,∠AOE=∠COF,OE=OF,∴△OAE≌△OCF SAS,∴AE=CF,∵OE=OF,OM=ON,∴OE-OM=OF-ON,即ME=NF,又∵AM=CN,∴△AME≌△CNF SSS;(2)证明:∵AB=CD,BC=AD=DA,AC=CA,∴△ABC≌△CDA SSS,∴∠BAC=∠DCA,即∠MAO=∠NCO,∵O为AC的中点,∴OA=OC,又∵∠AOM=∠CON,∴△AMO≌△CNO ASA,∴AM=CN,OM=ON,∵OA=OC,∠AOE=∠COF,OE=OF,∴△OAE≌△OCF SAS,∴AE=CF,∵OE=OF,OM=ON,∴OE-OM=OF-ON,即ME=NF,又∵AM=CN,∴△AME≌△CNF SSS,∴∠MAE=∠NCF.20.如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B(1)求证:△ABC≌△CDE(2)若∠A=55°,求∠BCD的度数.【答案】(1)详见解析(2)125°【分析】本题考查了平行线性质和全等三角形的性质和判定的应用,证得△ABC≌△CDE是解题的关键.(1)根据平行线求出∠ACD=∠CDE,∠ACB=∠CED,再说明∠B=∠CDE,最后结合AC=CE运用AAS即可证明结论;(2)根据全等三角形性质得出∠A=∠E=55°,进而根据平角定义即可解答.【详解】(1)证明∶∵AC∥DE,∴∠ACD=∠CDE,∠ACB=∠CED,∵∠ACD=∠B,∴∠B=∠CDE,∵AC=CE,∴△ABC≌△CDE AAS.(2)解:∵∠A=55°,∵△ABC≌△CDE,∴∠A=∠ECD=55°,∴∠BCD=180°-∠ECD=180°-55°=125°.四、(本大题共3小题,每小题8分,共24分)21.如图,△ABC中,点D在边BC延长线上,∠ACB=106°,∠ABC的平分线交AD于点E,过点E作EH⊥BD,垂足为H,且∠CEH=53°.(1)求∠ACE的度数;(2)求证:AE平分∠CAF;(3)若AC+CD=16,AB=10,且S△ACD=24,则△ABE的面积.【答案】(1)∠ACE=37°(2)证明见解析(3)15【分析】本题主要考查了邻补角的性质、角平分线的性质与判定定理、三角形的面积等知识点,灵活运用相关知识点成为解答本题的关键.(1)根据邻补角的定义和垂直的定义可得∠ACD=74°、∠CHE=90°,进而得到∠ECH=37°,然后根据∠ACE=∠ACD-∠ECH即可解答;(2)如图:过E点分别作EM⊥BF于M,EN⊥AC与N,根据角平分线的性质定理以及角平分线的定义可得EM=EH、CE平分∠ACD、EN=EH,最后根据角平分线的判定定理即可解答;(3)根据S△ACD=S△ACE+S△CED结合已知条件可得EM=3,最后运用三角形的面积公式即可解答.【详解】(1)解:∵∠ACB=106°,∴∠ACD=180°-106°=74°,∵EH⊥BD,∴∠CHE=90°,∵∠CEH=53°,∴∠ECH=90°-53°=37°,∴∠ACE=∠ACD-∠ECH=74°-37°=37°.(2)证明:如图:过E点分别作EM⊥BF于M,EN⊥AC与N,∵BE平分∠ABC,∴EM=EH,∵∠ACE =∠ECH =37°,∴CE 平分∠ACD ,∴EN =EH ,∴EM =EN ,∴AE 平分∠CAF .(3)解:∵AC +CD =16,S △ACD =24,EM =EN =EH ,∴S △ACD =S △ACE +S △CED =12AC ⋅EN +12CD ⋅EH =12(AC +CD )⋅EM =24,即12×16⋅EM =24,解得EM =3,∵AB =10,∴S △ABE =12AB ⋅EM =15.22.问题提出:如图1,在四边形ABCD 中,∠BAD 与∠BCD 互补,∠B 与∠D 互补,AB =AD ,∠BAD =x °0<x <180 ,∠ACB =y °,数学兴趣小组在探究y 与x 的数量关系时,经历了如下过程:实验操作:(1)数学兴趣小组通过电脑软件“几何画板”进行探究,测量出部分结果如下表所示:x⋯304050607080β130y 757065α555040θ这里α=,β=,θ=.猜想证明:(2)根据表格,猜想:y 与x 之间的关系式为;数学兴趣小组发现证明此猜想的一种方法:如图2,延长CB 到E ,使BE =DC ,连接AE ,⋯,请你根据其思路将证明过程补充完整,并验证(1)中结论的正确性.应用拓广:(3)如图3,若x +y =135,AC =10,求四边形ABCD 的面积.【答案】(1)60,100,15;(2)y =90-12x ,理由见详解;(3)S 四边形ABCD =50【分析】(1)观察表格发现:x 每增加10,y 减小5,由此即可得出α、β、θ的值.(2)根据表格猜想:y =90-12x .延长CB 到E ,使BE =DC ,连接AE ,则可得△ABE ≌△ADE ,进而可得AE =AC ,∠EAB =∠CAD ,则可得∠EAC =x °.在△AEC 中,根据三角形内角和定理即可得出y 于x 之间的关系式.(3)延长CB 到E ,使BE =DC ,连接AE .由(2)得△ABE ≌△ADE ,则S △ABE =S △ADE ,进而可得S 四边形ABCD =S △AEC .由x +y =135,y =90-12x 可得x =90,y =45.则可得∠EAC =90°,∠AEC =∠ACE =45°,进而可得AE =AC =10,可得S △AEC 的值,即可得S 四边形ABCD 的值.【详解】(1)观察表格发现:x每增加10,y减小5,∴α=65-5=60,β=80+2×10=100,θ=40-3×5=15.故答案为:60,100,15,x.(2)根据表格猜想:y=90-12证明:如图2,延长CB到E,使BE=DC,连接AE,则∠ABC+∠ABE=180°,又∵∠ABC+∠D=180°,∴∠ABE=∠D,又∵AB=AD,∴△ABE≌△ADE(SAS),∴AE=AC,∠EAB=∠CAD,∴∠E=∠ACB=y°,∠EAC=∠EAB+∠BAC=∠CAD+∠BAC=∠BAD=x°.在△AEC中,∠EAC+∠E+∠ACE=180°,∴x°+2y°=180°,y=90-1x.2(3)如图,延长CB到E,使BE=DC,连接AE.由(2)得△ABE≌△ADE,∴S△ABE=S△ADE,=S△ACD+S△ABC=S△ABE+S△ABC=S△AEC,∴S四边形ABCD∵x+y=135,y=90-1x,2x=135,∴x+90-12解得x=90,y=45,∴∠EAC=90°,∠AEC=∠ACE=45°,∴AE=AC=10,×10×10=50,∴S△AEC=12∴S=50.四边形ABCD【点睛】本题考查了数字类探索规律问题,以及全等三角形的判定和性质,三角形内角和定理.熟练掌握以上知识,证明出y与x之间的关系式是解题的关键.23.(1)【问题解决】如图①,∠AOB =∠DFE =90°,OC 平分∠AOB ,点F 在OC 上,∠DFE 的两边分别与OA ,OB 交于点D ,E .当FE ⊥OB ,FD ⊥OA 时,则FD 与FE 的数量关系为;(2)【问题探究】如图②,在(1)的条件下,过点F 作两条相互垂直的射线FM ,FN ,分别交OA ,OB 于点M ,N ,判断FM 与FN 的数量关系,说明理由;(3)【迁移应用】某学校有一块四边形的空地ABCD ,如图③所示,∠DAB =∠DCB =90°,AC 是∠DAB 的平分线,AB =50m ,AD =30m ,直接写出该空地的面积.【答案】(1)FD =FE ;(2)FM =FN ,理由见详解;(3)1600m 2【分析】(1)根据“角平分线上的点到角两边的距离相等”可得FD =FE ;(2)先根据四边形内角和等于360°可得∠DFE =90°,由∠DFE =∠FMN =90°可得∠DFM =∠EFN ,再根据ASA 证明△DFM ≌△EFN ,则可得FM =FN ;(3)过C 点作CE ⊥AB 于E 点,CF ⊥AD 的延长线于F 点.由(2)得△CFD ≌△CEB ,则可得FD =EB ,S △CFD =S △CEB ,进而可得S 四边形ABCD =S 四边形AECF .证明△ACF ≌△ACE (,则可得AF =AE ,由AE =AB -BE 、AF =AD +DF 可求得BE 的长,进而可得AF 、AE 的长,由此可得S 四边形AECF 的值,即可得S 四边形ABCD 的值.【详解】(1)解:∵OC 平分∠AOB ,点F 在OC 上,且FE ⊥OB ,FD ⊥OA ,∴FD =FE .(2)解:FD =FE ,理由如下:∵FD ⊥OA ,FE ⊥OB ,∴∠FDO =∠FEO =∠FEN =90°,∵四边形DOEF 中,∠FDO =∠FEO =∠AOB =90°,∴∠DFE =360°-∠FDO -∠FEO -∠AOB =90°,∴∠DMF +∠MFE =90°,又∵FM ⊥FN ,∴∠FMN =90°,∴∠DFM =∠EFN ,在△DFM 和△EFN 中,∠FDM =∠FENFD =FE ∠DFM =∠EFN,∴△DFM ≌△EFN (ASA ),∴FM =FN .(3)解:如图,过C 点作CE ⊥AB 于E 点,CF ⊥AD 的延长线于F 点,由(2)得△CFD≌△CEB,∴FD=EB,S△CFD=S△CEB,∴S四边形ABCD =S四边形AECF,∵AC是∠DAB的平分线,∴∠DAC=∠CAB,又∵∠CFB=∠CEA=90°,AC=AC,∴△ACF≌△ACE(AAS),∴AF=AE,又∵AE=AB-BE,AF=AD+DF,∴AB-BE=AD+DF,∴50-BE=30+BE,解得BE=10,∴AF=AE=40,∴S四边形AECF=40×40=1600m2,∴S四边形ABCD=1600m2,答:该空地的面积为1600m2.【点睛】本题主要考查了角平分线的性质、全等三角形的判定和性质,熟练掌握以上知识,正确的作出辅助线是解题的关键.五、(本大题共2小题,每小题12分,共24分)24.综合探究:如题图1是一种用刻度尺画角平分线的方法,在OA、OB上分别取点C、E、D、F,使得OC=OD,OE=OF,连接CF、DE,交点为P,则射线OP为∠AOB的角平分线.【验证】(1)试说明OP平分∠AOB,且PE=PF;【应用】(2)如题图2,若C、E、D、F分别为OA、OB上的点,且OC=OD,CF⊥OA,DE⊥OB,试用(1)中的原理说明OP平分∠AOB;【猜想】(3)如题图3,P是∠AOB角平分线上一点,C、D分别为OA、OB上的点,且PC=PD,请补全图形,并直接写出∠PCO与∠PDO的数量关系.【答案】(1)见解析;(2)见解析;(3)补全图形见解析,∠PCO=∠PDO或∠PCO+∠PDO=180°【分析】本题是三角形综合题目,考查了全等三角形的判定与性质、角平分线的性质等知识,本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键,属于中考常考题型.(1)先证明△DOE≌△COF(SAS),得∠PEC=∠PFD,再证△CPE≌△DPF(AAS),得PE=PF,然后证△OPE≌△OPF(SSS),得∠POE=∠POF,即可得出结论;(2)先证明△OCF≌△ODE(ASA),可得OF=OE,由(1)可得OP平分∠AOB;(3)过点P分别作PM⊥OA于M,PN⊥OB于N,分两种情况进行求解即可.【详解】解:(1)∵OC=OD,∠DOE=∠COF,OE=OF,∴CE=DF,△DOE≌△COF(SAS),∴∠PEC=∠PFD,∵∠CPE=∠DPF,CE=DF,∴△CPE≌△DPF(AAS),∴PE=PF,∵OE=OF,PE=PF,OP=OP,∴△OPE≌△OPF(SSS),∴∠POE=∠POF,即∠POA=∠POB,∴射线OP平分∠AOB;(2)∵CF⊥OA,DE⊥OB,∴∠OCF=∠ODE=90°,∴∠COF=∠DOE,OC=OD,∴△OCF≌△ODE(ASA),∴OF=OE,由(1)可得OP平分∠AOB;(3)补全图形如下,过点P分别作PM⊥OA于M,PN⊥OB于N,∵OP是∠AOB的平分线,∴PM=PN,∠PMC=∠PND=90°,当PC=PD1时,在Rt△PMC和Rt△PND1中,PC=PD1,PM=PN∴Rt△PMC≌Rt△PND1(HL),∴∠PCO=∠PD1O;当PC=PD2时,同理得Rt△PMC≌Rt△PND2HL,∴∠PCM=∠PD2N;∵∠PD2N+∠PD2O=180°,∴∠PCO+∠PD2O=180°,综上所述,∠PCO与∠PDO的数量关系为∠PCO=∠PDO或∠PCO+∠PDO=180°;25.【模型呈现】(1)如图1,∠BAD=90°,AB=AD,BC⊥CA于点C,DE⊥AE于点E.求证:BC=AE.【模型应用】(2)如图2,EA⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形ABCDE的面积.【深入探究】(3)如图3,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC、DE,且BC⊥AF于点F,DE与直线AF交于点G.①求证DG=GE;②若BC=21,AF=12,求△ADG的面积.【答案】(1)见解析;(2)50;(3)①见解析;63【分析】(1)证明△ABC≌△DAE AAS,即可得证;(2)同(1)法得到△AEP≌△BAG,△CBG≌△DCH,分割法求出图形面积即可;(3)①过点D作DP⊥AG于P,过点E作EQ⊥AG交AG的延长线于Q,易证△AFB≌△DP A,△AFC ≌△EQA,得到DP=AF,EQ=AF,再证明△DPG≌△EQG AAS,即可得出结论;②根据全等三角形的性质,求出AG的长,进而利用面积公式进行求解即可.【详解】解:(1)证明:∵∠BAD=90°,∴∠BAC+∠DAE=90°,∵BC⊥CA,DE⊥AE,∴∠ACB=∠DEA=90°,∴∠BAC+∠ABC=90°,∴∠ABC=∠DAE,在△ABC和△DAE中,∠ACB=∠DEA∠ABC=∠DAEBA=AD∴△ABC≌△DAE AAS,∴BC=AE.(2)由模型呈现可知,△AEP≌△BAG,△CBG≌△DCH,∴AP=BG=3,AG=EP=6,CG=DH=4,CH=BG=3,则S实线围成的图形=12×4+6×3+6+4+3-12×3×6-12×3×6-12×3×4-12×3×4=50.(3)①过点D作DP⊥AG于P,过点E作EQ⊥AG交AG的延长线于Q.图3由【模型呈现】可知,△AFB≌△DP A,△AFC≌△EQA,∴DP=AF,EQ=AF∴DP=EQ,∵DP⊥AG,EQ⊥AG∴∠DPG=∠EQG=90°,在△DPG和△EQG中,∠DPG=∠EQG∠DGP=∠EGQDP=EQ∴△DPG≌△EQG AAS,∴DG=GE.②由①可知,BF=AP,FC=AQ,∴BC=BF+FC=AP+AQ,∵BC=21,∴AP+AQ=21,∴AP+AP+PG+GQ=21,由①△DPG≌△EQG得∴PG=GQ,∴AP+AP+PG+PG=21,∴AP+PG=10.5,∴AG=10.5,∴S△ADG=1×10.5×12=63.2。
北师大版八年级上册数学[数据的分析——知识点整理及重点题型梳理]
![北师大版八年级上册数学[数据的分析——知识点整理及重点题型梳理]](https://img.taocdn.com/s3/m/66ebcf702e3f5727a4e9621f.png)
北师大版八年级上册数学重难点突破知识点梳理及重点题型巩固练习数据的分析——知识讲解【学习目标】1、了解加权平均数的意义和求法,会求一组数据的平均数,体会用样本平均数估计总体平均数的思想.2、了解中位数和众数的意义,掌握它们的求法.进一步理解平均数、中位数和众数所代表的不同的数据特征.3、了解极差、方差和标准差的意义及求法,体会它们在刻画数据波动时的不同特征.体会用样本方差估计总体方差的思想,掌握分析数据的思想和方法.4、从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯. 【要点梳理】要点一、算术平均数和加权平均数一般地,对于n 个数123n x x x x 、、、…,我们把()1231n x x x x n⋅⋅⋅++++叫做这n 个数的算术平均数,简称平均数,记作x .计算公式为()1231n x x x x x n=⋅⋅⋅++++. 要点诠释:平均数表示一组数据的“平均水平”,反映了一组数据的集中趋势.(1)当一组数据较大时,并且这些数据都在某一常数a 附近上、下波动时,一般选用简化计算公式x x a '=+.其中x '为新数据的平均数,a 为取定的接近这组数据的平均数的较“整”的数.(2)平均数的大小与一组数据里的每个数据均有关系,其中任一数据的变动都会相应引起平均数的变动.所以平均数容易受到个别特殊值的影响.若n 个数12n x x x 、、…的权分别是12n w w w 、、…、,则112212......n nnx w x w x w w w w ++++++叫做这n 个数的加权平均数. 要点诠释:(1)相同数据i x 的个数i w 叫做权,i w 越大,表示i x 的个数越多,“权”就越重. 数据的权能够反映数据的相对“重要程度”.(2)加权平均数实际上是算术平均数的另一种表现形式,是平均数的简便运算. 要点二、中位数和众数 1.中位数一般地,n 个数据按照大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数. 要点诠释:(1)一组数据的中位数是唯一的;一组数据的中位数不一定出现在这组数据中.(2)由一组数据的中位数可以知道中位数以上和以下数据各占一半. 2.众数一组数据中出现次数最多的那个数据叫做这组数据的众数. 要点诠释:(1)一组数据的众数一定出现在这组数据中;一组数据的众数可能不止一个. (2)众数是一组数据中出现次数最多的数据而不是数据出现的次数. 要点三、平均数、中位数与众数的联系与区别联系:平均数、众数、中位数都是用来描述数据集中趋势的量,其中以平均数最为重要. 区别:平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个别数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适.中位数与数据排列位置有关,个别数据的波动对中位数没影响;众数主要研究各数据出现的频数,当一组数据中不少数据多次重复出现时,可用众数来描述. 要点四、极差、方差和标准差 1.极差一组数据中最大数据与最小数据的差,称为极差,极差=最大数据-最小数据. 要点诠释:极差是最简单的一种度量数据波动情况的量,它受极端值的影响较大.一组数据极差越小,这组数据就越稳定. 2.方差方差是各个数据与平均数差的平方的平均数.方差2s 的计算公式是:()[]222212)(...)(1x x x x x x nS n -++-+-=,其中,x 是1x ,2x ,…n x 的平均数. 要点诠释:(1)方差反映的是一组数据偏离平均值的情况.方差越大,数据的波动越大;方差越小,数据的波动越小.(2)一组数据的每一个数都加上(或减去)同一个常数,所得的一组新数据的方差不变. (3)一组数据的每一个数据都变为原来的k 倍,则所得的一组新数据的方差变为原来的2k 倍.3.标准差方差的算术平方根叫做这组数据的标准差,用符号s 表示,即:;标准差的数量单位与原数据一致.4.极差、方差和标准差的联系与区别联系:极差与方差、标准差都是表示一组数据离散程度的特征数.区别:极差表示一组数据波动范围的大小,它受极端数据的影响较大;方差反映了一组数据与其平均值的离散程度的大小.方差越大,稳定性也越小;反之,则稳定性越好.所以一般情况下只求一组数据的波动范围时用极差,在考虑到这组数据的稳定性时用方差. 要点五、用样本估计总体在考察总体的平均水平或方差时,往往都是通过抽取样本,用样本的平均水平或方差近似估计得到总体的平均水平或方差. 要点诠释:(1)如果总体数量太多,或者从总体中抽取个体的试验带有破坏性,都应该抽取样本.取样必须具有尽可能大的代表性.(2)用样本估计总体时,样本容量越大,样本对总体的估计也越精确.样本容量的确定既要考虑问题本身的需要,又要考虑实现的可能性所付出的代价.【典型例题】类型一、平均数、中位数、众数1、(2015•福州)若一组数据1,2,3,4,x的平均数与中位数相同,则实数x的值不可能是()A.0 B.2.5 C.3 D.5【答案与解析】解:(1)将这组数据从小到大的顺序排列为1,2,3,4,x,处于中间位置的数是3,∴中位数是3,平均数为(1+2+3+4+x)÷5,∴3=(1+2+3+4+x)÷5,解得x=5;符合排列顺序;(2)将这组数据从小到大的顺序排列后1,2,3,x,4,中位数是3,此时平均数是(1+2+3+4+x)÷5=3,解得x=5,不符合排列顺序;(3)将这组数据从小到大的顺序排列后1,x,2,3,4,中位数是2,平均数(1+2+3+4+x)÷5=2,解得x=0,不符合排列顺序;(4)将这组数据从小到大的顺序排列后x,1,2,3,4,中位数是2,平均数(1+2+3+4+x)÷5=2,解得x=0,符合排列顺序;(5)将这组数据从小到大的顺序排列后1,2,x,3,4,中位数,x,平均数(1+2+3+4+x)÷5=x,解得x=2.5,符合排列顺序;∴x的值为0、2.5或5.故选C.【总结升华】考查了确定一组数据的中位数,涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数举一反三:【变式】若数据3.2,3.4,3.2,x,3.9,3.7的中位数是3.5,则其众数是________,平均数是________.【答案】3.2;3.5;解:由题意3.43.5, 3.62xx+==,所以众数是3.2,平均数是3.5.2、(2016•广州)某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛,现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录,甲、乙、丙三个小组各项得分如下表: 小组 研究报告 小组展示 答辩 甲 91 80 78 乙 81 74 85 丙798390计算各小组的平均成绩,并从高分到低分确定小组的排名顺序:如果按照研究报告占40%,小组展示占30%,答辩占30%,计算各小组的成绩,哪个小组的成绩最高?【思路点拨】(1)运用求平均数公式()1231n x x x x n⋅⋅⋅++++即可求出三人的平均成绩,比较得出结果;(2)将三人的成绩按比例求出测试成绩,比较得出结果. 【答案与解析】解:(1)由题意可得, 甲组的平均成绩是:(分), 乙组的平均成绩是:(分), 丙组的平均成绩是:(分),从高分到低分小组的排名顺序是:丙>甲>乙; (2)由题意可得, 甲组的平均成绩是:(分), 乙组的平均成绩是:(分), 丙组的平均成绩是:(分),由上可得,甲组的成绩最高. 答案:甲组的成绩最高【总结升华】本题考查算术平均数、加权平均数、统计表,解题的关键是明确题意,找出所求问题需要的条件. 举一反三:【变式】小王在八年级第一学期的数学成绩分别为:测验一得89分,测验二得78分,测验三得85分,期中考试得90分,期末考试得87分,如果按照平时、期中、期末的10%、30%、60%量分,那么小王该学期的总评成绩应该为多少?【答案】解:小王平时测试的平均成绩897885843x ++==(分).所以8410%9030%8760%87.610%30%60%⨯+⨯+⨯=++(分). 答:小王该学期的总评成绩应该为87.6分.3、下表是七年级(2)班30名学生期中考试数学成绩表(已破损).已知该班学生期中考试数学成绩平均分是76分. (1)求该班80分和90分的人数分别是多少?(2)设此班30名学生成绩的众数为a ,中位数为b ,求a b +的值. 【答案与解析】解:(1)设该班得80分的有x 人,得90分的有y 人.根据题意和平均数的定义,得257330,763050260570780901003,x y x y +++++=⎧⎨⨯=⨯+⨯+⨯+++⨯⎩ 整理得13,89109,x y x y +=⎧⎨+=⎩ 解得8,5.x y =⎧⎨=⎩即该班得80分的有8人,得90分的有5人.(2)因为80分出现8次且出现次数最多.所以a =80,第15、16两个数均为80分,所以b =80,则a b +=80+80=160.【总结升华】本题为统计题,考查平均数、众数与中位数的意义.解题的关键是准确理解题意,建立等量关系. 举一反三:【变式】某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行了调查统计,并绘制了统计图表如图所示的统计图.零花钱数额(元) 5 10 15 20 学生个数(个)a15205请根据图表中的信息,回答以下问题.(1)求a 的值;(2)求这50名学生每人一周内的零花钱额的众数和平均数. 【答案】解:(1) a =50-15-20-5=10.(2)众数是15.平均数为150(5×10+10×15+15×20+20×5)=12.类型二、极差、方差和标准差4、(2015•徐州)某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.(1)根据图示填写下表;班级平均数(分)中位数(分)众数(分)九(1)85九(2)85 100(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差.【思路点拨】(1)观察图分别写出九(1)班和九(2)班5名选手的复赛成绩,然后根据中位数的定义和平均数的求法以及众数的定义求解即可;(2)在平均数相同的情况下,中位数高的成绩较好;(3)根据方差公式计算即可:s2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2](可简单记忆为“等于差方的平均数”)【答案与解析】解:(1)由图可知九(1)班5名选手的复赛成绩为:75、80、85、85、100,九(2)班5名选手的复赛成绩为:70、100、100、75、80,∴九(1)的平均数为(75+80+85+85+100)÷5=85,九(1)的中位数为85,九(1)的众数为85,把九(2)的成绩按从小到大的顺序排列为:70、75、80、100、100,∴九(2)班的中位数是80;班级平均数(分)中位数(分)众数(分)九(1)85 85 85九(2)85 80 100(2)九(1)班成绩好些.因为九(1)班的中位数高,所以九(1)班成绩好些.(回答合理即可给分)(3),【总结升华】本题考查了中位数、众数以及平均数的求法,同时也考查了方差公式,解题的关键是牢记定义并能熟练运用公式. 举一反三:【变式】某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,数据如下(单位:分)甲 95 82 88 81 93 79 84 78 乙8375808090859295(1)请你计算这两组数据的平均数、中位数;(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由. 【答案】解:1(9582888193798478)858x =+++++++=甲(分), 1(8375808090859295)858x =+++++++=乙(分).甲、乙两组数据的中位数分别为83分、84分. (2)由(1)知85x x ==甲乙分,所以22221[(9585)(8285)(7885)]35.58s =-+-++-=甲, 22221[(8385)(7585)(9585)]418s =-+-++-=乙.①从平均数看,甲、乙均为85分,平均水平相同; ②从中位数看,乙的中位数大于甲,乙的成绩好于甲;③从方差来看,因为x x =甲乙,22s s <乙甲,所以甲的成绩较稳定;④从数据特点看,获得85分以上(含85分)的次数,甲有3次,而乙有4次,故乙的成绩好些;⑤从数据的变化趋势看,乙后几次的成绩均高于甲,且呈上升趋势,因此乙更具潜力. 综上分析可知,甲的成绩虽然比乙稳定,但从中位数、获得好成绩的次数及发展势头等方面分析,乙具有明显优势,所以应派乙参赛更有望取得成绩. 类型三、统计思想5、我国是世界上严重缺水的国家之一.为了倡导“节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量(单位:t),并将调查结果绘成了如图所示的条形统计图.(1)求这10个样本数据的平均数、众数和中位数;(2)根据样本数据,估计小刚所在班50名同学家庭中月均用水量不超过7t 的约有多少户.【思路点拨】(1)根据条形统计图,即可知道每一名同学家庭中一年的月均用水量.再根据加权平均数的计算方法、中位数和众数的概念进行求解;(2)首先计算样本中家庭月均用水量不超过7t 的用户所占的百分比,再进一步估计总体. 【答案与解析】解:(1)观察条形图,可知这组样本数据的平均数是62 6.54717.52816.810x ⨯+⨯+⨯+⨯+⨯==.∴这组样本数据的平均数为6.8.∴在这组样本数据中,6.5出现了4次,出现的次数最多. ∴这组数据的众数是6.5.∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是 6.5,有6.5 6.56.52+=. ∴这组数据的中位数是6.5.(2)∵10户中月均用水量不超过7t 的有7户,有7503510⨯=. ∴根据样本数据,可以估计出小刚所在班50名同学家庭中月均用水量不超过7t 的约有35户.【总结升华】本题考查的是条形统计图的运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.掌握平均数、中位数和众数的计算方法.。
(完整版)八年级数学上册第二章实数知识点总结+练习

第二章:实数【无理数】1.定义:无限不循环小数的小数叫做无理数;注:它必须满足“无限”以及“不循环”这两个条件。
2.常见无理数的几种类型:(1)特殊意义的数,如:圆周率以及含有的一些数,如:2-,3等;ππππ(2)特殊结构的数(看似循环而实则不循环):如:2.010 010 001 000 01…(两个1之间依次多1个0)等。
(3)无理数与有理数的和差结果都是无理数。
如:2-是无理数π(4)无理数乘或除以一个不 为0的有理数结果是无理数。
如2,π(5)开方开不尽的数,如:等;应当要注意的是:带根号的数不一定是无理数,39,5,2如:等;无理数也不一定带根号,如:)9π3.有理数与无理数的区别:(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。
例:(1)下列各数:①3.141、②0.33333……、③、④π、⑤、⑥、⑦0.3030003000003…75-252.±32-…(相邻两个3之间0的个数逐次增加2)、其中是有理数的有____;是无理数的有___。
(填序号)(2)有五个数:0.125125…,0.1010010001…,-,,其中无理数有 ( )个π432【算术平方根】:1.定义:如果一个正数x 的平方等于a ,即,那么,这个正数x 就叫做a 的算术平方根,a x =2记为:“”,读作,“根号a”,其中,a 称为被开方数。
例如32=9,那么9的算术平方根a 是3,即。
39=特别规地,0的算术平方根是0,即,负数没有算术平方根00=2.算术平方根具有双重非负性:(1)若 有意义,则被开方数a 是非负数。
(2)算术平方根a 本身是非负数。
3.算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。
因此,算术平方根只有一个值,并且是非负数,它只表示为:;而平方根具有两a个互为相反数的值,表示为:。
八年级数学重点知识点(全)

文档初二数学知识点因式分解1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”. 3.公因式的确定:系数的最大公约数·相同因式的最低次幂.注意公式:a+b=b+a ; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3. 4.因式分解的公式:(1)平方差公式: a 2-b 2=(a+ b )(a- b );(2)完全平方公式: a 2+2ab+b 2=(a+b)2, a 2-2ab+b 2=(a-b)2. 5.因式分解的注意事项:(1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字; (2)使用因式分解公式时要特别注意公式中的字母都具有整体性; (3)因式分解的最后结果要求分解到每一个因式都不能分解为止; (4)因式分解的最后结果要求每一个因式的首项符号为正; (5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式.6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.7.完全平方式:能化为(m+n )2的多项式叫完全平方式;对于二次三项式x 2+px+q , 有“ x 2+px+q 是完全平方式 ⇔ q 2p 2=⎪⎭⎫⎝⎛”.分式1.分式:一般地,用A 、B 表示两个整式,A ÷B 就可以表示为B A 的形式,如果B 中含有字母,式子BA 叫文档做分式.2.有理式:整式与分式统称有理式;即 ⎩⎨⎧分式整式有理式.3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义. 4.分式的基本性质与应用:(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变; (2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;即 分母分子分母分子分母分子分母分子-=-=-=---(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式. 7.分式的乘除法法则:,bdacd c b a =⋅bcadc d b a d c b a =⋅=÷. 8.分式的乘方:为正整数)(n .b a b a n n n=⎪⎭⎫⎝⎛.9.负整指数计算法则: (1)公式: a 0=1(a ≠0), a -n=na 1(a ≠0); (2)正整指数的运算法则都可用于负整指数计算;(3)公式:nna b b a ⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛-,n m m n a b b a =--;(4)公式: (-1)-2=1, (-1)-3=-1.10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.文档11.最简公分母的确定:系数的最小公倍数·相同因式的最高次幂. 12.同分母与异分母的分式加减法法则: ;c b a c b c a ±=±bdbcad bd bc bd ad d c b a ±=±=±. 13.含有字母系数的一元一次方程:在方程ax+b=0(a ≠0)中,x 是未知数,a 和b 是用字母表示的已知数,对x 来说,字母a 是x 的系数,叫做字母系数,字母b 是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a 、b 、c 等表示已知数,用x 、y 、z 等表示未知数.14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序. 数的开方1.平方根的定义:若x 2=a,那么x 叫a 的平方根,(即a 的平方根是x );注意:(1)a 叫x 的平方数,(2)已知x 求a 叫乘方,已知a 求x 叫开方,乘方与开方互为逆运算. 2.平方根的性质:(1)正数的平方根是一对相反数; (2)0的平方根还是0; (3)负数没有平方根.文档3.平方根的表示方法:a 的平方根表示为a 和a -.注意:a 可以看作是一个数,也可以认为是一个数开二次方的运算.4.算术平方根:正数a 的正的平方根叫a 的算术平方根,表示为a .注意:0的算术平方根还是0. 5.三个重要非负数: a 2≥0 ,|a|≥0 ,a ≥0 .注意:非负数之和为0,说明它们都是0. 6.两个重要公式: (1)()a a 2=; (a ≥0)(2) ⎩⎨⎧<-≥==)0a (a )0a (a a a 2 .7.立方根的定义:若x 3=a,那么x 叫a 的立方根,(即a 的立方根是x ).注意:(1)a 叫x 的立方数;(2)a 的立方根表示为3a ;即把a 开三次方. 8.立方根的性质:(1)正数的立方根是一个正数; (2)0的立方根还是0; (3)负数的立方根是一个负数. 9.立方根的特性:33a a -=-.10.无理数:无限不循环小数叫做无理数.注意:π和开方开不尽的数是无理数. 11.实数:有理数和无理数统称实数.12.实数的分类:(1)⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数与无限循环小负有理数正有理数有理数实数0(2)⎪⎩⎪⎨⎧负实数正实数实数0 . 13.数轴的性质:数轴上的点与实数一一对应.14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆:414.12= 732.13= 236.25=.三角形几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)文档文档文档文档几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)一基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数.二常识:1.三角形中,第三边长的判断:另两边之差<第三边<另两边之和.2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,文档实用标准文案文档而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段. 3.如图,三角形中,有一个重要的面积等式,即:若CD ⊥AB ,BE ⊥CA ,则CD ·AB=BE ·CA. 4.三角形能否成立的条件是:最长边<另两边之和.5.直角三角形能否成立的条件是:最长边的平方等于另两边的平方和. 6.分别含30°、45°、60°的直角三角形是特殊的直角三角形.7.如图,双垂图形中,有两个重要的性质,即: (1) AC ·CB=CD ·AB ; (2)∠1=∠B ,∠2=∠A . 8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边. 10.等边三角形是特殊的等腰三角形.11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明. 12.符合“AAA ”“SSA ”条件的三角形不能判定全等.13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法.14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线.15.会用尺规完成“SAS ”、“ASA ”、“AAS ”、“SSS ”、“HL ”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图.17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图. ※18.几何重要图形和辅助线: (1)选取和作辅助线的原则:① 构造特殊图形,使可用的定理增加;ABCEDA BCD 12实用标准文案文档② 一举多得;③ 聚合题目中的分散条件,转移线段,转移角; ④ 作辅助线必须符合几何基本作图.(2)已知角平分线.(若BD 是角平分线)(3)已知三角形中线(若AD 是BC 的中线)(4) 已知等腰三角形ABC 中,AB=AC(5)其它文档。
(完整)人教版八年级数学上册知识整理与经典例题

八年级数学上册知识总结与相关练习第十一章全等三角形一、全等形能够完全重合的两个图形叫做全等形。
二、全等三角形1、概念:能够完全重合的两个三角形叫做全等三角形。
注意:(1)两个三角形全等,互相重合的顶点叫做对应点,互相重合的边叫做对应边,互相重合的角叫做对应角。
(2)“能够完全重合”是指在一定的叠放下,能够完全重合。
2、全等三角形的符号表示、读法△ABC与△A′B′C′全等记作△ABC≌△A′B′C′,“≌”读作“全等于” 。
注意:(1)两个三角形全等时,通常把对应顶点的字母写在对应的位置上,这样对应的两个字母为端点的线段是对应边;对应的三个字母表示的角是对应角(若用一个字母表示一个角亦是如此)。
(2)对应角夹的边是对应边,对应边的夹角是对应角。
(3)对应边、对应角是对两个三角形而言的,指两条边、两个角的关系,而对边、对角是指同一个三角形的边和角的位置关系,对边是与角相对的边,对角是与边相对的角。
3、全等三角形的性质全等三角形的对应边相等,对应角相等。
4、三角形全等的识别方法(1)三边对应相等的两个三角形全等,简写成“边边边”和“SSS” 。
(2)两边和他们的夹角对应相等的两个三角形全等,简写成“边角边”和“SAS”。
(3)两角和他们的夹边对应相等的两个三角形全等,简写成“角边角”和“ASA”。
(4)两个角和其中一个角的对边对应相等的两个三角形全等,简写成“角角边”和“AAS”。
(5)斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”和“HL”。
注意:SSA、AAA不能识别两个三角形全等,识别两个三角形全等时,必须有边的参与,如果有两边和一角对应相等时,角必须是两边的夹角。
5、三角形全等的证明思路找夹角——SAS(1)已知两边都是直角三角形——HL找另一边——SSS找边的对角——AAS(2)已知一边一角找夹角的另一边——SAS找夹边的另一角——ASA(3)已知两角找夹边——ASA找其他任意一边——AAS6、全等变换一个图形与另一个图形的形状一样,大小相等,只是位置不同,我们称这个图形是另一个图形的全等变换,三种基本全等变换:(1)旋转;(2)翻折;(3)平移。
北师大版八年级上册数学[平面直角坐标系(提高版) 知识点整理及重点题型梳理]
![北师大版八年级上册数学[平面直角坐标系(提高版) 知识点整理及重点题型梳理]](https://img.taocdn.com/s3/m/1551a115647d27284a73511d.png)
北师大版八年级上册数学重难点突破知识点梳理及重点题型巩固练习平面直角坐标系(提高)【学习目标】1.了解确定位置的方法,用有序数对或用方向和距离来确定物体的位置.2.理解平面直角坐标系概念,能正确画出平面直角坐标系.2.能在平面直角坐标系中,根据坐标描出点的位置、由点的位置写出它的坐标.3.会用确定坐标、描点、连线的方法在直角坐标系中作出简单图形.【要点梳理】要点一、确定位置的方法有序数对:把有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).要点诠释:有序,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,如电影院的座位是6排7号,可以写成(6,7)的形式,而(7,6)则表示7排6号.可以用有序数对确定物体的位置,也可以用方向和距离来确定物体的位置(或称方位). 要点二、平面直角坐标系与点的坐标的概念1.平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系.水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1).要点诠释:平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的.2.点的坐标平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b 分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标,记作:P(a,b),如图2.要点诠释:(1)表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用“,”隔开.(2)点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离.(3) 对于坐标平面内任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序数对是一一对应的.要点三、坐标平面1. 象限建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限,如下图.要点诠释:(1)坐标轴x轴与y轴上的点(包括原点)不属于任何象限.(2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方.2.各个象限内和坐标轴上点的坐标的符号特征要点诠释:(1)对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上.(2)坐标轴上点的坐标特征:x轴上的点的纵坐标为0;y轴上的点的横坐标为0.(3)根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况.【典型例题】类型一、确定物体的位置1.某军事行动中,对军队部署的方位,采用钟代码的方式来表示、例如,北偏东30°方向45千米的位置,与钟面相结合,以钟面圆心为基准,时针指向北偏东30°的时刻是1:00,那么这个地点就用代码010045来表示、按这种表示方式,南偏东30°方向78千米的位置,可用代码表示为__________.【思路点拨】根据题目的叙述可知:代码的前四位表示时间,前两位是几点,中间两位表示多少分,后两位是指距离,时间表示方向角,即正对钟表时按:上北,下南,左西,右东的方向,以钟面圆心为基准,时针指向所对应的时间.【答案】050078【解析】解:南偏东30°方向,时针正好指到5点00分,因而代码前4位是:0500,78千米的位置则代码的后两位是78.则代码是:050078.故答案填:050078.【总结升华】正确读懂题目的含义,是解决题目的关键,这一题目就是训练学生审题,理解题目的能力.类型二、平面直角坐标系与点的坐标的概念2.有一个长方形ABCD ,长为5,宽为3,先建立一个平面直角坐标系,在此坐标系下求出A ,B ,C ,D 各点的坐标.【答案与解析】解:本题答案不唯一,现列举三种解法.解法一:以点A 为坐标原点,边AB 所在的直线为x 轴,边AD 所在直线为y 轴,建立平面直角坐标系,如图(1):A (0,0),B (5,0),C (5,3),D (0,3).解法二:以边AB 的中点为坐标原点,边AB 所在的直线为x 轴,AB 的中点和CD 的中点所在的直线为y 轴,建立平面直角坐标系,如图(2):A (﹣2.5,0),B (2.5,0),C (2.5,3),D (-2.5,3).解法三:以两组对边中点所在直线为x 轴、y 轴,建立平面直角坐标系,如图(3): A (﹣2.5,-1.5),B (2.5,-1.5), C (2.5,1.5), D (-2.5,1.5).【总结升华】在不同平面直角坐标系中,长方形顶点坐标不同,说明位置的相对性与绝对性,即只要原点、x 轴和y 轴确定,每一个点的位置也确定,而一旦原点或x 轴、y 轴改变,每一个点的位置也相对应地改变.3.平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A(-3,-1),B(1,3),C(2,-3).求△ABC 的面积.【思路点拨】三角形的三边都不与坐标轴平行,根据平面直角坐标系的特点,可以将三角形的面积转化为梯形或长方形的面积减去多余的直角三角形的面积,即可求得此三角形的面积.【答案与解析】解:如图所示,过点A 、C 分别作平行于y 轴的直线与过B点平行于x 轴的直线交于点D 、E ,则四边形ACED 为梯形,根据点A(-3,-1)、B(1,3)、C(2,-3)可求得AD =4,CE =6,DB =4,BE =1,DE =5,所以△ABC 的面积为:111()222ABC S AD CE DE AD DB CE BE =+--△ 111(46)5446114222=+⨯-⨯⨯-⨯⨯=. 【总结升华】点的坐标能体现点到坐标轴的距离,解决平面直角坐标系中的三角形面积问题,就是要充分利用这一点,将不规则图形转化为规则图形,再利用相关图形的面积计算公式求解.举一反三: 【变式】(2015春•莘县期末)在如图所示的正方形网格中,每个小正方形的单位长度均为1,△ABC 的三个顶点恰好是正方形网格的格点.(1)写出图中所示△ABC 各顶点的坐标.(2)求出此三角形的面积.【答案】解:(1)A(3,3),B((﹣2,﹣2),C((4,﹣3);(2)如图所示:S△ABC=S矩形DECF﹣S△BEC﹣S△ADB﹣S△AFC==.类型三、坐标平面及点的特征4.(2016春•沂水县期中)已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.【思路点拨】根据点的坐标特征一一求解.【答案与解析】解:(1)∵点P(a﹣2,2a+8),在x轴上,∴2a+8=0,解得:a=﹣4,故a﹣2=﹣4﹣2=﹣6,则P(﹣6,0);(2))∵点P(a﹣2,2a+8),在y轴上,∴a﹣2=0,解得:a=2,故2a+8=2×2+8=12,则P(0,12);(3)∵点Q的坐标为(1,5),直线PQ∥y轴;,∴a﹣2=1,解得:a=3,故2a+8=14,则P(1,14);(4)∵点P到x轴、y轴的距离相等,∴a﹣2=2a+8或a﹣2+2a+8=0,解得:a1=﹣10,a2=﹣2,故当a=﹣10则:a﹣2=﹣12,2a+8=﹣12,则P(﹣12,﹣12);故当a=﹣2则:a﹣2=﹣4,2a+8=4,则P(﹣4,4).综上所述:P(﹣12,﹣12),(﹣4,4).【总结升华】此题主要考查了点的坐标性质,包括坐标轴上的点的坐标特征,平行于坐标轴的点的特征,以及到坐标轴的距离相等的点的特征,考察很全面.举一反三:【变式】若点C(x,y)满足x+y<0,xy>0,则点C在第_____象限.【答案】三.5.一个正方形的一边上的两个顶点O、A的坐标为O(0,0),A(4,0),则另外两个顶点的坐标是什么.【思路点拨】有点的坐标说明已有确定的平面直角坐标系,但正方形的另两个顶点位置不确定,所以应按不同位置分类去求.【答案与解析】解:不妨设另外两个顶点为B、C,因为OABC是正方形,所以OC=BA=BC=OA=4.且OC∥AB,OA∥BC,则:(1)当顶点B在第一象限时,如图所示,显然 B点坐标为(4,4),C点坐标为(0,4).(2)当顶点B在第四象限时,如图所示,显然B点坐标为(4,-4),C点坐标为(0,-4).【总结升华】在解答这类问题时,我们千万不要忽略了分类讨论而导致错误.举一反三:【变式】点A(m,n)到x轴的距离为3,到y轴的距离为2,则点A的坐标为________.【答案】(2,3)或(-2,3)或(-2,-3)或(2,-3).。
人教版数学八年级上册重点题型

人教版数学八年级上册重点题型一、三角形全等证明题型。
题型1:已知:在△ABC和△DEF中,AB = DE,∠A = ∠D,AC = DF。
求证:△ABC≌△DEF。
解析:在△ABC和△DEF中,已知AB = DE,∠A = ∠D,AC = DF。
根据三角形全等判定定理中的“边角边”(SAS),即两边及其夹角对应相等的两个三角形全等。
所以可以得出△ABC≌△DEF。
题型2:如图,在△ABC中,AD是BC边上的中线,E是AD上一点,且BE = AC,延长BE 交AC于F。
求证:∠AEF = ∠EAF。
解析:延长AD到G,使DG = AD,连接BG。
因为AD是BC边上的中线,所以BD = CD。
在△BDG和△CDA中,BD = CD,∠BDG=∠CDA(对顶角相等),DG = DA。
所以△BDG≌△CDA(SAS)。
则BG = AC,∠G = ∠EAF。
又因为BE = AC,所以BE = BG,所以∠G = ∠AEF。
所以∠AEF = ∠EAF。
二、等腰三角形性质与判定题型。
题型3:已知等腰三角形的一个内角为70°,求这个等腰三角形的另外两个内角的度数。
解析:当70°角为顶角时,设底角为x。
根据等腰三角形两底角相等和三角形内角和为180°,可得2x+70° = 180°,解得x = 55°。
所以另外两个内角都是55°。
当70°角为底角时,另一个底角也是70°,则顶角为180° - 70°×2 = 40°。
所以另外两个内角为70°和40°。
题型4:在△ABC中,AB = AC,D是AC上一点,且AD = BD = BC。
求∠A的度数。
解析:设∠A=x。
因为AD = BD,所以∠ABD = ∠A=x。
则∠BDC = ∠A+∠ABD = 2x。
又因为BD = BC,所以∠C = ∠BDC = 2x。
人教版八年级数学上册(全册)单元知识点及重点汇总

人教版八年级数学上册(全册)单元知识点及重点汇总第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质 1:三角形的一个外角等于和它不相邻的两个内角的和.性质 2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:n 边形的内角和等于(n − 2) ·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n 边形的一个顶点出发可以引(n − 3) 条对角线,把多边形分成(n − 2) 个三角形.② n 边形共有n(n − 3)条对角线. 2第十二章全等三角形一、知识框架:二、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:⑴边边边(SSS ):三边对应相等的两个三角形全等.⑵边角边(SAS ):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA ):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS ):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL ):斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.第十三章轴对称一、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.⑶关于坐标轴对称的点的坐标性质①点P (x, y) 关于x 轴对称的点的坐标为P ' (x, −y) .②点P (x, y) 关于y 轴对称的点的坐标为P " (−x, y) .⑷等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1 条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3 条).3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.系数,同字 式乘以多项 整式乘法 乘法法则整式除法因式分解②三个角都相等的三角形是等边三角形.③有一个角是 60°的等腰三角形是等边三角形.4. 基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.第十四章 整式的乘除与分解因式一、知识框架:二、知识概念:1. 基本运算:⑴同底数幂的乘法: a m ⨯ a n = a m +n⑵幂的乘方: (a m )n = a mn⑶积的乘方: (ab )n= a n b n2. 整式的乘法: ⑴单项式⨯单项式:系数⨯ 等边三角形的性质母⨯同字母,不同字母为积的因式. ⑵单项式⨯多项式:用单项 式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加.3. 计算公式:⑴平方差公式: (a − b )⨯(a + b ) = a 2 − b 2⑵完全平方公式: (a + b )2 = a 2 + 2ab + b 2 ; (a − b )2= a 2 − 2ab + b 24. 整式的除法:⑴同底数幂的除法: a m ÷ a n = a m −n⑵单项式÷ 单项式:系数÷ 系数,同字母÷ 同字母,不同字母作为商的因式.⑶多项式÷ 单项式:用多项式每个项除以单项式后相加.⑷多项式÷ 多项式:用竖式.5. 因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.6. 因式分解方法:⑴提公因式法:找出最大公因式.⑵公式法:①平方差公式: a 2 − b 2 = (a + b )(a − b )②完全平方公式: a 2 ± 2ab + b 2 = (a ± b )2③立方和: a 3 + b 3 = (a + b )(a 2 − ab + b 2 )④立方差: a 3 − b 3 = (a − b )(a 2 + ab + b 2 )⑶十字相乘法: x 2 + ( p + q ) x + pq = (x + p )(x + q )⑷拆项法⑸添项法一、知识框架 : 第十五章 分式二、知识概念:1. 分式:形如 A , A 、B 是整式, B 中含有字母且 B 不等于 0 的整式叫做分式.其中 A 叫做分式的B分子, B 叫做分式的分母.2. 分式有意义的条件:分母不等于 0.3. 分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为 0 的整式,分式的值不变.4. 约分:把一个分式的分子和分母的公因式(不为 1 的数)约去,这种变形称为约分.b b 5. 通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6. 最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7. 分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为: a ± b = a ± b c c c⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a ± c = ad ± cbb d bd⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为: a ⨯ c = ac b d bd⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为: a ÷ c = a ⨯ d = ad b d b c bc⎛ a ⎫n⑸分式的乘方法则:分子、分母分别乘方.用字母表示为: ⎪ ⎝ ⎭ = a nbn 8. 整数指数幂:⑴ a m ⨯ a n = a m +n ( m 、n 是正整数)⑵(a m )n= a mn ( m 、n 是正整数) ⑶(ab )n= a n b n ( n 是正整数)⑷ a m ÷ a n = a m −n ( a ≠ 0 , m 、n 是正整数, m > n )⎛ a ⎫n ⑸ ⎪ ⎝ ⎭ a n = ( n 是正整数) b n ⑹ a − n = 1 a n( a ≠ 0 ,n 是正整数) 9. 分式方程的意义:分母中含有未知数的方程叫做分式方程.10. 分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程); ②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).。
八年级上册数学第一单元重点题型

八年级上册数学第一单元重点题型一、三角形三边关系题型。
1. 已知三角形的两边长分别为3和5,第三边为偶数,则第三边长为多少?- 解析:设第三边的长为x,根据三角形三边关系,两边之和大于第三边,两边之差小于第三边。
所以5 - 3<x<5+3,即2<x<8。
因为第三边为偶数,所以x = 4或6。
2. 若三角形三边长分别为2,x,13,且x为正整数,则这样的三角形个数为多少?- 解析:根据三角形三边关系,13 - 2<x<13 + 2,即11<x<15。
因为x为正整数,所以x可以为12、13、14,这样的三角形有3个。
二、三角形内角和与外角性质题型。
3. 在△ABC中,∠A=50°,∠B = 60°,则∠C的外角等于多少度?- 解析:三角形的一个外角等于与它不相邻的两个内角之和。
所以∠C的外角=∠A+∠B = 50°+60° = 110°。
4. 已知在△ABC中,∠A:∠B:∠C = 1:2:3,求三角形各内角的度数。
- 解析:设∠A=x,则∠B = 2x,∠C=3x。
因为三角形内角和为180°,所以x + 2x+3x = 180°,6x = 180°,x = 30°。
所以∠A = 30°,∠B = 60°,∠C = 90°。
5. 如图,在△ABC中,∠B = 40°,∠ACD = 100°,则∠A等于多少度?- 解析:因为∠ACD是△ABC的外角,所以∠ACD=∠A + ∠B。
所以∠A=∠ACD - ∠B = 100° - 40° = 60°。
三、三角形的高、中线与角平分线题型。
6. 已知AD是△ABC的中线,若BC = 10cm,则BD等于多少?- 解析:因为AD是△ABC的中线,中线是连接三角形顶点和它的对边中点的线段,所以BD=(1)/(2)BC。
八年级数学上册第十二章全等三角形考点题型与解题方法(带答案)

八年级数学上册第十二章全等三角形考点题型与解题方法单选题1、如图,已知△ABC≌△DAE,BC=2,DE=5,则CE的长为()A.7B.3.5C.3D.2答案:C分析:利用全等三角形的性质求解即可.解:∵△ABC≌△DAE,∴AC=DE=5,AE=BC=2,∴CE=AC-AE=3,故选C.小提示:本题主要考查了全等三角形的性质,熟知全等三角形对应边相等是解题的关键.2、如图,AD平分∠BAC,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF.则下列结论中:①AD是△ABC的高;②AD是△ABC的中线;③ED=FD;④AB=AE+BF.其中正确的个数有()A.4个B.3个C.2个D.1个答案:A分析:过点D作DG⊥AB于点G,由角平分线的定义及平行线的性质可得∠ADB=90°,然后可证△ADC≌△ADB,△DEC≌△DFB,进而问题可求解.解:∵AD平分∠BAC,BC平分∠ABF,∴∠CAD=∠BAD=12∠CAB,∠ABC=∠FBC=12∠ABF,∵BF∥AC,∴∠CAB+∠ABF=180°,∴∠DAB+∠ABD=90°,即∠ADB=90°,∴AD⊥BC,即AD是△ABC的高,故①正确;∵∠ADB=∠ADC=90°,AD=AD,∴△ADC≌△ADB(ASA),∴DB=DC,即AD是△ABC的中线,故②正确;∵BF∥AC,∴∠CED=∠F,∵∠CDE=∠BDF,∴△DEC≌△DFB(AAS),∴ED=FD,故③正确;过点D作DG⊥AB于点G,如图所示:∵AD平分∠BAC,BC平分∠ABF,∠AED=∠F=90°,∴DE=DG=DF,∵AD=AD,∴△AED≌△AGD(HL),∴AE=AG,同理可知BF=BG,∵AB=AG+BG,∴AB=AE+BF,故④正确;综上所述:正确的个数有4个;故选A.小提示:本题主要考查全等三角形的性质与判定、平行线的性质及角平分线的性质,熟练掌握全等三角形的性质与判定、平行线的性质及角平分线的性质是解题的关键.3、墨墨想在纸上作∠A1O1B1等于已知的∠AOB,步骤有:①画射线O1M;②以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D;③以点A1为圆心,以CD为半径画弧,与已画的弧交于点B1,作射线O1B1;④以点O1为圆心,以OC为半径画弧,交O1M于点A1.在上述的步骤中,作∠A1O1B1的正确顺序应为()A.①④②③B.②③④①C.①②④③D.①③④②答案:C分析:根据作一个角等于已知角的方法,选择合适的顺序即可.解:根据作一个角等于已知角的步骤可知,正确的顺序是①②④③故选C.小提示:此题考查了尺规作图-作一个角等于已知角,熟练掌握其作法步骤过程是解题的关键.4、如图,已知AB=AD,BC=DE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,则∠EGF的度数为()A.120°B.135°C.115°D.125°答案:C分析:由已知可得△ABC≌△ADE,故有∠BAC=∠DAE,由∠EAB=120°及∠CAD=10°可求得∠AFB的度数,进而得∠GFD的度数,在△FGD中,由三角形的外角等于不相邻的两个内角的和即可求得∠EGF的度数.在△ABC和△ADE中{AB=AD ∠B=∠D BC=DE∴△ABC≌△ADE(SAS)∴∠BAC=∠DAE∵∠EAB=∠BAC+∠DAE+∠CAD=120°∴∠BAC=∠DAE=12×(120°−10°)=55°∴∠BAF=∠BAC+∠CAD=65°∴在△AFB中,∠AFB=180°-∠B-∠BAF=90°∴∠GFD=90°在△FGD中,∠EGF=∠D+∠GFD=115°故选:C小提示:本题考查了三角形全等的判定和性质、三角形内角和定理,关键求得∠BAC的度数.5、如图,四边形ABCD中,AC、BD为对角线,且AC=AB,∠ACD=∠ABD,AE⊥BD于点E,若BD=6,CD=4.则DE的长度为()A.2B.1C.1.4D.1.6答案:B分析:过点A作AF⊥CD交CD的延长线于点F,根据AAS证明△AFC≌△AEB,得到AF=AE,CF=BE,再根据HL 证明Rt△AFD≌Rt△AED,得到DF=DE,最后根据线段的和差即可求解.解:过点A作AF⊥CD交CD的延长线于点F,∴∠AFC=90°,∵AE⊥BD,∴∠AFC=∠AED=∠AEB=90°,在△AFC和△AEB中,{∠AFC=AEB∠ACF=∠ABEAC=AB,∴△AFC≌△AEB(AAS),∴AF=AE,CF=BE,在Rt△AFD和Rt△AED中,{AF=AEAD=AD,∴Rt△AFD≌Rt△AED(HL),∴DF=DE,∵CF=CD+DF,BE=BD-DE,CF=BE,∴CD+DF=BD-DE,∴2DE=BD-CD,∵BD=6,CD=4,∴2DE=2,∴DE=1,故选:B.小提示:此题考查了全等三角形的判定与性质,根据AAS证明△AFC≌△AEB及根据HL证明Rt△AFD≌Rt△AED是解题的关键.6、如图,在△ADE和△ABC中,∠E=∠C,DE=BC,EA=CA,过A作AF⊥DE,垂足为F,DE交CB的延长线于点G,连接AG.四边形DGBA的面积为12,AF=4,则FG的长是()A.2B.2.5C.3D.103答案:C分析:过点A作AH⊥BC于H,证△ABC≌△AED,得AF=AH,再证Rt△AFG≌Rt△AHG(HL),同理Rt△ADF≌Rt△ABH,得S四边形DGBA=S四边形AFGH=12,然后求得Rt△AFG的面积=6,进而得到FG的长.如图所示,过点A作AH⊥BC于H,在△ABC与△ADE中,{AC=AE∠C=∠E BC=DE,∴△ABC≌△ADE(SAS),∴AD=AB,S△ABC=S△AED,又∵AF⊥DE,∴12×DE×AF=12×BC×AH,∴AF=AH,∵AF⊥DE,AH⊥BC,∴∠AFG=∠AHG=90°,在Rt△AFG和Rt△AHG中,,{AG=AGAF=AH∴Rt△AFG≌Rt△AHG(HL),同理:Rt△ADF≌Rt△ABH(HL),∴S四边形DGBA=S四边形AFGH=12,∵Rt△AFG≌Rt△AHG,∴SRt△AFG=6,∵AF=4,∴1×FG×4=6,2解得:FG=3.故选:C.小提示:本题考查全等三角形的判定与性质,综合运用各知识点是解题的基础,作出合适的辅助线是解此题的关键.7、如图,已知AB=AD,AE=AC=BC,∠1=∠2,∠C=40°,则∠ADE的度数为()A.40°B.65°C.70°D.75°答案:C分析:首先根据已知条件证明△ABC≅△ADE,再利用等腰三角形求角度即可.解:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,∴∠BAC=∠DAE,在△ABC与△ADE中,∵{AB=AD∠BAC=∠DAEAC=AE,∴△ABC≅△ADE(SAS),∴∠C=∠E=40°,AE=BC=DE,∴∠ADE=∠EAD=12(180°−∠E)=12(180°−40°)=70°,故选:C.小提示:本题主要考查三角形全等的证明,利用已知条件进行证明是解题的关键.8、小明不慎将一块三角形的玻璃摔碎成如图的四块,你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块答案:B分析:根据题意应先假定选择哪块,再对应三角形全等判定的条件进行验证.解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.小提示:本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.9、如图,一块玻璃被打碎成三块,如果要去玻璃店配一块完全一样的玻璃,那么最合理的办法是()A.带①去B.带②去C.带③去D.带①②③去答案:C分析:根据三角形的定义,不在同一平面的三条线段,首尾相连组成的图形是三角形,即可求出答案.解:A选项的①上下两边可以无限延伸,无法确定③的大小,不符合题意;B选项的②上下两边可以无限延伸,能确定①的大小,无法确定③的大小,不符合题意;C选项的③上下两边可以延伸,能确定①、②的大小,符合题意,故选C;D选项不符合题意,只需带③即可配一块完全相同的玻璃.故选:C.小提示:本题主要考查三角形的定义,理解和识记三角形的定义,即可求出答案.10、如图,D是AB上一点,DF交AC于点E,DE=FE,FC//AB,若AB=4,CF=3,则BD的长是( )A.0.5B.1C.1.5D.2答案:B分析:根据平行线的性质,得出∠A=∠FCE,∠ADE=∠F,根据全等三角形的判定,得出ΔADE≅ΔCFE,根据全等三角形的性质,得出AD=CF,根据AB=4,CF=3,即可求线段DB的长.∵CF//AB,∴∠A=∠FCE,∠ADE=∠F,在ΔADE和ΔFCE中{∠A=∠FCE∠ADE=∠FDE=FE,∴ΔADE≅ΔCFE(AAS),∴AD=CF=3,∵AB=4,∴DB=AB−AD=4−3=1.故选B.小提示:本题考查了全等三角形的性质和判定,平行线的性质的应用,能判定ΔADE≅ΔFCE是解此题的关键.填空题11、如图所示,△ABC与△ADE全等,则∠B的对应角是_________,AC的对应边是_________.答案:∠E AD首先确定三角形的对应顶点,再将对应顶点放在对应位置写出两个三角形的全等关系,即△ABC≌△AED,然后按照对应关系即可写出对应边和对应角,∠B的对应角为∠E,AC的对应边为AD.∠E AD12、如图,在Rt△ABC中,∠C=90°,AC=AE,DE⊥AB,若∠BDE=46°,则∠DAE=_______.答案:23°##23度分析:根据题目所给条件,可以得到∠CDE的度数,再根据题目所给条件以及角平分线的判定定理,可以得到DA是∠CDE的角平分线,即可得到∠ADE,再根据△ADE是直角三角形,从而得到最后的答案.解:∵∠BDE=46°,∴∠CDE=180°−∠BDE=180°−46°=134°,∵DE⊥AB,∴∠DEA=90°,又∵AC=AE,∠DEA=90°,∠C=90°,∴DA是∠CDE的角平分线,∴∠ADE=12∠CDE=12×134°=67°,∴在Rt△ADE中,∠DAE=180°−∠DEA−∠ADE=180°−∠90°−67°=23°,所以答案是:23°.小提示:本题考查的是三角形的内角和定理,角平分线的判定定理与性质,解答本题的关键是熟练掌握角平分线的性质和判定定理.13、如图所示的图案是由全等的图形拼成的,其中AD=0.5,BC=1,则AF=______.答案:6分析:由图形知,所示的图案是由梯形ABCD和七个与它全等的梯形拼接而成,根据全等则重合的性质求解即可.解:由题可知,图中有8个全等的梯形,所以AF=4AD+4BC=4×0.5+4×1=6.所以答案是:6.小提示:考查了全等图形的性质,本题利用了全等形图形一定重合的性质求解,做题的关键是找准相互重合的对应边.14、如图,在矩形ABCD中,AB=8cm,AD=12cm,点P从点B出发,以2cm/s的速度沿BC边向点C运动,到达点C停止,同时,点Q从点C出发,以v cm/s的速度沿CD边向点D运动,到达点D停止,规定其中一个动点停止运动时,另一个动点也随之停止运动.当v为_____时,△ABP与△PCQ全等.答案:2或83分析:可分两种情况:①ΔABP≅ΔPCQ得到BP=CQ,AB=PC,②ΔABP≅ΔQCP得到BA=CQ,PB= PC,然后分别计算出t的值,进而得到v的值.解:①当BP=CQ,AB=PC时,ΔABP≅ΔPCQ,∵AB=8cm,∴PC=8cm,∴BP=12−8=4(cm),∴2t=4,解得:t=2,∴CQ=BP=4cm,∴v×2=4,解得:v=2;②当BA=CQ,PB=PC时,ΔABP≅ΔQCP,∵PB=PC,∴BP=PC=6cm,∴2t=6,解得:t=3,∵CQ=AB=8cm,∴v×3=8,,解得:v=83时,ΔABP与ΔPQC全等,综上所述,当v=2或83.所以答案是:2或83小提示:主要考查了全等三角形的性质,矩形的性质,解本题的关键是熟练掌握全等三角形的判定与性质.15、如图,AD是△ABC的角平分线,若△ABC的面积是48,且AC=16,AB=8,则点D到AB的距离是______.答案:4分析:过D点作DE⊥AB于E,DF⊥AC于F,如图,根据角平分线的性质得到SΔABD+SΔACD=SΔABC,再利用三角形面积公式得到12×8×DE+12×DE×16=48,然后求出DE即可.解:过D点作DE⊥AB于E,DF⊥AC于F,如图,∵AD是ΔABC的角平分线,∴DE=DF,∵SΔABD+SΔACD=SΔABC,∴12AB⋅DE+12AC⋅DF=48,即12×8×DE+12×DE×16=48,∴DE=4,即点D到AB的距离为4.所以答案是:4.小提示:本题考查了角平分线的性质,解题的关键是掌握角的平分线上的点到角的两边的距离相等,也考查了三角形面积.解答题16、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN 绕点C 旋转到图①的位置时,求证:DE =AD +BE ;(2)当直线MN 绕点C 旋转到图②的位置时,试问DE ,AD ,BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.(3)当直线MN 绕点C 旋转到图③的位置时,试问DE ,AD ,BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.答案:(1)证明见解析(2)AD =BE +DE ,证明见解析(3)BE =AD +DE ,证明见解析分析:(1)先用AAS 证明△ADC ≌△CEB ,得AD =CE ,BE =CD ,进而得出DE =BE +CD ;(2)先证明△ACD ≌△CBE (AAS ),可得AD =CE ,CD =BE ,进而得出AD =CD +DE =BE +DE ;(3)证明过程同(2),进而可得BE =AD +DE .(1)证明:由题意知,∠BCA =90°,∠ADC =∠BEC =90°,∴∠ACD +∠BCE =90°,∠BCE +CBE =90°,∴∠ACD =∠CBE ,在△ADC 和△CEB 中,∵{∠ADC =∠CEB =90°∠ACD =∠CBE AC =BC,∴△ADC ≌△CEB (AAS ),∴AD =CE ,BE =CD ,∴DE =DC +CE =BE +AD .(2)解:AD=BE+DE.证明:∵AD⊥MN,BE⊥MN,∴∠ADC=∠BEC=90°,∴∠ACD+∠BCD=90°,∠BCD+∠CBE=90°,∴∠ACD=∠CBE,在△ABD和△ACE中,∵{∠ADC=∠CEB∠ACD=∠CBEAC=BC,∴△ACD≌△CBE(AAS),∴AD=CE,CD=BE,∴AD=CD+DE=BE+DE.(3)解:BE=AD+DE.证明:∵AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠BEC=90º,∴∠EBC+∠BCE=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∴∠ACD=∠EBC,在△ACD和△CBE中,∵{∠ADC=∠CEB∠ACD=∠CBEAC=BC,∴△ACD≌△CBE(AAS),∴BE=CD,AD=CE,∴BE=CE+DE=AD+DE,∴BE=AD+DE.小提示:本题考查了全等三角形的判定与性质.解题的关键在于找出证明三角形全等的条件.17、如图,已知点C是AB的中点,CD//BE,且CD=BE.(1)求证:△ACD≌△CBE.(2)若∠A=87°,∠D=32°,求∠B的度数.答案:(1)见解析;(2)61∘分析:(1)根据SAS证明△ACD≌△CBE;(2)根据三角形内角和定理求得∠ACD,再根据三角形全等的性质得到∠B=∠ACD.(1)∵C是AB的中点,∴AC=CB,∵CD//BE,∴∠ACD=∠CBE,在△ACD和△CBE中,{AC=CB∠ACD=∠CBECD=BE,∴ΔACD≅ΔCBE;(2)∵∠A=87°,∠D=32°,∴∠ACD=180°−∠A−∠D=180°−87°−32°=61°,又∵ΔACD≅ΔCBE,∴∠B=∠ACD=61°.小提示:考查了全等三角形的判定和性质,解题关键是根据SAS证明△ACD≌△CBE.18、阅读材料并完成习题:在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题.请看这个例题:如图1,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若AC=2cm,求四边形ABCD的面积.解:延长线段CB到E,使得BE=CD,连接AE,我们可以证明△BAE≌△DAC,根据全等三角形的性质得AE=AC=2,∠EAB=∠CAD,则∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S四边形ABCD=S△ABC+S△ADC=S△ABC+S△ABE=S△AEC,这样,四边形ABCD的面积就转化为等腰直角三角形EAC面积.(1)根据上面的思路,我们可以求得四边形ABCD的面积为 cm2.(2)请你用上面学到的方法完成下面的习题.如图2,已知FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,求五边形FGHMN的面积.答案:(1)2;(2)4分析:(1)根据题意可直接求等腰直角三角形EAC的面积即可;(2)延长MN到K,使NK=GH,连接FK、FH、FM,由(1)易证△FGH≌△FNK,则有FK=FH,因为HM=GH+MN易证△FMK≌△FMH,故可求解.(1)由题意知S四边形ABCD =S△ABC+S△ADC=S△ABC+S△ABE=S△AEC=12AC2=2,故答案为2;(2)延长MN到K,使NK=GH,连接FK、FH、FM,如图所示:∵ FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,∴∠FNK=∠FGH=90°,∴△FGH≌△FNK,∴FH=FK,又∵FM=FM,HM=KM=MN+GH=MN+NK,∴△FMK≌△FMH,∴MK=FN=2cm,∴S五边形FGHMN =S△FGH+S△HFM+S△MFN=2S△FMK=2×12MK⋅FN=4.小提示:本题主要考查全等三角形的性质与判定,关键是根据截长补短法及割补法求面积的运用.。
八年级上册数学总复习

八年级上册数学总复习初二上册数学全册第十一章全等三角形综合复习人教新课标版1.全等三角形的概念及性质;2.三角形全等的判定;3.角平分线的性质及判定。
知识点一:证明三角形全等的思路通过对问题的分析,将解决的问题归结到证明某两个三角形的全等后,采用哪个全等判定定理加以证明,可以按下图思路进行分析:找夹角SAS已知两边找第三边SSS找直角HL边为角的对边找任一角AAS找夹角的另一边SAS已知一边一角边为角的邻边找夹边的另一角ASA找边的对角AAS找夹边ASA已知两角找任一对边AAS和切记:“有三个角对应相等”“有两边及其中一边的对角对应相等”的两个三角形不一定全等。
例1.如图,A,F,E,B四点共线,ACCE,,AEBF,ACBD。
求证:ACFBDE。
BDDF知识点二:构造全等三角形例2.例3.如图,在ABC中,ABBC,ABC90F为AB延长线上一点,点E在BC上,BEBF如图,在ABC中,BE是∠ABC的平分线,ADBE,垂足为D。
求证:21C。
,连接AE,EF和CF。
求证:AECF。
知识点三:常见辅助线的作法1.连接四边形的对角线例4.如图,AB//CD,AD//BC,求证:ABCD。
2.作垂线,利用角平分线的知识例5.如图,AP,CP分别是ABC外角MAC和NCA的平分线,它们交于点P。
求证:BP为MBN的平分线。
例6.如图,D是ABC的边BC上的点,且CDAB,ADBBAD,AE是ABD的中线。
求证:AC2AE。
4.“截长补短”构造全等三角形例7.如图,在ABC中,ABAC,12,P为AD上任意一点。
求证:ABACPBPC。
解答过程:法一:在AB上截取ANAC,连接PN在APN与APC中ANAC12APAPAPNAPCPNPC(SAS)在BPN中,PBPNBNPBPCABAC,即AB-AC>PB-PC。
法二:延长AC至M,使AMAB,连接PM在ABP与AMP中ABAM12APAPABPAMP(SAS)PBPM在PCM中,CMPMPCABACPBPC。
部编数学八年级上册期末真题必刷常考60题(34个考点专练)(解析版)含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!期末真题必刷常考60题(34个考点专练)一.幂的乘方与积的乘方(共1小题)1.(2022秋•民权县期末)如果a m=3,a n=5,那么a2m+n= 45 .【分析】分别根据幂的乘方以及同底数幂的乘法法则解答即可.【解答】解:∵a m=3,a n=5,∴a2m+n=(a m)2×a n=32×5=9×5=45.故答案为:45.【点评】本题主要考查了同底数幂的乘法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.二.单项式乘单项式(共1小题)2.(2022秋•花都区期末)计算a2•(﹣6ab)的结果是 ﹣2a3b .【分析】根据单项式乘单项式的运算法则进行求解即可.【解答】解:a2•(﹣6ab)=×(﹣6)a2+1b=﹣2a3b.故答案为:﹣2a3b.【点评】本题主要考查单项式乘单项式,解答的关键是对单项式乘单项式的运算法则的掌握.三.单项式乘多项式(共1小题)3.(2022秋•平昌县期末)先化简,再求值:3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2.【分析】首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.【解答】解:3a(2a2﹣4a+3)﹣2a2(3a+4)=6a3﹣12a2+9a﹣6a3﹣8a2=﹣20a2+9a,当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.【点评】本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.四.多项式乘多项式(共2小题)4.(2022秋•泸县校级期末)若(x﹣3)(x+5)=x2+mx﹣15,则m的值为( )A.﹣8B.2C.﹣2D.﹣5【分析】利用多项式乘以多项式法则展开,再根据对应项的系数相等列式求解即可.【解答】解:∵(x﹣3)(x+5)=x2+2x﹣15=x2+mx﹣15,∴m=2.故选:B.【点评】本题主要考查了多项式乘以多项式,恒等原理等,熟练掌握多项式乘以多项式的法则,恒等的两个代数式对应项系数相等,是求解的关键.5.(2022秋•忻府区期末)如图,从一个长方形铁皮中剪去一个小正方形,长方形的长为(2a+b)米,宽为(a+b)米,正方形的边长为a米.(1)求剩余铁皮的面积;(2)当a=3,b=2时,求剩余铁皮的面积.【分析】(1)用长方形的面积减去正方形的面积进行计算即可得出答案.(2)将a=3,b=2代入(1)中所求式子即可得出答案.【解答】解:(1)∵从一个长方形铁皮中剪去一个小正方形,∴剩余铁皮的面积为:(a+b)(2a+b)﹣a×a,化简得:a2+3ab+b2,即剩余铁皮的面积为a2+3ab+b2平方米;(2)将a=3,b=2代入a2+3ab+b2,得32+3×3×2+22=31,∴剩余铁皮的面积为31平方米.【点评】本题考查了单项式乘多项式的实际应用,解题关键在于正确计算.五.完全平方公式的几何背景(共2小题)6.(2022秋•宁乡市期末)【阅读理解】若x满足(32﹣x)(x﹣12)=100,求(32﹣x)2+(x﹣12)2的值.解:设32﹣x=a,x﹣12=b,则(32﹣x)(x﹣12)=a•b=100,a+b=(32﹣x)+(x﹣12)=20,(32﹣x)2+(x﹣12)2=a2+b2=(a+b)2﹣2ab=202﹣2×100=200,我们把这种方法叫做换元法.利用换元法达到简化方程的目的,体现了转化的数学思想.【解决问题】(1)若x满足(100﹣x)(x﹣95)=5,则(100﹣x)2+(x﹣95)2= 15 ;(2)若x满足(2023﹣x)2+(x﹣2000)2=229,求(2023﹣x)(x﹣2000)的值;(3)如图,在长方形ABCD中,AB=24cm,点E,F是边BC,CD上的点,EC=12cm,且BE=DF=xcm,分别以FC,CB为边在长方形ABCD外侧作正方形CFGH和CBMN,若长方形CBQF的面积为320cm2,求图中阴影部分的面积和.【分析】(1)根据阅读材料的方法,设100﹣x=a,x﹣95=b,则ab=5,而a+b=5,根据a2+b2=(a+b)2﹣2ab,即可求解;(2)设2023﹣x=a,x﹣2000=b,则a2+b2=229,而a+b=23,最后根据完全平方公式,即可求解;(3)设CF=a,BC=b,根据长方形CBQF的面积为320cm2,列方程同理可得结论.【解答】解:(1)根据阅读材料的方法,设100﹣x=a,x﹣95=b,则ab=5,而a+b=5,∴(100﹣x)2+(x﹣95)2=a2+b2=(a+b)2﹣2ab=52﹣2×5=15;故答案为:15;(2)设2023﹣x=a,x﹣2000=b,则a2+b2=229,而a+b=23,∵a2+b2=(a+b)2﹣2ab,∴2ab=(a+b)2﹣(a2+b2)=232﹣229=529﹣229=300,∴ab=150,即(2023﹣x)(x﹣2000)=150;(3)由题意得:CF=CD﹣DF=24﹣x,BC=CE+BE=x+12,设CF=a,BC=b,∴a+b=24﹣x+x+12=36,∵长方形CBQF的面积为320cm2,∴(24﹣x)(12+x)=ab=320,∴图中阴影部分的面积和=(24﹣x)2+(x+12)2=a2+b2=(a+b)2﹣2ab=362﹣2×320=656(cm2).【点评】本题考查了完全平方公式,换元等知识,解题关键是灵活利用换元思想,熟练掌握完全平方公式.7.(2022秋•船营区校级期末)对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.(1)如图1所示的大正方形,是由两个正方形和两个形状大小完全相同的长方形拼成的.用两种不同的方法计算图中阴影部分的面积,可以得到的数学等式是 a2+b2=(a+b)2﹣2ab ;(2)如图2所示的大正方形,是由四个三边长分别为a、b、c的全等的直角三角形(a、b为直角边)和一个正方形拼成,试通过两种不同的方法计算中间正方形的面积,并探究a、b、c之间满足怎样的等量关系;(3)利用(1)(2)的结论,如果直角三角形两直角边满足a+b=17,ab=60,求斜边c的值.【分析】(1)阴影部分是两个正方形的面积和,阴影部分也可以看出大正方形的面积减去两个长方形的面积即可得出答案;(2)中间的是边长为c的正方形,因此面积为c2,也可以从边长为(a+b)正方形面积减去四个直角三角形的面积即可;(3)利用(2)中的结论,代入计算即可.【解答】解(1)方法一:阴影部分是两个正方形的面积和,即a2+b2;方法二:阴影部分也可以看作边长为(a+b)的面积,减去两个长为a,宽为b的长方形面积,即(a+b)2﹣2ab,由两种方法看出a2+b2=(a+b)2﹣2ab,故答案为:a2+b2=(a+b)2﹣2ab;(2)中间正方形的边长为c,因此面积为c2,也可以看作从边长为(a+b)的面积减去四个两条直角边分别a、b的面积,即c2=(a+b)2﹣2ab,也就是c2=a2+b2,所以c2=a2+b2;(3)∵a+b=17,ab=60,∴c2=a2+b2=(a+b)2﹣2ab=172﹣2×60=169,∴c=13,答:斜边的长为13.【点评】本题考查平方差公式的几何背景,掌握平方差公式的结构特征是正确应用的前提,将公式进行适当的变形是解决问题的关键.六.完全平方式(共2小题)8.(2022秋•江汉区期末)已知y2+my+9是完全平方式,则m= ±6 .【分析】利用完全平方公式的结构特征判断即可求出m的值.【解答】解:∵y2+my+9是完全平方式,∴y2+my+9=(y±3)2=y2±6y+9,∴m=±6,∴m=±6.故答案为:±6.【点评】本题主要考查了完全平方式,熟练掌握完全平方公式是解本题的关键.9.(2022秋•离石区期末)在课后服务课上,老师准备了若干个如图1的三种纸片,A种纸片是边长为a的正方形,B种纸片是边长为b的正方形,C种纸片是长为b,宽为α的长方形,并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.【发现】(1)根据图2,写出一个我们熟悉的数学公式 (a+b)2=a2+2ab+b2 .【应用】(2)根据(1)中的数学公式,解决如下问题:①已知:a+b=7,a2+b2=25,求ab的值.②如果一个长方形的长和宽分别为(8﹣x)和(x﹣2),且(8﹣x)2+(x﹣2)2=20,求这个长方形的面积.【分析】(1)由图形得出完全平方公式即可;(2)①根据完全平方公式计算出ab的值即可;②利用完全平方公式求解即可.【解答】解:(1)由图2可知,(a+b)2=a2+2ab+b2,故答案为:(a+b)2=a2+2ab+b2;(2)①∵a+b=7,∴(a+b)2=a2+2ab+b2=49,∵a2+b2=25,∴2ab=24,∴ab=12;②由(1)知,[(8﹣x)+(x﹣2)]2=(8﹣x)2+2(8﹣x)(x﹣2)+(x﹣2)2=36,∵(8﹣x)2+(x﹣2)2=20,∴2(8﹣x)(x﹣2)=16,∴(8﹣x)(x﹣2)=8,故这个长方形的面积为8.【点评】本题主要考查完全平方公式,熟练掌握完全平方公式并灵活运用是解题的关键.七.因式分解-运用公式法(共1小题)10.(2022秋•湖里区期末)下列能用完全平方公式进行因式分解的是( )A.x2+x+1B.x2﹣2x﹣1C.x2﹣4x+4D.x2﹣y2【分析】利用公式法进行分解,逐一判断即可解答.【解答】解:A、x2+2x+1=(x+1)2,故A不符合题意;B、x2﹣2x+1=(x﹣1)2,故B不符合题意;C、x2﹣4x+4=(x﹣2)2,故C符合题意;D、x2﹣y2=(x+y)(x﹣y),故D不符合题意;故选:C.【点评】本题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解题的关键.八.提公因式法与公式法的综合运用(共1小题)11.(2023春•余江区期末)分解因式:(1)3a2﹣6ab+3b2;(2)x2(m﹣2)+y2(2﹣m).【分析】(1)先提公因式,然后再利用完全平方公式继续分解即可;(2)先提公因式,然后再利用平方差公式继续分解即可.【解答】解:(1)3a2﹣6ab+3b2=3(a2﹣2ab+b2)=3(a﹣b)2;(2)x2(m﹣2)+y2(2﹣m)=(m﹣2)(x2﹣y2)=(m﹣2)(x+y)(x﹣y).【点评】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.九.因式分解-十字相乘法等(共1小题)12.(2022秋•沂水县期末)下列因式分解结果正确的是( )A.﹣a2+4a=﹣a(a+4)B.a2b﹣2ab+b=b(a﹣1)2C.9a2﹣b2=(9a+b)(9a﹣b)D.a2﹣4a﹣5=(a﹣1)(a+5)【分析】A.根据因式分解﹣提取公因式法进行计算即可得出答案;B.根据提公因式法与公式法的综合运用进行计算即可得出答案;C.根据因式分解﹣公式法进行计算即可得出答案;D.根据因式分解﹣十字相乘法进行计算即可得出答案.【解答】解:A.因为﹣a2+4a=﹣a(a﹣4),所以A选项因式分解结果不正确,故A选项不符合题意;B.因为a2b﹣2ab+b=b(a﹣1)2,所以B选项因式分解结果正确,故B选项符合题意;C.因为9a2﹣b2=(3a+b)(3a﹣b),所以C选项因式分解结果不正确,故C选项不符合题意;D.因为a2﹣4a﹣5=(a+1)(a﹣5),所以D选项因式分解结果不正确,故D选项不符合题意.故选:B.【点评】本题主要考查了因式分解,熟练掌握因式分解的方法进行求解是解决本题的关键.一十.分式有意义的条件(共1小题)13.(2022秋•青云谱区期末)若分式有意义,则x的取值范围是 x≠2 .【分析】根据分式有意义的条件计算即可.【解答】解:∵分式有意义,∴x﹣2≠0,∴x≠2.故答案为:x≠2.【点评】本题主要考查了分式有意义的条件,准确计算是解题的关键.一十一.分式的基本性质(共1小题)14.(2022秋•岳阳楼区期末)把下列分式中x,y的值都同时扩大到原来的5倍,那么分式的值保持不变的是( )A.B.C.D.【分析】根据分式的基本性质,x,y的值都同时扩大到原来的5倍,求出每个式子的结果,看结果是否等于原式.【解答】解:A、,分式的值保持不变,符合题意;B、,分式的值改变,不符合题意;C、,分式的值改变,不符合题意;D、,分式的值改变,不符合题意;故选:A.【点评】本题考查了分式的基本性质.解题的关键是掌握分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.一十二.分式的化简求值(共1小题)15.(2022秋•汉阳区校级期末)先化简,再求值:(2a﹣)÷,其中a=2.【分析】先根据分式的减法法则进行计算,再根据分式的除法法则把除法变成乘法,再根据分式的乘法法则进行计算,最后代入求出答案即可.【解答】解:原式=÷=•=•=2a(a+2)=2a2+4a,当a=2时,原式=2×22+4×2=8+8=16.【点评】本题考查了分式的化简与求值,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序.一十三.零指数幂(共1小题)16.(2022秋•龙江县期末)若(x﹣4)0=1成立,则x应满足的条件是 x≠4 .【分析】根据零指数幂的底数不能为零,即可得到答案.【解答】解:根据题意可得:x﹣4≠0,解得:x≠4,故答案为:x≠4.【点评】本题考查了零指数幂,利用零指数幂的底数不能为零得出不等式是解题的关键.一十四.分式方程的解(共1小题)17.(2022秋•五常市期末)若关于x的方程无解,则m的值为 0或4 .【分析】求解方程可得x=,再由方程无解可得m﹣4=0,即可求m的值.【解答】解:,2(2x+1)=mx,4x+2=mx,(4﹣m)x=﹣2,∵方程无解,可分为以下两种情况:①分式方程没有意义时,x=0或﹣,此时m=0,②整式不成立时,4﹣m=0,∴m=4,故答案为:0或4.【点评】本题考查分式方程的解,熟练掌握分式方程的解法,理解方程无解的意义是解题的关键.一十五.解分式方程(共2小题)18.(2022秋•南昌期末)嘉淇准备完成题目:解分式方程:,发现数字◆印刷不清楚.(1)他把“◆”猜成5,请你解方程:;(2)他妈妈说:“你猜错了,我看到该题目的正确答案是此分式方程无解.”通过计算说明原题中“◆”是几?【分析】(1)分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)设原题中“◆”是a,分式方程变形后去分母转化为整式方程,由分式方程无解得到x=3,代入整式方程计算即可求出a的值.【解答】解:(1)方程整理得:=2+,去分母得:x=2(x﹣3)+5,解得:x=1,检验:把x=1代入得:x﹣3≠0,∴分式方程的解为x=1;(2)设原题中“◆”是a,方程变形得:=2+,去分母得:x=2(x﹣3)+a,由分式方程无解,得到x=3,把x=3代入整式方程得:a=3.【点评】此题考查了解分式方程,以及分式方程的解,解分式方程利用了转化的思想,注意要检验.19.(2022秋•泰山区校级期末)解分式方程.(1);(2).【分析】(1)先把分式方程两边同时乘以(2﹣x),转化成整式方程,求出整式方程的解,再进行检验即可;(2)先把分式方程两边同时乘以(x2﹣1),转化成整式方程,求出整式方程的解,再进行检验即可.【解答】解:(1)﹣1=1﹣x﹣3(2﹣x),﹣1=1﹣x﹣6+3x,﹣2x=﹣4,x=2,当x=2时,x﹣2=0,∴x=2是原方程的增根,此方程无解;(2)x(x+1)﹣(2x﹣1)=x2﹣1,x2+x﹣2x+1=x2﹣1,﹣x=﹣2,x=2当x=2,x﹣1≠0,x2﹣1≠0,∴x=2是方程的解.【点评】本题考查了解分式方程,掌握转化思想,把分式方程转化为整式方程求解是关键.一十六.分式方程的增根(共1小题)20.(2022秋•岳阳楼区期末)若关于x的分式方程有增根,则k的值是 ﹣2 .【分析】先将方程两边都乘以x+3得到整式方程,再将分式方程的增根x=3代入整式方程求解可得.【解答】解:两边都乘以x+3,得:x+1=k①,∵分式方程有增根,∴增根为x=﹣3,将x=﹣3代入①,得:﹣3+1=k,解得k=﹣2,故答案为:﹣2.【点评】本题考查了分式方程的增根,把分式方程的增根代入整式方程得出关于k的一元一次方程是解题关键.一十七.由实际问题抽象出分式方程(共1小题)21.(2022秋•新化县期末)甲、乙两单位为爱心基金分别捐款4800元、6000元,已知甲单位捐款人数比乙单位少50人,而甲单位人均捐款数比乙单位多1元,若设甲单位有x人捐款,则所列方程是( )A.=+1B.=+1C.=﹣1D.=﹣1【分析】设甲单位有x人捐款,乙单位有(x+50)人捐款,根据甲单位人均捐款数比乙单位多1元列方程.【解答】解:设甲单位有x人捐款,则乙单位有(x+50)人捐款,由题意,得=+1.故选:A.【点评】考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.一十八.分式方程的应用(共2小题)22.(2022秋•孝南区期末)2022年北京冬奥会吉祥物冰墩墩深受大家的喜欢.某商家两次购进冰墩墩进行销售,第一次用22000元,很快销售一空,第二次又用48000元购进同款冰墩墩,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进冰墩墩多少个?(2)若所有冰墩墩都按相同的标价销售,要求全部销售完后的利润率不低于20%(不考虑其他因素),那么每个冰墩墩的标价至少为多少元?【分析】(1)设第一次购进冰墩墩x个,由题意:第一次用22000元,很快销售一空,第二次又用48000元购进同款冰墩墩,所购进数量是第一次的2倍,但单价贵了10元.列出分式方程,解方程即可;(2)设每个冰墩墩的标价为a元,由题意:全部销售完后的利润率不低于20%,列出一元一次不等式,解不等式即可.【解答】解:(1)设第一次购进冰墩墩x个,则第二次购进冰墩墩2x个,根据题意得:=﹣10,解得:x=200,经检验,x=200是原方程的解,且符合题意,答:该商家第一次购进冰墩墩200个.(2)由(1)知,第二次购进冰墩墩的数量为400个.设每个冰墩墩的标价为a元,由题意得:(200+400)a≥(1+20%)(22000+48000),解得:a≥140,答:每个冰墩墩的标价至少为140元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找出数量关系,正确列出一元一次不等式.23.(2022秋•岳阳期末)2022年10月12日“天宫课堂”第三课在中国空间站开讲了,精彩的直播激发了学生探索科学奥秘的兴趣.某中学为满足学生的需求,充实物理兴趣小组的实验项目,决定购入A、B 两款物理实验套装,其中A款套装单价比B款套装单价贵20%,用7200元购买的A款套装数量比用5000元购买的B款套装数量多5套.求A、B两款套装的单价分别是多少元.【分析】设B款套装的单价是x元,则A款套装的单价是(1+20%)x元,根据题意列出关于x的分式方程,解方程后检验即可得出结论.【解答】解:设B款套装的单价是x元,则A款套装的单价是(1+20%)x元,由题意得:,解得x=200,经检验,x=200是原方程的解,且符合题意,∴(1+20%)x=240.答:A款套装的单价是240元、B款套装的单价是200元.【点评】本题考查了分式方程的应用,解题的关键是:找准等量关系,正确列出分式方程.一十九.三角形的角平分线、中线和高(共1小题)24.(2022秋•岳阳县期末)下列图形中AD是△ABC的高的是( )A.B.C.D.【分析】利用三角形高的定义进行解答即可.【解答】解:A、AD不是△ABC的高,故此选项不合题意;B、AD不是△ABC的高,故此选项不合题意;C、AD不是△ABC的高,故此选项不合题意;D、AD是△ABC的高,故此选项符合题意;故选:D.【点评】此题主要考查了三角形的高,关键是掌握从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.二十.三角形三边关系(共1小题)25.(2022秋•宜春期末)若一个三角形的两边长分别为2和4,则第三边长可以是( )A.2B.5C.6D.7【分析】根据在三角形中任意两边之和>第三边,任意两边之差<第三边求出第三边长的范围,即可得到答案.【解答】解:设第三边长为x,则由三角形三边关系定理得4﹣2<x<4+2,即2<x<6.2,5,6,7,只有5满足不等式.故选:B.【点评】本题考查了三角形的三边关系,解题的关键熟练根据三角形的三边关系求得第三边的取值范围.二十一.三角形内角和定理(共3小题)26.(2022秋•海珠区校级期末)如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠C=70°.(1)∠AOB的度数为 125° ;(2)若∠ABC=60°,求∠DAE的度数.【分析】(1)根据角平分线的定义得出∠OAB+∠OBA=(∠BAC+∠ABC),根据三角形内角和定理得出∠BAC+∠ABC=180°﹣∠C=110°,进而即可求解;(2)根据三角形内角和定理求得∠DAC,∠BAC,根据AE是∠BAC的角平分线,得出∠CAE=∠CAB =25°,根据∠DAE=∠CAE﹣∠CAD,即可求解.【解答】(1)解:∵AE、BF是∠BAC、∠ABC的角平分线,∴∠OAB+∠OBA=(∠BAC+∠ABC),在△ABC中,∠C=70°,∴∠BAC+∠ABC=180°﹣∠C=110°,∴∠AOB=180°﹣∠OAB﹣∠OBA=180°﹣(∠BAC+∠ABC)=125°.故答案为:125°;(2)解:∵在△ABC中,AD是高,∠C=70°,∠ABC=60°,∴∠DAC=90°﹣∠C=90°﹣70°=20°,∠BAC=180°﹣∠ABC﹣∠C=50°∵AE是∠BAC的角平分线,∴∠CAE=∠CAB=25°,∴∠DAE=∠CAE﹣∠CAD=25°﹣20°=5°,∴∠DAE=5°.【点评】本题考查了三角形中线,角平分线,三角形内角和定理,掌握三角形内角和定理是解题的关键.27.(2022秋•邢台期末)材料阅读:如图①所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”.解决问题:(1)观察“规形图”,试探究∠BDC与∠A,∠B,∠C之间的数量关系,并说明理由;(2)请你直接利用以上结论,解决以下两个问题:Ⅰ.如图②,把一块三角尺DEF放置在△ABC上,使三角尺的两条直角边DE,DF恰好经过点B,C,若∠A=40°,则∠ABD+∠ACD= 50 °.Ⅱ.如图③,BD平分∠ABP,CD平分∠ACP,若∠A=40°,∠BPC=130°,求∠BDC的度数.【分析】(1)连接AD并延长至点F,根据三角形外角性质即可得到∠BDC与∠A,∠B,∠C之间的数量关系;(2)Ⅰ、由(1)可得,∠BDC=∠ABD+∠ACD+∠A,再根据∠A=40°,∠D=90°,即可得出∠ABD+∠ACD的度数;Ⅱ、根据(1),可得∠BPC=∠BAC+∠ABP+∠ACP,∠BDC=∠BAC+∠ABD+∠ACD,再根据BD平分∠ABP,CD平分∠ACP,即可得出∠BDC的度数.【解答】解:(1)如图①,连接AD并延长至点F,根据外角的性质,可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,又∵∠BDC=∠BDF+∠CDF,∠BAC=∠BAD+∠CAD,∴∠BDC=∠A+∠B+∠C;(2)Ⅰ.由(1)可得,∠BDC=∠ABD+∠ACD+∠A;又∵∠A=40°,∠D=90°,∴∠ABD+∠ACD=90°﹣40°=50°,故答案为:50;Ⅱ.由(1),可得∠BPC=∠BAC+∠ABP+∠ACP,∠BDC=∠BAC+∠ABD+∠ACD,∴∠ABP+∠ACP=∠BPC﹣∠BAC=130°﹣40°=90°,又∵BD平分∠ABP,CD平分∠ACP,∴∠ABD+∠ACD=(∠ABP+∠ACP)=45°,∴∠BDC=45°+40°=85°.【点评】本题考查的是三角形内角和定理以及三角形外角性质的运用,熟知三角形的内角和等于180°是解答此题的关键.28.(2022秋•二七区校级期末)(1)如图,把△ABC沿DE折叠,使点A落在点A1处,试探究∠1、∠2与∠A的关系;(2)如图2,若∠1=140°,∠2=80°,作∠ABC的平分线BN,与∠ACB的外角平分线CN交于点N,求∠BNC的度数;(3)如图3,若点A1落在△ABC内部,作∠ABC,∠ACB的平分线交于点A1,此时∠1,∠2,∠BA1C 满足怎样的数量关系?并给出证明过程.【分析】(1)由折叠的性质得∠AED=∠A1ED,∠ADE=∠A1DE,再根据平角的定义得到,,根据三角形外角的性质可得,由此即可得出结论;(2)先根据(1)的结论求出∠A=30°,再由角平分线的定义和三角形外角的性质推出即可;(3)先推出,∠AED=∠A1ED=90°﹣∠2,再由三角形外角的性质推出,利用角平分线的定义和三角形内角和定理推出即可得到结论.【解答】解:(1)∠1=2∠A+∠2,理由如下:由折叠的性质可知∠AED=∠A1ED,∠ADE=∠A1DE,∴,∠2=2∠AED﹣180°,∴,∵∠A+∠AED=∠EDB=∠1+∠A1DE,∴,∴∠1=2∠A+∠2;(2)∵∠1=2∠A+∠2,∠1=140°,∠2=80°,∴∠A=30°,∵∠ABC的平分线BN,与∠ACB的外角平分线CN交于点N,∴,∵∠A+∠ABC=∠ACH,∴∠A+2∠NBC=2∠NCH,又∵∠N+∠NBC=∠NCH,∴∠A+2∠NBC=2∠N+2∠NBC,∴;(3)解:∠1+∠2=4∠BA1C﹣360°,理由如下;由折叠的性质可知∠AED=∠A1ED,∠ADE=∠A1DE,∴,,∵∠A+∠ADE=∠CED=∠A1ED+∠2,∴,∴,∵∠ABC,∠ACB的平分线交于点A1,∴,∵∠ABC+∠ACB=180°﹣∠A,∴,∴,∴,∴∠1+∠2=4∠BA1C﹣360°.【点评】本题主要考查了折叠的性质,角平分线的定义,三角形内角和定理,三角形外角的性质,熟知三角形内角和定理和三角形外角的性质是解题的关键.二十二.三角形的外角性质(共2小题)29.(2022秋•金水区校级期末)将一副三角板按照如图方式摆放,则∠CBE的度数为( )A.90°B.100°C.105°D.110°【分析】根据三角板的性质得出∠ACB=60°,∠BAC=45°,再利用外角的性质计算即可.【解答】解:由题意可得:∠ACB=60°,∠BAC=45°,∴∠CBE=∠ACB+∠BAC=60°+45°=105°,故选:C.【点评】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.30.(2022秋•龙亭区校级期末)如图,在△ABC中,∠A=70°,∠B=50°,CD平分∠ACB,求∠ADC 的度数.【分析】本题考查的是三角形内角和定理,求出∠ACB的度数后易求解.【解答】解:∵∠A=70°,∠B=50°,∴∠ACB=180°﹣70°﹣50°=60°(三角形内角和定义).∵CD平分∠ACB,∴∠ACD=∠ACB=×60°=30°,∴∠ADC=180°﹣∠A﹣∠ACD=80°.【点评】本题考查三角形外角性质,掌握外角性质是解题关键.二十三.全等三角形的性质(共1小题)31.(2022秋•宛城区校级期末)如图,点A在DE上,△ABC≌△EDC,若∠BAC=55°,则∠ACE的大小为 70° .【分析】根据全等三角形的性质得出∠E=∠BAC=55°,CE=CA,根据等腰三角形的性质以及三角形内角和定理可得∠ACE=180°﹣∠CAE﹣∠E=70°.【解答】解:∵△ABC≌△EDC,∠BAC=55°,∴∠E=∠BAC=55°,CE=CA,∴∠CAE=∠E=55°,∴∠ACE=180°﹣∠CAE﹣∠E=70°.故答案为:70°.【点评】本题考查了全等三角形的性质,等腰三角形的性质以及三角形内角和定理,掌握全等三角形的对应边相等,对应角相等是解题的关键.二十四.全等三角形的判定(共4小题)32.(2022秋•庄河市期末)工人师傅常用角尺平分一个任意角,做法是:如图在∠AOB的边OA、OB上分别取OM=ON,移动角尺,使角尺的两边相同的刻度分别与M、N重合,得到∠AOB的平分线OP,做法中用到三角形全等的判定方法是( )A.SSS B.SAS C.ASA D.HL【分析】已知两三角形三边分别相等,可考虑SSS证明三角形全等,从而证明角相等.【解答】解:做法中用到的三角形全等的判定方法是SSS证明如下:由题意得,PN=PM,在△ONP和△OMP中,,∴△ONP≌△OMP(SSS)所以∠NOP=∠MOP故OP为∠AOB的平分线.故选:A.【点评】本题考查全等三角形在实际生活中的应用.对于难以确定角平分线的情况,利用全等三角形中对应角相等,从而轻松确定角平分线.33.(2022秋•克什克腾旗期末)下列条件能判定△ABC≌△DEF的一组是( )A.∠A=∠D,∠C=∠F,AC=DFB.AB=DE,BC=EF,∠A=∠DC.∠A=∠D,∠B=∠E,∠C=∠FD.AB=DE,△ABC的周长等于△DEF的周长【分析】判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,结合选项逐一检验.【解答】解:A、∠A=∠D,∠C=∠F,AC=DF符合ASA,能判定两三角形全等,故选项正确;B、AB=DE,BC=EF,∠A=∠D是SSA,不能判定两三角形全等,故选项错误;C、∠A=∠D,∠B=∠E,∠C=∠F是AAA,不能判定两三角形全等,故选项错误;D、AB=DE,△ABC的周长等于△DEF的周长,三边不可能相等,故选项错误.故选:A.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.34.(2023春•凤城市期末)如图,在△ABC和△DEF中,如果AB=DE,BC=EF.在下列条件中不能保证△ABC≌△DEF的是( )A.∠B=∠DEF B.∠A=∠D C.AB∥DE D.AC=DF【分析】已知AB=DE,BC=EF,只需再找一个夹角或者一条边相等,即可判定△ABC≌△DEF.【解答】解:A、可根据SAS判定△ABC≌△DEF,故本选项不符合题意;B、不能根据SSA判定△ABC≌△DEF,故本选项符合题意;C、根据AB∥DE,可得∠B=∠DEF,可根据SAS判定△ABC≌△DEF,故本选项不符合题意;D、可根据SSS判定△ABC≌△DEF,故本选项不符合题意.故选:B.【点评】本题考查三角形全等的判定方法,掌握判定两个三角形全等的一般方法是解题的关键.35.(2022秋•五华区期末)如图,在△ABC中,∠ACB=90°,AC=6,BC=8,点C在直线l上.点P从点A出发,在三角形边上沿A→C→B的路线向终点B运动;点Q从B点出发,在三角形边上沿B→C→。
八年级数学上册分式重点题型及知识点

八年级数学上册分式重点题型及知识点单选题1、一列火车长x米,以每秒a米的速度通过一个长为b米的大桥,用代数式表示它完全通过大桥(从车头进入大桥到车尾离开大桥)所需的时间为()A.x+ba 秒B.ba秒C.xa秒D.x−ba秒答案:A解析:∵火车走过的路程为(x+b)米,火车的速度为a米/秒,∴火车过桥的时间为x+ba(秒).故选:A.2、对于实数a,b,定义一种新运算“⊗”为:a⊗b=2a−b2,这里等式右边是通常的实数运算.例如:1⊗3=2 1−32=−14,则方程x⊗(−1)=6x−1−1的解是()A.x=4B.x=5C.x=6D.x=7答案:B解析:已知方程利用题中的新定义化简,计算即可求出解.根据题中的新定义化简得:2x−1=6x−1−1,去分母得:2=6−x+1,解得:x=5,经检验x=5是分式方程的解.故选:B.小提示:此题考查了解分式方程,以及实数的运算,弄清题中的新定义是解本题的关键.3、若把分式2x x+y 中的x 和y 同时扩大为原来的3倍,则分式的值( )A .扩大到原来的3倍B .扩大到原来的6倍C .缩小为原来的13D .不变 答案:D解析:根据分式的基本性质即可求出答案.解:∵2×3x 3x+3y =2×3x3(x+y )=2xy x+y ,∴把分式2x x+y 中的x 和y 同时扩大为原来的3倍,则分式的值不变,故选:D .小提示:本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.4、已知1a −1b =12,则ab a−b 的值是( ) A .12B .−12C .2D .-2答案:D解析:先把已知的式子变形为ab =2(b −a),然后整体代入所求式子约分即得答案.解:∵1a −1b =12,∴ab =2(b −a),∴ab a−b =2(b−a)a−b =−2.故选:D.小提示:本题考查了分式的通分与约分,属于常考题目,掌握解答的方法是关键.5、(−b2a)2n(n为正整数)的值是()A.b2+2na2n B.b4na2nC.−b2n+1a2nD.−b4na2n答案:B解析:根据分式的乘方计算法则解答.(−b2a )2n=b4na2n.故选:B.小提示:此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键.6、如果a2+2a−1=0,那么代数式(a−4a )⋅a2a−2的值是()A.−3B.−1C.1D.3答案:C解析:先将等式变形可得a2+2a=1,然后根据分式各个运算法则化简,最后利用整体代入法求值即可.解:∵a2+2a−1=0∴a2+2a=1(a−4a)⋅a2a−2=a2−4a ⋅a2 a−2=(a−2)(a+2)a ⋅a2 a−2=a(a+2)=a2+2a=1故选C.小提示:此题考查的是分式的化简求值题,掌握分式的运算法则是解决此题的关键.7、我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.“其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每件椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x−1)=6210x B.6210x−1=3C.3x−1=6210xD.6210x=3答案:A解析:根据“这批椽的价钱为6210文”、“每件椽的运费为3文,剩下的椽的运费恰好等于一株椽的价钱”列出方程解答.解:由题意得:3(x−1)=6210x,故选A.小提示:本题考查了分式方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,准确的找到等量关系并用方程表示出来是解题的关键.8、若数a与其倒数相等,则a2−a−6a−3÷a+3a2+a−6的值是()A.−3B.−2C.−1D.0答案:A解析:先将分子分母中能分解因式的分别分解因式,再根据分式的除法运算法则化简原式,最后根据已知条件可得a =±1,进而代入计算即可求得答案.解:原式=(a−3)(a+2)a−3⋅(a+3)(a−2)a+3=(a+2)(a−2)=a2−4,∵数a与其倒数相等,∴a=±1,∴原式=(±1)2−4=1−4=−3,故选:A.小提示:本题考查了分式的除法运算以及倒数的意义,熟练掌握分式的运算法则是解决本题的关键.填空题9、若关于x的分式方程3xx−2−1=m+3x−2有增根,则m的值为_____.答案:3 解析:把分式方程化为整式方程,进而把可能的增根代入,可得m的值.去分母得3x-(x-2)=m+3,当增根为x=2时,6=m+3∴m=3.故答案为3.小提示:考查分式方程的增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.10、方程3x−1+1=0的解为__________.答案:x=−2解析:先通分,再根据分式有意义的条件即分母不为0,分式为0即分式的分子为0解题即可.解:3x−1+1=03 x−1+x−1x−1=0x+2x−1=0{x+2=0x−1≠0∴x=−2所以答案是:x=−2.小提示:本题考查解分式方程,涉及分式有意义的条件、分式的值为0等知识,是重要考点,难度较易,掌握相关知识是解题关键.11、计算:(13)−1−(3.14)0=_____.答案:2解析: 先根据负整数指数幂及零指数幂的意义分别化简,再进行减法运算即可.原式=3-1=2,所以答案是:2.小提示:本题考查负整数指数幂和零指数幂的意义,理解定义是解题关键.12、某校学生捐款支援地震灾区,第一次捐款的总额为6600元,第二次捐款的总额为7260元,第二次捐款的总人数比第一次多30人,而且两次人均捐款额恰好相等,则第一次捐款的总人数为________人.答案:300解析:先设第一次的捐款人数是x 人,根据两次人均捐款额恰好相等列出方程,求出x 的值,再进行检验即可求出答案.解:设第一次的捐款人数是x 人,根据题意得:6600x =7260x+30,解得:x =300,经检验x =300是原方程的解,故答案为300.小提示:此题考查了分式方程的应用,解题的关键是读懂题意,找出之间的等量关系,列出方程,解分式方程时要注意检验.13、计算:(15)-1−√4=_______. 答案:3解析:先计算负整数指数幂和算术平方根,再计算加减即可求解.原式=5﹣2=3,所以答案是:3.小提示:此题考查了实数的运算,负整数指数幂,熟练掌握运算法则是解本题的关键.解答题14、先化简,再求值:(x 2−2x+1x 2−x +x 2−4x 2+2x )÷1x ,且x 为满足﹣3<x <2的整数.答案:-5解析: 根据分式的运算法则即可求出答案.原式=[(x−1)2x(x−1)+(x−2)(x+2)x(x+2)]÷1x =(x−1x +x−2x )•x=x ﹣1+x ﹣2=2x ﹣3由于x≠0且x≠1且x≠﹣2,所以x=﹣1,原式=﹣2﹣3=﹣5小提示:本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.15、(1)当x 为何整数时,分式42x+1的值为正整数?(2)已知函数y =2x−3x−2自变量取值范围为整数,求y 的最大、最小值.答案:(1)x =0;(2)y 最大为3,最小为1解析:(1)根据题意2x +1=1或2或4时,分式42x+1的值为正整数,再取x 为整数时即可;(2)把函数整理成y =2+1x−2的形式,要使函数y 的值为整数,则x −2=±1,据此即可求解.(1)要使分式42x+1的值为正整数,则2x +1=1或2或4,解得:x =0或12或32,∵x 为整数,∴x =0,即x =0时,分式42x+1的值为正整数;(2)y =2x−3x−2=2(x−2)+1x−2=2+1x−2,且自变量取值范围为x −2≠0, 要使函数y 的值为整数,则x −2=±1,∴当x =3时,函数y 的最大值为3,当x =1时,函数y 的最小值为1.小提示:本题考查了分式有意义的条件,求分式的值,函数自变量的取值范围问题等知识,解答本题的关键是明确题意,找出所求问题需要的条件.。
八年级数学上册第十三章轴对称经典大题例题(带答案)

八年级数学上册第十三章轴对称经典大题例题单选题1、如图,三条笔直的公路两两相交,交点分别在点A、B、C处,有两户村民分别在点D和点E处,现准备建造一个蓄水池,要求水池到两条公路AB、BC的距离相等,且到两户村民D、E的距离相等,则水池修建的位置应该是()A.在∠B的平分线与DE的交点处B.在线段AB、AC的垂直平分线的交点处C.在∠B的平分线与DE的垂直平分线的交点处D.在∠A的平分线与DE的垂直平分线的交点处答案:C分析:根据角平分线的性质得到水池修建在∠ABC的平分线上,根据线段的垂直平分线的性质得到水池修建在DE的垂直平分线上,从而可对各选项进行判断.解:作∠ABC的平分线和DE的垂直平分线,它们相交于P点,如图,则水池修建的位置应该为P点.故选:C.小提示:本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了线段垂直平分线的性质.2、如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=7,BD是△ABC的角平分线,点P,点N分别是BD,AC边上的动点,点M在BC上,且BM=1,则PM+PN的最小值为()A.3B.2√3C.3.5D.3√3答案:A分析:作点M关于BD的对称点M′,连接PM′,则PM′=PM,BM=BM′=1,当N,P,M′在同一直线上,且M′N⊥AC时,PN+PM′的最小值等于垂线段M′N的长,利用含30°角的直角三角形的性质,即可得到PM+ PN的最小值.解:如图所示,作点M关于BD的对称点M′,连接PM′,则PM′=PM,BM=BM′=1,∴PN+PM=PN+PM′,当N,P,M′在同一直线上,且M′N⊥AC时,PN+PM′的最小值等于垂线段M′N的长,此时,∵Rt△AM′N中,∠A=30°,∴M′N=12AM′=12(7−1)=3,∴PM+PN的最小值为3,故选择A.小提示:本题主要考查了最短路线问题,30°直角三角形性质,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.3、若点P (a +1,2−2a )关于x 轴的对称点在第四象限,则a 的取值范围为( )A .a >−1B .a <1C .−1<a <1D .a <−1答案:C分析:根据关于x 轴对称的点,横坐标不变,纵坐标互为相反数,求出对称点,再由第四象限内点的坐标符号为(+,-),据此列不等式解答.解:∵点P (a +1,2−2a )关于x 轴的对称点坐标为(a +1,2a -2),且在第四象限,∴a +1>0,且2a -2<0,解得-1<a <1,故选:C .小提示:此题考查了轴对称的性质,各象限内点的坐标特点,熟记各象限内点的坐标符号特点是解题的关键.4、将三角形纸片(△ABC )按如图所示的方式折叠,使点C 落在AB 边上的点D ,折痕为EF .已知AB =AC =3,BC =4,若以点B 、D 、F 为顶点的三角形与△ABC 相似,那么CF 的长度是( )A .2B .127或2C .127D .125或2答案:B分析:分两种情况:若∠BFD=∠C或若∠BFD=∠A,再根据相似三角形的性质解题∵△ABC沿EF折叠后点C和点D重合,∴FD=CF,设CF=x,则FD=CF=x,BF=4−x,以点B、D、F为顶点的三角形与△ABC相似,分两种情况:①若∠BFD=∠C,则BFBC =FDAC,即4−x4=x3,解得x=127;②若∠BFD=∠A,则BFAB =FDAC,即4−x3=x3,解得x=2.综上,CF的长为127或2,故选:B.小提示:本题考查相似三角形的性质,是重要考点,掌握相关知识是解题关键.5、如图,△ABC中,AB=AC,AD⊥BC于点D,DE⊥AB于点E,BF⊥AC于点F,BF=8,则DE的长为()A.2B.3C.4D.5答案:C分析:根据等腰三角形的性质可得CD=BD,从而得到S△ABC=2S△ABD,从而得到12AC⋅BF=2×12AB⋅DE,即可求解.解:∵AB=AC,AD⊥BC,∴CD=BD,∴S△ABC=2S△ABD,∵DE⊥AB,BF⊥AC,∴S△ABC=12AC⋅BF,S△ABD=12AB⋅DE,∴12AC⋅BF=2×12AB⋅DE,∵BF=8,∴DE=4.故选:C小提示:本题主要考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.6、如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠C=7∠BAE,则∠C的度数为()A.41°B.42°C.43°D.44°答案:B分析:设∠BAE=x°,则∠C=7x°,根据ED是AC的垂直平分线,有AE=EC,即有∠EAC=∠C=7x°,根据直角三角形中两锐角互余建立方程,解方程即可求解.设∠BAE=x°,则∠C=7x°,∵ED是AC的垂直平分线,∴AE=EC,∴∠EAC=∠C=7x°,∵∠B=90°,∴∠C+∠BAC=90°,∴7x+7x+x=90,解得:x=6,∴∠C=7×6°=42°,故选:B.小提示:本题考查了直角三角形的性质,等腰三角形的性质,线段垂直平分线的性质等知识点,能根据线段垂直平分线性质求出AE=CE是解此题的关键.7、如图,在△ABC中,∠ABC=45°,AD,BE分别为BC,AC边上的高,AD,BE相交于点F,连接CF,则下列结论:①BF=AC;②∠FCD=∠DAC;③CF⊥AB;④若BF=2EC,则△FDC周长等于AB的长.其中正确的有()A.①②B.①③④C.①③D.②③④答案:B分析:证明△BDF≌△ADC,可判断①;求出∠FCD=45°,∠DAC<45°,延长CF交AB于H,证明∠AHC=∠ABC+∠FCD=90°,可判断③;根据①可以得到E是AC的中点,然后可以推出EF是AC的垂直平分线,最后由线段垂直平分线的性质可判断④.解:∵△ABC中,AD,BE分别为B C、AC边上的高,∠ABC=45°,∴AD=BD,∠DAC和∠FBD都是∠ACD的余角,而∠ADB=∠ADC=90°,∴△BDF≌△ADC(ASA),∴BF=AC,FD=CD,故①正确,∵∠FDC=90°,∴∠DFC=∠FCD=45°,∵∠DAC=∠DBF<∠ABC=45°,∴∠FCD≠∠DAC,故②错误;延长CF交AB于H,∵∠ABC=45°,∠FCD=45°,∴∠AHC=∠ABC+∠FCD=90°,∴CH⊥AB,即CF⊥AB,故③正确;∵BF=2EC,BF=AC,∴AC=2EC,∴AE=EC=1AC,2∵BE⊥AC,∴BE垂直平分AC,∴AF=CF,BA=BC,∴△FDC的周长=FD+FC+DC=FD+AF+DC=AD+DC=BD+DC=BC=AB,即△FDC的周长等于AB,故④正确,综上:①③④正确,故选B.小提示:本题考查了全等三角形的性质与判定,也考查了线段的垂直平分线的性质与判定,也利用了三角形的周长公式解题,综合性比较强,对学生的能力要求比较高.<8、如图,在等边△ABC中,AB=4cm,BD平分∠ABC,点E在BC的延长线上,且∠E=30∘,则CE的长是()A.1cmB.2cmC.3cmD.4cm答案:B分析:根据等边三角形的性质得AC=AB=4,由等边三角形三线合一得到CD,由∠ACB=60°,∠E=30°,求出∠CDE,得出CD=CE,即可求解.∵△ABC是等边三角形,∴AC= AB=BC=4cm,∠ACB = 60°,∵BD平分∠ABC,∴AD=CD(三线合一)∴DC=12AC=12×4=2cm,∵∠E = 30°∴∠CDE=∠ACB-∠E=60°-30°=30°∴∠CDE=∠E所以CD=CE=2cm故选:B.小提示:本题考查的是等边三角形的性质、等腰三角形的判定,直角三角形的性质,直角三角形中30°角所对的直角边等于斜边的一半.9、如图,点P为∠AOB内一点,分别作点P关于OB、OA的对称点P1,P2,连接P1P2交OB于M,交OA于N,P1P2=15,则△PMN的周长为()A.16B.15C.14D.13答案:B分析:根据轴对称的性质可得P1M=PM,P2N=PN,然后根据三角形的周长定义,求出△PMN的周长为P1P2,从而得解.解:∵点P关于OB、OA的对称点P1,P2,∴P1M=PM,P2N=PN,∴△PMN的周长=MN+PM+PN=MN+P1M+P2N=P1P2,∵P1P2=15∴△PMN的周长为15.故选:B.小提示:本题考查轴对称的性质,解题时注意:对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.10、△ABC为等边三角形,点E为边AB的中点,点Q为边BC上一动点,以EQ为边作等边△EQF(点F在EQ 的右侧),连接AF、FC,点P在射线CB上,且满足PE=EQ,有以下四个结论①∠FQC=∠QEB;②FQ=FC;③PB+QC=AE;④当AF⊥AB时,BC=4PB,其中正确的结论的个数是()A.1个B.2个C.3个D.4个答案:C分析:取BC中点H,连接EH、FH,作EG⊥BC于G,根据三角形内角和定理和平角的定义得出∠FQC+∠EQF+∠EQB=∠QEB+∠EBQ+∠EQB=180°,进而可得∠FQC=∠QEB,故①正确;根据点E为边AB的中点,点H为边BC的中点,可得AE=EB=BH=HC,△EBH是等边三角形,然后求出PB=HQ即可得出PB+QC=HC=AE,故③正确;通过证明△PEH≌△FEH可得∠EHP=∠EHF=60°,求出∠EHF=∠CHF,再证△EHF≌△CHF,求出FC =EF即可得出FQ=FC,故②正确;当CQ=HQ时,BC=4PB,由AF⊥AB无法推出Q为HC中点,故④错误.解:取BC中点H,连接EH、FH,作EG⊥BC于G,∵△ABC为等边三角形,△EQF为等边三角形,∴∠EQF=∠EBQ=60°,∵∠FQC+∠EQF+∠EQB=∠QEB+∠EBQ+∠EQB=180°,∴∠FQC=∠QEB,故①正确;∵EG⊥BC,PE=EQ,∴PG=GQ,∵点E为边AB的中点,点H为边BC的中点,∠ABC=60°,∴AE=EB=BH=HC,∴△EBH是等边三角形,∵EG⊥BH,∴BG=GH,∴PB=HQ,∴PB+QC=HC=AE,故③正确;∵EG⊥BC,PE=EQ,△EBH是等边三角形,∴∠BEG=∠HEG,∠PEG=∠QEG,∠BEH=∠EHB=60°,EH=EB,∴∠PEB=∠QEH,∵在等边三角形△EQF中,∠FEQ=60°,EF=EQ=FQ,∴∠PEH=∠FEH,PE=FE,又∵EH=EH,∴△PEH≌△FEH(SAS),∴∠EHP=∠EHF=60°,∴∠FHC=60°,即∠EHF=∠CHF,∵AE=EB=BH=HC,EH=EB,∴EH=HC,又∵HF=HF,∴△EHF≌△CHF(SAS),∴FC=EF,∴FQ=FC,故②正确;④∵BH=CH,BG=GH,BP=HQ,∴当CQ=HQ时,BC=4PB,由AF⊥AB无法推出Q为HC中点,故④错误;综上,正确的有3个,故选:C.小提示:本题考查了等边三角形的判定和性质,等腰三角形的判定和性质,全等三角形的判定和性质等知识,作出合适的辅助线,构造出等边三角形和全等三角形是解题的关键.填空题11、如图,在Rt△ABC中,∠C=90°,∠A=30°,线段AB的垂直平分线分别交AC、AB于点D、E,连结BD.若CD=1,则AD的长为________.答案:2分析:根据线段垂直平分线的性质得到AD=BD,∠ABD=∠A=30°,求得∠CBD=30°,即可求出答案.解:∵∠C=90°,∴∠A+∠ABC=90°,∵线段AB的垂直平分线分别交AC、AB于点D、E,∴AD=BD,∴∠ABD=∠A=30°,∴∠CBD=30°,∵CD=1,∴AD=BD=2CD=2,所以答案是:2.小提示:此题考查线段垂直平分线的性质,直角三角形30度角的性质,熟记线段垂直平分线的性质是解题的关键.12、在“锐角、五角星、等边三角形、圆、正六边形”这五个图形中,是轴对称图形的有________个,按对称轴条数由多到少排列是_______________.答案: 5 圆、正六边形、五角星、等边三角形、锐角分析:根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够完全重合,这个图形就叫轴对称图形,这条直线就叫做对称轴,进行求解即可.解:锐角时轴对称图形,对称轴为1条;五角星是轴对称图形,对称轴有5条;等边三角形是轴对称图形,对称轴有3条;圆是轴对称图形,对称轴有无数条;正六边形是轴对称图形,对称轴有6条,所以答案是:5;圆,正六边形,五角星,等边三角形,锐角.小提示:本题主要考查了轴对称图形,解题的关键在于能够熟练掌握相关知识进行求解.13、如图,在ΔABC中,AB=7cm,BC=5cm,AC的垂直平分线分别交AB,AC于点D,E,点F是DE上的任意一点,则ΔBCF周长的最小值是________cm.答案:12分析:当F点于D重合时,ΔBCF的周长最小,根据垂直平分线的性质,即可求出ΔBCF的周长.∵DE垂直平分AC,∴点C与A关于DE对称,∴当F点于D重合时,即A、D、B三点在一条直线上时,BF+CF=AB最小,(如图),∴ΔBCF的周长为:CΔBCF=BD+CD+BC,∵DE是垂直平分线,∴AD=CD,又∵AB=7cm,∴BD+AD=BD+CD=7cm,∴CΔBCF=7+5=12cm,所以答案是:12.小提示:本题考查最短路径问题以及线段垂直平分线的性质:垂直平分线上的点到线段两端的距离相等,熟练掌握最短路径的求解方法以及垂直平分线的性质是解题的关键.14、如图,图1是长方形纸带,将纸带沿EF折叠成图2,再沿BF折叠成图3,若图3中∠CFE=108°,则图1中的∠DEF的度数是______.答案:24°##24度分析:先根据平行线的性质,设∠DEF=∠EFB=a,图2中根据图形折叠的性质得出∠AEF的度数,再由平行线的性质得出∠GFC,图3中根据∠CFE=∠GFC﹣∠EFG即可列方程求得a的值.∵AD∥BC,∴设∠DEF=∠EFB=a,图2中,∠GFC=∠BGD=∠AEG=180°﹣2∠DEF=180°﹣2a,图3中,∠CFE=∠GFC﹣∠EFG=180°﹣2a﹣a=108°.解得a=24°.即∠DEF=24°,所以答案是:24°.小提示:本题考查图形的翻折变换以及平行线的性质,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.15、如图,在△ABC中,BC的垂直平分线分别交BC、AB于点E、F.若△AFC是等边三角形,则∠B=_________°.答案:30分析:根据垂直平分线的性质得到∠B=∠BCF,再利用等边三角形的性质得到∠AFC=60°,从而可得∠B.解:∵EF垂直平分BC,∴∠B=∠BCF,∵△ACF为等边三角形,∴∠AFC=60°,∴∠B=∠BCF=30°.所以答案是:30.小提示:本题考查了垂直平分线的性质,等边三角形的性质,外角的性质,解题的关键是利用垂直平分线的性质得到∠B=∠BCF.解答题16、如图:在正方形网格中有一个△ABC,按要求进行下列作图(只能借助于网格):(1)画出△ABC中BC边上的高AD;(2)画出先将△ABC向左平移5格,再向下平移2格后的△A1B1C1;(3)画一个△BCP(要求各顶点在格点上,P不与A点重合),使其面积等于△ABC的面积.并回答,满足这样条件的点P共______个.答案:(1)见解析;(2)见解析;(3)见解析;2分析:(1)根据三角形高的定义求解可得;(2)根据平移的定义作出变换后的对应点,再顺次连接即可得;(3)过点A作平行于BC的直线,同样结合网格的特点在直线BC的另一侧也可以找出符合条件的格点P,共(1)解:如图:作BF⊥BC,再过A点作BF的平行线,交BC于点D,(2)解:如图:(3)解:如图符合条件的格点共有4个,小提示:本题用到的知识点为:三角形一边上的高为这边所对的顶点向这边所引的垂线段,对称的性质;图形的平移要归结为各顶点的平移,平行线间距离处处相等.17、如图,在△ABC中,AB=AC,∠B=30°,线段AB的垂直平分线MN交BC于D,求证:CD=2BD.答案:见解析分析:连接AD,首先根据垂直平分线的性质得到∠DAB=∠B=30°,然后根据AB=AC,求出∠B=∠C=30°,∠DAC=90°,最后根据30°角所对的直角边是斜边的一半即可证明出CD=2BD.证明:连接AD,∵直线MN是线段AB的垂直平分线,∴AD=BD,∴∠DAB=∠B,又∵∠B=30°,∴∠DAB=30°,又∵AB=AC,∠B=30°,∴∠B=∠C=30°,∠BAC=120°,∴∠DAC=90°,又∵∠C=30°,∴CD=2AD,又∵AD=BD,∴CD=2BD.小提示:此题考查了等腰三角形的性质,30°角直角三角形的性质,解题的关键是连接AD求出∠DAB=∠B=30°.18、如图,在△ABC中,BE是角平分线,AD⊥BE,垂足为D.求证:∠2=∠1+∠C.答案:见解析分析:延长AD交BC于点F,由BE是角平分线、AD⊥BE可知△ABF是等腰三角形且∠2=∠AFB,根据∠AFB=∠1+∠C可得证.证明:如图,延长AD交BC于点F,∵BE是∠ABC的角平分线,AD⊥BE,∴AB=FB,∴∠2=∠AFB,∵∠AFB=∠1+∠C,∴∠2=∠1+∠C.小提示:本题主要考查等腰三角形的判定与性质,解题的关键是掌握等腰三角形三线合一的性质.。
八年级上册数学考试重点难题集

1,某大型超市从生产基地购进一批水果,运输过程中质量损失5%,假设不计超市其他费用.(1)如果超市在进价的基础上提高5%作为售价,那么请你通过计算说明超市是否亏本;(2)如果超市至少要获得20%的利润,那么这种水果的售价最低应提高百分之几?(结果精确到0.1%)解:假设水果总质量m,进价为p,那么运输后出去质量损失水果质量为(1—5%)m = 0.95m (1) 成本为 mp,销售额 0。
95m *(1+5%)p = 0.95*1.05mp = 0.9975mp 〈 mp 所以赔本(2) 假设售价提高x%,因为要获得20%的利润,所以销售额为 (1+20%)mp = 1.2mp 实际销售额 0.95m*(1+x%)p = 1.2mp 0。
95 * (1+x %) = 1.2x% = 1.2/0.95 — 1 = (1。
2 - 0。
95) / 0.95 =0。
25/0。
95 = 25/95 = 5/19 = 0。
263 = 26.3%,2. 如右图,一只蚂蚁从点O 出发,在扇形OAB 的边缘沿着O B A O ---的路线匀速爬行一周,设蚂蚁的爬行时间为t ,蚂蚁与O 点的距离为s ,则s 关于t 的函数图象大致是( ▲ C )A 。
B 。
C 。
D 。
3。
如图,等边ABC ∆中,点D 、E 分别在边AB ,BC 上,把BDE ∆沿直线DE 翻折,使点B 落在'B处,'DB 、'EB 分别与边AC 交于点F 、G 。
若oADF 80=∠,则=∠EGC ▲80° o4.将直线42+-=x y 向上平移2个单位,所得直线解析式是 y=—2x+6 ,将直线OABO t s O t s O t s O tsA DBCE'B FG42+-=x y 向右平移2个单位,所得直线的解析式是y=—2x+8。
5. 一次函数6+=kx y 的图象经过第三象限,且它与两条坐标轴构成的直角三角形面积等于9,则=k 2 ▲ 。
八年级上册数学全等三角形必考题

八年级上册数学全等三角形必考题全文共5篇示例,供读者参考八年级上册数学全等三角形必考题1《全等三角形的判定》这一课,要求学生会通过观察几何图形识别两个三角形全等,并能通过正确的分类动手探索出两个三角形全等的条件。
具体说:(1)正确识别两个三角形全等——会将两个三角形相等的边和角对应重叠在一起,看是否重合;(2)相信判定两个三角形全等不一定要3条边和3个角都相等,可能一边或一角相等就足够(这个判断不一定要正确,但要有这种想法,探索命题的真假才有可能);(3)能正确地将三角形的6个元素按条件的个数分成:①一个元素:一个边或一条角对应相等。
②两个元素:两边或一边一角或两角对应相等。
③三个元素:三边或两边和一角或一边和两角或三角对应相等。
或者按:①边(一条边或两条边或三条边分别对应相等)。
②角(一个角或两个角或三个角分别对应相等)。
③边和角[一条边和一个角或一条边和两个角(又分为角边角和角角边两种)或两条边和一个角(又分为边角边和边边角两种)分别对应相等];(4)能将分好的三大类(12小类)条件用画图的方法进行验证,找出能判定两个三角形全等的三条公理和一条定理;(5)能用这四个判定,直接判定两个三角形是否全等或能补充一个条件使两个三角形全等。
基于知识的完整性和分类的数学思想的渗透,我认为这个教学设计体现了知识与技能目标。
增强学生的观察、猜想和动手操作能力。
八年级上册数学全等三角形必考题2一、制订好复习课的复习目标复习要对以前多节新课中的知识点或数学思想方法进行压缩整理,所以要制订好复习课的复习目标。
首先,选择合适的知识范围非常重要。
其次,应确定对所选知识点中重点的复习深度,过易会让学生索然无味,过难会让学生畏惧前行,失去信心。
我对这节课的难度把握是保全突尖,教学流程本身有梯度,例题与配套变式也有梯度。
不过对于例3“求证两线段相等”这个问题既需要添加辅助线,又要连续两次证全等。
问题的梯度设置过大,许多学生还观察不出。
新北师大版数学八年级上册复习知识点完整版

新北师大版数学八年级上册复习知识点HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】新北师大版八年级上数学第一章到第七章知识点总结第一章 勾股定理【主要知识】1、勾股定理:直角三角形的两直角边的平方和等于_______________。
如果用b a ,和c 分别表示直角三角形的两直角边和斜边,那么________________【注】①直角三角形;②找准斜边、直角边。
2、(1)勾股定理的逆定理:如果三角形的三边长c b a ,,满足_____________,那么这个三角形是直角三角形。
(2)勾股数:满足222c b a =+的三个正整数,称为______________。
3、勾股定理的应用1、在Rt △ABC 中,∠C =90°,a =12,b =16,则c 的长为( )A .26B .18C .20D .212、在下列数组中,能构成一个直角三角形的有( )①10,20,25;②10,24,25;③9,80,81;④8;15;17A 、4组B 、3组C 、2组D 、1组3、三角形的三边长a,b,c满足2ab=(a+b)2-c2,则此三角形是( ).A 、钝角三角形B 、锐角三角形C 、直角三角形D 、等边三角形4、下列各组数:①,,;②9,12,16;③4,5,6;④a 8,a 15,a 17(0≠a ); ⑤9,40,41。
其中是勾股数的有( )组A 、1B 、2C 、3D 、45、将Rt △ABC 的三边都扩大为原来的2倍,得△A ’B ’C ’,则△A ’B ’C ’为( )A 、 直角三角形B 、锐角三角形C 、钝角三角形D 、无法确定6、在Rt △ABC 中,∠C =90°,∠B =45°,c =10,则a 的长为( )A :5B :10C :25D :57、已知a 、b 、c 是三角形的三边长,如果满足2(6)100a c --=,则三角形的形状是( )A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形第二章 实数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数:无限不循环小数叫做无理数。
(最新整理)八年级上册数学大题重点

八年级上册数学大题重点编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级上册数学大题重点)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级上册数学大题重点的全部内容。
25、已知:如图1,点C为线段AB上一点,△ACM,△CBN都是等边三角形,AN交MC于点E,BM交CN于点F.(1)求证:AN=BM;(2)求证:△CEF为等边三角形;(3)将△ACM绕点C按逆时针方向旋转90 O,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明).12.如图,△ABC中边AB的垂直平分线分别交BC、AB于点D、E,AE=3cm,△ADC 的周长为9cm,则△ABC的周长是( C)A.10cm B.12cm C.15cm D.17cm26.(10分)如图,在△ABC中,∠ACB=90°,CE⊥AB于点E,AD=AC,AF平分∠CAB 交CE于点F,DF的延长线交AC于点G,求证:(1)DF∥BC;(2)FG=FE.解:①证△ACF≌△ADF得∠ACF=∠ADF,∵∠ACF=∠B,∴∠ADF=∠B,∴DF∥BC;②∵DF∥BC,BC⊥AC,∴FG ⊥AC ,∵FE ⊥AB ,又AF 平分∠CAB,∴FG=FE27.(12分)如图,直线OC 、BC 的函数关系式分别是y 1=x 和y 2=—2x+6,动点P (x ,0)在OB 上运动(0〈x 〈3),过点P 作直线m 与x 轴垂直. (1)求点C 的坐标,并回答当x 取何值时y 1>y 2?(2)设△COB 中位于直线m 左侧部分的面积为s ,求出s 与x 之间函数关系式. (3)当x 为何值时,直线m 平分△COB 的面积?解:(1)解方程组 得26y x y x =⎧⎨=-+⎩22x y =⎧⎨=⎩∴C 点坐标为(2,2);(2)作CD ⊥x 轴于点D ,则D(2,0).①s=x 2(0〈x ≤2);12②s=—x 2+6x—6(2〈x<3);(3)直线m 平分△AOB 的面积,则点P 只能在线段OD ,即0〈x<2.又△COB 的面积等于3,故x 2=3×,解之得.121225.(9分)某批发商欲将一批海产品由A 地运往B地, 汽车货运公司和铁路货运公司均开办了海产品运输业务.已知运输路程为120千米, 汽车和火车的速度分别为60千米/时和100千米/时.两货物公司的收费项目和收费标准如下表所示:运输工具运输费单价(元/吨·千米)冷藏费单价(元/吨·小时)过路费(元)装卸及管理费(元)汽车252000火车 1.8501600注:“元/吨·千米”表示每吨货物每千米的运费;“元/ 吨小时”表示每吨货物每小时的冷藏费.(1)设该批发商待运的海产品有x(吨), 汽车货运公司和铁路货运公司所要收取的费用分别为y1(元)和y2(元),试求出y1和y2和与x的函数关系式;(2)若该批发商待运的海产品不少于30吨,为节省运费, 他应该选择哪个货运公司承担运输业务?解:①y1=2×120x+5×(120÷60)x+200=250x+200y2=1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25、已知:如图1,点C为线段AB上一点,△ACM,△CBN都是等边三角形,AN交MC 于点E,BM交CN于点F.
(1)求证:AN=BM;
(2)求证:△CEF为等边三角形;
(3)将△ACM绕点C按逆时针方向旋转90O,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明).
12.如图,△ABC中边AB的垂直平分线分别交BC、AB于点D、E,AE=3cm,△ADC•的周长为9cm,则△ABC的周长是( C)
A.10cm B.12cm C.15cm D.17cm
26.(10分)如图,在△ABC中,∠ACB=90°,CE⊥AB于点E,AD=AC,AF平分∠CAB•交CE 于点F,DF的延长线交AC于点G,求证:(1)DF∥BC;(2)FG=FE.
解:①证△ACF≌△ADF得∠ACF=∠ADF,
∵∠ACF=∠B,
∴∠ADF=∠B,
∴DF∥BC;
②∵DF∥BC,BC⊥AC,
∴FG⊥AC,
∵FE⊥AB,
又AF平分∠CAB,
∴FG=FE
27.(12分)如图,直线OC、BC的函数关系式分别是y1=x和y2=-2x+6,动点P(x,0)在OB上运动(0<x<3),过点P作直线m与x轴垂直.
(1)求点C的坐标,并回答当x取何值时y1>y2?
(2)设△COB中位于直线m左侧部分的面积为s,求出s与x之间函数关系式.
(3)当x 为何值时,直线m 平分△COB 的面积? 解:(1)解方程组26y x y x =⎧⎨
=-+⎩ 得2
2
x y =⎧⎨=⎩
∴C 点坐标为(2,2);
(2)作CD ⊥x 轴于点D ,则D (2,0).
①s=
12
x 2
(0<x ≤2); ②s=-x 2+6x-6(2<x<3); (3)直线m 平分△AOB 的面积, 则点P 只能在线段OD ,即0<x<2. 又△COB•的面积等于3, 故12x 2=3×1
2
,解之得x=3.
25.(9分)某批发商欲将一批海产品由A 地运往B 地,•汽车货运公司和铁路货运公司均开办了海产品运输业务.已知运输路程为120千米,•汽车和火车的速度分别为60千米/时和100千米/时.两货物公司的收费项目和收费标准如下表所示:
运输工具 运输费单价 (元/吨·千米) 冷藏费单价 (元/吨·小时) 过路费 (元) 装卸及管理费
(元) 汽车 2 5 200 0 火车
1.8
5
1600
注:“元/吨·千米”表示每吨货物每千米的运费;“元/•吨小时”表示每吨货物每小时的冷藏费.
(1)设该批发商待运的海产品有x (吨),•汽车货运公司和铁路货运公司所要收取的费用分别为y 1(元)和y 2(元),试求出y 1和y 2和与x 的函数关系式;
(2)若该批发商待运的海产品不少于30吨,为节省运费,•他应该选择哪个货运公司承担运输业务?
解:①y 1=2×120x+5×(120÷60)x+200=250x+200
y 2=1.8×120x+5×(120•÷100)x+1600=222x+1600; ②若y 1=y 2,则x=50.
∴当海产品不少于30吨但不足50吨时,选择汽车货运公司合算; 当海产品恰好是50吨时选择两家公司都一样,没有区别;• 当海产品超过50吨时选择铁路货运公司费用节省一些. 27.(6分)已知A (5,5),B (2,4),M 是x 轴上一动点,求使得M A +MB 最小时的点M 的坐标.
28.(8分)某市的A 县和B 县春季育苗,急需化肥分别为90吨和60吨,该市的C 县和
D 县分别储存化肥100吨和50吨,全部调配给A 县和B 县,已知C 、D 两县 运化肥到A 、B 两县的运费(元/吨)如下表所示.
(1)设C 县运到A 县的化肥为x 吨,求总运费W (元)与x (吨)的函数解
析式,并写出自变量x 的取值范围; (2)求最低总运
解.(1)由题意,得 )40(45)100(30)90(4035-+-+-+=x x x x W
104800(4090)x x =+≤≤. …………………………6分 (2)因为W 随着x 的减小而减小,所以当40=x 时,
W 最小=10×40+4800=5200(元).费,并说明总运费最低时的运送方案.
29.(12分)如图,直线y=-2x +4分别与x 轴、y 轴相交于点A 和点B ,如果线段CD 两端点在坐标轴上滑动(C 点在 y 轴上,D 点在x 轴上),且CD=AB . (1)当△COD 和△AOB 全等时,求C 、D 两点的坐标;
(2)是否存在经过第一、二、三象限的直线CD ,使CD ⊥AB ?如果存在,请求出直线
CD 的解析式;如果不存在,请说明理由. 29.(1)由题意,得A (2,0),B (0,4),
即AO =2,OB =4. …………………………………………………………2分 ①当线段CD 在第一象限时,
点C (0,4),D (2,0)或C (0,2),D (4,0).………………………4分 ②当线段CD 在第二象限时,
点C (0,4),D (-2,0)或C (0,2),D (-4,0).…………………6分 ③当线段CD 在第三象限时,
点C (0,-4),D (-2,0)或C (0,-2),D (-4,0).……………8分 ④当线段CD 在第一象限时,
点C (0,-4),D (2,0)或C (0,-2),D (4,0) ………………10分 (2)C (0,2),D (-4,0).直线CD 的解析式为21
+=x y .…………12分
(第29题)
28.(本题9分) 如图, △ABC 为等边三角形,AE =CD ,AD 、BE 相交于点P ,BQ ⊥AD 与Q ,
PQ =4,PE =1 (1)求证 ∠BPQ =60° (2)求AD 的长
24.(10分)△ABC 为正三角形,点M 是射线BC 上任意一点,点
N 是射线CA 上任意一点,且BM=CN ,BN 与AM 相交于Q 点,∠AQN 等于多少度. 解:∠AQN=60º,
如图,在△ABM 和△BCN 中,易证∠BCN=∠ABM=60º,CN=BM ,又∵AB=AC ,
∴△ABM ≌△BCN ,∴∠BAM=∠CBN ,
又∵∠AQN=∠BAQ+∠ABQ=∠NBC+∠ABQ=∠ABC=60º.
∴∠AQN =∠ABC=60º
28.(10分)如图,直线y=k x +6分别与x 轴、y 轴相交于点E 和点F ,点E 的坐标为 (-8,
0),点A 的坐标为(0,6)。
(1)求k 的值; (2)若点P (x ,y )是第二象限内的直线上的一个动点,当点P 运动过程中,试写出△
OPA 的面积S 与x 的函数关系式,并写出自变量x 的取值范围; (3)探究:当P 运动到什么位置时,△OPA 的面积为8
27
,并说明理由。
29.(10分)已知a ,b,c 是△ABC 的三边,且满足关系式a 2+c 2=2a b+2bc-2b 2,试说明△
ABC 是等边三角形.
B D
C E
A
P
Q
F
x
y O
A
E
25.计算(101×91×8
1×…×21×1)10·(10×9×8×7×…×3×2×1)10
(8分)
26. (10分) 已知:三角形ABC 中,∠A =90°,AB =AC ,D 为BC 的中点,
(1)如图,E ,F 分别是AB ,AC 上的点,且BE =AF ,
求证:△DEF 为等腰直角三角形.
(2)若E ,F 分别为AB ,CA 延长线上的点,仍有BE =AF ,其他条件不变,
那么,△DEF 是否仍为等腰直角三角形?证明你的结论.
证明:①连结
∵AB AC ∠BAC =90° D 为BC 的中点 ∴AD ⊥BC BD =AD ∴∠B =∠DAC =45° 又BE =AF
∴△BDE ≌△ADF (SAS ) ∴ED =FD ∠BDE =∠ADF
∴∠EDF =∠EDA +∠ADF =∠EDA +∠BDE =∠BDA =90° ∴△DEF 为等腰直角三角形 5分 ②若E ,F 分别是AB ,CA 延长线上的点,如图所示.
连结AD
∵AB =AC ∠BAC =90° D 为BC 的中点 ∴AD =BD AD ⊥BC ∴∠DAC =∠ABD =45° ∴∠DAF =∠DBE =135° 又AF =BE
∴△DAF ≌△DBE (S.A.S ) ∴FD =ED ∠FDA =∠EDB
∴∠EDF =∠EDB +∠FDB =∠FDA +∠FDB =∠ADB =90° ∴△DEF 仍为等腰直角三角形 10分。