太湖蓝藻预警采样点位布设与采样层次的研究

合集下载

蓝藻水华的预警监测体系

蓝藻水华的预警监测体系

蓝藻水华的预警监测体系孟大鹏YSI (China) ltd. Co,.市场和战略规划部部中国北京市朝阳区东四环中路39号华业国际中心A座605室dmeng@ysi-china.摘要:通过分析影响蓝藻生长的因素,综合运用卫星遥感、在线、采样、剖面和自容等多种监测方式和浮标、AUV等多种平台,选择具有短期、长期预警意义的参数和对监控污染有指向意义的参数来监测。

同时结合多种来源的数据进行综合的分析、修正和校准,在蓝藻的浓度、种类、藻毒素的浓度和现场实测数据之间建立相应的联系,以了解水华爆发的规律并建立当地水华的预警模型关键词:蓝藻,水华,预警1.引言蓝藻水华在很多研究当中被认为是湖泊等水体富营养化的结果之一,从对水华的统计上看,水体富营养化最常见的结果就是导致由于藻类大量繁殖形成的水华现象。

蓝藻水华最根本的对策是减少水体的营养盐输入水平。

实际上,污染的排放取决于人类生活和经济活动的规模、区域和方式。

改变任何地区现有的经济活动的规模、区域和方式毫无疑问是一个长期和复杂的系统工程。

其过程往往耗资巨大、操作复杂、历时数年甚至几十年,影响区域内各行各业人民的生活、工作。

许多对蓝藻的持续研究表明,很多爆发过蓝藻的湖泊在随后的十几年乃至几十年内持续在夏季爆发的比例非常高。

甚至可以说,在国内湖泊富营养化比较严重的情况下,蓝藻爆发的威胁毫无疑问将在很长的一段时间内存在。

在这种情况下,在蓝藻水华爆发前和爆发时的应急处理将是环境监管部门应对蓝藻水华事件的常态。

而目前中国近70%以上的湖泊存在着富营养化的事实也表明蓝藻水华频发态势将在未来一段时间内依然持续。

因此应对蓝藻的威胁的应急处理将是降低经济、社会和生态损失必不可少的有效措施。

而有效的应急处理首先需要掌握准确的水华态势以及提前预测蓝藻的爆发,而越早预测到蓝藻水华的爆发,应急处理措施的效率就会越高,越有效,蓝藻水华所引起的各种损失也会被控制在最低的范围内。

因此可以说建立有效的蓝藻水华预警监测系统是保证应急处理机制有效的先决条件,也是目前应对蓝藻水华威胁的必由之路。

太湖水质监测方案

太湖水质监测方案

太湖水质监测方案一.监测目的太湖流域位于长江三角洲地区腹地,人口密集,经济发达。

2007年5月底,由于太湖蓝藻暴发等原因,导致无锡市水源地水质污染,严重影响了当地近百万群众的正常生活,引起社会广泛关注。

通过对太湖水质的监测,实时了解水质变化情况,从而科学管理水体。

二.太湖流域概况太湖是我国第三大淡水湖,水面面积2338平方公里,太湖流域文化底蕴深厚,被誉为“人间天堂”。

流域面积36895平方公里,是我国经济最发达的地区之一,在全国占有举足轻重的地位。

流域内河道水系以太湖为中心,分上游水系和下游水系两个部分。

上游主要为西部山丘区独立水系,有苕溪水系、南河水系及洮滆水系等;下游主要为平原河网水系,主要有以黄浦江为主干的东部黄浦江水系(包括吴淞江)、北部沿江水系和南部沿杭州湾水系。

京杭运河穿越流域腹地及下游诸水系,太湖流域境内全长312km,起着水量调节和承转作用,也是流域的重要航道。

(一)自然概况1.地形地貌和气象太湖湖区面积3192平方公里(包括部分湖滨陆地)。

平原区河网交织,水流流速缓慢。

太湖流域属亚热带季风气候区,雨水丰沛,四季分明,夏季炎热。

年平均气温14.9~16.2℃,年日照时数1870~2225小时。

多年平均降水量1177毫米,多年平均水面蒸发量822毫米。

2.水资源概况太湖流域多年平均水资源总量177.4亿立方米,人均、亩均水资源占有量分别为398立方米和727立方米。

长江多年平均过境水量9334亿立方米。

其中太湖的湖泊面积为2425平方公里,水面面积2338.11平方公里,湖泊长度68.55公里,平均宽度34.11公里,平均水深1.89米,总容蓄水量44.30亿立方米。

出入太湖河流228条,其中主要入湖河流有苕溪、南溪和洮滆等;出湖河流有太浦河、瓜泾港、胥江等;人工调控河道主要有望虞河等。

3.太湖湖体水质整体情况根据江苏省环保部门统计数据,2009年,太湖湖体的高锰酸盐指数平均浓度为4.2mg/L,达到Ⅲ类;总磷平均浓度为0.083mg/L,属Ⅳ类;总氮平均浓度为2.64mg/L,劣于Ⅴ类。

太湖饮用水源地蓝藻预警监测质量管理体系的构建

太湖饮用水源地蓝藻预警监测质量管理体系的构建

现代测量与实验室管理2008年第6期 文章编号:1005-3387(2008)06-0058-60太湖饮用水源地蓝藻预警监测质量管理体系的构建戴秀丽 娄明华 孙晓斌(无锡市环境监测中心站,无锡 214023)摘 要:预警监测质量管理工作应贯穿预警监测工作的各个环节,从日常监测质量保障和预警监测质量管理两个方面,确保预警监测的顺利进行。

关键词:质量管理;预警监测0 引言太湖饮用水源地预警监测工作,伴随着2007年5月28日“一场严重的公共饮水危机”,成为各级政府危机管理的一种手段而越来越得到重视。

监测数据和信息准确性直接影响预警工作顺利与否,因此,加强太湖饮用水源地蓝藻预警监测的质量管理工作,是做好预警监测工作的重要环节,是为政府部门及时准确掌握太湖水质变化趋势,应对太湖水质污染、生态灾害等突发事件的决策准确提供监测信息的前提和保证。

太湖饮用水源地蓝藻预警监测与日常太湖水质监测相比,具有监测目的明确、监测的污染因子基本确定、监测频次较高、持续时间较长、要求监测队伍响应快速、业务技术能力较强等特点。

针对其特点,预警监测的质量管理应采用“日常监测质量保障为前提,有重点的实施预警监测质量保证”工作思路,按常态预警监测和非常态预警监测管理模块进行实效质量管理,确保预警监测能准确、及时,为政府应对太湖饮用水源地蓝藻爆发的决策提供科学依据。

1 预警监测日常质量的保障日常环境监测的质量保证和质量控制是预警监测质量管理的基础,也是加强太湖饮用水源地预警监测质量管理工作的重点内容,涉及到人员、设备、服务和供应品采购、技术、设施、流程等诸多因素。

应从以下五个方面做好日常质量保障。

1.1 人员保障蓝藻预警监测涉及环境、生物、化学、物理、气象、遥感和水文等多个学科,是一项技术性、专业性、法规性、精确性很强的工作,对专业人员要求极高,既要有扎实的专业知识,丰富的实践经验,还要有崇高的敬业精神和完成任务的信心和决心,因此培养高素质的监测队伍是科学预警的必要条件。

太湖水源地蓝藻水质预测预报动态分析

太湖水源地蓝藻水质预测预报动态分析

收稿日期:2009-01-23作者简介:蒋秀华,女,江苏省水文水资源勘测局,工程师。

水资源研究 第30卷第2期(总第111期)2009年6月太湖水源地蓝藻水质预测预报动态分析蒋秀华(江苏省水文水资源勘测局,南京 210029)摘 要:通过对太湖水源地水环境预测状况的分析,反映了水体中富营养主要污染物总氮、总磷对蓝藻的影响程度,为预警水源地蓝藻污染提供科学依据。

关键词:太湖;水源地;蓝藻;水质预报1 概述太湖是我国第3大淡水湖,面积2400km 2,流域面积36895km 2,人口3400万,是上海和苏锡常、杭嘉湖地区最重要的水源。

太湖流域20世纪80年代前可以洗衣服、洗菜、游泳,河床湖底干净,如今摈弃的农家有机肥、农田化肥残留量随降雨径流、生活污水、工业废水排入了河湖,水产品养殖的超营养状态,湖底淤泥的沉积使得水体不堪重负,加剧了水体的富营养化程度,从而为2007年5月无锡水源地藻类的大面积暴发创造了条件。

无锡2007年的暖冬降水与往年相比属偏少,1至5月的偏南风明显多于往年。

一般来说,5,6月份蓝藻开始较大面积暴发,由于无锡地区风向从偏北风转换到东南风的时间早于常年近一个月,湖面大量繁殖生长的蓝藻在风力的作用下于西北岸边的浅水滩堆积。

到7,8月份,水温一高,就会死亡腐烂。

南风一起,臭味四处弥漫,味道呛人,随波起伏缓慢地向岸边漂去。

据气象资料,特别是由于2007年5月25、26和27日的气温分别达到30.1!、31.1!和34.2!,死亡的蓝藻迅速发酵、发臭,5月29日的蓝藻污染使无锡水源地所处的梅梁湖和贡湖成为受影响最严重的地区,直接造成了无锡饮用水源告急,从而影响了当地人民的生活与经济可持续发展。

无锡出现了有史以来的影响最严重一次水资源危机。

2 蓝藻发生的机理及基本规律蓝藻(Blue green algae)是一种重要的藻类。

蓝藻实际上也是有机体,主要由碳氮磷氧组成。

蓝藻水华成因的理论假设分4阶段。

2010-2017年太湖总磷浓度变化趋势分析及成因探讨

2010-2017年太湖总磷浓度变化趋势分析及成因探讨

2010-2017年太湖总磷浓度变化趋势分析及成因探讨王华;陈华鑫;徐兆安;芦炳炎【摘要】近年来,太湖流域各省市政府加大治理力度,流域水体水质取得明显好转,氨氮浓度和总氮浓度呈大幅度下降趋势,然而太湖水体总磷浓度呈上升趋势.为探讨太湖总磷浓度升高的原因,采用太湖流域管理局2010年以来的水质水量实测数据、遥感监测数据等,分别从太湖入湖河流污染负荷量、水生植被和蓝藻与总磷浓度的关系3个方面进行相关性分析.结果表明,入湖河流总磷浓度高于太湖水体总磷浓度,且磷不易出湖,逐年总磷净入湖量持续累积与太湖总磷浓度有明显的正相关性,入湖污染负荷量大是太湖总磷浓度居高不下的根本原因;水生植被可吸收湖泊沉积物中的营养盐,并抑制底泥再悬浮从而降低内源性营养盐的释放,东太湖水生植被的大量减少,一方面减少了沉水植物对磷元素的吸收,另一方面增加了风浪对底泥的扰动再悬浮,造成磷元素释放,是造成湖水总磷浓度升高的重要因素;近年来太湖蓝藻密度呈上升趋势,受其影响,总磷浓度也有上升,蓝藻水华加快湖体磷循环,藻类密度增加也是太湖总磷浓度升高的影响因素之一.【期刊名称】《湖泊科学》【年(卷),期】2019(031)004【总页数】11页(P919-929)【关键词】太湖;总磷;污染负荷;底泥释放;水生植被;蓝藻【作者】王华;陈华鑫;徐兆安;芦炳炎【作者单位】太湖流域水资源保护局,上海200434;太湖流域管理局水利发展研究中心,上海200434;太湖流域水文水资源监测中心,无锡214024;太湖流域水资源保护局,上海200434【正文语种】中文太湖地处长江三角洲南缘,是大型浅水湖泊,水域面积2338 km2,平均水深1.9 m,最大水深约3.4 m,是太湖流域水生态系统的中枢. 2007年5月底发生的太湖蓝藻暴发以及由此导致的无锡市供水危机,严重影响了当地近百万群众的正常生活,引起社会广泛关注,2008年5月国务院批复实施《太湖流域水环境综合治理方案》.对于湖泊富营养化和蓝藻水华暴发,研究氮、磷等营养盐浓度的变化,已经是国内诸多专家主要研究方向. 戴秀丽等[1]分析了太湖水体氮、磷浓度1985-2015年的演变趋势,全太湖水体氮、磷指标总体呈先恶化、后好转的波动变化趋势,而总磷浓度则没有明显的季节性变化规律. 吴攀等[2]探索太湖流域水环境质量随经济发展的变化趋势,结果表明入湖总磷负荷与太湖上游流域废水排放总量呈显著正相关. 朱伟等[3]研究太湖典型湖区梅梁湾和贡湖湾2010-2017年水质变化时,发现这两个湖区总磷浓度在2014年前也是在波动中呈现下降的趋势,但在2015和2016年有所回升. 朱广伟等[4]对北部太湖14个监测点2005-2017年的营养盐和叶绿素a浓度逐月监测数据分析,发现2015年以来,北部太湖水体叶绿素a浓度呈显著增高特征,且近年来总磷浓度有升高趋势,溶解性总磷浓度也无明显下降趋势. 大量相关研究[5-12]表明,氮、磷指标是造成太湖湖体富营养化的关键因子.近10年来,太湖流域各省市政府加大治理力度,流域河流水体水质取得明显好转. 2010-2017年,太湖水体氨氮浓度和总氮浓度呈大幅度下降趋势,降幅分别为52.2%和35.5%,但太湖水体总磷浓度却呈上升趋势,增幅为16.9%. 本文通过分析近年来太湖入湖污染负荷、水生植被和蓝藻3方面变化,探讨近年来造成磷浓度升高的影响因素,这些分析对于正确理解太湖磷浓度现状,更加科学地制定治理措施有着重要的参考价值.1 材料与方法1.1 监测点布设太湖共布设33个监测点,分设在9个湖区,分别在梅梁湖5个、竺山湖2个、贡湖4个、东太湖3个、湖心区6个、西部沿岸区2个、东部沿岸区4个、南部沿岸区5个和五里湖2个(图1和表1). 监测点位覆盖了太湖全部水域,监测频次为每年12次,每月上旬监测1次.图1 太湖各分区及监测点分布Fig.1 Distribution of lake regions and monitoring sites of Lake Taihu表1 太湖水质监测站点概况Tab.1 List of water quality monitoring sites in Lake Taihu序号湖区(面积/km2)监测点序号湖区(面积/km2)监测点序号湖区(面积/km2)监测点1梅梁湖梅园12东太湖东太湖23东部西山2(124.0)小湾里13(172.4)庙港24沿岸区胥口3闾江口14戗港外25(268.0)漫山4拖山15湖心区乌龟山26胥湖5三号标16(972.9)焦山27南部夹浦6竺山湖竺山湖17平台山28沿岸区新塘7(68.3)龙头1814号标29(363.0)小梅口8贡湖沙墩港19湖心南30大钱9(163.8)渔业村20横山31汤溇10大贡山21西部大浦32五里湖东五里湖11贡湖22沿岸区(199.8)洑东33(5.8)西五里湖1.2 采样与检测方法水体总磷、溶解性总磷、正磷酸盐浓度的测定参照《水质总磷的测定钼酸铵分光光度法(GB 11893-1989)》. 水样采样层面为水下0.5 m,按照《地表水环境质量标准(GB 3838-2002)》的要求,水样经静置沉淀30分钟后取上清液测定总磷浓度. 具体做法是水样摇匀后,倒入2 L量筒静置沉淀30 min后,虹吸管插入液面下5 cm,取上清液入样品瓶,摇匀后取试样按GB 11893-1989要求消解后加入显色剂比色测定. 溶解性总磷浓度用0.45 μm孔径的滤膜过滤后,同样按GB 11893-1989方法消解后加入显色剂比色测定. 正磷酸盐浓度则用过滤后水样不经消解直接显色测定. 采用《内陆水域浮游植物监测技术规程(SL 733-2016)》中镜检计数法检测水体蓝藻密度.1.3 数据处理与统计方法1.3.1 水质各湖区监测点代表水域面积采用泰森多边形法确定,以此为权重,计算各湖区水质浓度;太湖水质浓度由各湖区水质按湖区面积加权计算确定. 如竺山湖水质浓度由竺山湖和龙头2个监测点水下0.5 m水质浓度,分别乘以2个监测点的代表面积加和,除以竺山湖水域面积计算而得.1.3.2 入湖污染负荷各入湖河流进行污染负荷计算[12]时,以当月入湖河流巡测断面水量作为月入湖水量,若入湖河流没有逐月水量巡测资料,则选择其与相应巡测段内基点站的年水量分配比重作为权重进行计算;水质资料选取入湖河流相应断面逐月浓度. 各入湖河流历年来监测断面位置略有调整,均采用实测水质资料进行分析,未进行修正(区域或总体入湖污染负荷均以入湖水量为权重对入湖河流水质浓度进行空间和时间上的累加,如果该巡测段(站)无入湖水量则其污染负荷量为零). 出入湖水量计算与分析按照地区划分,污染负荷量的统计按照太湖湖区来划分.1.3.3 相关性分析各项数据之间的相关性分析采用SPSS Statistics 25软件进行.2 结果与分析2.1 太湖磷浓度分布状况太湖水中磷可以分为颗粒态磷和溶解态磷. 颗粒态磷主要分悬浮泥沙和生物体及其残体碎屑两类,溶解态磷主要为无机磷和溶解态的有机磷. 2010-2017年,太湖总磷年均浓度0.076 mg/L,总体呈上升趋势. 其中2010-2014年上下波动,2014-2017年呈上升趋势,且2016年为8年间最高值,浓度达到0.097 mg/L. 溶解性磷年均浓度0.026 mg/L,占总磷浓度的34.4%,波动趋势与总磷较为一致;其中溶解性磷中的正磷酸盐是被藻类和高等水生植被吸收利用的最主要形式,正磷酸盐年均浓度0.013 mg/L,占总磷浓度的17.3%,总体上呈小幅上升趋势.从各湖区(图2)看,总磷浓度较高的湖区有竺山湖、西部沿岸区和梅梁湖. 其中竺山湖总磷浓度最高,且波动明显;其次为西部沿岸区,总磷浓度居高不下;而梅梁湖总磷浓度呈明显的增长趋势,增长幅度较大. 总磷浓度最小的湖区为东部沿岸区,其次为东太湖,其中东太湖总磷浓度变化趋势总体上呈增长趋势,尤其是2014年后呈明显上升趋势,2017年总磷浓度较2014年增长49%,为各湖区中增长幅度最大的湖区.图2 太湖及重点湖区磷浓度年均值变化Fig.2 Annual mean change of phosphorus concentration in Lake Taihu and key lake regions2.2 太湖蓝藻分布状况2010-2017年,太湖均为中度富营养状态,全湖藻类密度、蓝藻密度和叶绿素a浓度总体上均呈上升趋势,其中2015年较2014年略有降幅(图3). 其中藻类密度从2010年的1702×104 cells/L增长到2017年的12227×104 cells/L,增幅为618%,蓝藻密度从2010年的1394×104 cells/L增长到2017年的11766×104 cells/L,增幅为744%,叶绿素a浓度从2010年的19.4 mg/m3增加到2017年的45.5 mg/m3,增幅为134.5%. 其中蓝藻密度占藻类的比重总体上呈上升趋势,从2010年的82%增加到2017年的96%.图3 2010-2017年太湖蓝藻状况Fig.3 Conditions of cyanobacteria in Lake Taihu from 2010 to 2017从太湖各湖区蓝藻密度来看,梅梁湖和西部沿岸区蓝藻数量最高(图4),梅梁湖2017年蓝藻密度达到24662×104 cells/L,为太湖的2.1倍,西部沿岸区蓝藻密度达到21541×104 cells/L. 其中东太湖曾为蓝藻数量最少的湖区,但近年来东太湖蓝藻数量上升趋势明显,从2010年的446×104 cells/L增加到2017年的2651×104 cells/L,增幅近5倍.图4 2010-2017年太湖各湖区蓝藻密度Fig.4 Cyanobacteria density in each lake region of Lake Taihu from 2010 to 20172.3 环太湖入湖河流总磷污染负荷2010-2017年,环太湖入湖河流总磷浓度总体呈下降趋势,2017年总磷浓度较2010年下降了22.3%(图5),与同时段入湖河流水质总氮浓度下降28.5%相比,入湖总磷浓度降幅小于入湖总氮浓度的降幅. 入湖径流污染负荷是太湖磷最主要的外源,根据入湖河道水质和水文巡测流量数据,计算环太湖入湖河流总磷总入湖量. 2010-2017年环太湖入湖河流总磷总入湖量年均值为0.22万t,总体呈波动变化趋势,2010-2013年呈下降趋势,2014-2016年呈上升趋势,2017年有所下降,其中2010年总磷总入湖量为0.28万t,2016年为0.26万t,2017年为0.20万t.图5 环太湖入湖河流总磷污染负荷Fig.5 Total phosphorus pollution load of rivers into the Lake Taihu3 讨论太湖湖体的磷营养盐来源包括外源和内源. 外源形式较多,其中入湖河道径流输入是外源负荷的最大组成部分;内源主要来源于底泥的释放、死亡的生物体分解以及围网养殖等[14]. 其中水生植被是影响底泥释放的主要因素,对磷的释放有至关重要的影响,因此本文重点分析水生植被.磷由外源进入湖泊后,一部分随着水流流出湖外,另一部分滞留在湖水中. 湖水中的可溶性磷(包括部分无机磷和少部分有机磷)主要直接被藻类和植物吸收;颗粒态磷可沉积进入底泥,部分溶解态磷可反应生成沉淀物进入底泥[15]. 底泥中的磷相当部分与湖底的固化沉积物结合,一般不再释放到水中参与磷循环,但在风浪等物理扰动作用下可再悬浮进入水体,也可在pH值、氧化还原电位等化学因素和微生物等作用下,转化为可溶性磷释放进入水体. 特别当蓝藻水华发生时,为维持藻类生长对磷的需求,藻体大量吸收水体中的正磷酸盐,并通过影响水体pH值、溶解氧浓度和分泌磷酸酶等方式,加速底泥中磷的释放和水体有机磷分解,加快湖体磷循环速度.根据太湖磷营养盐的来源及循环机理,本文重点讨论入湖污染负荷、水生植被和蓝藻3方面对太湖总磷浓度的影响.3.1 入湖污染负荷对太湖总磷浓度的影响太湖主要入湖河流污染负荷占入湖总污染负荷的70%~80%,控制入湖河流污染负荷是太湖治理的关键因素[16]. 目前,太湖总磷污染负荷仍较大,呈波动趋势,2010-2017年仅环太湖河流径流输入的磷年平均达0.22万t,入湖河流总磷平均浓度为太湖总磷平均浓度的2.1倍,超出太湖自净能力[17-18].西部沿岸区对应河流入湖水量占环太湖河流入湖水量比重较大,分析西部沿岸区对应入湖河流总磷负荷及湖区总磷浓度之间变化情况具有重要意义.根据图6分析可知,2010-2017年间,西部沿岸区对应入湖河流总磷浓度以2011年最高,之后总体呈下降趋势. 但受入湖水量较常年偏多的影响,特别是2015和2016年大洪水期间,年度总磷总入湖量和总磷净入湖量连续增加,使得进入太湖的总磷负荷呈上升趋势. 根据相关性分析,湖区总磷浓度与入湖河流总磷浓度和入湖河流总磷负荷三者之间没有同步变化趋势. 其中湖区总磷浓度与入湖河流总磷浓度之间无明显的相关性,因此入湖河流总磷浓度对湖区总磷浓度没有直接的影响;湖区总磷浓度与入湖河流总磷负荷两者之间有一定的同步关系,因此入湖总磷负荷直接影响对应湖区的总磷浓度. 因此,湖区总磷浓度影响因素是由入湖河流总磷浓度和入湖河流水量两者共同决定的,即入湖总磷负荷,尤其2016年大洪水期间,入湖总磷负荷量增大与总磷浓度反弹有较大的关系.图6 2010-2017年太湖西部沿岸区总磷浓度变化趋势Fig.6 Change trend of total phosphorus concentration in west region of Lake Taihu from 2010 to 2017与湖体中氮循环不同,磷循环转化呈气态逸出的量占比非常小,同时磷易与金属离子结合形成沉淀物,因此磷更易沉积于湖底,使得太湖底泥总磷含量维持在较高水平. 同时其他途径出湖的总磷量比重较小[19],因此本文重点分析地表径流入太湖的总磷净入湖量,通过分析2010-2017年太湖总磷净入湖量累积量与太湖总磷浓度的关系(图7)可知,逐年总磷净入湖量累积值与太湖总磷浓度呈二次线性相关,相关系数为0.8315. 因此,太湖总磷浓度与逐年总磷净入湖量累计值有较大的关系. 图7 2010-2017年太湖总磷净入湖量累积量与总磷浓度的关系Fig.7 Relationship between total phosphorus concentration and total phosphorus accumulation in Lake Taihu from 2010 to 2017综上所述,入湖总磷负荷变化是太湖总磷浓度变化的直接因素,由于磷相较于氮更易滞留于湖体,使得太湖湖体的总磷浓度维持在较高水平. 因此,磷入湖量大是湖水总磷浓度居高不下的基础因素.3.2 水生植被对太湖总磷浓度的影响3.2.1 太湖水生植被状况太湖水生植被主要包括沉水植被和挺水植被,根据2013-2017年太湖水生高等植被遥感图结果显示,与2014年较相比,2015年5月水生植被覆盖面积由272.33 km2降至55.96 km2,减少了79.5%. 其中主要是沉水植被面积大幅减少,由244.31 km2下降至27.65 km2,减少了88.7%;挺水植被面积变化很小. 沉水植被主要分布在东太湖、东部沿岸区两个湖区,挺水植被主要分布在太湖大堤沿岸内侧(图8).图8 2013-2017年5月太湖水生植被分布比较Fig.8 Comparison of aquaticvegetation distribution of Lake Taihu in May of 2013-20173.2.2 东太湖水生植被大量减少对总磷浓度的影响分析本文以东太湖为例,重点分析水生植被对太湖总磷浓度的影响. 东太湖曾经为典型草型湖区,近年来由于水生植被大量减少,水生态状况发生了较大变化. 不同水生态系统中营养盐赋存形态不同,藻型生态系统中磷营养盐浓度高于草型生态系统[20]. 东太湖沉水植被覆盖面积从2015年开始大幅减少,与2014年相比,2015年5月沉水植被覆盖面积由65.53 km2降至24.81 km2,减少62.1%,2016年持续减少,2017年东太湖沉水植被虽有所恢复,但较2015年同期水平还有较大差距. 根据东太湖5月水生植被的变化与同期东太湖总磷浓度分析可知(图9),2013-2017年5月东太湖水生植被面积和总磷浓度呈明显的反向变化. 因此,由于近年来水生植被的大量减少,曾经为草型生态系统的东太湖正在呈现向藻型生态系统转化的趋势.图9 2013-2017年东太湖5月水生植被面积和总磷浓度变化情况Fig.9 Changes of aquatic vegetation area and total phosphorus concentration in East Lake Taihu in May of 2013-2017水生植被可吸收湖泊沉积物中的营养盐,并抑制底泥再悬浮从而降低内源性营养盐的释放. 太湖是一个典型的大型浅水湖泊,水土界面不断受到风浪扰动导致沉积物大量悬浮,水土界面不断受到破坏,氧化还原环境在这种动力扰动下处于不断转换中. 风浪扰动能够促进底泥营养盐的大量释放[21],底泥释放能够促进水体总氮、总磷和活性磷浓度的显著升高[22]. 大型水生植被的退化,使得水体富营养化程度加剧,造成恶性循环,总磷浓度不断上升.综上,2015年由于东太湖水生植被面积大幅减小,一方面减少了总磷的吸收量,另一方面有利于风浪对底泥的再悬浮而促进底泥总磷的释放,从而使得东太湖水质浑浊. 因此,东太湖水生植被大量减少,有利于底泥中总磷的释放,使得水体富营养化程度加剧,是近年来东太湖总磷浓度持续上升的原因之一.3.3 太湖蓝藻对总磷浓度的影响太湖水体磷营养盐浓度影响着蓝藻水华暴发的强度,蓝藻水华对磷营养盐浓度的变化也存在反馈机制. 太湖蓝藻的快速生长导致其从底泥中泵取大量的磷,从而增加底泥中磷的释放和有机磷的转化,加快湖体磷循环,增加水体总磷浓度. 蓝藻水华发生时,由于大量利用CO2进行光合作用,水体pH值上升,太湖蓝藻生长季节pH值多大于8.5,甚至超过9.0,偏碱性环境更有利于底泥磷的释放. 蓝藻生长大量消耗水中无机磷,通过分泌碱性磷酸酶可加快死亡藻体分解的有机磷转化为可利用的无机磷.图10 太湖各监测点颗粒态磷浓度与叶绿素a浓度的相关关系Fig.10 Relationship between chlorophyll-a concentration and particle phosphorus concentration at each monitoring site in Lake Taihu太湖总磷以颗粒态为主,2010-2017年平均比例占65.6%,颗粒态磷除了外源输入外,主要来源于底泥再悬浮和藻体. 根据统计,太湖各测点颗粒态磷浓度与叶绿素a浓度的相关系数为0.7413,存在显著的正相关关系(图10). 目前采样层面为水下0.5 m,太湖发生蓝藻水华时,水样中有大量蓝藻,当水样静置30 min后,蓝藻向表层聚集,但用于总磷测定的上清液中仍有较多蓝藻,藻体中的磷一同被消解检测. 近年来太湖蓝藻数量呈上升趋势,受其影响,总磷浓度监测值也有上升. 蓝藻水华加快湖体磷循环,藻类数量增加也是近两年太湖总磷浓度上升的影响因素之一.4 结论本研究显示,近年来太湖水体总磷浓度持续增长的初步原因为:1)磷循环不同于氮循环,呈气态逸出量占比非常小,入湖河流总磷平均浓度高于太湖水体平均浓度,超出水体自净能力,且逐年总磷净入湖量持续累积,太湖总磷浓度维持较高水平,磷入湖污染负荷量大是湖水总磷浓度居高不下的根本原因,尤其2016年大洪水期间,入湖总磷负荷量增大与总磷浓度反弹有较大的关系. 2)水生植被可吸收湖泊沉积物中的营养盐,并抑制底泥再悬浮从而降低内源性营养盐的释放. 东太湖水生植被大量减少,一方面减少了对氮、磷的吸收,另一方面增加了风浪对底泥的扰动,有利于底泥的再悬浮,造成总磷的释放. 3)蓝藻水华加快湖体磷循环,藻类数量增加也是近两年太湖总磷浓度上升的影响因素之一.分析近年来太湖水体磷浓度总体上升的影响因素,有助于为太湖的污染治理相关措施的实施提供有价值的参考.致谢:衷心感谢水利部太湖流域管理局朱威副局长在论文修改中无私的帮助和指导!衷心感谢太湖流域水资源保护局翟淑华处长的支持!5 参考文献【相关文献】[1] Dai XL, Qian PQ, Ye L et al. Evolution trend of nitrogen and phosphorus concentrationin Lake Taihu(1985-2015). J Lake Sci, 2016, 28(5): 935-943. DOI: 10.18307/2016.0502. [戴秀丽, 钱佩琪, 叶凉等. 太湖水体氮、磷浓度演变趋势(1985-2015年). 湖泊科学, 2016, 28(5): 935-943.][2] Wu P, Qin BQ, Yu G et al. Effects of economic development on wastewater discharge and influent total phosphorus load in the upstream of Lake Taihu Basin. J Lake Sci, 2015,27(6): 1107-1114. DOI: 10.18307/2015.0616. [吴攀, 秦伯强, 于革等. 太湖上游流域经济发展对废水排放及入湖总磷的影响. 湖泊科学, 2015, 27(6): 1107-1114.][3] Zhu W, Tan YQ, Wang RC et al. The trend of water quality variation and analysis in typical area of Lake Taihu, 2010-2017. J Lake Sci, 2018, 30(2): 296-305. DOI:10.18307/2018.0202. [朱伟, 谈永琴, 王若辰等. 太湖典型区2010-2017年间水质变化趋势及异常分析. 湖泊科学, 2018, 30(2): 296-305.][4] Zhu GW, Qin BQ, Zhang YL et al. Varition and driving factors of nutrients and chlorophyll-a concentrations in northern region of Lake Taihu, China, 2005-2017. J Lake Sci, 2018, 30(2): 279-295. [朱广伟, 秦伯强, 张运林等. 2005-2017年北部太湖水体叶绿素a和营养盐变化及影响因素. 湖泊科学, 2018, 30(2): 279-295.][5] Yang Y, Liu QG, Hu ZJ et al. Distribution and pollution assessment of carbon, nitrogen and phosphorus in sediments in Taihu Basin. Journal of Environmental Science, 2014,34(12): 3057-3064.[杨洋, 刘其根, 胡忠军等. 太湖流域沉积物碳氮磷分布与污染评价. 环境科学学报, 2014, 34(12): 3057-3064.][6] Wu YL, Xu H, Yang GJ et al. Research progress of nitrogen pollution in Lake Taihu. J Lake Sci, 2014, 26(1): 19-28. DOI: 10.18307/2014.0103. [吴雅丽, 许海, 杨桂军等. 太湖水体氮素污染状况研究进展. 湖泊科学, 2014, 26(1): 19-28.][7] Lin ZX. Analysis of water environmental change in Taihu watershed. J Lake Sci, 2002, 14(2): 111-116. DOI: 10.18307/2002.0203.[林泽新. 太湖流域水环境变化及缘由分析. 湖泊科学, 2002, 14(2): 111-116.][8] Xu HP, Yang GJ, Zhou J et al. Effect of nitrogen and phosphorus concentration on colony growth of Microcystis flos-aquae in Lake Taihu. J Lake Sci, 2014, 26(2): 213-220. DOI: 10.18307/2014.0207.[许慧萍, 杨桂军, 周健等. 氮、磷浓度对太湖水华微囊藻(Microcystis flos-aquae)群体生长的影响. 湖泊科学, 2014, 26(2): 213-220.][9] Chen C, Zhong JC, Shao SG et al. On the potential release rates of nutrient from internal sources: A comparative study of typical dredged and un-dredged areas, northwestern Lake Taihu. J Lake Sci, 2014, 26(6): 829-836. DOI: 10.18307/2014.0603.[陈超, 钟继承, 邵世光等. 太湖西北部典型疏浚/对照湖区内源性营养盐释放潜力对比. 湖泊科学, 2014,26(6): 829-836.][10] Zhai SH, Han T, Chen F. Self-purification capacity of nitrogen and phosphorus of Lake Taihu on the basis of mass balance. J Lake Sci, 2014, 26(2): 185-190. DOI:10.18307/2014.0203.[翟淑华, 韩涛, 陈方. 基于质量平衡的太湖氮、磷自净能力计算. 湖泊科学, 2014, 26(2): 185-190.][11] Bai XX, Hu WP. Effect of water depth on concentration of TN, TP and Chla in Taihu Lake, China. Advances in Water Science, 2006, 17(5): 727-732.[白晓华, 胡维平. 太湖水深变化对氮磷浓度和叶绿素a浓度的影响. 水科学进展, 2006, 17(5): 727-732.][12] Tao YY, Geng JJ, Wang HJ et al. Spatio-tempo variations of dissolved phosphorus concentrations in Lake Taihu. Environmental Monitoring in China, 2013, 29(5): 84-90.[陶玉炎, 耿金菊, 王红军等. 太湖水体溶解态磷的时空变化特征. 中国环境监测, 2013, 29(5): 84-90.] [13] Xie EL, Xu F, Xiang L et al. The effect of pollution load on water quality of Lake Taihu and its trend analysis. Journal of Hohai University: Natural Sciences, 2017, 45(5): 391-397.[谢艾玲, 徐枫, 向龙等. 环太湖主要入湖河流污染负荷量对太湖水质的影响及趋势分析. 河海大学学报: 自然科学版, 2017, 45(5): 391-397.][14] Qin BQ, Zhu GW, Zhang L et al. Release pattern and estimation method of endogenous nutrient salt from sediments of large shallow lakes—Lake Taihu as an example. Science China: Series D: Earth Science, 2005, (S2): 33-44.[秦伯强, 朱广伟, 张路等. 大型浅水湖泊沉积物内源营养盐释放模式及其估算方法——以太湖为例. 中国科学: D辑: 地球科学,2005, (S2): 33-44.][15] Zuo MM. Conversion and circulation of phosphorus in water. In: Chinese Society of Environmental Science ed. Collection of excellent papers from the 2006 annual academic conference of the Chinese society of environmental science (middle volume), 2006: 4.[左梅梅. 水体中磷的转化与循环. 中国环境科学学会2006年学术年会优秀论文集(中卷), 2006: 4.] [16] Overall plan for comprehensive treatment of water environment in Taihu Basin (revised in 2013). [太湖流域水环境综合治理总体方案(2013年修编), 发改地区[2013]2684号.] [17] Hang T, Zhai SH, Hu WP et al. Experiment and model simulation of phosphorus self-purification capacity. Environmental Science, 2013, 34(10): 3862-3871. [韩涛, 翟淑华, 胡维平等. 太湖氮、磷自净能力的实验与模型模拟. 环境科学, 2013, 34(10): 3862-3871.][18] Wang XM, Zhai SH, Zhang HJ et al. Analysis of appropriate water exchange period of Lake Taihu based on water quality improvement targe. J Lake Sci, 2017, 29(1): 9-21. DOI: 10.18307/2017.0102. [王冼民, 翟淑华, 张红举等. 基于水质改善目标的太湖适宜换水周期分析. 湖泊科学, 2017, 29(1): 9-21.][19] Yu H, Zhang LL, Yang SW et al. Atmospheric wet deposition characteristics and contribution rate of nitrogen and phosphorus nutrient salt from Lake Taihu. Research of Environmental Sciences, 2011, 24(11): 1210-1219. [余辉, 张璐璐, 燕姝雯等. 太湖氮磷营养盐大气湿沉降特征及入湖贡献率. 环境科学研究, 2011, 24(11): 1210-1219.][20] Yang LY, Yang XY, Ren LM et al. Mechanism and control strategy of cyanobacterial bloom in Lake Taihu. J Lake Sci, 2019, 31(1): 18-27. DOI: 10.18307/2019.0102. [杨柳燕, 杨欣妍, 任丽曼等. 太湖蓝藻水华爆发机制与控制对策. 湖泊科学, 2019, 31(1): 18-27.][21] Zhu GW, Qin BQ, Gao G. The vertical distribution characteristics of nutrient salts in Lake Taihu under the disturbance of wind and waves. Advances in Water Science, 2004, (6): 775-780. [朱广伟, 秦伯强, 高光. 强弱风浪扰动下太湖的营养盐垂向分布特征. 水科学进展, 2004, (6): 775-780.][22] Wang XD, Qin BQ, Liu LZ et al. Effects of sediment suspension on nutrient release and bloom growth. Resources and Environment in the Yangtze Basin, 2011, 20(12): 1481-1487. [王小冬, 秦伯强, 刘丽贞等. 底泥悬浮对营养盐释放和水华生长影响的模拟. 长江流域资源与环境, 2011, 20(12): 1481-1487.]。

浙江省蓝藻水华应急与预警监测

浙江省蓝藻水华应急与预警监测

第一作者:俞 洁,女,1964年生,硕士,教授级高级工程师,主要从事生态监测与评价工作。

浙江省蓝藻水华应急与预警监测俞洁马勇(浙江省环境监测中心,浙江杭州310012) 摘要蓝藻水华污染可产生多种藻毒素,其中以微囊藻毒素的危害最为严重。

通过对近年来国内外关于水体中微囊藻毒素检测技术的系统介绍以及优缺点分析,结合浙江省实情,提出了在浙江省开展蓝藻水华应急与预警监测的初步方案,以有效防范微囊藻毒素给水环境及人类健康带来的威胁。

关键词蓝藻水华微囊藻毒素应急监测预警监测 随着经济的快速发展,浙江省部分地区的水环境日趋恶化,部分支流和各水系流经城镇的局部河段存在不同程度的污染,运河、平原河网和城市内河污染仍然严重,湖泊存在不同程度的富营养化现象。

据2006年度浙江省八大水系、内陆河流和湖库的169个省控断面水质监测结果统计,17.0%的监测断面水质为Ⅳ类,7.0%的监测断面水质为Ⅴ类,14.0%的监测断面水质为劣Ⅴ类[1],且主要污染因子是加速水体富营养化进程的氨氮和总磷。

水体的富营养化导致水体中的藻类过度繁殖,特别是引起蓝藻属藻类的暴发而形成水华。

藻体大量死亡后在其分解过程中,不但散发恶臭,破坏景观,同时大量消耗水中DO ,使鱼类窒息死亡。

更严重的是藻类能释放生物毒素———藻毒素,对水生生物、饮用水安全和人类健康构成了巨大的威胁。

20世纪60年代,太湖就出现了蓝藻水华。

现在,除了云南滇池、江苏太湖、安徽巢湖、武汉东湖和上海淀山湖等大型淡水湖泊已发生严重的蓝藻水华污染外,长江、黄河以及珠江中下游的许多湖泊和水库也都相继发生了不同程度的蓝藻水华,并检测到了藻毒素的存在[2]。

复旦大学苏德隆和俞顺章教授主持完成的“饮水污染与肝癌关系的研究”结果显示,藻毒素之一的微囊藻毒素是肝癌高发的罪魁祸首。

在江苏泰兴肝癌高发区对不同饮水类型的人群进行比较研究发现,长期饮用微囊藻毒素污染的水,导致乙型肝炎病毒感染标志物的血清丙氨酸氨基转移酶及碱性磷酸酶等指标明显高于饮用非藻毒素污染水源的人群。

太湖饮用水源地蓝藻水华预警监测体系的构建

太湖饮用水源地蓝藻水华预警监测体系的构建

・管理与改革・太湖饮用水源地蓝藻水华预警监测体系的构建徐恒省,洪维民,王亚超,翁建中,李继影(苏州市环境监测中心站,江苏 苏州 215004)摘 要:从预警机制的建立与分工、预警监测时间的确定、预警监测的启动、预警信息的发布、预警监测的终止、预警监测的工作流程等方面,建立了太湖引用水源地蓝藻水华预警监测体系。

指出了政府必须在资金、物资、人才、技术等方面给予预警监测体系充足的保障,确保预警监测体系长期有效地运行。

关键词:太湖;蓝藻水华;预警监测体系中图分类号:X507 文献标识码:C 文章编号:100622009(2008)01-0001-03Early W arn i n g M on itor i n g System Est ablishm en t to Cyanobacter i aBloo m 2form i n g of Source W a ter S ite i n the Ta i hu LakeXU Heng 2sheng,HONG W ei 2m in,WANG Ya 2chao,W E NG J ian 2zhong,L I J i 2ying(Suzhou Environm enta l M onitoring Central S ta tion,Suzhou,J iangsu 215004,China )Abstract:The early warning monit oring syste m of the Taihu Lake cyanobacteria bl oom 2f or m ing was estab 2lished fr om ,early warning monit oring establishment and task distributi on,ti m e of cyanobacteria bl oom 2f or m ing,start of the e mergency monit oring,publicati on of the inf or mati on,st op of the e mergency monit oring,chart fl ow of e mergency monit oring .The government should support the working gr oup of early warning monit oring at budget,material res ources,talented pers on,technol ogy for l ong 2ti m e effective operati on of the monit oring .Key words:The Taihu Lake;Cyanobacteria bl oom 2f or m ing;Early war m ing monit oring syste m收稿日期:2007-11-04;修订日期:2008-01-13作者简介:徐恒省(1972—),男,江苏连云港人,工程师,大学,从事生态环境监测工作。

太湖蓝藻水华时空分布与预警监测响应的分析

太湖蓝藻水华时空分布与预警监测响应的分析

收稿日期:2009-08-10基金项目:江苏省环境监测科研基金项目(0804)。

作者简介:翁建中(1953)),男,高级工程师,本科,从事生物生态监测工作。

#环境预警#do:i 10.3969/.j issn.1674-6732.2010.03.001太湖蓝藻水华时空分布与预警监测响应的分析翁建中,李继影,梁 柱,洪维民,徐恒省,王亚超(苏州市环境监测中心站,江苏 苏州 215004)摘 要:选择2007和2008年200幅EO S /M OD IS 太湖蓝藻监测遥感影像,统计分析了梅梁湾、竺山湾宜兴段、贡湖湾、东太湖胥口湾和湖州方向湖体蓝藻水华爆发的空间和时间分布规律。

并在得出全太湖蓝藻水华空间和时间分布规律的基础上,从环境监测部门蓝藻预警监测工作的实际出发,将蓝藻水华预警监测的响应划分为常规监测和应急监测,提出了具体的监测要求,为环太湖地区的相关部门更好地开展蓝藻预警监测工作提供了科学依据。

关键词:太湖;蓝藻水华;遥感;分布规律;预警监测响应中图分类号:X 173文献标识码:A文章编号:1674-6732(2010)-03-0001-04Spatial and Te mporal D istribution of Cyanobacteria Bloo m in Taihu Lake and Analysis of t he R esponse to Early W arningM onitoringWENG Jian -zhong ,LI J-i y i n g ,LI A NG Zhu ,HONG W e-i m in ,XU H eng -x i n g ,WANG Ya -chao (Suzhou Envir onm enta lM onito ri n g Cen tra l Stati o n ,Suzhou ,Jiangsu 215004,Chi n a)ABSTRACT :Based on t wo hundred EO S /M OD IS remo te sensi ng i m ages for cyanophyter i a b l oom i n T a i hu L ake dur i ng 2007and2008,the spa ti a l and te m po ra l distri buti on of cyanobacteria bloo m we re analyzed for M e ili ang Bay,Zhushan Bay ,G onghu Bay ,E ast T a i hu L ake ,Xuhu Bay andH uzhou nearby .A ccord i ng to the features o f the d i str i bution ,the response t o ear l y w arn i ng mon itoring of cyanobacte ria b l oom w as d i v i ded into t wo g roups :genera lm on itor i ng and e m ergency m on itor i ng .The parti cular m onitor i ng requests fo r each g roup w ere a lso proposed to f ac ilitate rea lm on itor i ng for the env iron m enta l mon it o ri ng depart m ent .T he results wou l d pro -v i de sc i entifi c foundati on fo r re levant depart ments around T ai hu L ake to ca rry out early w arn i ng m on itor i ng o f cyanobac teria bl oom.KEY W ORDS :T a i hu L ake ;cyanobacter i a b l oom ;re m ote sens i ng ;distributi on fea t ures ;response to ea rl y w arni ng mon it o ri ng太湖是中国第三大淡水湖,周边经济发达,人类活动对其影响甚大。

太湖蓝藻预警采样点位布设与采样层次的研究

太湖蓝藻预警采样点位布设与采样层次的研究

第4卷 第4期
徐恒省等. 太湖蓝藻预警采样点位布设与采样层次的研究
2012 年 8 月
综上所述,在常态下,可以通过亚表层监测数 据掌握水体中藻类的生长、发展状态; 而在蓝藻暴 发时,应结合亚表层与表层监测数据,全 面、准 确 地 反 映 蓝 藻 暴 发 程 度 。 根 据 此 结 论 ,制 定 了 太 湖 蓝藻监测 的 采 样 层 次 方 案: 在 常 态 监 测 中,采 集 亚表层( 0. 5 m 水深) 的水样; 在蓝藻水华暴发时, 采集亚表 层 水 样,并 加 采 表 层 ( 0 ~ 0. 2 m 水 深) 水样。
第4卷 第4期
徐恒省等. 太湖蓝藻预警采样点位布设与采样层次的研究
2012 年 8 月
图 1 小梅口与泽山 2011 年藻类密度比较
通过对比分析所记录的藻密度数据与每日的 风向资料发现,在持续的西风或南风影响下,湖面 藻类颗粒由上风向的小梅口向下风向的泽山迁移, 造成下风向的泽山藻类密度升高,而在持续东风或 东北风影响下,下风向小梅口的藻类密度明显高于 上风向的泽山( 图 2) 。
第4卷 第4期 2012 年 8 月
·监测技术·
环境监控与预警 Environmental Monitoring and Forewarning
Vol. 4,No. 4 August 2012
doi: 10. 3969 / j. issn. 1674 6732. 2012. 04. 004
太湖蓝藻预警采样点位布设与采样层次的研究
水源地是蓝藻预警监测防控的重点,太湖是重 要的水源地,其水质的好坏直接关系到湖泊周边几 千万人口的饮水质量和安全。对于水源地的蓝藻 水华的常规监测,一般是在水源地的取水口附近布 设采样点位[4]。在水源地可能受到蓝藻侵袭的时 期,对上漫山岛,大、小贡山以西、金墅港等一线湖

太湖蓝藻监测及暴发情况分析

太湖蓝藻监测及暴发情况分析

太湖蓝藻监测及暴发情况分析顾苏莉;陈方;孙将陵【摘要】为了及时掌握太湖蓝藻发生和暴发状况,为保障流域供水安全和太湖富营养化治理提供必要的基础信息,以1996-2008年太湖各湖区藻类监测资料为基础,结合蓝藻历史变化状况,对太湖13 a的藻类群落组成、优势种的构成、数量和季节变化,以及蓝藻暴发情况进行分析,并对太湖9个湖区分区进行蓝藻暴发特征分析,探讨治理蓝藻水华的措施.结果表明:近十几年来太湖藻类数量总体呈上升趋势,各湖区藻类数量呈夏秋高、冬春低的季节变化,蓝藻暴发时段主要集中在6-9月,8月份达到最高值;蓝藻暴发区域主要集中在太湖西北部的竺山湖、西部沿岸区、梅梁湖等湖湾;湖心区蓝藻数量呈明显增长,需要引起关注.%In order to understand algal occurrence and blooms and to provide the necessary basic information for ensuring water supply safety and eutrophication control for Taihu Lake, the composition of algal species, structure of dominant species, and seasonal variations of the algal community and algal blooms were analyzed based on historical monitoring data from 1996-2008. The characteristics of algal blooms in 9 regions of Taihu Lake were also analyzed and countermeasures for controlling algal blooms are discussed. The results show that the algae populations have had an overall increasing trend in recent decades; that algae populations were higher in summer and autumn than in winter and spring, that algal blooms occurred primarily from June to September, and reached their maximum in August; and that algal blooms occurred primarily in Zhushan Lake, Meiliang Lake, and thewestern region of Taihu Lake. It is worthwhile to note that the algae populations appear to be growing in the middle region of the lake.【期刊名称】《水资源保护》【年(卷),期】2011(027)003【总页数】5页(P28-32)【关键词】太湖;蓝藻;水质监测;水华【作者】顾苏莉;陈方;孙将陵【作者单位】太湖流域管理局水文水资源监测局,江苏无锡,214024;太湖流域管理局水文水资源监测局,江苏无锡,214024;太湖流域管理局水文水资源监测局,江苏无锡,214024【正文语种】中文【中图分类】X824太湖流域地处长三角核心区域,流域面积3.69万km2,是我国经济最为发达的地区之一。

太湖蓝藻水华预警监测技术体系的探讨_徐恒省

太湖蓝藻水华预警监测技术体系的探讨_徐恒省

收稿日期:2007-09-17作者简介:徐恒省(1972-),男,江苏连云港人,工程师.表2环境质量生物分类环境质量类型生物污染指数生物伤害度指数生物多样性指数Ñ无污染001Ò轻污染0~01501Ó中污染015~101Ô重污染\10~11~05应用实例对某一化工厂附近植物群落进行调查,群落中各种植物的伤害状况如表3所示。

表3植物群落伤害状况植物受害状况悬铃木、加拿大白杨80%以上的叶片受害,甚至脱落丝瓜叶片明显受害,部分植物死亡向日葵、葱、玉米、牵牛花50%的叶面积受害,叶脉间有点块状伤斑月季、蔷薇、枸杞30%的叶面受害,叶脉间有伤班葡萄、金银花10%的叶面受害,叶片有轻度伤斑广玉兰、大叶黄杨无明显症状表3调查结果表明,植物已受到明显的伤害,丝瓜的生物多样性已经发生改变。

根据植物受害程度和生物多样性的变化,可以判断环境污染是严重的。

参考文献:[1]张志杰.环境污染生态学[M].北京:中国环境科学出版社,19891[2]田贵全.气相色谱法测定鱼体中的PCB及有机氯农药[J].中国环境监测,1999,15(2).[3]Arndt,U.,W.Nobel&B.Schweizer,Bioindikatoren:Moelichkeiten,Grenzen und neue Erkenntnisse,Ulmer Verlag Stuttgart,19871[4]Schubert,R.,Bioindikation in terrestrischenOeosystemen,Gustav Fi scher Verlag,Jena,19911[5]Klein,R.&M.Paulus,Umweltproben fuer dieSchadstoffanalytik im Biomonitoring,Gustav Fischer Verlag,19951太湖蓝藻水华预警监测技术体系的探讨徐恒省,洪维民,王亚超,翁键中,李继影(苏州市环境监测中心站,江苏苏州215004)摘要:太湖蓝藻水华已经成为一个社会和政府共同关注的环境问题。

太湖三种微囊藻毒素浓度水平及其分布规律

太湖三种微囊藻毒素浓度水平及其分布规律

107INTERPRETA TION解 读区域治理太湖三种微囊藻毒素浓度水平及其分布规律江苏省苏力环境科技有限责任公司 许志波一、前言蓝藻释放的微囊藻毒素(MCs)具有肝脏毒性和神经毒性,对肾、肾上腺、肺、胃等器官也有不同程度的损害[1]。

微囊藻毒素是具有生物活性的单环七肽化合物,含有2个可变的氨基酸基团,组合形成多种异构体,目前研究较多的为MC-LR、MC-RR、MC-YR 3种(L、R、Y 分别代表亮氨酸、精氨酸、色氨酸)[2]。

世界卫生组织(WHO)和中国《地表水环境质量标准》( GB 3838—2002)、《生活饮用水卫生标准》( GB 5749—2006)已经明确规定了水中MC-LR 的浓度限值[3-5],同时将高效液相色谱法作为推荐的标准分析方法[6]。

太湖是重要的饮用水水源地,为进一步了解太湖三种微囊藻毒素浓度水平及分布规律,与2018年每月采集太湖20个点位水样带回实验室,采用超高效液相色谱质谱仪对水样进行分析,为太湖水质安全及评价提供基础数据。

二、材料和方法(一)采样点布设采样点位为20个湖体国控点(梅梁湖心、拖山、锡东水厂、沙渚南、竺山湖心、大浦口、兰山嘴、漫山、胥湖心、泽山、漾西港、新塘港、小梅口、椒山、乌龟山南、平台山、大雷山、十四号灯标、西山西和五里湖心)。

(二)样品采集2018年每月采样一次,每次采集水面和水下0.5米两层水样。

样品采集后立即带回江苏省太湖野外水质与蓝藻综合观测站(31.0230650°N,120.3689987°E)实验室进行分析。

(三)分析指标与方法三种微囊藻毒素指标包括:MC-LR、MC-YR、MC-RR。

分析仪器为超高效液相色谱质谱联用仪,Acquity 系列超高效液相色谱仪(美国,waters 公司)+TQD 质谱仪(美国,waters 公司)。

【摘要】本文于2018年1月-12月每月采集太湖20个点位水样,采用超高效液相色谱质谱仪对水样进行分析,结果显示:2018年太湖MC-LR、MC-RR、MC-YR 年均值分别为0.170μg/L、0.053μg/L、0.163μg/L。

太湖湖泛预警监测系统及治理技术探析

太湖湖泛预警监测系统及治理技术探析

太湖湖泛预警监测系统及治理技术探析龚慧;姚敏;邵飞燕;汪姗【摘要】目前,太湖蓝藻水华特别是太湖湖泛已成为全社会广为关注的一个热点水环境问题.研究表明,蓝藻爆发是一个缓慢的过程,通过采用恰当的预警监测技术,并开展行之有效的防范治理,可对蓝藻水华现象进行控制,甚至消除.本文主要介绍了蓝藻水华预警监测技术,并结合太湖实际情况建立了一个太湖湖泛预警监测系统,并提出了相应的蓝藻水华治理方法.【期刊名称】《江苏水利》【年(卷),期】2017(000)008【总页数】4页(P52-55)【关键词】太湖;湖泛;预警监测;治理【作者】龚慧;姚敏;邵飞燕;汪姗【作者单位】江苏省水文水资源勘测局常州分局,江苏常州 213000;江苏省水文水资源勘测局,江苏南京 210029;江苏省水文水资源勘测局常州分局,江苏常州213000;江苏省水文水资源勘测局常州分局,江苏常州 213000【正文语种】中文【中图分类】X835自2007年5月28日太湖蓝藻爆发并继发湖泛以来,太湖蓝藻水华已成为社会普遍关注的水环境焦点问题之一。

作为水源地,太湖水质的好坏关系到人民大众的身体健康,关系到人民群众的切身利益,故更应该得到重视。

水华(Algal Blooms)指淡水水体中藻类大量繁殖,使水体呈现蓝色或绿色的一种生态现象。

水华是目前淡水系统的主要环境难题[1],太湖蓝藻水华其实就是微囊藻水华。

湖泛是指在湖岸边、入湖口和湖汊聚集的蓝藻与发酵上浮的淤泥相混合,在厌氧状态下分解造成水质发黑发臭的现象。

湖泛通常是由蓝藻水华引起的。

通常人们以为蓝藻的爆发具有瞬时性、不可预测性[2]。

然而研究发现,蓝藻爆发是个漫长的、可以预测的复杂的生物、化学及物理共同作用的结果。

它是水体中已存在的藻类在合适的条件下聚集、上浮至水面的过程。

一般而言水华的形成是分阶段进行的[3],详见表1。

不同的时间段,蓝藻生长有不同的影响因子,相关部门可以根据这些影响因子制定针对性的预警及治理方案。

分析南太湖入湖口蓝藻水华时空分布规律及相关响应因子

分析南太湖入湖口蓝藻水华时空分布规律及相关响应因子

分析南太湖入湖口蓝藻水华时空分布规律及相关响应因子作者:倪丽萍严炎杰来源:《山东工业技术》2015年第09期摘要:太湖是我国重要的淡水湖之一,为当地居民的生产和生活提供了重要的水资源。

自从改革开放以后,太湖地区的经济飞速发展。

伴随着经济发展,对太湖的水环境造成了极大的破坏,大规模的蓝藻水华经常发生。

本文以南太湖入湖口为研究对象,通过样本采集和分析,探讨了蓝藻水华时空分布规律及相关响应因子。

关键词:南太湖入湖口;蓝藻水华;时空分布;规律;相关响应因子太湖是我国重要的淡水湖之一,为当地居民的生产和生活提供了重要的水资源。

在很长的一段时间太湖的水质都非常好。

自从改革开放以后,太湖地区的经济飞速发展。

伴随着经济发展,一方面是对淡水资源的巨大需求,一方面产生了大量的生活污水和工业废水,对太湖的水环境造成了极大的破坏。

太湖水质出现了富营养化问题,大规模的蓝藻水华经常发生,而且近年来蓝藻水华爆发的区域发生了改变,已经扩散到了湖心和南太湖。

蓝藻过度繁殖会造成水质恶化,这严重威胁了太湖的水生态,也给当地居民的引水安全带来了巨大威胁。

为了解决太湖的水环境危机,引江济太工程应运而生,而在工程的实施工程中也出现很到问题,尤其是南太湖蓝藻水华频繁发生。

在这样的大背景下,对南太湖入湖口进行监测,分析蓝藻水华在这一地区时空分布规律及相关影响因子。

1 样本采集与分析1.1 样本采集南太湖水路复杂,各种溇港星河密布,而且大多与太湖相通,所以入湖口比较多。

本次研究选择了几个受蓝藻影响较大,比较有代表性的入湖口进行监测。

主要选择了夹浦、杨家浦、新港口等五个入湖口。

在蓝藻水华的频发期一天采样一次,非采样期一周采样一次。

用专用的采水器进行采样。

然后把水样送到实验室对相应指标进行分析。

1.2 分析方法监测指标不同,使用的分析方法也不同。

叶绿素a、总氮等使用分光光度法,氨氮等使用纳氏试剂比色法,水温、藻密度等使用参数测定仪现场测定,锰盐等使用酸性法。

浅水型湖泊蓝藻水华预警监测工作的思考_李继影

浅水型湖泊蓝藻水华预警监测工作的思考_李继影
Keywords:shallowlakes;cyanobacteriabloom-forming;earlywarmingmonitor
目前 , 湖泊富营养化是最为突出的世界性水环 境问题之一 , 且随着全球经济的发展和人类活动影 响的扩大而日 趋严重 。 中国 70%的 湖泊为浅水型 湖泊 , 与深水型湖泊相比 , 其特点是湖底较为平坦 、 平均水深较小 、自净能力较差 , 底泥更容易受到风浪 等自然条件的影响 , 底泥和上覆水间的营养物质交 换更频繁 , 更易产生富营养化问题[ 1 -2] 。
第 34卷第 4 期 2009 年 4 月
环境科学与管理 ENVIRONMENTALSCIENCEAND MANAGEMENT
文章编号 :1674 -6139(2009)04 -0121 -05
Vol.34 No.4 Apr.2009
浅水型湖中 , 王亚超
2 蓝藻水华预警监测 体系的建立
蓝藻水华预警监测是一项庞大的系统工程 , 良 好的组织体系是预警监测工 作能否顺利实 施的前 提 , 是提高政府应对蓝藻能力的有效保证 。 2007年 6月初 , 苏州市成立了由环保 、水利 (务 )、气象等部 门联合组成的太湖蓝藻水华 预警监测工作 领导小 组 , 统一指挥全市蓝藻预警监测工作 , 组长由市环保 局分管局长担任 、副组长由市水利 (务 )局和市气象 局各分管局长担任 , 同时成立了预警监测技术小组 , 由环保 、水利 (务 )、气象各抽调 1 ~ 2名技术 人员 , 实行联合办公 , 主要职责为汇总各方信息 , 进行数据 综合分析 , 为领导小组决策提供技术支持 。
人工现场观测看似最原始的监测方式 , 但也是 最有效 、最直观的监测方法 。 水华暴发初期的一个 视觉特征是整个水体中有大量藻类颗粒聚集 , 藻类 颗粒聚团增大 , 水体的颜色则是由清澈见底的青灰 色逐渐转变成黄绿色 、灰黄色 ;而当可见水华现象大 量出现以后 , 整个湖面形成成片厚厚的一层藻类 , 有 局部会有堆积现象 ;水华暴发后期时如果有藻类开 始死亡 , 水面上的成片藻类中间会出现白色泡沫 , 另 外还伴随着一个明显的味觉特征是出现腥臭味 。

太湖蓝藻水华预警监测技术体系的探讨

太湖蓝藻水华预警监测技术体系的探讨

太湖蓝藻水华预警监测技术体系的探讨
徐恒省;洪维民;王亚超;翁键中;李继影
【期刊名称】《中国环境监测》
【年(卷),期】2008(024)002
【摘要】太湖蓝藻水华已经成为一个社会和政府共同关注的环境问题.为确保太湖地区饮水安全,提高政府应对蓝藻水华的能力,对太湖水源地蓝藻进行预警监测是判断蓝藻水华发展趋势以及制定相应的对策的重要手段.文章分析了蓝藻水华暴发的过程和蓝藻水华的监测技术,结合政府部门的实际,提出了太湖引用水源地蓝藻水华预警监测体系,对整个太湖地区乃至全国富营养化水体的水质预警具有重要的参考价值.
【总页数】4页(P62-65)
【作者】徐恒省;洪维民;王亚超;翁键中;李继影
【作者单位】苏州市环境监测中心站,江苏,苏州,215004;苏州市环境监测中心站,江苏,苏州,215004;苏州市环境监测中心站,江苏,苏州,215004;苏州市环境监测中心站,江苏,苏州,215004;苏州市环境监测中心站,江苏,苏州,215004
【正文语种】中文
【中图分类】X830.7
【相关文献】
1.再生水景观利用水华预警监测技术体系探讨 [J], 赵珊;李安娜;周军;甘一萍;周律;刘晶晶;
2.太湖蓝藻水华时空分布与预警监测响应的分析 [J], 翁建中;李继影;梁柱;洪维民;徐恒省;王亚超
3.太湖蓝藻水华预警监测综合系统的构建 [J], 黄君;张虎军;江岚;宋挺;戴敏
4.基于物联网技术的太湖蓝藻水华预警平台 [J], 杨宏伟;吴挺峰;张唯易;李未
5.BP神经网络在2005年太湖蓝藻水华预警中的应用 [J], 张娣;景元书;温新龙因版权原因,仅展示原文概要,查看原文内容请购买。

太湖浮游植物群落结构调查

太湖浮游植物群落结构调查

72017年3月上 第5期 总第257期随着经济和人口的不断发展,大量含有高浓度营养盐的废水排入到湖体中,湖泊综合富营养化不断加剧,暴发蓝藻水华。

因此有必要研究湖体水体中浮游植物的群落结构,为流域水资源保护与管理提供重要的基础数据。

1 材料与方法1.1 研究区域作为我国第三大淡水湖,太湖位于江苏省南部,其平均水深1.9m,最大水深2.6m,湖泊面积约2338km 2,是一个典型的浅水湖泊或积水洼地。

在太湖无锡辖区布设6个采样点,进行浮游植物样品群落结构分析。

1.2 采样与分析2013年4月在太湖采集1次样品,浮游植物样品的采集参考《水和废水监测分析方法》(第四版)[1],并根据《淡水浮游生物图谱》、《中国淡水志》和《淡水浮游生物研究方法》等进行分类鉴定,并计算出浮游植物细胞数量。

1.3 数据处理用E X C E L 进行浮游动物群落样品密度、优势度和香农威尔多样性指数计算。

其中优势度计算公式为:Y=(n i /N)×f i其中N 表示各采样点所有物种个体总数;n i 表示第i 种的个体总数;f i 表示该物种在各采样点出现的频率。

当Y >0.02时,该物种为群落中的优势种。

2 结果与分析调查结构表明太湖共采集到四大门类浮游植物,共31种浮游植物(表1),其中蓝藻门5种,绿藻门12种,硅藻门11种,隐藻门3种。

浮游植物密度为175万cell/L,优势种为鱼腥藻属某种、湖泊鞘丝藻、啮蚀隐藻和微囊藻属某种(Y >0.02)。

太湖2013年4月份浮游植物香农威尔多样性指数均值为2.70,根据多样性评价级别,太湖4月份浮游植物处于物种较丰富状态(表2)。

从监测结果看,太湖的浮游植物优势种以蓝藻类群为主。

另外,太湖大浦口采样点浮游植物多样性最低,这可能是大浦口位于太湖入湖口,大量的污染物和营养盐通过大浦口流入太湖湖体,从而导致该区域水体富营养化程度高,浮游植物大量繁殖[2]。

因此控制过量污染物和营养盐流入太湖是控制蓝藻水华的有效措施。

太湖蓝藻监测调研报告

太湖蓝藻监测调研报告

(1)2005年6月15日湖中调研
(2)2007年6月19日
(3)2007年8月23日
4
调研结论
(1) 技术人员印象 据长期在太湖湖中从事太湖生态环境观测 与研究的技术人员介绍,根据历年在湖区观测 形成的印象,蓝藻生长发育主要是由水温决定 的,当温度适宜时,数量每一天可以呈几何级 数增加。向某一区域集中主要由风向和风速决 定,一般都是随着风向下风方漂移聚集,利于 上浮和聚积,某一区域成灾的条件是风速小于 3m/s。地形有加重危害的作用。
2
引言
为了加强太湖蓝藻的气象监测、预警和 服务工作,近几年省气象局组织了多次太湖 生态调研,特别是今年太湖蓝藻暴发引发的 生态事件在全国产生了重要影响,气象部门 为此做了大量的气象保障服务工作。组织了 多次对各部门太湖蓝藻的监测技术调研,为 今后做好太湖蓝藻的监测预警气象服务工作 奠定基础。
3
调研情况
调研情况12005年6月15日湖中调研22007年6月19日32007年8月23日技术人员印象据长期在太湖湖中从事太湖生态环境观测与研究的技术人员介绍根据历年在湖区观测形成的印象蓝藻生长发育主要是由水温决定的当温度适宜时数量每一天可以呈几何级数增加
太湖蓝藻监测调研报告
商兆堂 蒋名淑 夏 江苏省气象局
(2)典型个例分析 根据从中国气象局卫星中心的历史遥感监 测资料中选取的12个典型个例分析得出: 充足的基本肥料(氮、磷、钾)是保证其快 速生长的基础。水体富营养化是暴发的基础。 适宜的气象条件是蓝藻何时暴发的主导因 素。 微风、低气压是引发太湖局部水域蓝藻暴 发的诱导因素。
(3)监测概况 环保部门每天用专用船在湖区移动观测一 次,内容主要有水温、水质和单位水体蓝藻数量。 南京地理与湖泊研究所每星期进行2 次(一般 为星期一和星期四)专用交通艇湖区移动观测,观 测的内容为风向、风速、水质、水色、透明度和 单位水体蓝藻数量等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
— 16 —
1 湖面风向情况对采样点位布设的影响 太湖有大面积的开敞水域,湖区的局地大气环
境影响比较明显,湖面的实时风向在各湖区略有不 同[3]。本文选择了长期受到关注的太湖西南部湖 区的小梅口至泽山,以及东北部湖区的水源地周围 区域为研究区,对蓝藻随湖面风向变化而产生的迁 移方向进行探讨。 1. 1 湖面风向对西南湖区局地蓝藻迁移的影响
图 6 2010 年 9 月梅梁湖口 0. 5 m 与 1. 0 m 剖面 藻类密度变化趋势比较
2. 2 水华暴发时采样层次选择 蓝藻水华暴发时,由于蓝藻在水体中具有昼夜
垂直迁移 的 特 性,水 体 不 同 层 次 中 的 藻 类 分 布 不 同,大量蓝藻在湖面表层聚集,因此研究组对同一 点位在该时期内的表层藻类密度变化也进行了连 续的监测,并与亚表层数据进行了比较( 图 7) 。在 调查的 10 d 内,表层藻类密度与亚表层藻类密度 变化趋势基本一致,呈正相关,但也有少数情况下, 变化趋势不一致,这是由于藻类的垂直迁移影响了 藻类在 不 同 层 次 的 分 布。 因 此,在 蓝 藻 水 华 暴 发 时,表层不能替代亚表层,应结合表层与亚表层监 测数据,全面反映水华暴发程度。
了比较研究,并提出了优化方案,为环太湖地区的相关部门更好地开展蓝藻预警监测工作提供了科学依据。
关键词: 太湖; 预警监测; 风向; 采样点位; 采样层次
中图分类号: X830. 1
文献标识码: A
文章编号: 1674 6732( 2012) 04 0016 04
Research on Setting up Sampling Spot and Sampling Layer in Early Warning Monitor to Cyanobacteria in Taihu Lake
图 3 2011 年 7 月 28 日小梅口与泽山藻密度对比
考虑到研究区域可能受到周围湖区蓝藻迁移 的影响,为了使结果明晰、便于研究,对研究区周围 相邻的几个点位也进行相应的调查,并结合当时的
气象卫星 太 湖 蓝 藻 遥 感 图 像,发 现 当 东 南 风 为 主 时,研究区上风向的藻类颗粒会向研究区附近迁 移,这 也 进 一 步 印 证 了 湖 面 风 向 对 蓝 藻 迁 移 的 影响。
徐恒省,李继影,王亚超,孙 艳,刘孟宇,景 明 ( 苏州市环境监测中心站,江苏 苏州 215004)
摘 要: 蓝藻水华的聚集和分布与气象条件有着密切的关系。根据近几年蓝藻预警监测及科研的实践,分析了风向对蓝藻
迁移的影响,以及不同深度的藻密度变化情况。以此为依据,对太湖蓝藻监测时采样点位布设与采样层次选择的方案进行
规定: 浮游生物在水体中垂直分布有所不同,应根 据各水体具体情况采取不同的取样层次,水深 2 m 以内的,仅在 0. 5 m 左右深处采集亚表层水样即 可,若透明度很小,可在下层加取一样,并与表层混 合制成混合样[5]。太湖是平均水深在 1. 9 m 左右 的浅水型湖泊,水体透明度通常较高,根据此标准, 在湖面下 0. 5 m 深处采集水样即可,但在长期的实 际监测工作中发现,常态下,取水口头部藻类密度 在不同水深处的差异较小,仅采集亚表层水样就能 说明情况,而在蓝藻暴发时,表层藻类密度远远高 于亚 表 层,蓝 藻 水 华 暴 发 程 度 更 多 体 现 在 表 层 ( 图 5) 。
徐恒省等. 太湖蓝藻预警采样点位布设与采样层次的研究
2012 年 8 月
区进行重 点 调 查。结 果 显 示,2010 年 8 月 上 旬, 大、小贡山以西湖区藻类密度维持在 2 000 万个细 胞 / L 以上的水平,部分湖区极值达到 4 000 多万个 细胞 /L。结合当时持续西北风影响的气象条件, 可以发现蓝藻水华迁移侵袭到邻近的下风向水源 地。此次调查显示,在蓝藻暴发时,风向对蓝藻迁 移的影响较常态下更为显著,点位的布设更需考虑 风向因素。 1. 3 风向对表层藻类颗粒迁移的影响
第4卷 第4期
徐恒省等. 太湖蓝藻预警采样点位布设与采样层次的研究
2012 年 8 月
图 1 小梅口与泽山 2011 年藻类密度比较
通过对比分析所记录的藻密度数据与每日的 风向资料发现,在持续的西风或南风影响下,湖面 藻类颗粒由上风向的小梅口向下风向的泽山迁移, 造成下风向的泽山藻类密度升高,而在持续东风或 东北风影响下,下风向小梅口的藻类密度明显高于 上风向的泽山( 图 2) 。
图 5 取水口头部不同层次藻类密度比较
图 4 取水口头部至 5 km 一线水华暴发时表层藻类密度
综上所述,在蓝藻水华暴发前,固定的采样点 位应布设在水源地取水口附近。在蓝藻水华暴发 时,采样点位的布设应首先考虑风向作用,在实际 工作中,应根据气象条件在下 风 向 布 设 随 机 点 位 , 以求及 时 准 确 地 掌 握 太 湖 蓝 藻 的 发 生 及 迁 移 情况。
研究组分析了水华暴发时不同点位的表层藻 类密度,进一步探讨风向对表层藻类密度的影响。 在蓝 藻 暴 发 时,对 某 取 水 口 头 部 至 其 西 侧 湖 区 5 km 一线的 5 个点位进行调查,发现距离取水口 头部越近,表层藻类密度值越高( 图 4) 。结合当时 的气象条件( 持续的西风) ,调查结果反映了风向 作用下,蓝藻水华向下风向的取水口头部迁移的现 象。因此,与亚表层一样,表层( 0 ~ 0. 2 m) 监测数 据也体现了风向作用,依据风向布设采样点位的方 案适用于表层采样。
蓝藻的迁移聚集是受多种因素共同作用的一 个复杂过程,从上面的研究发现,太湖局地湖面下 风向的藻类密度往往高于上风向的藻类密度,这说 明,湖面风 向 对 蓝 藻 的 迁 移 和 聚 集 表 现 出 重 要 作 用。因此,在蓝藻水华监测中,风向是科学布设采 样点位时所必须考虑的一个重要因素。 1. 2 湖面风向对水源地蓝藻迁移的影响
湖泊富营养化和蓝藻水华暴发是当前中国淡 水湖泊面临的最重要的环境问题之一,也是全世界 湖泊富营养化控制的重点,且随着经济的发展和人 类活动影响的扩大而日趋严重[1]。太湖是长江中 下游地区最典型的浅水型湖泊,平均水深 1. 9 m 左 右,周边人口稠密,经济发达。自 20 世纪 60 年代, 太湖不断暴发蓝藻水华,近年来暴发频率仍在逐年 增高,尤其是 2007 年 5 月 28 日“无锡太湖水危机” 发生以后,太湖更是成了全球关注的焦点。目前, 太湖流域的各级相关部门均已开展了蓝藻水华预 警监测科研工作。根据已有研究表明,气象条件对 蓝藻水华 的 形 成 和 迁 移 聚 集 有 着 重 要 的 影 响[2]。 笔者结合 2011 年 5 月至 9 月太湖相关的气象条件 以及长期的实际监测科研数据,对蓝藻监测工作中 的点位布设以及采样层次的选择进行研究,以期对 今后的太湖蓝藻水华预警监测工作提供参考。
水源地是蓝藻预警监测防控的重点,太湖是重 要的水源地,其水质的好坏直接关系到湖泊周边几 千万人口的饮水质量和安全。对于水源地的蓝藻 水华的常规监测,一般是在水源地的取水口附近布 设采样点位[4]。在水源地可能受到蓝藻侵袭的时 期,对上漫山岛,大、小贡山以西、金墅港等一线湖
— 17 —
第4卷 第4期
第4卷 第4期 2012 年 8 月
·监测技术·
环境监控与预警 Environmental Monitoring and Forewarning
Vol. 4,No. 4 August 2012
doi: 10. 3969 / j. issn. 1674 6732. 2012. 04. 004
太湖蓝藻预警采样点位布设与采样层次的研究
第4卷 第4期
徐恒省等. 太湖蓝藻预警采样点位布设与采样层次的研究
2012 年 8 月
综上所述,在常态下,可以通过亚表层监测数 据掌握水体中藻类的生长、发展状态; 而在蓝藻暴 发时,应结合亚表层与表层监测数据,全 面、准 确 地 反 映 蓝 藻 暴 发 程 度 。 根 据 此 结 论 ,制 定 了 太 湖 蓝藻监测 的 采 样 层 次 方 案: 在 常 态 监 测 中,采 集 亚表层( 0. 5 m 水深) 的水样; 在蓝藻水华暴发时, 采集亚表 层 水 样,并 加 采 表 层 ( 0 ~ 0. 2 m 水 深) 水样。
2 太湖蓝藻水华监测时采样层次的选择 根据《水 和 废 水 监 测 分 析 方 法 ( 第 四 版 增 补
版) 》中浮游生物采样方法中关于采样深度的相关
— 18 —
2. 1 常规监测时采样层次选择 太湖上的浮标站多配有悬浮的 YSI 多参数水
质监测仪,可以实现对同一点位不同水深藻类密度 的实时连续监测。在未暴发水华的湖区,研究组选 取了其中一个点位 1 个月的数据进行了综合分析, 结果显示 1. 0 m 水深与 0. 5 m 水深的藻类密度基 本呈正相关,1. 0 m 水深的藻类密度总体上略低于 0. 5 m 水 深,其 变 化 趋 势 与 0. 5 m 水 深 的 相 似 ( 图 6) 。数据反映同一点位的水体中藻类密度在 不同深度有所变化,随水中藻类颗粒上浮,浅层的 藻类密度将略高于深层,但是,浅层与深层藻类密 度的差 值 基 本 稳 定 在 一 定 的 范 围 内。 所 以,根 据 《水和废水监测分析方法( 第四版增补版) 》中相关 采样标准,选取亚表层( 0. 5 m 水深) 的数据,就能 够掌握水体中的藻类密度变化趋势。
图 2 不同风向下两个采样点藻密度对比
同时,结合相关数据,还研究了风向临时改变 时,持续风向及短时间风向对蓝藻迁移的影响。以 2011 年 7 月 28 日为例,之前 5 d 湖区内持续东南 风,小梅口的藻密度一直高于泽山,而在 7 月 28 日 当天转为偏南风,但藻类密度数据显示蓝藻的迁移 方向还是主要受持续风向的影响( 图 3) 。
XU Heng-sheng,LI Ji-ying,WANG Ya-chao,SUN Yan,LIU Meng-yu,JING Ming ( Suzhou Environmental Monitoring Central Station,Suzhou,Jiangsu 215004,China)
相关文档
最新文档