运动生物化学第三章

合集下载

习题-运动生物化学

习题-运动生物化学

第一章物质代谢与运动概述一、单项选择题:1. 运动生物化学成为独立学科的年代是()。

A. 1955年B. 1968年C. 1966年D. 1979年E1982年2. 运动生物化学的一项重要任务是()。

A. 研究运动对机体组成的影响B. 阐明激素作用机制C. 研究物质的代谢D. 营养的补充E. 研究运动人体的物质组成3.酶促反应中决定反应特异性的是()A. 酶蛋白B. 辅基C. 辅酶D. 金属离子 E .变构剂4.酶促反应速度(V)达最大反应速度(Vm)的60%时,底物浓度[S]为()A. 1 KmB. 2 KmC. 1.5 KmD. 2.5 KmE. 3 Km5.下列哪个化学物质不属于运动人体的能源物质。

()A.葡萄糖B.维生素CC.氨基酸D.软脂酸E.糖原6.酶分子中将底物转变为产物的基团是()A. 结合基团B. 催化基团C. 碱性基团D. 酸性基团E. 疏水基团7.温度对酶活性的影响是()A. 低温可以使酶失活B. 催化的反应速度随温度的升高而增加C. 最适温度是酶的特征性常数D. 最适温度随反应的时间而有所变化E. 以上全对8.关于酶活性中心的叙述,哪项不正确()A. 酶与底物接触只限于酶分子上与酶活性密切有关的较小区域B. 必需基团可位于活性中心之内,也可位于活性中心之外C. 一般来说,总是多肽链的一级结构上相邻的几个氨基酸的残基相对集中,形成酶的活性中心D. 酶原激活实际上就是完整的活性中心形成的过程E. 当底物分子与酶分子相接触时,可引起酶活性中心的构象改变9.一种酶作用于多种底物,其天然底物的Km是()A. 与其他底物相同B. 最大C. 最小D. 居中E. 与Km相同10.某一酶促反应的速度为最大反应速度的80%时,Km等于()A. [S]B. 0.5 [S]C. 0.25 [S]D. 0.4 [S]E. 0.8 [S]11.缺乏可导致贫血的物质有()A. 维生素CB. 维生素DC. 维生素B1D. 尼克酸E. 维生素B1212.生物氧化是指()A. 生物体内的脱氢反应B. 生物体内释放电子的反应C. 营养物质氧化生成水和二氧化碳、并释放能量的过程D. 生物体内的脱氧反应E. 生物体内的加氧反应13. 生物氧化过程中CO2的生成方式是()A. 碳与氧直接结合产生B. 碳与氧间接结合产生C. 在电子传递过程中产生D. 由有机酸脱羧产生E. 以上均不对14.呼吸链中各种氧化还原对的标准氧化还原电位最高的是()A. NAD+/NADH+H+B. FMN/FMNH2C. FAD/FADH2D. Cyt a Fe3+/Fe2+E. 1/2 O2/ H2O15.NADH氧化呼吸链中与磷酸化相偶联的部位有几个()A. 1B. 3C. 2D. 4E. 516.人体生理活动的直接能量供给者是()A. 葡萄糖B. 脂肪酸C. ATPD. ADPE. 乙酰CoA17.下列化合物中不含有高能磷酸键的是()A. 磷酸肌酸B. ADPC. UTPD. 琥珀酰CoAE. 磷酸烯醇式丙酮酸18. 胞液中的NADH+H+经苹果酸-天冬氨酸穿梭进入线粒体进行氧化磷酸化,生成几分子ATP()A. 1B. 1.5C. 2.5D. 4E. 519.下列化合物中不含有高能磷酸键的是()A. 磷酸肌酸B. ADPC. UTPD. 琥珀酰CoAE. 磷酸烯醇式丙酮酸20. 胞液中的NADH+H+经苹果酸-天冬氨酸穿梭进入线粒体进行氧化磷酸化,生成几分子ATP()A. 1B. 1.5C. 2.5D. 4E. 5二、多项选择题:1.酶原的激活在于()A. 形成酶的活性中心B. 除去酶的非蛋白质部分C. 暴露活性中心D. 酶原分子相互聚合E. 酶与辅酶结合2.酶促反应中决定酶特异性和反应类型的部分是()A. 底物B. 酶蛋白C. 辅基或辅酶D. 金属离子E.酶的活性中心3.必需基团()A. 与催化作用直接有关B. 与酶分子活性中心特定的空间结构有关C. 由必需氨基酸提供D. 仅存在于活性中心E. 与酶分子结合底物有关4.影响酶反应速度的因素是()A. 酶浓度B. PH值C. 抑制剂D. 激活剂E. 温度5.运动时血清酶活性的影响因素有哪些()A.运动时间B.运动强度C.运动方式D.运动环境E.训练水平6.运动人体的物质代谢的主要特点()A.物质代谢相互联系的整体性B.严格精细的代谢调控性C.运动过程不同阶段物质代谢的侧重性D.能量生成形式的同一性E.运动时营养物质分解代谢速度加快7.NADH氧化呼吸链的组成有哪些复合体()A. 复合体ⅠB. 复合体ⅠC. 复合体ⅠD. 复合体ⅠE. 复合体Ⅰ8.关于呼吸链的描述正确的是()A. 线粒体中存在两条呼吸链B. 两条呼吸链的汇合点是CoQC. 在两条呼吸链中最主要的是NADH氧化呼吸链D. 每对氢通过琥珀酸氧化呼吸链生成1.5分子ATPE. 两条呼吸链的组成完全不同9.体内生成ATP的方式有()A. 底物水平磷酸化B. 氧化磷酸化C. 苹果酸-天冬氨酸穿梭D. 丙酮酸羧化支路E. -磷酸甘油穿梭10.电子传递链中氧化磷酸化相偶联的部位是()A. NADH→CoQB. FAD→CoQC. CoQ→Cyt cD. Cyt c→Cyt aa3E. Cyt aa3→O2三、问答题:1.运动人体的物质组成有那些?各有何功能2.运动对人体化学物质的影响3.什么是呼吸链?体内ATP如何生成?第二章糖代谢与运动一、单项选择题:1.一般所说的血糖指的是血液中的()A.果糖B.糖原C.葡萄糖D.6-磷酸葡萄糖E.乳糖2.维持大脑正常生理机能所需的能源物质主要来自()A.大脑的糖储备B.肌糖原C.肌肉中的葡萄糖D.血液中的葡萄糖E.肝糖原3.多糖在动物体内的储存形式有()A.肝糖原B.淀粉C.血糖D.糖脂E.糖蛋白4.一分子乙酰辅酶A彻底氧化释放的能量可合成()ATPA.10B.12C.15D.20E.305.大强度运动持续30秒至90秒时,主要由()提供能量供运动肌收缩利用。

运动生物化学第三章课件

运动生物化学第三章课件

B
45
2、抑制脂肪酸供能与大强度耐力
在低于30分钟的运动中,减少脂肪酸供能 是提高运动能力的重要生化因素。补糖能抑制 脂肪组织分解和释放脂肪酸,减少肌肉吸收和 氧化脂肪酸。
B
34
五、脂肪分解代谢与运动适应
1.耐力训练使人体内脂肪水解和利用的能力增强, 还可引起骨骼肌氧化利用脂肪酸的能力增强。 2.耐力训练使机体在进行耐力运动时利用脂肪供 能比例增加,有利于节省体内的糖储备。
HDL与心血管疾病的发病率呈负相关 为抗冠心因子。
B
40
二、运动对血脂代谢的影响
(一)运动对血脂含量的影响
1、长期有规律的耐力锻炼可使血浆总胆固醇保 持较低的水平。
2、长期的中低强度有氧锻炼可以降低血浆三酰 甘油水平。
B
41
(二)运动对血浆脂蛋白含量的影响
1、耐力训练对HDL-C水平的影响 耐力训练使HDL-C水平比训练前有显著升高。
B
43
二、选择题
1、运动锻炼可增加血液中()含量,加速血中胆固醇的运输与排出,对于防 治动脉硬化起着重要作用。
A、极低密度脂蛋白 B. 中间密度脂蛋白 C. 低密度脂蛋白 D. 高密度脂蛋白 2、脂肪是()运动时的主要能源物质 A. 短时间大强度 B. 短时间低强度 C. 长时间大强度 D. 长时间低强度 • 3、耐力训练时耐力运动员比非耐力运动员()。 • 脂肪供能增加,糖供能减少 B.脂肪供能减少,糖供能增加 1. C.脂肪供能增加,糖供能增加 D.脂肪供能减少,糖供能减少
(2)酮体参与脑组织和肌肉的能量代谢 长期饥饿时,酮体是脑组织主要的能量补充,运动时
酮体可在一定程度上代替血糖为脑组织和肌肉供应能量。 (3)参与脂肪酸动员的调节

运动生物化学(第二版)第03章脂质代谢与运动

运动生物化学(第二版)第03章脂质代谢与运动

提高运动耐力
通过优化脂质代谢,可以提高脂 肪酸氧化供能的能力,从而延长 运动耐力时间,提高运动表现。
02
脂质的分类与性质
脂肪酸的分类
饱和脂肪酸
不含双键的脂肪酸,熔点较高,常见 的饱和脂肪酸有硬脂酸和棕榈酸。
不饱和脂Байду номын сангаас酸
含有至少一个双键的脂肪酸,根据双 键的数量和位置,又可以分为单不饱 和脂肪酸和多不饱和脂肪酸,如油酸 、亚油酸和亚麻酸等。
运动生物化学(第二版)第 03章脂质代谢与运动
• 引言 • 脂质的分类与性质 • 脂质的消化与吸收 • 脂质的合成与分解 • 运动对脂质代谢的影响 • 运动中脂肪供能的意义与限制
01
引言
脂质代谢与运动的关系
运动对脂质代谢的影响
运动能够促进脂肪的分解和代谢,提高脂肪酸氧化供能的比例,有助于减少体 脂和改善身体成分。
脂肪酸的合成与分解
脂肪酸的合成过程中,乙酰CoA在乙酰CoA羧化 酶的作用下生成丙二酸单酰CoA,后者是脂肪酸
合成的直接前体物质。
脂肪酸的分解过程中产生的能量可被组织细胞利用, 也可通过呼吸作用释放出体外。
脂肪酸的合成主要在肝脏和脂肪组织中进行, 需要乙酰CoA作为原料。
脂肪酸的分解主要在脂肪组织和肌肉中进行,需 要脂肪酶的催化作用。
脂肪供能有助于提高运动耐力
脂肪作为能源物质,其氧化分解的耗氧量低于糖和蛋白质,能够提高运动耐力,使运动员 在比赛中保持更好的状态。
脂肪供能有助于减少蛋白质的消耗
在长时间运动中,脂肪的氧化分解能够减少蛋白质的消耗,从而保护肌肉组织,减少运动 性肌肉损伤。
运动中脂肪供能的限制
脂肪供能速度较慢
相对于糖和蛋白质,脂肪的氧化分解速度较慢,不能满足短时间 内高强度运动的需求。

《运动生物化学》PPT课件

《运动生物化学》PPT课件

2、运动时肝糖原的释放
短时间大强度运动时,肝糖原的分解占90%,但肝
糖原排空很少。长时间大强度运动时,当大强度运动
40分钟后,肝糖原的分解逐步减小,肝糖原接近排空
是不同的。这与专项训练特点、身体素质和动作技术
的合理性关。
磷酸原系统中,ATP供能的效率为49%,CP再合成
ATP的效率为85%;糖酵解供能的效率为24%;糖的有
氧氧化供能的为29.5%。
作业
1、人体有哪三大供能系统?其主要的供能特点有哪
些?运动训练对磷酸原系统供能的影响。
2、试述糖、脂肪、蛋白质有氧分解及能量生成的简
第四节、有氧代谢和无氧代谢与运动能力的关系
人体内各系统的供能能力,参与供能的程度以及能
量的利用效率在很大程度上决定了人体的运动能力。
而代谢过程又是决定运动完整能版课力件pp的t 主要因素。
17
一、运动时有氧代谢和无氧代谢的供能能力 运动时有氧代谢和无氧代谢的供能能力取决于以下三 方面:1)能源物质的种类和数量,如ATP、CP和肌 糖原在骨骼肌中的数量;2)代谢过程的调节能力, 如神经、激素、酶、内环境及各器官之间的协调等; 3)运动后代谢供能能力的迅速恢复。 1、运动时有氧代谢和无氧代谢的供能功率。 磷酸原﹥糖酵解﹥糖的有氧氧化﹥脂肪酸有氧氧化。 并且,最大输出功率呈50%的递度下降。 2、运动时有氧代谢和无氧代谢供能的数量及维持运 动的时间限度
不同的能源物质通过不同代谢途径可提供ATP的数 量由大到小的排列顺序是:脂肪的有氧氧化﹥肌糖原 的有氧氧化﹥肌糖原酵解﹥磷酸原系统 二、运动时有氧代放和无完整氧版课代件pp谢t 的能量利用效率 18
运动时能量利用效率是指人体内代谢过程提供的输
出功率转变为实际运动时功率的多少。

运动生物化学

运动生物化学

科目:运动生物化学1、名词解释:运动生物化学运动生物化学是从分子水平探讨运动人体的变化规律,并将这些理论应用于体育锻炼与竞技体育的实践的一门学科。

2、运动生物化学的主要学习内容有哪些?运动生物化学的主要学习内容有:(1)、揭示运动人体变化的本质(2)、评定和监控运动人体的机能(3)、科学地指导体育锻炼和运动训练第二章糖代谢与运动1. 名词解释:糖:O O|| ||糖是一类含有多羟基(—OH)的醛类(—C—H)或酮类(—C—)化合物的总称。

血糖:葡萄糖是血糖的基本成分,人体空腹血糖浓度大约为4.4~6.6mmol/L,总量为6g。

糖酵解:糖在氧气供应不足情况下,经细胞液中一系列酶催化,最后生成乳酸的过程称为糖酵解。

糖的有氧氧化:葡萄糖或者糖原在有氧条件下氧化分解,生成二氧化碳和水,同时释放出大量的能量。

是人体内糖分解代谢的主要途径。

糖异生作用:p562. 说明糖的分类和生物学功能。

糖的种类繁多,根据其结构特点,可以分为单糖、寡糖、多糖三类。

1、糖可提供机体所需的能量2、糖在脂肪代谢中的调节作用3、糖具有节约蛋白质的作用4、糖具有促进运动性疲劳恢复的作用3. 糖酵解和糖有氧氧化的过程是?产物是?一分子葡萄糖释放多少ATP?糖酵解的产物是乳酸,一分子葡萄糖分子经糖酵解产生2分子的ATP,一分子糖原分子则产生3A TP。

有氧氧化的产物是水、二氧化碳和ATP。

一分子葡萄糖分子彻底氧化产生38分子的A TP,一分子糖原分子则产生39ATP。

4. 糖异生作用在运动中的意义是什么?1、ni补体内糖量不足,维持血糖相对稳定。

体内糖储量有限,糖的消耗量大于储量,仅靠肝糖原分解维持血糖浓度还不够,故糖异生在此诱发了他的作用。

2、乳酸异生为糖有利于运动中乳酸消除,回收乳酸分子中的能量,更新肝糖原,防止乳酸中毒有重要意义。

5. 说明不同运动时,随时间的延长,血糖的变化情况。

为什么说血糖与长时间运动耐力有关?血糖浓度在正常空腹时较为恒定,大约为4.4~6.6mmol/L。

运动生物化学(第二版)第03章脂质代谢与运动

运动生物化学(第二版)第03章脂质代谢与运动

(二)运动时酮体代谢的生理意义 (1)酮体是体内能源物质运输的一种形式。 (2)酮体参与脑组织和肌肉的能量代谢。 (3)酮体参与脂肪动员的调节。
(一)运动员身体素质水平 (二)运动强度和持续时间 (三)脂肪动员和脂肪酸转运的能力 (四)脂肪酸的碳链及饱和度 (五)膳食因素
(一)耐力训练与脂肪分解代谢的适应
脂肪酸是长时间运动的基本燃料。在有充 足氧供给的情况下,脂肪酸在线粒体内一 系列酶的催化下,逐步裂解生成乙酰辅酶A, 再经三羧酸循环完全氧化,生成CO2和H2O, 释放大量能量,因此脂肪酸是机体主要能 量来源之一。
肝和肌肉是进行脂肪酸氧化最活跃的组织, 其最主要的氧化形式是β-氧化。
(一)脂肪酸的-氧化
(1)保持细胞膜的相对流动性,以保证细胞的正常生理功能; (2)使胆固醇酯化,降低血中胆固醇和甘油三酯; (3)是合成人体内前列腺素和凝血因子的前体物质; (4)降低血液粘稠度,改善血液微循环; (5)提高脑细胞的活性,增强记忆力和思维能力。
2.必需脂肪酸
人体内能合成多种脂肪酸,但不能合成亚 油酸和亚麻酸,必须从膳食中补充。因此, 通常把维持人体正常生长所需而体内又不 能合成的脂肪酸,称为必需脂肪酸。
运动生物化学(第二版)第03章脂质代谢与运动
掌握脂质的概念与功能、脂肪酸分解代谢 的过程、运动时脂肪利用的特点与规律; 熟悉酮体的生成和利用及其运动中酮体代 谢的意义;理解运动、脂代谢与健康的关 系,并能将所学的知识科学地指导体育锻 炼以改善脂质代谢,增进健康。
一、脂质的概念
脂质是指由脂肪酸(FA)和醇所形成的酯 类及其衍生物,是化学组成和结构不同但 功能和性质相似的一类有机化合物。
例:
16碳的软脂酸彻底氧化时,共进行7次β氧化, 生成7分子FADH2、7分子NADH+H+和8分子乙酰 CoA,共生成106分子的ATP。

《运动生物化学》习题参考答案

《运动生物化学》习题参考答案

《运动生物化学》习题参考答案绪论一、名词解释1.运动生物化学运动生物化学是生物化学的分支,是从分子水平研究人体化学组成对运动的适应,揭示运动过程中人体物质、能量代谢及调节规律的学科。

二.问答题1.运动生物化学的研究内容是什么?(一)人体化学组成对运动的适应(二)运动时物质能量代谢的特点和规律(三)运动训练的生物化学分析2.试述运动生物化学的发展简史。

答:运动生物化学的研究开始于20世纪20年代,在40-50年代有较大发展,尤其是该时期前苏联进行了较为系统的研究,并于1955年出版了第一本运动生物化学的专著《运动生物化学概论》,初步建立了运动生物化学的学科体系,到60年代,该学科成为一门独立的学科。

至今,运动生物化学已经成为体育科学中一门重要的专业基础理论学科。

第一章糖类、脂类一、名词解释1、单糖:凡不能被水解成更小分子的糖称为单糖2、类脂:指一些理化性质与三脂酰甘油相似,不含结合脂肪酸的脂类化合物。

3、必需脂肪酸:把维持人体正常生长所需,但体内又不能合成必须从外界摄取的多不饱和脂肪酸称为必需脂肪酸二.填空题1.单糖、低聚糖、多糖2、葡萄糖3、血糖、肝糖原、肌糖原4.甘油、脂肪酸5、氧化供能三.问答题1、糖的供能特点答:1.当以90%-95%VO2max以上强度运动时,糖供能占95%左右。

2.是中等强度运动的主要燃料。

3.在低强度运动中糖是脂肪酸氧化供能的引物,并在维持血糖水平中起关键作用。

4.任何运动开始,加力或强攻时,都需要由糖代谢提供能量。

2、糖在运动中的供能特点是什么?答:运动时三脂酰甘油供能的重要性是随运动强度的增大而降低,随运动持续时间的延长而增高。

尽管三脂酰甘油作为能源物质效率不如糖,但其释放的能量是糖或蛋白质所提供能量的2倍。

所以,在静息状态、低强度和中等强度运动时,是理想的细胞燃料。

3、胆固醇在体内的主要代谢去路?答:1、在肝脏内胆固醇可被氧化成胆酸,胆酸主要与甘氨酸或牛磺酸结合生成胆汁酸随胆汁排出,是排泄的主要途径2、储存于皮下的胆固醇经日光(紫外线)照射,可进一步转化生成维生素D33、胆固醇在肾上腺皮质可转化成肾上腺皮质激素,在性腺可转变为性腺激素第二章蛋白质一、名词解释1、必需氨基酸:人体不能自身合成,必须从外界摄取以完成营养需要的氨基酸,称为必需氨基酸。

运动生物化学习题集--附答案(考试重点)

运动生物化学习题集--附答案(考试重点)

《运动生物化学》习题集绪论一.名词解释运动生物化学二.是非判断题1、人体的化学组成是相对稳定的,在运动的影响下,一般不发生相应的变化。

()2、运动生物化学是研究生物体化学组成的一门学科。

()3、1937年Krebs提出了三羧酸循环的代谢理论。

()4、《运动生物化学的起源》是运动生物化学的首本专著。

()三.填空题1、运动时人体内三个主要的供能系统是____、____、____。

2、运动生物化学的首本专著是____。

3、运动生物化学的研究任务是____。

四.单项选择题1. 运动生物化学成为独立学科的年代是()。

A. 1955年B. 1968年C. 1966年D. 1979年2. 运动生物化学是从下列那种学科发展起来的()。

A. 细胞学B. 遗传学C. 生物化学D. 化学3. 运动生物化学的一项重要任务是()。

A. 研究运动对机体组成的影响B. 阐明激素作用机制C. 研究物质的代谢D. 营养的补充4. 运动生物化学的主要研究对象是()。

A. 人体B. 植物体C. 生物体D. 微生物五.问答题1.运动生物化学的研究任务是什么2.试述运动生物化学的发展简史第一章物质代谢与运动概述一.名词解释1、新陈代谢2、酶3、限速酶4、同工酶5、维生素6、生物氧化7、氧化磷酸化8、底物水平磷酸化9、呼吸链二、是非判断题1、酶是蛋白质,但是所有的蛋白质不是酶。

()2、通过长期训练可以提高酶活性、增加酶含量。

()3、一般意义上的血清酶是指那些在血液中不起催化作用的非功能性酶。

()7、CP是骨骼肌在运动过程中的直接能量供应者。

()8、生物氧化发生的部位在细胞质。

()9、生物氧化中生成的水由有机物脱羧产生,二氧化碳由碳和氧结合生成。

()10、氧化磷酸化要求必须保证线粒体内膜的完整性,但是有无氧气参与均可。

()三、填空题1、人体都是由___、___、___、___、___、___、___7大类物质构成。

2、酶根据其化学组成可分为___、___两类。

《运动生物化学》课程笔记

《运动生物化学》课程笔记

《运动生物化学》课程笔记第一章绪论一、运动生物化学的定义与任务1. 定义:运动生物化学是一门交叉学科,它结合了生物学、化学和体育学的知识,专注于研究体育运动对生物体化学成分、代谢过程及其调控机制的影响。

它旨在理解运动如何影响细胞和组织的生化过程,以及这些变化如何反馈到运动表现和健康状态。

2. 任务:(1)揭示运动对生物体化学成分的影响,包括对肌肉、骨骼、心血管系统等的影响。

(2)研究运动过程中代谢途径的变化,如糖代谢、脂肪代谢和蛋白质代谢。

(3)探讨运动如何影响酶活性、激素分泌和其他生化指标的调控。

(4)分析运动对能量产生、利用和储存的影响。

(5)研究运动与疾病预防和治疗的关系,为运动处方的制定提供科学依据。

(6)为运动员的营养补充、训练监控和疲劳恢复提供指导。

二、运动生物化学的研究内容与方法1. 研究内容:(1)生物大分子的结构与功能:研究运动对蛋白质、核酸、糖类和脂质等生物大分子的结构与功能的影响。

(2)酶与激素的作用:探讨运动如何影响酶的活性、激素的分泌和作用机制。

(3)能量代谢与物质代谢:研究运动状态下能量代谢途径的转换、物质代谢的调节和相互转化。

(4)运动性疾病的生化机制:分析运动性疲劳、运动性损伤和运动性疾病的生化基础。

(5)运动与生长发育、免疫、自由基的关系:研究运动如何影响生长发育过程、免疫系统的功能和自由基的产生与清除。

2. 研究方法:(1)实验室研究:包括生物化学实验、分子生物学实验、细胞培养等技术。

(2)现场调查:通过问卷调查、生理生化指标测试等方法,收集运动员的训练和比赛数据。

(3)动物实验:利用动物模型模拟运动状态,研究运动对生化过程的影响。

(4)数学模型:建立数学模型来模拟运动过程中的生化变化,进行定量分析。

(5)分子生物学方法:使用PCR、Western blot、基因测序等技术研究运动对基因表达和蛋白质功能的影响。

三、运动生物化学的发展简史1. 创立阶段(20世纪初):科学家开始关注运动对生物体化学成分的影响,初步探讨了运动与代谢的关系。

运动生物化学名词解释、简答题

运动生物化学名词解释、简答题

第一章:1-3单元名词解释:1.糖:是一类含多羟基的醛或酮类化合物的总称2.必须脂肪酸:维持人体正常生理需要而体内又不能合成必须由外接摄取满足营养的脂肪酸。

3.必须氨基酸:必须从外界摄取以完成营养需要的8种氨基酸。

4.酶:是生物的催化剂。

由生物细胞产生,具有催化功能的物质。

5.酸碱平衡:体内酸性物质和碱性物质在调节机构的作用下维持一定的含量和比例,使体液PH值在一个狭窄的范围内维持恒定。

填空题:1.糖的分类是单糖、低聚糖、多糖。

其中淀粉是多糖。

运动饮料中通常添加的是低聚糖。

2.脂类的分类是脂肪、复合脂、类脂。

胆固醇属于类脂。

3.蛋白质的基本组成单位是氨基酸。

4.无机盐分为常量元素和微量元素。

5.维生素分为水溶性维生素和脂溶性维生素。

前者包括维生素B族(B1 B2 B6 B12 PP 叶酸生物素等)和维生素C。

后者包括维生素A D E K。

6.酶的特点极高的催化效率(高效性)、专一性、不稳定性、可调控性。

简答题:1.糖的功能:1.提供机体所需能量。

2.促进脂肪分解供能。

3.糖氧化可节约利用蛋白质。

2.脂肪的功能:一般功能:1.脂类是机体组织的组成部分。

2.脂肪是人体能量的主要来源和最大储能库。

3.防震和隔热保温作用。

4.脂溶性维生素的载体。

运动中的生物学功能:1.脂肪提供长时间低强度供能(马拉松、铁人三项)时机体所需的大部分能量。

2.脂肪氧化供能具有降低蛋白质和糖消耗的作用。

3.运动员为什么重视补水:人体在剧烈运动时,排汗成为调节体热的主要途径。

一次大强度,大排量的排汗可达到2000-7000毫升,如果不能及时补充水分,将会导致人体运动能力明显降低,严重时还会危害到运动员的身体。

所以运动员要重视补水。

4.血清酶的来源,为什么运动会引起血清酶增高:血清酶的来源:机体各组织细胞(肝脏、心肌、骨骼肌等)血清酶增高原理:运动时细胞膜通透性增大,是血清中组织酶升高的主要原因。

第二章:名词解释:1.磷酸原:ATP和CP的合称。

《运动生物化学》理论教学大纲(社会体育)

《运动生物化学》理论教学大纲(社会体育)

《运动生物化学》理论教学大纲(供四年制本科社会体育专业使用)I 前言运动生物化学是运动人体科学中的一门主要学科,在运动人体科学领域的重要地位越来越凸显,已成为运动人体科学的前沿学科之一。

它在分子水平上研究运动与身体化学组成之间的相互适应和运动过程中机体内物质和能量代谢及调节的规律,为增强体质、提高竞技运动能力提供理论和方法。

《运动生物化学》从分子水平介绍运动的物质代谢和能量代谢的变化,研究运动性质以及能量之间的联系。

通过本课程的教学,树立分析问题和解决问题的学习态度,培养对本门课程的良好兴趣。

使学生具备广博的知识和素养。

使学生了解体育运动的能量代谢与营养补充,运动性疲劳及恢复特点,了解体育运动与三大营养物质代谢的内在联系,从而领悟体育锻炼的目的,并向学生介绍分子生物学世纪动态和体育运动与健康的关系和发展趋势,使学生认识运动的本质和特性。

本大纲适用于四年制本科社会体育专业学生使用。

现将大纲使用中有关问题说明如下:一为了使教师和学生更好地掌握教材,大纲每一章节均由教学目的、教学要求和教学内容三部分组成。

教学目的注明教学目标,教学要求分掌握、熟悉和了解三个级别,教学内容与教学要求级别对应,并统一标示(掌握内容即知识点以下划实线,熟悉内容以下划虚线,了解内容不标示)便于学生重点学习。

二教师在保证大纲核心内容的前提下,可根据不同教学手段,讲授重点内容和介绍一般内容。

三总教学参考学时为52学时,理论课40学时,实验课12学时,理论与实验学时之比3.3:1。

四教材:《运动生物化学》,人民体育出版社,1版,冯美云,2005。

II 正文第一章糖类、脂类、蛋白质、核酸的化学一教学目的学习人体是由水、蛋白质、核酸、脂类、糖类、无机盐、维生素、激素等数类物质组成,通过生物体内繁多而复杂有序的新陈代谢过程,把它们组合成一个有生命的整体。

其中,蛋白质、核酸、脂类和糖类是生物体特有的大分子有机化合物,它们是建造生物体的主要成分,故又称为生物分子。

运动生物化学课程设计

运动生物化学课程设计

运动生物化学课程设计一、课程简介本课程旨在介绍运动生物化学理论知识及其应用。

涵盖内容包括运动生理、代谢物质及能量代谢、肌肉收缩和恢复、运动中的蛋白酶、荷尔蒙和信号转导、运动损伤与修复等方面。

通过本课程的学习,学生可以掌握基本运动生物化学知识,理解运动时身体内部代谢过程机制,增强对训练和运动的认识与理解,进而支持科学的训练和进步。

二、课程目标1.掌握运动代谢物质及其能量代谢机制,了解运动时机体内代谢过程,增强对训练和运动的认识与理解;2.了解肌肉收缩和恢复机制,掌握肌肉训练和运动中的变化过程和机理;3.理解运动中的蛋白酶、荷尔蒙和信号转导机制,掌握运动中分子水平的变化和作用;4.了解运动损伤和修复机制,掌握运动中身体损伤的预防和修复方法。

三、课程内容第一章运动生理1.运动生理概述2.运动代谢分类和特点3.运动与心肺功能训练4.长期训练对身体适应的影响第二章代谢物质及能量代谢1.碳水化合物的代谢2.脂质的代谢3.蛋白质的代谢4.能量代谢机制第三章肌肉收缩和恢复1.肌肉基础解剖和生理2.肌肉收缩机制3.肌肉恢复机制4.训练对肌肉的影响和适应性第四章运动中的蛋白酶、荷尔蒙和信号转导1.蛋白质合成和分解机制2.荷尔蒙在运动中的作用3.运动中的信号转导过程4.运动中蛋白质和荷尔蒙对身体的影响第五章运动损伤和修复1.运动损伤的分类和预防2.运动损伤的修复和治疗3.运动中的疼痛和抗疲劳措施4.运动后的恢复饮食四、教学方法本课程采用课堂讲授+案例分析+讨论互动等方式,充分体现互动式教学模式,为学生提供足够的自主探究时间和途径,夯实知识理论和实践应用。

五、考核方式1.平时表现(含课堂提问、参与互动等):20%2.个人论文:30%3.期末考试:50%六、参考书目1.高等体育人体科学2.运动生物化学基础3.运动生理学4.运动医学七、结语本课程旨在让学生掌握运动生物化学的基本理论知识及其应用,深入理解运动过程中体内代谢过程的机制,从而帮助其更好地实践并提高运动能力,同时注重理论与实践相结合的教育理念,为学生提供全方位、多角度的学习资源与互动体验,尽可能激发学生的学习兴趣和创造力,为学生的未来全面发展和进步奠定坚实的基础。

运动生物化学整合

运动生物化学整合

第一章物质代谢与运动概述第一章名词解释:1.糖酵解:指在在氧气供应不足的情况下,经细胞中一系列酶催化最终生成乳酸的过程。

2.同工酶:人体内有一类酶,他们可以催化同一化学反应,但催化特性、理化性质及其生物学性质有所不同,这类酶称为同工酶3.呼吸链:生物氧化中水的生成是通过呼吸链完成的。

线粒体内膜上的一系列递氢、递电子体按一定顺序排列,形成个连续反应的生物氧化体系结构,称为呼吸链。

4.氧化磷酸化:将代谢物脱下来的氢,经呼吸链传递,最终生成水,同时伴随ADP 磷酸化合成ATP 的过程,称为氧化磷酸化。

第一节运动人体的物质组成一、组成运动人体的化学物质➢都是由糖、脂质、蛋白质、维生素、纤维素、核酸、水、无机盐7大类物质组成的。

(一)人体物质组成的含量和功能水占体重的60% ~70%,主要构成人体的体液,包括细胞外液和细胞内液。

糖占人体干重的2%,主要以肝糖原、肌糖原和血糖的形式存在。

脂类占人体干重的30% ~40%,一般来说,男子的脂肪含量低于女子,运动员的脂肪含量低于普通人。

蛋白质占人体干重的54%,是人体主要的结构和功能物质,人体一.切基本生命活动都与蛋白质有关。

运动可促进蛋白质合成增加,特别是肌肉的收缩蛋白。

核酸包括脱氧核糖核酸(DNA)和核糖核酸(RNA),占细胞干重的5% ~ 15%。

无机盐占体重的4% ~5%,可根据其在体内的量分为常量元素和微量元素。

它既可作为结构物质,如骨骼,也可与蛋白质相结合,形成具有特殊功能的蛋白质。

维生素在体内的含量很低,具有参与体内辅酶的构成、调节代谢等功能。

①能促进钙、磷吸收的是维生素D能合成视紫红质的是维生素A能抗强氧化作用的是维生素E ②正常成年人每24小时的最低尿量是500ml③生物氧化的意义在于:逐渐释放能量以持续利用、合成ATP、产生热量以维持体温运动对人体化学物质的影响1.运动时,人体内物质的化学反应加快,各种化学物质的含量及比例也会发生相应的变化。

湖南师范大学2024年硕士研究生自命题考试大纲 (复试)运动生物化学

湖南师范大学2024年硕士研究生自命题考试大纲  (复试)运动生物化学

湖南师范大学硕士研究生入学考试自命题科目考试大纲考试科目代码:考试科目名称:运动生物化学一、考试内容及要点考试内容:第一章绪论(1)运动生物化学的研究任务(2)运动生物化学在体育科学中的地位(3)运动生物化学的发展第二章人体的化学组成1、糖类(1)糖类的元素组成及分类(2)糖类的生物学功能2、脂(1)脂类的概念和分类(2)脂肪、复合脂、类固醇及其衍生物(3)脂肪的生物学功能3、蛋白质(1)蛋白质的化学组成和分子结构(2)生物分子结构与功能的关系(3)蛋白质在生命活动中的作用4、水和无机盐(1)水对生命的重要作用(2)水需要量的各种因素以及饮水量和饮水方式(3)与运动关系密切的无机盐5、维生素(1)维生素的分类和功能(2)维生素与运动能力的关系第三章代谢的调节物质:酶和激素1、酶(1)酶促反应的特点及酶的化学组成(2)酶的命名和分类及运动训练对酶活性的影响2、激素(1)激素的概念及主要功能(2)运动时能源物质利用的激素调节第四章运动和糖代谢1、糖的分解代谢及能量的生成(1)糖的无氧氧化—糖酵解途径和意义(2)糖的有氧氧化途径和意义2、糖的异生作用和生理意义(1)维持血糖相对恒定的因素(2)糖异生作用有利于乳酸的再利用(3)糖异生作用能促进脂肪的氧化分解供能和氨基酸代谢3、糖代谢的调节(1)对糖酵解和有氧氧化的调节(2)糖异生作用的调节因素4、生物氧化(1)生物氧化中水的生成(2)生物氧化中ATP的生成及ATP的重要作用5、运动对糖代谢的影响(1)运动对肝糖原的影响(2)运动和肌糖原的关系(3)运动与血糖、运动与乳酸的关系第五章运动和脂类代谢1、脂肪的分解代谢(1)脂肪组织中贮存脂肪的水解和动员(2)血浆脂蛋白中甘油三酯的水解(3)细胞内甘油三酯的水解2、血浆自由脂肪酸(FFA)3、脂肪酸得分解代谢(1)脂酰辅酶A的生成(2)脂酰辅酶A通过线粒体内膜(3)脂酰辅酶A的β-氧化作用(4)脂肪酸氧化时能量的生成4、甘油的代谢(1)甘油氧化时的能量生成(2)运动时甘油代谢的意义5、酮体的生成和利用(1)酮体的生成方式(2)酮体的利用方式(3)酮体生成的生理意义6、运动对人体脂代谢的影响(1)人体适宜体重体脂百分率和健康的关系(2)长时间耐力运动对血脂的急性影响(3)耐力运动训练对血脂的影响(4)耐力训练引起血浆脂蛋白浓度变化的机制(5)耐力运动训练对体脂百分率和脂代谢影响第六章运动和蛋白质代谢1、氨基酸代谢的基本途径(1)体内氨基酸的来源和去路(2)氨基酸代谢的主要途径(3)蛋白质与糖类、脂类代谢关系2、运动时氨基酸代谢(1)运动对骨骼肌代谢的影响(2)葡萄糖-丙氨酸循环和支链氨基酸代谢在运动中意义(3)运动与骨骼肌的氨代谢第七章年龄、性别的生物化学特点和体育运动1、青少年的运动能力特点及老年人的体育锻炼2、青少年在生长发育过程中身体化学组成变化和体育锻炼,衰老的生物化学特点、生物学原因,衰老和体育锻炼的关系第八章运动性疲劳的生物化学基础1、运动性疲劳的概念、生物化学机理、不同运动时间疲劳特点2、掌握提高运动能力的营养补充品3、运动性疲劳的恢复及营养方法,兴奋剂的概念和分类、兴奋剂的害处第九章体育锻炼效果的生物化学评定1、评定运动后身体机能状态的指标Hb、血尿素、尿蛋白、尿胆原及体育锻炼效果、人体运动耐力的生物化学评定、血脂的评定2、Hb、血糖、血乳酸、尿蛋白的测定方法要点1、系统掌握运动生物化学的基础理论和基本技术,了解生物化学的现状和发展趋势;2、理解生物体尤其是运动的人体在生命活动中所进行的化学变化规律以及与生理机能关系;3、基本掌握生物化学在实际运用中的关键问题和解决方法,以便科学地指导人们进行体育锻炼和运动训练,提高体育运动的科学性和有效性。

运动生物化学读书笔记

运动生物化学读书笔记

运动生物化学读书笔记娄亚涛 1403025 运动生物化学是体育科学中的一门重要的应用基础理论课,是体育教育专业大学生必须掌握的重要知识。

运动生物化学的任务主要就是要求体育专业学生主要掌握两方面的知识:①运动-身体适应-促进健康与提高运动能力的基本规律;②运动促进健康和提高运动能力的分子水平的物质基础。

人体运动对身体的影响本质上就是适应。

运动生物化学与体育科学中的其他学科健康科学,运动训练学以及运动人体科学中的其他学科存在紧密的联系。

第一章运动的物质基础生命的主要物质基础是蛋白质和核酸,蛋白质是构成生物体细胞结构的基本物质。

运动时能量需求增加,糖类、脂类是人体运动能量来源的主要物质。

水、无机盐、维生素的含量和代谢平衡对人体正常的生理功能和运动均起着重要的作用。

酶是人体各种重要代谢过程的调节物质。

必需氨基酸:机体不能合成活合成速度很慢,不能满足机体的需要,必须从食物中获得的氨基酸称之为必需氨基酸。

酶:酶是生物细胞产生并具有催化作用的蛋白质,酶具有蛋白质的所有属性,而蛋白质不一定都具有催化作用。

同工酶:人体内有一类酶,它们可以催化同一化学反应,但催化特性、理化性质和生物学性质均有所不同,这类酶称为同工酶。

蛋白质作用:酶的催化作用;构成和修复身体组织;各类物资在体内的运输;某些蛋白质具有激素的功能;免疫保护作用;产生和传递神经冲动或细胞调节功能;起接受和传递信息作用;参与代谢供能。

糖类:由多羟基醛或酮及其衍生物的总称。

单糖:凡不能被水解成更小分子的糖,称单糖。

寡糖低聚糖,由2-9个单糖分子构成的小分子糖。

多糖:由10个及以上单糖分子组成的大分子糖。

糖的存在形式:血糖(运输形式)和肝糖原肌糖原(储存形式)。

糖的作用:是组成身体成分,提高机体所需能量,调节脂肪和蛋白质代谢。

糖异生:由非糖物质转变成糖原或葡萄糖的过程称为糖异生作用。

脂类的分类:脂肪(甘油三酯)和类脂(包括磷脂和固醇类)。

脂肪酸:是指一端含有一个羧基的长的脂肪族碳氢键。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安静时,人体脂肪组织内脂肪水解所产生的脂 肪酸大约1/3进入血液,2/3经再酯化作用生成三酰 甘油。
血糖浓度升高,进入脂肪细胞的葡萄糖增多,促 进再酯化作用,血乳酸浓度升高也会促进脂肪组织 中的再酯化作用,故在人体内糖储备量比较充足, 运动强度也相对较大时,运动总是优先利用糖。
B
27
丙酮酸

TG

B
46
B
2
第一节 脂质概述
一、 脂质的概念
由脂肪酸和醇所形成的酯类及其衍生物。
二、脂质的分类
单纯脂质 按化学组成 复合脂质
衍生脂质
是化学组成和结构不同但功能和性质相似 的一类有机化合物,其共同特性是不溶于 B 水而易溶于乙醚、氯仿等有机溶剂。 3
(一)单纯脂
——由脂肪酸和醇所形成的酯。
单纯脂中最丰富的一大类——脂肪的通式
<200 200-239
>240
<200
B
7
三、脂质的生物学功能
1)脂肪氧化释放能量 脂肪是低强度、长时间运动时的主要能源物质
2)复合脂和衍生脂是构成细胞的成分 3)促进脂溶性维生素的吸收 4)脂肪防震和隔热保温作用 5)脂肪的氧化利用具有降低糖和蛋白质消耗的作用
B
8
第二节 脂肪的分解代谢
一、脂肪的动员与水解 脂肪动员:脂肪细胞内储存的脂肪经脂
2、抑制脂肪酸供能与大强度耐力
在低于30分钟的运动中,减少脂肪酸供能 是提高运动能力的重要生化因素。补糖能抑制 脂肪组织分解和释放脂肪酸,减少肌肉吸收和 氧化脂肪酸。
B
35
五、脂肪分解代谢与运动适应
1.耐力训练使人体内脂肪水解和利用的能力增强, 还可引起骨骼肌氧化利用脂肪酸的能力增强。 2.耐力训练使机体在进行耐力运动时利用脂肪供 能比例增加,有利于节省体内的糖储备。
B
11
三、脂肪酸的分解代谢
脂肪酸是长时间运动的基本燃料,肝和肌 肉是进行脂肪酸氧化最活跃的组织,其最主要 的氧化形式是β-氧化。
(一)脂肪酸的β-氧化
1、脂肪酸的活化 Mg2+
脂肪酸+ATP+CoASH
脂酰辅酶A+AMP+PPi
脂酰辅酶A合成酶
B
12
瘦肉中肉碱含量较多。
2、脂酰辅酶A进入线粒体
脂酰辅酶A需依靠肉碱携带才能透过线粒体内膜。
B
24
一、运动时的脂肪代谢
运动时脂肪参加能量代谢的作用是与血浆游离 脂肪酸的密不可分的。 游离脂肪酸在血浆库内转换率高,可以成为多 种器官和组织的供能物质,也是安静、运动时骨 骼肌的主要供能物质之一。
B
25
脂肪参与分解供能的三种主要来源
骨骼肌胞浆中的脂滴
能量
脂库中的脂肪
血浆脂蛋白中的脂肪
B
26
再酯化过程(三酰甘油-脂肪酸循环):一部分脂 肪水解后生成的脂肪酸通过合成脂酰辅酶A,再与 α-甘油磷酸合成三酰甘油。
HDL与心血管疾病的发病率呈负相关 为抗冠心因子。
B
41
二、运动对血脂代谢的影响
(一)运动对血脂含量的影响
1、长期有规律的耐力锻炼可使血浆总胆固醇保 持较低的水平。
2、长期的中低强度有氧锻炼可以降低血浆三酰 甘油水平。
B
42
(二)运动对血浆脂蛋白含量的影响
1、耐力训练对HDL-C水平的影响 耐力训练使HDL-C水平比训练前有显著升高。
B
18
B
19
B
20
作业
一、填空题
1、长时间中低强度运动时脂肪酸氧化供能首先通过
酰辅酶A,然后经
途径完全氧化释放大量能量
生成乙
2、在体内糖贮备不足时脂肪酸不完全氧化生成

3、脂肪酸氧化时需经
载体将其转运至线粒体内。
B
21
二、是非判断题
1、运动时,骨骼肌氧化利用血浆游离脂肪酸的比例随运动时间的延长 逐渐增加。 2、丙酮、乙酰乙酸、β-羟丁酸总称为酮体。 3、甘油是长时间中低强度运动时运动肌主要能量供应者。 4、长时间运动时,甘油作为糖异生原料合成糖对维持血糖恒定起着重 要作用。 5、运动时酮体可作为大脑和肌肉组织的重要补充能源。
B
4
脂肪酸的结构与分类
脂肪酸
饱和脂肪酸:硬脂酸、软脂酸
不饱和脂肪酸(UFA)
单不饱和脂肪酸(MUFA):油 酸
多不饱和脂肪酸(PUFA):亚油酸、 亚麻油酸、花生四烯酸、EPA、 DHA
必需脂肪酸:维持人体正常生长所需而体内又不能合成必
须从食物中摄取的脂肪酸。包括亚油酸和亚麻酸。
B
5
(二)复合脂
B
45
三、填空题
1、运动时参与分解供能的脂肪有3种来源途径,分别是 ,


2、研究发现,
与AS、CHD发病率呈正相关,
CHD发病率呈负相关。
与AS、
四、问答题 1、简述运动对血脂代谢的影响。 2、简述骨骼肌脂肪酸氧化与运动能力的关系。 3、以马拉松跑为例试述长时间运动时主要能源物质供能的顺序及其 机理。
2、是脂肪酸的改造过程
B
15
四、酮体代谢
B
16
酮体代谢与运动
1、运动对血酮体浓度的影响 正常情况下血酮体含量很少。
运动对血酮体的影响主要发生在中低强度长时 间运动中,尤其在糖储备低下的运动过程中,血 酮体明显升高。
血酮体水平的上升能间接反映体内糖储备状况。
B
17
2、运动时酮体代谢的生理意义
(1)酮体是体内能源物质转运的一种形式 酮体可视为肝输出脂肪酸类能源的一种形式。
安静时,动脉血FFA是骨骼肌的基本燃料。
在短时间极量或高强度运动中,血浆FFA 供能意义不大。
在长时间运动中,血浆FFA在骨骼肌的供 能中起着关键作用。
B
31
三、影响脂代谢的因素与运动能力
1、运动强度和持续时间
运动强度下降到60-70%最大摄氧量、超过20-30分 钟的长时间运动中,动脉血FFA持续而缓慢地升高,肌 细胞吸收血浆FFA供能比例增大,例如运动40、90、 180、240分钟,脂肪酸供能占总能耗的百分数分别为 37%、37%、50%、62%。
3、脂酰辅酶A的β-氧化
每次β-氧化生成1个乙酰-CoA、1个NADH、 1个 FADH2 和较原来少2个碳原子的脂肪酸。
脂酰辅酶A经历多次β-氧化作用后逐步降解成多个乙酰 辅酶A。
4、脂肪酸完全氧化和ATP的合成
软脂酸彻底氧化共产生130分子ATP
B
13
脂肪酸β-氧化反应步骤
AMP PPi
脂肪酸 + CoA-SH
解 -磷酸甘油
葡萄糖
脂酰辅酶A FFA
脂肪细胞
甘油
血液 葡萄糖
甘油 FFA
脂肪组织内甘油三酯和脂肪酸循环
B
28
二、运动时脂肪酸的利用
运动时骨骼肌氧化脂肪酸依靠肌内甘油三酯水 解和摄取血浆FFA,随着运动时间延长,血浆FFA 供能起主要作用。
B
29
(一)血浆游离脂肪酸浓度及其转运率
1、血浆FFA浓度正常值
2、脂肪动员和脂肪酸转运的能力
B
32
3、饮食
低糖膳食使肌糖原储量低下时,或饥饿1-3 天,脂肪酸氧化供能量可高达80-90%。
吃糖可抑制脂肪组织的脂肪分解,服用咖 啡因促进脂肪组织的脂解作用。
补充肉碱,也可加快脂肪酸的分解代谢。
B
33
4、耐力训练水平
耐力水平高,运动时脂肪酸氧化供能的比例相 对较高,有利于运动时节省糖储备。
安静、空腹状态时:6-16mg%(0.1mmol/L)。 运动过程中:血浆FFA浓度升高。
2、血浆FFA转运率 血浆FFA转运率较快,半寿期大约为4分钟。
运动时,其转运率也随着加快。
血浆FFA无论在静息状态、低强度和中等强度运动 时都能积极地参与各组织器官的氧化供能。
B
30
(二)血浆FFA在骨骼肌内的供能地位
第三章 脂代谢与运动
教学目标 1)掌握脂质的功能、运动时脂肪利用的特点与规律;了解 脂质的概念、脂质的分类、脂肪酸分解代谢的过程、 2)了解酮体的生成和利用及运动中酮体代谢的意义; 3)掌握运动、脂代谢与健康的关系,并学会如何应用所学 的知识、科学的指导体育锻炼以改善脂代谢,增进健康。
B
1
体内过度的脂肪积累成为影响健康、导致死亡的重要因素
B
22
三、单项选择题
1、脂肪氧化、酮体生成和胆固醇合成的共同中间产物是( )。 A. 乙酰辅酶A B. 乙酰乙酸 C. 乙酰乙酰辅酶A D. 丙二酰辅酶A 2、活化脂肪酸不能直接穿过线粒体内膜,需要借助内膜上的( ) 转运机制。 A. 肉碱 B. CP C. 磷酸甘油 D. 苹果酸
B
23
第三节 运动时脂代谢的特点
B
36
第四节 运动、血脂代谢与健康
B
37
一、血脂的概念、分类及功能
血脂:人体血浆中的脂质 血脂包括:胆固醇、三酰甘油、磷脂、FFA (游离脂肪酸) 血浆脂蛋白:血浆中的三酰甘油、磷脂、胆 固醇等与载脂蛋白以不同的比例结合而形成 的血脂的运输形式。
B
38
Bቤተ መጻሕፍቲ ባይዱ
39
B
40
研究发现: LDL与心血管疾病的发病率呈正相关 为冠心病危险因子;
60%-80%最大心率的有氧运动可明显改善脂代谢 的状况。
2、耐力训练对LDL-C的影响 耐力训练使血浆LDL-C水平降低。
B
43
作业
一、是非判断题 1、运动时,骨骼肌氧化利用血浆游离脂肪酸的比例随运动时间的延长逐渐增加。 () 2、脂肪是低强度长时间运动时的主要能源物质。 () 3、高水平耐力运动员脂肪酸氧化分解的能力明显高于一般人,运动时脂肪供能 的比例显著增加。() 4、运动时人体脂肪组织内脂肪水解所产生的脂肪酸大约1/3进入血液,2/3经再 酯化作用生成三酰甘油。()
相关文档
最新文档