光学课程设计望远镜系统结构参数设计
光学课程设计——望远镜系统-精品
光学课程设计——望远镜系统-精品2020-12-12【关键字】情况、方法、条件、空间、领域、质量、传统、认识、问题、焦点、系统、有效、现代、良好、优良、透明、保持、了解、研究、特点、位置、关键、网络、理想、地位、基础、需要、环境、工程、负担、方式、作用、结构、关系、分析、调节、形成、满足、保证、维护、指导、强化、取决于、方向、适应、实现、减轻、中心、重要性望远镜系统结构设计指导教师:张翔专业:光信息科学与技术班级:光信息08级1班姓名:学号:目录第一部分设计背景 (1)第二部分设计目的及意义 (1)第三部分望远镜介绍 (1)3.1望远镜定义 (1)3.2望远镜分类及相应工作原理 (2)第四部分望远镜系统设计 (3)4.1开普勒望远镜 (3)4.2望远镜系统常用参数 (4)4.3外形尺寸计算 (6)4.4伽利略望远镜 (8)4.5物镜组的选取 (9)4.6望远镜像差类型及主要结构 (10)4.7双胶物镜与双分离物镜分析 (12)4.8内调焦望远物镜分析 (14)4.9目镜组的选取 (14)4.10目镜主要像差及分析 (17)4.11棱镜转像系统 (17)4.12转折形式望远镜系统 (18)4.13光学系统初始结构参数计算方法 (18)4.14应用光学系统中的光栅 (20)第五部分设计总结 (21)第六部分参考文献 (21)一.设计背景在现在科学技术中,以典型精密仪器透镜、反射镜、棱镜等及其组合为关键部分的大口径光电系统的应用越来越广泛。
如:天文、空间望远镜;地基空间目标探测与识别;激光大气传输、惯性约束聚变装置等等。
其中我国以高功率激光科研和激光核聚变研究为目的的光电系统——“神光二号”,颇具代表。
“神光二号”对于未来的能源危机和我国的军事领域有着重要意义。
二.设计目的及意义运用应用光学知识,了解望远镜工作原理的基础上,完成望远镜外形尺寸、物镜组、目镜组及转像系统的简易或远离设计。
了解光学设计中的PW法基本原理。
光学课程设计望远镜系统结构设计
光学课程设计——望远镜系统结构设计姓名:学号:班级:指导老师:一、设计题目:光学课程设计二、设计目的:运用应用光学知识,了解望远镜工作原理的基础上,完成望远镜的外形尺寸、物镜组、目镜组及转像系统的简易或原理设计。
了解光学设计中的PW法基本原理。
三、设计原理:光学望远镜是最常用的助视光学仪器,常被组合在其它光学仪器中。
为了观察远处的物体,所用的光学仪器就是望远镜,望远镜的光学系统简称望远系统. 望远镜是一种用于观察远距离物体的目视光学仪器,能把远物很小的张角按一定倍率放大,使之在像空间具有较大的张角,使本来无法用肉眼看清或分辨的物体变清晰可辨。
所以,望远镜是天文和地面观测中不可缺少的工具。
它是一种通过物镜和目镜使入射的平行光束仍保持平行射出的光学系统.其系统由物镜和目镜组成,当观察远处物体时,物镜的像方焦距和目镜的物方焦距重合,光学间距为零.在观察有限远的物体时,其光学间距是一个不为零的小数量,一般情况下,可以认为望远镜是由光学间距为零的物镜和目镜组成的无焦系统.常见望远镜按结构可简单分为伽利略望远镜,开普勒望远镜,和牛顿式望远镜。
常见的望远镜大多是开普勒结构,既目镜和物镜都是凸透镜(组),这种望远镜结构导致成像是倒立的,所以在中间还有正像系统。
物镜组(入瞳)目镜组视场光阑出瞳1'1ω2'2'ω3 'f物—f目'l z'3上图为开普勒式望远镜,折射式望远镜的一种。
物镜组也为凸透镜形式,但目镜组是凸透镜形式。
为了成正立的像,采用这种设计的某些折射式望远镜,特别是多数双筒望远镜在光路中增加了转像稜镜系统。
此外,几乎所有的折射式天文望远镜的光学系统为开普勒式。
伽利略望远镜是以会聚透镜作为物镜、发散透镜作为目镜的望远镜(会聚透镜的焦距要大于发散透镜的焦距),当远处的物体通远物镜(u>2f )在物镜后面成一个倒立缩小的实像,而这个象一个要让它成现在发散透镜(目镜)的后面即靠近眼睛这一边,当光线通过发散透镜时,人就能看到一个正立缩小的虚象。
光学设计-第15章--望远镜物镜设计
第十五章 望远镜物镜设计望远镜一般由物镜、目镜、棱镜或透镜式转像系统构成。
望远镜物镜的作用是将远方的物体成像在目镜上,经目镜放大后供人眼观察。
如图15-1所示。
图15-1 望远镜系统§1 望远镜物镜的光学特性一 望远镜物镜的光学特性参数望远镜物镜的光学特性由焦距、相对孔径、视场等参数表示。
1 焦距望远镜物镜的焦距/物f 等于目镜焦距/目f 与望远镜倍率的乘积,因而,一般望远镜的倍率越高,物镜的焦距越长。
高倍望远镜物镜焦距可达到一米左右,天文望远镜物镜焦距可达到数米。
望远镜物镜的焦距大多在mm 500~100之间。
2 相对孔径在望远系统中,入射的平行光束经过系统后仍然为平行光束,因此物镜的相对孔径/物f D 与目镜的相对孔径/目f D /是相等的。
目镜的相对孔径主要由出射光瞳直径/D 和出射光瞳距离/p l 决定,目镜的出射光瞳直径一般为mm 4左右,出射光瞳距离/p l 一般要求mm 20。
为保证出射光瞳距离,目镜的焦距/目f 一般大于或等于mm 25,这样,目镜的相对孔径约为71~41。
所以,物镜的相对孔径不大,一般小于51。
但当物镜的焦距很长时,物镜的光瞳口径却可以很大,如天文望远镜中有口径为几米的物镜。
3 视场望远镜物镜的视场ω2与目镜的视场/2ω以及系统的视放大率Γ之间有如下关系:ωωtg tg ⋅Γ=/目镜视场因受结构限制,目前/2ω大多在070以下,这就限制了物镜的视场不会很大,一般在012以下。
二 望远镜物镜像差校正要求由于望远镜物镜的相对孔径和视场都不大,同时允许视场边缘成像质量适当降低,因此它的结构型式比较简单,故望远镜物镜要求主要校正球差、慧差、轴向色差,而不校正对应于像高/y 二次方的各种单色像差(像散、场曲、畸变)和倍率色差。
由于望远镜要与目镜、棱镜或透镜式转像系统组合起来使用,所以在设计望远镜物镜时,应考虑到它与其他部分之间的像差补偿关系。
在物镜光路中有棱镜的情况下,物镜的像差应当与棱镜的像差互相补偿,即棱镜的像差要靠物镜来补偿,由物镜来校正棱镜的像差。
望远镜设计系统图和零件图
玻璃 比例
光学系统图 设计者 பைடு நூலகம்例 日期
名称 放大率 视场 出射光瞳直径 眼点距离 物镜焦距 目镜焦距 渐晕系数
公称值 6 8 5mm 9mm 120m 20mm 50%
最小值 5.5 7°30′ 4.8mm 8mm 119.5mm 19.5mm 49.50%
最大值 不 不 不 不 120.5mm 20.5mm 50.50%
序号 1 2 3 4 5 6 7 8
名称 物镜正透镜 物镜负透镜 普罗 I 型转向棱镜 普罗 II 型转向棱镜 分划板 凯涅尔目镜场镜 凯涅尔目镜接眼镜正透镜 凯涅尔目镜接眼镜负透镜
镜框孔径 /mm
外形轮廓 /mm
中心厚度 /mm
数量 1 1 1 1 1 1 1 1
光学零件图 设计者 比例 日期
∆nD
对玻璃的要求 f’ sf sf’ 对零件的要求
3C 3C 3 3 5D
∆ (nF − nC )
均匀性 光的吸收度 气泡程度 N=3
应力消除程度 4 条纹消除程度 1C
∆N = 0.05
C=0.05
∆R = B
P=V
q=
φ 0.5 φ 50
φ
名称 物镜正透镜 BaK2 2:1
光学设计实验(一)望远镜系统设计实验
光学设计实验(一)望远镜系统设计实验1 实验目的(1)通过设计实验,加深对已学几何光学、像差理论及光学设计基本知识、一般手段的理解,并能初步运用;(2)介绍光学设计ZEMAX 的基本使用方法,设计实验通过ZEMAX 来实现 2 设计要求(1) 设计一个8倍开普勒望远镜的目镜,焦距f’=25mm ,出瞳直径D ’=4mm ,出瞳距>22mm ,视场角2ω’=25︒;考虑与物镜的像差补偿,目镜承担轴外像差的校正,物镜承担轴上像差的校正。
(总分:30分)(2)设计一个8倍开普勒望远镜的物镜,其焦距、相对孔径D/f ’、视场角、像差补偿要求根据设计(1)的要求来确定,要求给出计算过程。
(总分:30分)(3)将上述物镜与目镜组合成开普勒望远镜,要求望远镜的出射光束角像差小约3’左右。
如不符合要求,可结合ZEMAX 中paraxial 理想光学面,通过控制视觉放大倍率和组合焦距为无限大(如f ’>100000)等手段。
(总分:30分)(4)回答和分析设计中的相关问题(总分:10分)所有设计中采用可见光(F ,d ,C )波段。
问题1:望远光学系统和开普勒望远镜的特点问题2:目镜的光学特性和像差特点问题3:常用的目镜有哪些?常用的折射式望远物镜有哪些? 问题4:望远镜系统所需要校正的主要像差有那些?提示:目镜采用反向光路设计,目镜包括视场光阑,注意目镜孔径光阑的设置。
判定出射光束角像差小约3’左右的方法:在像面前插入一个paraxial 类型的面,若该面焦距(即与像面之间的距离)为1000mm ,则Spot diagram 的Geo Radius 则应小1mm 。
m 91512.5COS 343831000COS 3438322'μω=⨯⨯=⨯⨯≤f R 3 设计流程所谓光学系统设计就是根据使用要求,来决定满足使用要求的各种数据,即决定光学系统的性能参数、外形尺寸和各光组的结构等。
因此我们可以把光学设计过程分为4个阶段:外形尺寸计算、初始结构的计算和选择、象差校正和平衡以及象质评价。
光学课程设计望远镜系统结构参数设计
提高性价比
设计望远镜系统结构 确定望远镜系统结构参数
优化望远镜系统结构
验证望远镜系统结构优化效 果
望远镜系统结构优化设计:通过优化设计,提高了望远镜的成像质量、分辨率和观测效率。
优化方法:采用了光学设计软件和计算机辅助设计技术,对望远镜系统结构进行了优化设计。
空间探测:探索宇 宙、研究天体物理
望远镜系统向更高分辨率、更大视场、更高灵敏度方向发展 望远镜系统向多波段、多目标、多任务方向发展 望远镜系统向智能化、自动化、网络化方向发展 望远镜系统向小型化、轻量化、便携化方向发展
望远镜系统智能化:实现自动跟踪、自动聚焦等功能 望远镜系统小型化:降低体积和重量,提高便携性 望远镜系统多功能化:集成多种观测功能,如红外、紫外、X射线等 望远镜系统网络化:实现远程控制和数据传输,提高观测效率和共享性
优化效果:优化后的望远镜系统结构具有更高的成像质量、分辨率和观测效率,满足了科研 和观测需求。
优化建议:在优化过程中,需要考虑望远镜系统的整体性能、成本和制造工艺等因素,以实 现最优的设计效果。
望远镜系统制造与 检测
材料选择:选 择合适的光学 材料,如玻璃、
塑料等
切割成型:将 材料切割成所 需的形状和尺
添加标题
添加标题
添加标题
射电望远镜:通过接收无线电波进 行观测,如射电干涉仪、射电望远 镜阵列等
地面望远镜:在地面上运行的望远 镜,如凯克望远镜、甚大望远镜等
口径:望远镜的直径,决定了望远镜的 集光能力和分辨率
焦距:望远镜的焦距,决定了望远镜的 放大倍数和视场大小
光圈:望远镜的光圈,决定了望远镜的 进光量和成像质量
寸
光学课程设计望远镜系统结构参数设计说明
——望远镜系统结构参数设计设计背景:在现在科学技术中,以典型精密仪器透镜、反射镜、棱镜等及其组合为关键部分的大口径光电系统的应用越来越广泛。
如:天文、空间望远镜;地基空间目标探测与识别;激光大气传输、惯性约束聚变装置等等……二设计目的及意义〔1、熟悉光学系统的设计原理及方法;〔2、综合应用所学的光学知识,对基本外形尺寸计算,主要考虑像质或者相差;〔3、了解和熟悉开普勒望远镜和伽利略望远镜的基本结构及原理,根据所学的光学知识〔高斯公式、牛顿公式等对望远镜的外型尺寸进行基本计算;〔4、通过本次光学课程设计,认识和学习各种光学仪器〔显微镜、潜望镜等的基本测试步骤;三设计任务在运用光学知识,了解望远镜工作原理的基础上,完成望远镜的外形尺寸、物镜组、目镜组及转像系统的简易或者原理设计。
并介绍光学设计中的PW 法基本原理。
同时对光学系统中存在的像差进行分析。
四望远镜的介绍1.望远镜系统:望远镜是一种利用凹透镜和凸透镜观测遥远物体的光学仪器。
利用通过透镜的光线折射或者光线被凹镜反射使之进入小孔并会聚成像,再经过一个放大目镜而被看到。
又称"千里镜"。
望远镜的第一个作用是放大远处物体的张角,使人眼能看清角距更小的细节。
望远镜第二个作用是把物镜采集到的比瞳孔直径〔最大 8 毫米粗得多的光束,送入人眼,使观测者能看到原来看不到的暗弱物体。
2.望远镜的普通特性望远镜的光学系统简称望远系统,是由物镜和目镜组成。
当用在观测无限远物体时,物镜的像方焦点和目镜的物方焦点重合,光学间隔 d=o。
当月在观测有限距离的物体时,两系统的光学问隔是一个不为零的小数量。
作为普通的研究,可以认为望远镜是由光学问隔为零的物镜和目镜组成的无焦系统。
这样平行光射入望远系统后,仍以平行光射出。
图9—9 表示了一种常见的望远系统的光路图。
为了方便,图中的物镜和目镜均用单透镜表示。
这种望远系统没有专门设置孔径光阑,物镜框就是孔径光阑,也是入射光瞳,出射光瞳位于目镜像方焦点之外,观察者就在此处观察物体的成伤情况。
光学课程设计望远镜系统结构设计.docx
光学课程设计望远镜系统结构设计姓名:学号:班级:指导老师:、设计题目:光学课程设计设计目的:运用应用光学知识,了解望远镜工作原理的基础上, 完成望远镜的外形尺寸、物镜组、目镜组及转像系统的简易或原理设计。
了解光学设计中的PV法基本原理。
二、设计原理:光学望远镜是最常用的助视光学仪器,常被组合在其它光学仪器中。
为了观察远处的物体,所用的光学仪器就是望远镜,望远镜的光学系统简称望远系统•望远镜是一种用于观察远距离物体的目视光学仪器,能把远物很小的张角按一定倍率放大,使之在像空间具有较大的张角,使本来无法用肉眼看清或分辨的物体变清晰可辨。
所以,望远镜是天文和地面观测中不可缺少的工具。
它是一种通过物镜和目镜使入射的平行光束仍保持平行射出的光学系统•其系统由物镜和目镜组成,当观察远处物体时,物镜的像方焦距和目镜的物方焦距重合,光学间距为零•在观察有限远的物体时,其光学间距是一个不为零的小数量,- 般情况下,可以认为望远镜是由光学间距为零的物镜和目镜组成的无焦系统常见望远镜按结构可简单分为伽利略望远镜,开普勒望远镜,和牛顿式望远镜。
常见的望远镜大多是开普勒结构,既目镜和物镜都是凸透镜(组),这种望远镜结构导致成像是倒立的,所以在中间还有正像系统。
上图为开普勒式望远镜,折射式望远镜的一种。
物镜组也为凸透镜形式,但目镜组是凸透镜形式。
为了成正立的像,采用这种设计的某些折射式望远镜,特别是多数双筒望远镜在光路中增加了转像稜镜系统。
此外,几乎所有的折射式天文望远镜的光学系统为开普勒式。
伽利略望远镜是以会聚透镜作为物镜、发散透镜作为目镜的望远镜(会聚透镜的焦距要大于发散透镜的焦距),当远处的物体通远物镜(u>2f )在物镜后面成一个倒立缩小的实像,而这个象一个要让它成现在发散透镜(目镜)的后面即靠近眼睛这一边,当光线通过发散透镜时,人就能看到一个正立缩小的虚象。
伽利略望远镜的优点是结构紧凑,筒长较短,较为轻便,光能损失少,并且使物体呈正立的像,这是作为普通观察仪器所必需的。
物理光学课程设计-ZEMAX软件设计望远镜并校正像差
选择设计题目为:设计一放大率8Γ=倍的望远镜,物镜视场角24ω=,出瞳直径4D mm '=,目镜焦距225f mm '=,出瞳距离15mm ,目镜焦截距4mm ,入瞳与物镜重合。
(注:望远镜设计中物镜和目镜可以分开设计,独自校正像差)一、设计思路以及一些计算过程:有题目要求,选择双胶合望远物镜会比较适合。
相对孔径小于五分之一,由公式以及光学设计手册选择物镜的焦距为200mm ,入瞳直径为40mm ,初始结构采用:rd 玻璃 153.16 1.5163,64.1 -112.934 1.6475,33.9 -361.68/1.5163,64.1 /二、软件使用过程:1.透镜结构参数,视场、孔径等光学特性参数:初始结构表:优化情况:System/Prescription DataGENERAL LENS DATA:Surfaces : 7Stop : 1System Aperture : Entrance Pupil Diameter = 40Glass Catalogs : SCHOTTRay Aiming : OffApodization : Uniform, factor = 0.00000E+000Effective Focal Length : 320 (in air at system temperature and pressure)Effective Focal Length : 320 (in image space)Back Focal Length : 310.63Total Track : 775.2221Image Space F/# : 8Paraxial Working F/# : 8Working F/# : 8.002776Image Space NA : 0.06237829Object Space NA : 2e-009Stop Radius : 20Paraxial Image Height : 11.17465Paraxial Magnification : 0Entrance Pupil Diameter : 40Entrance Pupil Position : 0Exit Pupil Diameter : 102.5804Exit Pupil Position : 820.7951Field Type : Angle in degrees Maximum Field : 2Primary Wave : 0.5875618Lens Units : MillimetersAngular Magnification : -0.3899379Fields : 3Field Type: Angle in degrees# X-Value Y-Value Weight1 0.000000 0.000000 1.0000002 0.000000 1.414000 1.0000003 0.000000 2.000000 1.000000Vignetting Factors# VDX VDY VCX VCY VAN1 0.000000 0.000000 0.000000 0.000000 0.0000002 0.000000 0.000000 0.000000 0.000000 0.0000003 0.000000 0.000000 0.000000 0.000000 0.000000Wavelengths : 3Units: オm# Value Weight1 0.486133 1.0000002 0.587562 1.0000003 0.656273 1.000000EDGE THICKNESS DATA:Surf EdgeSTO 439.9418312 11.4721633 11.6235514 312.1845555 0.0000006 0.000000IMA 0.000000INDEX OF REFRACTION DATA:Surf Glass Temp Pres 0.486133 0.5875620.6562730 20.00 1.00 1.00000000 1.000000001.000000001 20.00 1.00 1.00000000 1.000000001.000000002 SSK4A 20.00 1.00 1.62546752 1.617649751.614266423 LAF9 20.00 1.00 1.81494560 1.795040281.786944504 20.00 1.00 1.00000000 1.000000001.000000005 20.00 1.00 1.00000000 1.000000001.000000006 20.00 1.00 1.00000000 1.000000001.000000007 20.00 1.00 1.00000000 1.000000001.00000000THERMAL COEFFICIENT OF EXPANSION DATA:Surf Glass TCE *10E-60 0.000000001 0.000000002 SSK4A 6.100000003 LAF9 7.200000004 0.000000005 0.000000006 0.000000007 0.00000000F/# DATA:F/# calculations consider vignetting factors and ignore surface apertures.Wavelength: 0.486133 0.5875620.656273# Field Tan Sag Tan Sag Tan Sag1 0.0000 deg: 8.0042 8.0042 8.0028 8.0028 8.0075 8.00752 1.4140 deg: 7.9964 8.0019 7.9936 8.0001 7.9978 8.00473 2.0000 deg: 7.9889 7.9997 7.9847 7.9974 7.9884 8.0018CARDINAL POINTS:Object space positions are measured with respect to surface 1.Image space positions are measured with respect to the image surface.The index in both the object space and image space is considered.Object Space Image SpaceW = 0.486133Focal Length : -319.976306 319.976306Focal Planes : 124.738587 0.170547Principal Planes : 444.714892 -319.805758Anti-Principal Planes : -195.237719 320.146853Nodal Planes : 444.714892 -319.805758Anti-Nodal Planes : -195.237719 320.146853W = 0.587562 (Primary)Focal Length : -320.000000 320.000000Focal Planes : 124.780118 0.151516Principal Planes : 444.780118 -319.848484Anti-Principal Planes : -195.219882 320.151516Nodal Planes : 444.780118 -319.848484Anti-Nodal Planes : -195.219882 320.151516W = 0.656273Focal Length : -320.220323 320.220323Focal Planes : 124.586499 0.352767Principal Planes : 444.806822 -319.867556Anti-Principal Planes : -195.633824 320.573090Nodal Planes : 444.806822 -319.867556Anti-Nodal Planes : -195.633824 320.5730902.像差指标数据:球差数据分析图:三、学习心得这次的光学设计要结束了,在这里我首先得思过一下,这次的课设可真的是糊里糊涂就过去了。
光学设计报告
光学课程设计——望远镜系统结构设计班级:姓名:学号:指导老师:设计目的及要求:运用应用光学知识,在了解望远镜工作原理的基础的上,完成望远镜的外形尺寸、物镜组、目镜组及转像系统的简易或原理设计,光路设计,了解望远镜的基本光学性能参数及其计算,并根据设计计算出适当光学性能参数使望远镜达到最佳的工作状态。
了解光学设计中的PW法基本原理,光栅的作用及应用。
设计过程:望远镜外形尺寸的设计;开普勒式望远镜系统的结构,原理及其光路图:开普勒式望远镜,折射式望远镜的一种。
物镜组也为凸透镜形式,但目镜组是凸透镜形式。
这种望远镜成像是上下左右颠倒的,但视场可以设计的较大,最早由德国科学家开普勒(JohannesKepler)于1611年发明。
望远镜是一种用于观察远距离物体的目视光学仪器,能把远物很小的张角按一定倍率放大,使之在像空间具有较大的张角,使本来无法用肉眼看清或分辨的物体变清晰可辨。
开普勒式原理由两个凸透镜构成,由于两者之间有一个实像,可方便的安装分划板(安装在目镜焦平面处),并且性能优良,所以目前军用望远镜,小型天文望远镜等专业级的望远镜都采用此种结构。
但这种结构成像是倒立的,所以要在中间增加正像系统。
正像系统分为两类:棱镜正像系统和透镜正像系统。
我们常见的前后窄的典型双筒望远镜既采用了双直角棱镜正像系统。
这种系统的优点是在正像的同时将光轴两次折叠,从而大大减小了望远镜的体积和重量。
透镜正像系统采用一组复杂的透镜来将像倒转,成本较高。
开普勒式望远镜看到的是虚像, 物镜相当于一个投影仪,目镜相当于一个放大镜.上图为开普勒望远镜原理光路图。
从物体射来的平行光线,经物镜后,在焦点以外距焦点很近处成一倒立缩小实像a ′b ′。
目镜的前焦点和物镜的焦点是重合的,所以实像a ′b ′位于目镜和它的焦点之间距焦点很近的地方,目镜以a ′b ′为物形成放大的虚像ab 。
当我们对着目镜观察时,进入眼睛的光线就好像是从ab 射来的。
光学课程设计-望远镜系统结构参数设计
03
望远镜系统的设计流程
确定设计目标
望远镜系统的功能需求
望远镜系统的性能指标
望远镜系统的成本预算
望远镜系统的设计周期
望远镜系统的设计团队 和分工
望远镜系统的设计评审 和验收标准
选择合适的镜片材型:增透膜、反 射膜、偏振膜等
考虑因素:折射率、色 散、反射率、透射率等
统
定期保养
清洁镜片:使用专业清洁 剂和软布擦拭镜片,避免 刮伤
检查螺丝:检查所有螺丝 是否松动,如有松动及时 拧紧
调整焦距:定期调整望远 镜的焦距,确保清晰度
更换电池:定期更换望远 镜的电池,确保望远镜的 正常运行
存放环境:将望远镜存放 在干燥、通风的环境中, 避免潮湿和灰尘影响望远 镜的性能
感谢观看
望远镜系统通过调整物镜和目镜的距离, 实现对焦和放大功能
望远镜系统还可以通过调整物镜和目镜 的角度,实现对焦和放大功能的优化
02
望远镜系统的主要参数
焦距
焦距的作用:决定望远镜的 放大倍数和成像质量
焦距的定义:望远镜系统中, 从物镜到目镜的距离
焦距的选择:根据观测目标、 观测距离和观测环境等因素
进行选择
汇报人:
环境保护
监测大气污染:观测大气中的污染物浓度和分布 监测水质污染:观测水体中的污染物浓度和分布 监测土壤污染:观测土壤中的污染物浓度和分布 监测生物多样性:观测生物多样性的变化和保护情况
远程教育
远程教学:通 过望远镜系统 进行远程教学, 实现教育资源
的共享
远程会议:通 过望远镜系统 进行远程会议, 提高沟通效率
镜片形状:球面、非球 面、柱面等
镜片数量:单镜片、双 镜片、多镜片等
镜片安装方式:固定、 可调、自动等
望远镜设计报告
12
-------计算结果--------
1.高斯参数
有效焦距(f') 后截距(L') 前截距(L)
像距(l')
119.99218
14.92124
-118.90262 14.92124
入瞳距离(lz) 出瞳距离(lz') 近轴像高(y') 放大率(?)
0.00000
-106.17038 8.39067
应用光学课程设计
应用物理:
----------班 级 ---林-爽--
1250731010
---------
1
目录
一、望远镜系统外形尺寸计算
二、物镜
1. 物镜的选型及像差容限的计算 2. PW 法求解初始结构参数 3. 象差校正及玻璃配对 4. 像差曲线图
三、目镜
1. 目镜选型 2. 像差容限的计算 3. PW 法求解初始结构参数 4. 象差校正及玻璃配对 5. 像差曲线图
轴向色差 腖FC' 0.0987 0.0435 0.0018 -0.0424 -0.0694 -0.0842
***D光各视场像差***
相对视场 Lz1
Lz2
Yz'
Xt'
Xs'
Xts -8.3855 -0.8593 -0.4245 -0.4349
.85 0.0000 -106.1223 -7.1289 -0.6222 -0.3071 -0.3151
Q = QO
W −
∞ − W0 K
= −4.208478 −
− 0.2077 − (−0.073668) 1.702479
≈ −4.29750
− 4.208478− 4.129750
光学
符合上式的视放大率称为望远镜的"有效放大率"。一般要求仪器的实际视放大率是有效放大率的2-3倍。
(5)、极限分辨角
表示观测仪器精度的指标是它的最小分辨角。人眼的极限分辨角为:
(3-9)
若以作为人眼的分辨极限,则望远镜的极限分辨角由式(3-7)可得:
(3-10)
1.Yb:YGG晶体激光器——光路分析实例
光路图如图2.1所示:
铱镓石榴石(YGG)是铱铝石榴石(YAG)的同行体,和YAG一样具有硬度高、稳定性强和热导率高等特点。但是Yb:YGG晶体的熔点很高,采用传统方式生长的晶体并不能满足激光实验的要求。如图2.1所示的Z型折叠腔结构。其中M1为双色输入镜,M2、M3为凹面反射镜,OC为输出镜,GTI1、GTI2镜片作为色散补偿器件,半导体可饱和吸收镜(SESAM)作为锁模元件。 Yb:YGG晶体长度为3mm,所用泵浦源为970nm半导体激光器,输出功率7W。
.光学课程设计 望远镜系统结构设计 2011-06-12 14:16:18| 分类: 原创推荐 | 标签: |字号大中小 订阅 .
成都信息工程学院光电技术学院 光学课程设计
望远镜系统结构设计
姓 名: 裴明亮
5. 棱镜转像系统 Porro prism erecting system 24
5.1 棱镜结构及特点 24
5.2 折转形式望远镜系统 24
5.3 类似棱镜结构晶体 25
6. 光学系统初始结构参数计算方法 25
于是有:
当望远镜的实际视放大率大于有效放大率时,虽然仪器视角分辨率提高了,但由于受衍射分辨率的限制,并不能看清更多的物体细节,对于实验室或者车间使用的建议仪器,为了保证检验精度和减轻操作人员的疲劳,一般取,即有:
望远镜系统光学设计
精心整理内调焦准距式望远系统一、技术参数选择;选择技术要求如下:放大率:?=24?加常数:c=0分辨率:??4?最短视距:Ds=2m视场角:2w=1.6?筒长:LT=160mm乘常数:k=100??=-24?,L=170,Q=0.60f?12=233.33,d0=111.48f?1=140.50,f?2=-57.57,f?3=11.80代入检验公式为:()2222122142f -f -f L-f δ-f c ''''+'=(2-4)将所确定的参数代入,得:c =0.00254由此可见,系统满足准距条件,其所引起的测量误差可以忽略不计。
二、外形尺寸计算;1、物镜通光孔径及出瞳大小为了满足分辨率的要求,即??4?,由 得:,则:2D 2=D 1-d 034tg w ?=-?出瞳距因l z 2=l ?z 15取l 1于是得调焦镜的调焦量:?d =d –d 0=128.77–111.71=17.06mm三、结构选型;在本设计中,主物镜的相对孔径约1:4,调焦镜的相对孔径1:5.6,因此,主物镜和调焦镜均可选用最简单的双胶合物镜。
目镜在光学设计手册中选择一个合适的目镜,并用缩放法调到合适尺寸。
1.求解物镜 f1 140.5 p 无穷 0 w 无穷 0 c1 0由上20)2.0(85.0 ++=∞∞W P P 求得 理论p0 -0.034 选择玻璃 n1n21.6725 1.5399 k7查表 小Φ1 A K Q0查表W0 形状Q2 Q3 Q ρ1 ρ2 ρ3 r1 r2 r3 确定透镜厚度 x1 2.662136 x2 4.963452 x3 0.023535 t1 5.441053 d1 3.139737 t2 2.103904 d2 7.090891 d 10.23063 D1 36 2.求解调焦镜用同样的方法求解调焦镜f2 -57.57 d0 111.48 l2 29.02 D2 10.55P- 0 W- 0 C- 0P 无穷 22.809716 W 无穷 -5.257081 U- -1.983804 P0 1.0717551物镜的系统数据:By :Aseis形状Q1 -0.752199 Q2 -7.029211 Q3 -7.096496 Q -7.062854 ρ1 -1.732565 ρ2 -4.882854 ρ3 -3.237566 r1 33.228198 r2 11.790237 r3 17.781875 图3-6内调焦准距式望远镜光学系统图草图物镜的点扩散图:物镜的mtf图:调焦镜的系统数据:调焦镜的点扩散图:调焦镜的mtf图:目镜的总结:。
伽利略望远镜zemax课程设计
伽利略望远镜zemax课程设计一、教学目标本课程旨在通过学习伽利略望远镜的相关知识,使学生掌握望远镜的基本原理、结构和设计方法。
在知识目标方面,学生需要了解伽利略望远镜的历史背景、光学原理、光学元件及其作用。
在技能目标方面,学生能够运用光学设计软件Zemax进行简单的望远镜设计,分析并优化光学系统性能。
在情感态度价值观目标方面,学生将培养对科学探索的兴趣,增强创新意识和实践能力。
二、教学内容本课程的教学内容主要包括四个方面:望远镜的基本原理、望远镜的光学设计、望远镜的制造与测试、望远镜的应用。
其中,望远镜的基本原理包括伽利略望远镜的历史背景、光学原理等;望远镜的光学设计主要介绍光学元件及其作用,如透镜、镜片等;望远镜的制造与测试涉及望远镜的组装、调试及性能评估;望远镜的应用则主要包括天文观测、地理观测等。
三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式。
如讲授法、讨论法、案例分析法和实验法等。
在讲授法中,教师将系统地讲解望远镜的基本原理、光学设计等知识;在讨论法中,学生将针对实际问题进行探讨,培养解决问题的能力;在案例分析法中,教师将引导学生分析典型望远镜设计案例,提高学生的实践能力;在实验法中,学生将动手组装、调试望远镜,培养实际操作能力。
四、教学资源为了支持教学内容的实施,我们将准备以下教学资源:教材《伽利略望远镜光学设计》、参考书《光学原理与应用》、多媒体资料(包括视频、图片等)、实验设备(如望远镜、光学仪器等)。
这些资源将有助于丰富学生的学习体验,提高学习效果。
五、教学评估本课程的评估方式包括平时表现、作业、考试等多个方面,以全面、客观、公正地评价学生的学习成果。
平时表现主要考察学生的课堂参与度、提问回答等情况,占总评的20%;作业分为练习题和设计项目,占总评的30%;考试包括期中考试和期末考试,占总评的50%。
此外,还将设置优秀作业展示、设计竞赛等活动,鼓励学生展示自己的成果。
望远镜系统结构设计
光学课程设计望远镜结构系统设计**:***班级:光通信082学号:**************:**摘要该报告运用应用光学知识,了解望远镜的历史,在工作原理的基础上,完成望远镜的外形尺寸、物镜组、目镜组及转像系统的简易或原理设计。
了解光学设计中的PW 法基本原理。
并应用光学设计软件对系统误差、成像质量进行理论分析。
初级像差理论与像差的校正和平衡方法,像质评价与像差公差,光学系统结构参数的求解方法。
望远物镜设计的特点、双胶合物镜结构参数的求解和光学特性。
目镜设计的特点、常用目镜的型式和像差分析等都有了一个明确的简要的介绍。
关键字:望远镜物镜目镜放大率分辨率内调焦望远镜 PW法光栅目录一概述…………………………………………………………页二望远镜尺寸设计与分析…………………………………页2.1 望远镜的简述…………………………………………………………页2.2 望远镜的主要特性分析………………………………………………页三分物镜组与目镜组的选……………………………………………… 页3.1望远镜物镜需要消除的像差类型及主要结构形式…………………页3.2双胶物镜和双分离物镜………………………………………………页3.3内调焦望远镜…………………………………………………………页四.目镜组的主要种类及其结构:………………………….. 页4.1惠更斯目镜……………………………………………………………页4.2冉斯登目镜……………………………………………………………页4.3 Porro、Roof棱镜结构及其特点…………………………………页五.望远镜像差设计PW法………………………………….. 页5.2物体在有限距离时的P,W的规化……………………………………页5.5用C,表示的初级像差系数………………………………………页P,W六.光学系统中的光栅分析……………………………………页一概述1.1 课程设计的目的运用应用光学知识,了解望远镜工作原理的基础上,完成望远镜的外形尺寸、物镜组、目镜组及转像系统的简易或原理设计。
应用光学课程设计---双筒棱镜望远镜设计
应用光学课程设计一、设计题目双筒棱镜望远镜设计(望远镜的物镜和目镜的选型和设计)二、本课程设计的目的和要求1、综合运用课程的基本理论知识,进一步培养理论联系实际的能力和独立工作的能力。
2、初步掌握简单的、典型的、与新型系统设计的基本技能,熟练掌握光线光路计算技能,了解并熟悉光学设计中所有例行工作,如数据结果处理、像差曲线绘制、光学零件技术要求等。
3、巩固和消化课程中所学的知识,初步了解新型光学系统的特点,为学习专业课与进行毕业设计打下好的基础。
三、设计技术要求双筒棱镜望远镜设计,采用普罗I 型棱镜转像,系统要求为:1、望远镜的放大率r= 6倍;2、物镜的相对孔径D/f丄1: 4(D为入瞳直径,D = 30mm);3、望远镜的视场角2宀=8°4、仪器总长度在110mm 左右,视场边缘允许50%的渐晕;5、棱镜最后一面到分划板的距离14mm,棱镜采用K9玻璃,两棱镜间隔为2〜5mm。
& lz '〜810mm四、设计报告撰写内容本课程设计要求以设计报告形式完成以下工作:1 、认真学习相关像差理论和光学设计知识,做好笔记,完成例题作业并上交;2、根据所讲内容进行本设计具体参数以及结构形式的选择,说明选择理论依据;3、进行本设计的外形尺寸计算,要求写明计算过程;4、使用PW 法进行初始结构参数r、d、n 的求解,要求写明计算过程;5、计算本设计的像差容限,使用Tcos软件完成设计的模拟和计算,手工修改结构参数进行像差的校正;6、绘制相应的像差曲线图和计算数据报表;7、写出本次课程设计的心得体会。
第5章望远系统设计范例题目:双筒棱镜望远镜设计(望远镜的物镜和目镜的选型和设计)要求:双筒棱镜望远镜设计,采用普罗I型棱镜转像,系统要求为:1、望远镜的放大率6倍;2、物镜的相对孔径D/f丄1: 4 (D为入瞳直径,D = 30mm);3、望远镜的视场角2宀=8°4、仪器总长度在110mm左右,视场边缘允许50%的渐晕;5、棱镜最后一面到分划板的距离14mm,棱镜采用K9玻璃,两棱镜间隔为2〜5mm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光学课程设计——望远镜系统结构参数设计一设计背景:在现在科学技术中,以典型精密仪器透镜、反射镜、棱镜等及其组合为关键部分的大口径光电系统的应用越来越广泛。
如:天文、空间望远镜;地基空间目标探测及识别;激光大气传输、惯性约束聚变装置等等……二设计目的及意义(1)、熟悉光学系统的设计原理及方法;(2)、综合应用所学的光学知识,对基本外形尺寸计算,主要考虑像质或相差;(3)、了解和熟悉开普勒望远镜和伽利略望远镜的基本结构及原理,根据所学的光学知识(高斯公式、牛顿公式等)对望远镜的外型尺寸进行基本计算;(4)、通过本次光学课程设计,认识和学习各种光学仪器(显微镜、潜望镜等)的基本测试步骤;三设计任务在运用光学知识,了解望远镜工作原理的基础上,完成望远镜的外形尺寸、物镜组、目镜组及转像系统的简易或原理设计。
并介绍光学设计中的PW法基本原理。
同时对光学系统中存在的像差进行分析。
四望远镜的介绍1.望远镜系统:望远镜是一种利用凹透镜和凸透镜观测遥远物体的光学仪器。
利用通过透镜的光线折射或光线被凹镜反射使之进入小孔并会聚成像,再经过一个放大目镜而被看到。
又称“千里镜”。
望远镜的第一个作用是放大远处物体的张角,使人眼能看清角距更小的细节。
望远镜第二个作用是把物镜收集到的比瞳孔直径(最大8毫米)粗得多的光束,送入人眼,使观测者能看到原来看不到的暗弱物体。
2.望远镜的一般特性望远镜的光学系统简称望远系统,是由物镜和目镜组成。
当用在观测无限远物体时,物镜的像方焦点和目镜的物方焦点重合,光学间隔d=o。
当月在观测有限距离的物体时,两系统的光学问隔是一个不为零的小数量。
作为一般的研究,可以认为望远镜是由光学问隔为零的物镜和目镜组成的无焦系统。
这样平行光射入望远系统后,仍以平行光射出。
图9—9表示了一种常见的望远系统的光路图。
为了方便,图中的物镜和目镜均用单透镜表示。
这种望远系统没有专门设置孔径光阑,物镜框就是孔径光阑,也是入射光瞳,出射光瞳位于目镜像方焦点之外,观察者就在此处观察物体的成伤情况。
系统的视场光阑设在物镜的像平面处,入射窗和出射窗分别位于系统的物方和像方的无限远处,各及物平面和像平面合。
三望远镜的分类广义上的望远镜不仅仅包括工作在可见光波段的光学望远镜,还包括射电,红外,紫外,X射线,甚至γ射线望远镜。
我们探讨的只限于光学望远镜。
1609年,伽利略制造出第一架望远镜,至今已有近四百年的历史,其间经历了重大的飞跃,根据物镜的种类可以分为三种:1,折射望远镜折射望远镜的物镜由透镜或透镜组组成。
早期物镜为单片结构,色差和球差严重,使得观看到的天体带有彩色的光斑。
为了减少色差,人们拼命增大物镜的焦距,1673年,J.Hevelius制造了一架长达46米的望远镜,整个镜筒被吊装在一根30米高的桅杆上,需要多人用绳子拉着转动升降。
惠更斯干脆将物镜和目镜分开,将物镜吊在百尺高杆上。
直到19世纪末,人们发明了由两块折射率不同的玻璃分别制成凸透镜和凹透镜,再组合起来的复合消色差物镜,才使得这场长度竞赛得到终止。
折射望远镜分为伽利略结构和开普勒结构两类。
其中,伽利略结构历史最悠久,其目镜为凹透镜,能直接成正立的像,但是视场小,一般为民用的2——4倍的儿童玩具采用。
而绝大多数常见的望远镜都是开普勒结构,其目镜一般是凸透镜或透镜组,由于其光路中有实象,可以安装测距或瞄准分划板用来测量距离。
但是简单的开普勒结构所成的像是倒立的,需要在光路内加上正像系统使其正过来,常见的正像系统为普罗棱镜或屋脊棱镜,既起到正像的作用,又使光路折回,缩短整机长度。
2,反射望远镜该类镜最早由牛顿发明,其物镜是凹面反射镜,没有色差,而且将凹面制成旋转抛物面即可消除球差。
凹面上镀有反光膜,通常是铝。
反射望远镜镜筒较短,而且易于制造更大的口径,所以现代大型天文望远镜几乎无一例外都是反射结构。
反射望远镜的结构里,除了主物镜外,还装有一或几个小的反射镜,用来改变光线方向便于安装目镜。
由于反射式望远镜的入射光线仅在物镜表面反射,所以对光学玻璃的内部品质比折射镜要求低。
1990年,美国在夏威夷建成当时口径最大的凯克望远镜,该镜采用了一些前所未有的新技术:1,主物镜由36面六边形薄镜片拼和而成,厚度仅为10厘米。
2,有计算机控制背面直撑点,补偿重力引起的形变。
3,能通过改变镜面曲率补偿大气扰动。
这些新技术的采用使得人类发射太空望远镜的要求不再迫切。
3,折反射望远镜。
折反射望远镜的物镜是由折射镜和反射镜组合而成。
主镜是球面反射镜,副镜是一个透镜,用来矫正主镜的像差。
此类望远镜视场大,光力强,适合观测流星,彗星,以及巡天寻找新天体。
根据副镜的形状,折反射镜又可以分为施密特结构和马克苏托夫结构,前者视场大,像差小;后者易于制造。
四开普勒望远镜和伽利略望远镜1. 开普勒望远镜折射式望远镜的一种。
物镜组也为凸透镜形式,但目镜组是凸透镜形式。
这种望远镜成像是上下左右颠倒的,但视场可以设计的较大,最早由德国科学家开普勒(Johannes Kepler)于1611年发明。
为了成正立的像,采用这种设计的某些折射式望远镜,特别是多数双筒望远镜[1]在光路中增加了转像稜镜系统。
此外,几乎所有的折射式天文望远镜的光学系统为开普勒式。
以下是开普勒(Kepler telescrope)望远镜光路图:开普勒式原理由两个凸透镜构成。
由于两者之间有一个实像,可方便的安装分划板(安装在目镜焦平面处),并且性能优良,所以目前军用望远镜,小型天文望远镜等专业级的望远镜都采用此种结构。
但这种结构成像是倒立的,所以要在中间增加正像系统。
正像系统分为两类:棱镜正像系统和透镜正像系统。
我们常见的前宽后窄的典型双筒望远镜既采用了双直角棱镜正像系统。
这种系统的优点是在正像的同时将光轴两次折叠,从而大大减小了望远镜的体积和重量。
透镜正像系统采用一组复杂的透镜来将像倒转,成本较高,但俄罗斯20×50三节伸缩古典型单筒望远镜既采用设计精良的透镜正像系统。
开普勒式望远镜看到的是虚像, 物镜相当于一个照相机,目镜相当于一个放大镜.。
开普勒望远镜结构特点:1、开普勒望远镜是世界是第一个真正能发现类地行星的太空任务,它将发现宜居住区围绕像我们太阳似的恒星运转的行星。
水是生命之本,此宜居住区得是恒星周围适合于水存在的一片温度适宜的区域,在这种温度下的行星表面可能会有水池存在。
2、在开普勒望远镜三年半多的任务结束之前,它将让我们更好地了解其它类地行星在人类银河系到底是多还是少。
这将是回答一个长久问题的关键一步。
3、开普勒望远镜通过发现恒星亮度周期性变暗来探测太阳系外行星。
当人类从地球上某个位置来观察天空时,如果有行星经过其母恒星的前面,就能发现此行星会导致其母恒星亮度稍微变暗。
开普勒望远镜更能洞悉这一情况。
4、开普勒望远具有太空最大的照相机,有一个95兆像素的电荷偶合器(CCD)阵列,这就像日常使用的数码相机中的CCD一样。
5、开普勒望远镜如此强大,以至于它从太空观察地球时,能发现居住在小镇上的人在夜里关掉他家的门廊1.开普勒望远镜放大原理和光路图图1 开普勒望远镜的光路图图2图1所示为开普勒望远镜的光路示意图,图中L0为物镜,Le为目镜。
远处物体经物镜后在物镜的像方焦距上成一倒立的实像,像的大小决定于物镜焦距及物体及物镜间的距离,此像一般是缩小的,近乎位于目镜的物方焦平面上,经目镜放大后成一虚像于观察者眼睛的明视距离于无穷远之间。
物镜的作用是将远处物体发出的光经会聚后在目镜物方焦平面上生成一倒立的实像,而目镜起一放大镜作用,把其物方焦平面上的倒立实像再放大成一虚像,供人眼观察。
用望远镜观察不同位置的物体时,只需调节物镜和目镜的相对位置,使物镜成的实像落在目镜物方焦平面上,这就是望远镜的“调焦”。
望远镜可分为两类:若物镜和目镜的像方焦距均为正(既两个都为会聚透镜),则为开普勒望远镜,此系统成倒立的像;若物镜的像方焦距为正(会聚透镜),目镜的像方焦距为负(发散透镜),则为伽利略望远镜,此系统成正立的像。
2伽利略望远镜伽利略望远镜的物镜由正透镜构成,目镜由负透镜构成,如图10-14所示。
该系统最早是在1608年由荷兰人发明的,伽利略首先将它用于天文观察,并发现了木星的卫星,故称为伽利略望远镜。
图10-14 伽利略望远镜光路图伽利略望远镜结构紧凑,筒长短,系统成正像。
但是该系统的目镜是负透镜,当物镜为孔径光阑时,出瞳位于目镜前,很难和眼睛重合。
因此,该系统作为助视光学仪器时,眼睛常为孔径光阑,物镜为视场光阑,导致该系统存在渐晕现象。
同时,因为它不存在中间的实像,不可以设置分划板进行物体线度的测量等原因,逐渐被开普勒望远镜所代替。
五望远镜外形尺寸设计设计一个光学系统,一般可以分为两个阶段:第一阶段为初步设计阶段,通常叫做外形尺寸计算;第二阶段为像差设计阶段。
光学系统外形尺寸计算的任务是根据对仪器提出的要求,如光学特性,外形,重量以及有关技术条件等,确定系统的组成,各组元的焦距,各组元的相对位置和横向尺寸等。
外形尺寸计算的主要依据是高斯光学理论,为了保证设计顺利进行,用像差理论对计算结果作一些粗略地估计和分析也是必要的。
像差计算的任务是按照第一阶段设计计算结果,确定各组元的结构参数径,厚度以及所用材料等等,并保证满足成像质量的要求。
本节仅以简单望远镜系统为例,说明光学系统外形尺寸设计计算的一般方法。
计算一个简单开普勒望远系统的外形尺寸。
该系统只包括物镜和目镜,要求镜简长度L=315nm, Γ=20*,2ω=3°20′以下是开普勒望远镜的光路示意图1.目镜的视场角根据可见光系统对目镜的要求。
先求目镜的视场角。
将视放大率Γ=20*,视场角ω=1°40′带入公式tgω’=Γ*tgω,可求出ω’=33°20’。
2ω’=66°40’.2.求物镜和目镜的焦距由上面给出的已知条件,联立方程组可得:L= f物’+ f目’Γ= - f物’/ f目’所以,f物’=300mm f目’=15mm1.求物镜的通光口径物镜的的通光口径取决于分辨率的要求。
若要是物镜的分辨率及放大率相适应,可根据望远镜的口径及放大率关系式Γ>=D1/2.3求出D1。
为了减轻眼睛的负担,可取Γ=(0.5——1)D1关系。
如此,D1=(1——2)Γ。
取系数为1.5,则D1=1.5Γ=30mm2.求出瞳直径D1’=D1/Γ=1.5mm3.求视场光阑的直径D2D2=2* f物’*tanω=2*300*0.029=17.47.求出瞳距Lz’利用牛顿公式可求得出瞳距Lz’为Lz’= f目’+ f目* f目’/- f物’= -L/Γ所以Lz’= - L/Γ=300/20=15mm8.求目镜的口径D目D目= D1’+2 Lz’tanω’=1.5+2*15*0.658=21.229六望远镜的工作原理1 望远镜系统的垂轴放大率、角放大率、、视放大率望远镜是用来观察无限远目标的仪器,根据上节讨论的对目视光学仪器的共问要求,仪器应出射平行光,成像在无限远,这样望远镜应该是一个将无限远目标成像在无限远的无焦系统:刘于无限远目标,通过一定焦距的透镜组,将成像在透镜组的像方焦平面上,而不是无限远,不可能构成望远系统,联系上节讨论的放大镜和显微镜的构成,可以想到,再加一目镜,使透镜组的像方焦平面及目镜物方焦平面重合,这种组合就实现了把无限远目标成像到无限远的目的,如图3—9(a)所示、望远镜是扩人人眼对远距离目标观察的视觉能力的。