人教版七年级上册 一元一次方程培优专题(含答案)

合集下载

人教版七年级上数学试卷第三单元 一元一次方程培优训练试卷(含答案)

人教版七年级上数学试卷第三单元 一元一次方程培优训练试卷(含答案)

人教版七年级上数学试卷第三单元一元一次方程培优训练试卷一、单选题(共10题;共20分)1.某书上有一道解方程的题:=x,□处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x=﹣2,那么□处应该是数字()A. B. C. 2 D. ﹣22.若ma=mb,那么下列等式不一定成立的是()A. ma+2=mb+2B. a=bC. ﹣ma=﹣mbD. ma﹣6=mb﹣63.解方程时,移项法则的依据是()A. 加法的交换律B. 减去一个数等于加上这个数的相反数C. 等式的基本性质1D. 等式的基本性质24.如果x=﹣1是关于x的方程x+2k﹣3=0的解,则k的值是()A. ﹣1B. 1C. ﹣2D. 25.下列方程中,一元二次方程的个数是()①x2-2x-1=0;②-x2=0;③ax2+bx+c=0;④ ;⑤ (;⑥.A. 1个B. 2个C. 3个D. 4个6.解方程时,去分母后可以得到()A. 1﹣x﹣3=3xB. 6﹣2x﹣6=3xC. 6﹣x+3=3xD. 1﹣x+3=3x7.下列方程中,解为x=5的是()A. 2x+3=5B.C. 7﹣(x﹣1)=3D. 3x﹣1=2x+68.解方程的过程中正确的是().A. 将2-去分母,得2-5(5x-7)=-4(x+17)B. 由,得C. 40-5(3x-7)=2(8x+2)去括号,得40-15x-7=16x+4D. ,得x=-9.根据以下表格中所给出的x与23.04x-810的对应值(精确到0.001),判断方程23.04x-810=0的解x所在的范围是()A. 35.154<x<35.155B. 35.155<x<35.156C. 35.156<x<35.157D. 35.157<x<35.15810.下列方程中,解为x=1的是()A. 2x=x+3B. 1﹣2x=1C. =1D. -=2二、填空题(共10题;共10分)11.如果x=2是关于x的方程x–a=3的解,则a=________.12.写出一个一元一次方程,使得它的解为2,你写出的方程是________。

人教版七年级上数学试卷第三单元 一元一次方程 提优专题训练(含答案)

人教版七年级上数学试卷第三单元 一元一次方程 提优专题训练(含答案)

人教版七年级上数学试卷第三单元一元一次方程提优专题训练一、单选题(共10题;共20分)1.数轴上三个点表示的数分别为p、r、s.若p﹣r=5,s﹣p=2,则s﹣r等于()A. 3B. ﹣3C. 7D. ﹣72.解方程+=0.1时,把分母化成整数,正确的是( )A. +=10B. +=0.1C. +=0.1D. +=103.已知关于x的方程1 + 3(3-4x) = 2(4x-3) ,若4x-3 = a,则a等于()A. -1B.C.D. -4.下列方程的变形,符合等式的性质的是()A. 由2x﹣3=7,得2x=7﹣3B. 由3x﹣2=x+1,得3x﹣x=1﹣2C. 由﹣2x=5,得x=﹣3D. 由﹣x=1,得x=﹣35.已知①x=1,②x﹣2=12,③x2+x+1=0,④xy=0,⑤2x+y=0,其中是一元一次方程的有()A. 1个B. 2个C. 3个D. 4个6.代数式2x-1与4-3x的值互为相反数,则x等于()A. -3B. 3C. -1D. 17.如果am=an,那么下列等式不一定成立的是( )A. am-3=an-3B. 5+am=5+anC. m=nD.8.解方程的过程中正确的是().A. 将2-去分母,得2-5(5x-7)=-4(x+17)B. 由,得C. 40-5(3x-7)=2(8x+2)去括号,得40-15x-7=16x+4D. ,得x=-9.下列四个式子中,是一元一次方程的是()A. 2x-6B. x-1=0C. 2x+y=25D. =110.下列各式不是方程的是()A. x2+x=0B. x+y=0C. +xD. x=0二、填空题(共10题;共10分)11.若,则x= ________12.请写出一个以x=2为解的一元一次方程________13.若x=2是方程2a﹣3x=6的解,则a的值是________.14.一张方桌由一个桌面和四条桌腿组成,如果1立方米木料可制作方桌的桌面50个或制作桌腿300条,现有5立方米木料,设用x立方米木料做桌面,那么桌腿用木料(5-x)立方米,这里x应满足的方程是________.15.某人将一笔钱按活期储蓄存入银行,存了10个月扣除利息税(税率为20%)后,实得本利和为2528元,已知这10个月期间活期存款的月利率为0.14%(不计复利),问此人存入银行的本金是________元.16.已知关于x的方程x+3=2x+b的解为x=2,那么关于y的一元一次方程﹣(y﹣1)+3=﹣2(y﹣1)+b 的解为________.17.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为________元.18.若方程4x﹣1=□x+2的解是x=3,则“□”处的数为________.19.若﹣x﹣1=3,则x= ________20.一个书包的标价为150元,按8折出售仍可获利20%,则该书包的进价为________元.三、计算题(共10题;共70分)21.解方程: = .22.3x﹣7+4x=6x﹣2.23.解方程:(1)8x-9=3x+11;(2).24.已知方程=x-3与方程3n-=3(x+n)-2n的解相同,求(2n-27)2的值.25.2(x-2)-3(x+1)=-326.解下列方程:(1)3x-(x-1)=5(2).27.解方程:(1)3﹣5(x+1)=2x(2).28.解方程:﹣1.29.解方程:(1)(2)30.计算(1)先化简再求值:﹣6x+3(3x2﹣1)﹣(9x2﹣x+3),其中x=﹣;(2)解方程-= -﹣1.四、解答题(共5题;共25分)31.为保证学生有足够的睡眠,政协委员于今年两会向大会提出一个议案,即“推迟中小学生早晨上课时间”,这个议案当即得到不少人大代表的支持.根据北京市教委的要求,学生小强所在学校将学生到校时间推迟半小时.小强原来7点从家出发乘坐公共汽车,7点20分到校;现在小强若由父母开车送其上学,7点45分出发,7点50分就到学校了.已知小强乘自家车比乘公交车平均每小时快36千米,求从小强家到学校的路程是多少千米.32.要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工了4小时完成了任务.已知甲每小时比乙多加工2个零件,问甲、乙二人每小时各加工多少个零件?33.利用等式的性质解方程:-x-5=134.若使不等式x﹣>2与2(x+1)>3x﹣4都成立的最大整数值是方程x﹣ax=3的解,求a的值.35.某镇枇杷园的枇杷除了运往市区销售外,还可以让市民亲自去园内采摘购买,已知今年3月份该枇杷在市区、园内的销售价格分别为6元/千克、4元/千克,一共销售了3000千克,总销售额为16000元,3月份该枇杷在市区、园内各销售了多少千克?五、综合题(共5题;共55分)36.七年级进行法律知识竞赛,共有30道题,答对一道题得4分,不答或答错一道题扣2分.(1)小红同学参加了竞赛,成绩是96分,请问小红在竞赛中答对了多少题?(2)小明也参加了竞赛,考完后他说:“这次竟赛中我一定能拿到110分.”请问小明有没有可能拿到110分?试用方程的知识来说明理由.37. (1)已知x=2是关于x的一元一次方程(a-1)x2+(b+2)x=2的解,求a,b的值(2)一个三角形的周长是48,第一边长为3a+2b,第二边长比第一边的2倍少a,求第三边长.38.解方程:(1)2(x﹣3)﹣3(1﹣2x)=x+5(2)=1.39.甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.(1)求甲乙两件服装的进价各是多少元;(2)由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;(3)若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数).40.解方程(1)15+x=50;(2)2x﹣3=11.答案解析部分一、单选题1.C2. B3. C4. D5.B6.B7. C8. D9.B 10.C二、填空题11.212. x+1=3(答案不唯一)13.614.4×50x=300(5-x)15.250016.y=﹣117.2818.319.-420. 100三、计算题21.解:去分母得:4(2x﹣1)=3(x+2),去括号得:8x﹣4=3x+6,移项合并得:5x=10,解得:x=222.解:移项得,3x+4x﹣6x=﹣2+7,合并同类项得,x=5.23. (1)解:8x-3x=11+95x=20x=4(2)解:y=-9624.解:解方程,得x=9把x=9代入中得所以25. 解:去括号,得2x-4-3x-3=-3移项、合并同类项,得-x=4化x的系数为1,得x=-426. (1)解:3x﹣x+1=5,3x﹣x=5﹣1,2x=4,x=2;(2)解:4x﹣(x﹣2)=24﹣8x,4x﹣x+2=24﹣8x,4x﹣x+8x=24﹣2,11x=22,x=2.27.解:(1)去括号得:3﹣5x﹣5=2x,移项得:﹣5x﹣2x=5﹣3,合并得:﹣7x=2,解得:x=﹣;(2)去分母得:5(x+2)﹣3(2x﹣3)=15,去括号得:5x+10﹣6x+9=15,移项合并得:﹣x=﹣4,解得:x=4.28.解:去分母得:4(2x﹣1)﹣2(10x+1)=3(2x+1)﹣12,去括号得:8x﹣4﹣20x﹣2=6x+3﹣12,移项合并得:﹣18x=﹣3,系数化为1得:得x=29.(1)解:移项得,4x+0.5x=-9,合并同类项得,4.5x=-9,把x的系数化为1得,x=-2(2)解:去分母得,6-3(x-1)=12-2(x+2),去括号得,6-3x+3=12-2x-4,移项得,-3x+2x=12-4-6-3,合并同类项得,-x=-1,把x的系数化为1得,x=130. (1)解:原式=﹣6x+9x2﹣3﹣9x2+x﹣3=﹣5x﹣6当x=﹣时,﹣5x﹣6=﹣5×(﹣)﹣6=﹣5(2)解:去分母,得3(1﹣x)=2(4x﹣1)﹣6,去括号,得3﹣3x=8x﹣2﹣6,移项,得﹣3x﹣8x=﹣3﹣2﹣6,合并同类项,得﹣11x=﹣11,系数化1,得x=1四、解答题31.解:设小强乘公交车的平均速度是每小时x千米,则小强乘自家车的平均速度是每小时(x+36)千米.依题意得x = (x+36).解得x=12.所以×12=4(千米).答:从小强家到学校的路程是4千米.从小强家到学校的路程是4千米.32.解:设乙每小时加工x个零件,那么甲每小时加工(x+2)个零件.根据题意,列方程,得5(x+2)+4(x+x+2)=200,解这个方程,得x=14,x+2=14+2=16,答:甲每小时加工16个零件,乙每小时加工14个零件33.解:∵-x﹣5=1,∴-x﹣5+5=1+5,∴-x=6,∴x=﹣24.34.解:解不等式x﹣>2得:x>1,解不等式2(x+1)>3x﹣4得:x<6,所以两不等式都成立的最大整数值是5,把x=5代入方程x﹣ax=3得:5﹣5a=3,解得:a= .35.解:设该枇杷在市区销售了x千克,则在园内销售了(3000-x)千克,依题意得: ,解得:x=2000,园内销售:3000-2000=1000(千克),答:该枇杷在市区销售了2000千克,在园内销售了1000千克.五、综合题36. (1)解:设小红在竞赛中答对了x道题,则不答或答错了(30﹣x)道题,根据题意得:4x﹣2(30﹣x)=96 解得:x=26.答:小红在竞赛中答对了26道题.(2)解:小明没有可能拿到110分,理由如下:设小明在竞赛中答对了y道题,则不答或答错了(30﹣y)道题,根据题意得:4y﹣2(30﹣y)=110解得:y.∵y为整数,∴y舍去,∴小明没有可能拿到110分.37.(1)解:∵x=2是关于x的一元一次方程(a-1)x2+(b+2)x=2的解,∴4(a-1)+2(b+2)=2且a-1=0解之:a=1,b=-1∴a=1,b=-1(2)解:∵第一边长为3a+2b,第二边长比第一边的2倍少a∴第二边的长为:2(3a+2b)-a=5a+4b∴第三边长为:48-(3a+2b)-(5a+4b)=48-3a-2b-5a-4b=48-8a-6b答:第三边长为48-8a-6b.38. (1)解:去括号得:2x﹣6﹣3+6x=x+5,移项合并得:7x=14,解得:x=2(2)解:去分母得:4x﹣10+9﹣3x=12,移项合并得:x=1339.(1)解:设甲服装的进价为x元,则乙服装的进价为(500﹣x)元,根据题意得:90%•(1+30%)x+90%•(1+20%)(500﹣x)﹣500=67,解得:x=300,500﹣x=200.答:甲服装的进价为300元、乙服装的进价为200元.(2)解:∵乙服装的进价为200元,经过两次上调价格后,使乙服装每件的进价达到242元,∴设每件乙服装进价的平均增长率为y,则200(1+y)2=242,解得:y1=0.1=10%,y2=﹣2.1(不合题意舍去).答:每件乙服装进价的平均增长率为10%(3)解:∵每件乙服装进价按平均增长率再次上调,∴再次上调价格为:242×(1+10%)=266.2(元),∵商场仍按9折出售,设定价为a元时,0.9a﹣266.2>0,解得:a>.故定价至少为296元时,乙服装才可获得利润.40. (1)解:移项得,x=50﹣15合并同类项得,x=35;(2)解:移项得,2x=11+3,合并同类项得,2x=14,x的系数化为1得,x=7。

人教版 七年级数学上册 一元一次方程培优专题-绝对值方程(解析版)

人教版 七年级数学上册  一元一次方程培优专题-绝对值方程(解析版)

2 - 1 =22 2 2 进而 ⎪⎨,解得 ⎪⎨ ⎩ ⎩一元一次方程培优专题——绝对值方程例题1. 解方程: 2 x + 3 = 5【解析】根据绝对值的意义,原方程可化为 2x + 3 = 5 或者 2x + 3 = -5 ,解得 x = 1 或 x = -4【答案】 x = 1 或 x = -4例题2. 解方程 x + 1 - 1 2 - x + 13【解析】原方程整理得: x + 1 = 13 ,即 x + 1 = 13 或者 x + 1 = - 13 ,所以原方程的解为 x = 8 或 x = - 1855 5 5 5【答案】 x = 8 或 x = - 1855例题3. 已知:当 m > n 时,代数式(m 2- n 2+ 3) 和 m 2+ n 2- 5 的值互为相反数,求关于x 的方程m 1 - x = n的解.【解析】因为代数式 (m 2 - n 2 + 3) 和 m 2 + n 2 - 5 的值互为相反数,所以 (m 2 - n 2 + 3) + m 2 + n 2 - 5 = 0 , 所以 (m 2 - n 2 + 3) = 0 , m 2 + n 2 - 5 = 0 ,⎧m 2 - n 2 = -3 ⎪m 2 + n 2 = 5⎧m 2 = 1 ⎪n 2 = 4,所以 m = ±1, n = ±2 ,因为 m > n ,当 m = 1时, n = -2 ;当 m = -1 时, n = -2 ;当 m = 1,n = -2 时,方程为 1 - x = -2 ,该方程无解;当 m = -1, n = -2 时,方程为 - 1 - x = -2 ,解得 x = -1 或 x = 3 .【答案】 x = -1 或 x = 3例题4.解方程4x+3=2x+9【解析】解法一:令4x+3=0得x=-3,将数分成两段进行讨论:4①当x≤-3时,原方程可化简为:-4x-3=2x+9,x=-2在x≤-3的范围内,是方程的解.44②当x>-3时,原方程可化简为:4x+3=2x+9,x=3在x>-3的范围内,是方程的解.44综上所述x=-2和x=3是方程的解.解法二:依据绝对值的非负性可知2x+9≥0,即x≥-9.原绝对值方程可以转化为①4x+3=2x+9,2解得x=3,经检验符合题意.②4x+3=-(2x+9),解得x=-2,经检验符合题意.综合①②可知x=-2和x=3是方程的解.【答案】x=-2或x=3例题5.解方程4x+3=2x+9【答案】x=3或x=-2例题6.a为有理数,a=2a-3,求a的值.【解析】解法一:要想求出a的值,我们必须先化简a=2a-3.采用零点分段讨论的方法.令a=0,2a-3=0得a=3.2①当a≥3时,由原式可得a=2a-3,求得a=3,在a≥3的范围内;22②当0≤a<3时,由原式可得a=3-2a,求得a=1,在0≤a<3的范围内;22③当a<0,由原式可得-a=-2a+3,求得a=3,不在a<0的范围内.综上可得a的值为3或1.x 解法二:依题意, a 的绝对值和 2a - 3 的绝对值相等,可以得出两者相等或互为相反数,即a = 2a - 3或a = -(2a - 3) 解得 a = 3 或 a = 1.【答案】 a = 3 或 a = 1例题7. 解方程 2 x - 1 = 3x + 1【解析】根据两数的绝对值相等,可以判断这两个数相等或者互为相反数,所以由原方程可以得到2x - 1 = 3x + 1 或 2x - 1 = -3x - 1 ,解得 x = -2, = 0 .【答案】 x = -2 或 x = 0例题8. 解方程 x - 1 + x - 3 = 4【解析】令 x - 1 = 0 , x - 3 = 0 得 x = 1 , x = 3 ,它们可以将数轴分成 3 段:①当 x < 1 时,原方程可化简为: -( x - 1) - ( x - 3) = 4 , x = 0 在 x < 1 的范围内是原方程的解;②当 1 ≤ x < 3 时,原方程可化简为: x - 1 - ( x - 3) = 4 ,此方程无解;③当 x ≥ 3 时,原方程可化简为: x - 1 + x - 3 = 4 , x = 4 在 x ≥ 3 的范围内是原方程的解;综上所述,原方程的解为: x = 0 或 x = 4 .【答案】 x = 0 或 x = 4例题9. 解方程 x - 1 + x - 5 = 4【解析】由绝对值的几何意义可知 1 ≤ x ≤ 5 .【答案】 1 ≤ x ≤ 5例题10. 解方程: 2 x + 1 - 2 - x = 3【解析】零点为: x = - 1 , x = 2 ,它们可将数轴分成三段:22 ①当 x < - 1 时,原方程变形为:-(2 x + 1) - (2 - x) =3 ,x = -6 在 x < - 1 的范围内,是方程的解;22②当 - 1 ≤ x < 2 时,原方程变形为: (2 x + 1) - (2 - x) = 3 , x = 4 在 - 1 ≤ x < 2 的范围内,是方程23 2的解;③当 x > 2 时,原方程变形为:(2 x - 1) - ( x - 2) = 3 ,x = 0 不在 x > 2 的范围内,不是方程的解.综上所述原方程的解为: x = -6 或 x = 4 .3【答案】 x = -6 或 x = 43例题11. 解方程:方程 x + 3 + 3 - x = 9 x + 52【解析】对 x 的值分 4 段讨论:①若 x < -3 ,则原方程化为 - x - 3 + 3 - x = - 9 x + 5 ,解得 x = 2 ,与 x < -3 矛盾;2②若 -3 ≤ x < 0 ,则原方程化为 x + 3 + 3 - x = - 9 x + 5 ,解得 x = - 2 ;29③若 0 ≤ x < 3 ,则原方程化为 x + 3 + 3 - x = 9 x + 5 ,解得 x = 2 ;29④若 x ≥ 3 ,则原方程化为 x + 3 + x - 3 = 9 x + 5 ,解得 x = -2 ,与 x ≥ 3 矛盾.2综上所述方程的解为 x = ± 2 .9【答案】 ± 29例题12. 解绝对值方程: x - 3x - 5- 1 = 62【解析】 x - 3x - 5 - 1 = 6 或 -6 ,即 3x - 5 = x - 7 或 3x - 5 = x + 522 2①当 x - 7 ≥ 0 时(即 x ≥ 7 ), 3x - 5 > 0 , 3x - 5 = x - 7 化为 3x - 5 = x - 7 ,解得 x = -9 ;22②当 x + 5≥ 0 时( x ≥ -5 ),若还有 3x - 5 > 0 (即 x ≥ 5 ), 3x - 5 = x + 5 ,解得 x = 15 ;23 2③当 x + 5≥ 0 时( x ≥ -5 ),若还有 3x - 5 < 0 (即 x < 5 ), 3x - 5 = - x - 5 ,解得 x = -1 .23 2再来检验这三个解 x = -9 (舍去)、 x = 15 、 x = -1 .【答案】 x = 15 或 x = -13x + 1 = 0,x = - ; x - 3x + 1 = 0 , x = - , - ,这 3 个零点将数轴分成 4 段,我们分段讨论 8例题13. 解方程: 3x - 5 + 4 = 8【解析】3x - 5 + 4 = 8 或 - (舍),即 3x - 5 = 4 ,所以 3x - 5 = 4 或 -4 ,即 3x = 9 或 3x = 1 ,故 x = 3 或 x = 1 .3【答案】 x = 3 或 x = 13例题14. 求方程 x - 3x + 1 = 4 的解.【解析】解法一:1 1 1 32 4研究可以得到结果为: x = 3 或 x = - 5 ,但其实这么做是没必要的.我们来看看解法二.24解法二:①当 x ≤ - 1 时,方程可化为: 4x + 1 = -4 , x = - 5 ,在 x ≤ - 1 范围内,是方程的解;34 3②当 x > - 1 时,方程可化为 -2 x - 1 = 4 :当 -2x - 1 = 4 时,得 x = - 5 , - 5 < - 1 , x = - 5 不是32 23 2解,舍去;当 -2x - 1 = -4 时,得 x = 3 ,∵ 3 > - 1 ,∴ x = 3 是方程的一个解.22 3 2综上可得,原方程的解为 x = 3 或 x = - 5 .24【答案】 x = 3 或 x = - 524例题15. 当 0 ≤ x ≤1 时,求方程 x - 1 - 1 - 1 = 0 的解【解析】根据 x 所在的范围,可得 x ≥ 0 , x - 1≤ 0 ,因此 x = x ,x - 1 = 1 - x ,按从内到外的顺序逐个去除方程中的绝对值符号,原方程可顺次化为: 1 - x - 1 - 1 = 0 ,即 1 - x = 0 ,所以 x = 1 .【答案】1。

人教版数学七年级上习题试卷第三章 一元一次方程(培优)(解析版)

人教版数学七年级上习题试卷第三章 一元一次方程(培优)(解析版)

第三章一元一次方程(培优)-七年级数学上册单元培优达标强化卷(解析)一、选择题1.将3x−7=2x变形正确的是()A. 3x+2x=7B. 3x−2x=−7C. 3x+2x=−7D. 3x−2x=7【答案】D解:等式两边都加7得:3x=2x+7,等式两边都减2x得:3x−2x=7.2.已知关于x的方程(m−2)x|m−1|=0是一元一次方程,则m的值是()A. 2B. 0C. 1D. 0或2【答案】B【解析】解:根据题意得:|m−1|=1,整理得:m−1=1或m−1=−1,解得:m=2或0,把m=2代入m−2得:2−2=0(不合题意,舍去),把m=0代入m−2得:0−2=−2(符合题意),即m的值是0,3.方程2x+1=3与2−a−x3=0的解相同,则a的值为()A. 0B. 3C. 5D. 7【答案】D4.若多项式4x−5与2x−12的值相等,则x的值是()A. 1B. 32C. 23D. 2【答案】B解:由题意得,4x−5=2x−12,去分母,2(4x−5)=2x−1,去括号,8x−10=2x−1,最后移项,8x−2x=−1+10,合并同类项,6x=9,系数化为1,x=32.5.已知:|m−2|+(n−1)2=0,则方程2m+x=n的解为()A. x=−4B. x=−3C. x=−2D. x=−1【答案】B解:∵|m−2|=0,(n−1)2=0m=2,n=1,将m=2,n=1代入方程2m+x=n,得4+x=1移项,得x=−3.6.某种商品原先的利润率为20%,为了促销,现降价10元销售,此时利润率下降为10%,那么这种商品的进价是()A. 100元B. 110元C. 120元D. 130元【答案】A解:设这件产品的进价为x元,x(1+20%)−10=x[1+(20%−10%)],解得,x=100即这件商品的进价为100元,7.一项工程甲单独做要40天完成,乙单独做需要60天完成,甲先单独做4天,然后甲乙两人合作x天完成这项工程,则可以列的方程是()A. 440+x40+60=1 B. 440+x40×60=1C. 440+x40+x60=1 D. 440+x60=1【答案】C【解析】解:设整个工程为1,根据关系式甲完成的部分+两人共同完成的部分=1列出方程式为:4 40+x40+x60=1.8.下列说法中,正确的是()A. 若ac =bc ,则a =bB. 若a c =bc ,则a =b C. 若a 2=b 2,则a =bD. 若|a|=|b|,则a =b【答案】B【解析】解:A.若ac =bc ,当c ≠0,则a =b ,故此选项错误; B .若ac =bc ,则a =b ,正确;C .若a 2=b 2,则|a|=|b|,故此选项错误;D .若|a|=|b|,则a =±b ,故此选项错误;9. 某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调调价后售出可获利20%(相对于进价),另一台空调调价后售出则亏本20%(相对于进价),而这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出( )A. 要亏本4%B. 可获利2%C. 要亏本2%D. 既不获利也不亏本【答案】A【解析】解:设这两台空调调价后的售价为x ,两台空调进价分别为a 、b . 调价后两台空调价格为:x =a(1+20%);x =b(1−20%). 解得:a =56x ,b =54x , 调价后售出利润为:2x−(a+b)a+b=2x−(56x+54x)56x+54x =−0.04=−4%,10. 小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是( )A.B.C.D.【答案】B 【解析】解:A 、设最小的数是x . x +x +7+x +7+1=19, x =43,故本选项不符合题意; B 、设最小的数是x . x +x +6+x +7=19, x =2.故本选项符合题意.C 、设最小的数是x . x +x +1+x +7=19, x =113,故本选项不符合题意.D 、设最小的数是x . x +x +1+x +7+1=19, x =103,故本选项不符合题意.故选:B .二、填空题 11. 若代数式(1−a−14)x 2−5y +4−12(ax 2+2by +16)(a 、b 为常数)的值与字母x 、y的取值无关,则方程3ax +b =0的解为________ 【答案】1 解:(1−a−14)x 2−5y +4−12(ax 2+2by +16)=(1−a −14)x 2−5y +4−12ax 2−by −8 =(1−a −14−12a)x 2−(5+b)y −4 =(54−34a)x 2−(5+b )y −4 ∵代数式(1−a−14)x 2−5y +4−12(ax 2+2by +16)(a 、b 为常数)的值与字母x 、y 的取值无关,∴54−34a =0,5+b =0,∴a =53,b =−5,∴3ax +b =0为53·3x −5=0, ∴5x −5=0, 解得:x =1. 故答案为1.12. 如果a ,b 为定值,关于x 的一次方程2kx+a 3−x−bk 6=2,无论k 为何值时,它的解总是1,则a +2b = . 【答案】−32【解析】解:将x =1代入方程2kx+a 3−x−bk 6=2,∴2k+a 3−1−bk 6=2,∴4k +2a −1+bk =12, ∴4k +bk =13−2a ,∴k(4+b)=13−2a,由题意可知:b+4=0,13−2a=0,∴a=132,b=−4,∴a+2b=132−8=−32.故答案为:−3213.若(a−2)x|a|−1−2=0是关于x的一元一次方程,则a=______.【答案】−2【解析】解:(a−2)x|a|−1−2=0是关于x的一元一次方程,∴a−2≠0,|a|−1=1,解得a=−2.14.一件衣服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,那么这件衣服的成本是__________元.【答案】140解:设这件衣服的成本是x元,根据题意得:x(1+50%)×80%−x=28,解得:x=140.答:这件衣服的成本是140元;故答案为140.15.小明按标价的八折购买了一双鞋,比按标价购买节省了40元,这双鞋的实际售价为______元.【答案】200【解析】解:设这双鞋的实际售价为x元,根据题意,得0.8x=x−40x=200.16.已知关于x的方程x−m2=x+m3与方程x−12=3x−2的解互为倒数,则m2−2m−3的值为_________.【答案】0解:x−12=3x−2,解得:x=35,∴方程x−m2=x+m3的解为x=53,代入可得:56−m2=53+m3,解得:m=−1,∴m2−2m−3=1+2−3=0.17.用“∗”表示一种运算,其意义是a∗b=a−2b,如果x∗(3∗2)=3,则x=______.【答案】1【解析】解:3∗2=3−2×2=−1,∵x∗(3∗2)=3,∴x∗(−1)=3,x−2×(−1)=3,x+2=3,x=1,18.有两根同样长度但粗细不同的蜡烛,粗蜡烛可以燃烧6小时,细蜡烛可以燃烧4小时,一次停电,同时点燃两根蜡烛,来电后同时吹灭,发现剩下的粗蜡烛长度是细蜡烛长度的两倍,则停电时间是______小时.【答案】3解:设停电时间为x小时,根据题意得:1−x6=2(1−x4),解得:x=3.19.如果x=1是方程2−13(m−x)=2x的解,那么关于y的方程m(y−3)−2= m(2y−5)的解是______ .【答案】y=0解:∵x=1是方程2−13(m−x)=2x的解,∴2−13(m−1)=2×1,解得m=1,∴关于y的方程为y−3−2=2y−5,移项得,y−2y=−5+2+3,合并同类项得,−y=0,系数化为1得,y=0.20.如图,已知点A、B是直线上两点,AB=12厘米,点C在线段AB上,且BC=4厘米.点P、点Q是直线上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.点P、Q分别从点C、点B同时出发在直线上运动,则经过___________秒时线段PQ的长为5厘米.【答案】13或1或3或9解:设运动时间为t秒.①如果点P向左、点Q向右运动,由题意,得:t+2t=5−4,解得t=13;②点P、Q都向右运动,由题意,得:2t−t=5−4,解得t=1;③点P、Q都向左运动,由题意,得:2t−t=5+4,解得t=9.④点P向右、点Q向左运动,由题意,得:2t−4+t=5,解得t=3.综上所述,经过13或1或3秒或9秒时线段PQ的长为5厘米.故答案为13或1或3或9.三、解答题21.已知关于x的方程3[x−2(x−a3)]=4x和3x+a12−1−5x8=1有相同的解,那么这个解是多少?【答案】解:由方程(1)得x=27a,由方程(2)得x=27−2a21,由题意得27a=27−2a21,解得a=2714,代入解得x=2728.∴可得这个解为2728.22.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1000元,甲、乙两人经商量后签订了该合同.(1)正常情况下,甲、乙两人能否履行该合同⋅为什么⋅(2)现两人合作了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适些⋅为什么⋅【答案】解:(1)设甲、乙合作需要x天完成,由题意,得x30+x20=1,解得:x=12,∵12<15,∴甲、乙两人能履行该合同;(2)34÷(130+120)=9(天)设剩下的工程甲用y天完成,由题意,得y30=14,解得:y=152,9+152=16.5(天)>15(天),不合适;设剩下的工程乙用z天完成,由题意,得y20=14,解得y=5,9+5=14<15,合适,答:调走甲比较合适.23.甲、乙两站相距360千米,一列快车从甲站开出,每小时行160千米,一列慢车从乙站开出,每小时行80千米.(1)若两车同时开出,相向而行多少小时后两车相遇?(2)若两车同向而行,快车在慢车的后面,且慢车提前半小时出发,经过多少小时后快车追上慢车?【答案】解:(1)设两车相向而行x小时后两车相遇,根据题意得:160x+80x=360,解得:x=1.5.答:两车相向而行1.5小时后两车相遇;(2)设经过x小时后快车追上慢车,根据题意得:360+80×0.5+80×x=160x,解得:x=5.答:经过5小时后快车追上慢车.24.某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的12倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价−进价)(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?x+15)件,【答案】解:(1)设第一次购进甲种商品x件,则购进乙种商品(12x+15)=6000,根据题意得:22x+30(12解得:x=150,x+15=90.∴12答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(29−22)×150+(40−30)×90=1950(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.(3)设第二次乙种商品是按原价打y折销售,−30)×90×3=1950+180,根据题意得:(29−22)×150+(40×y10解得:y=8.5.答:第二次乙商品是按原价打8.5折销售.25.已知|a+4|+(b−2)2=0,数轴上A、B两点所对应的数分别是a和b.(1)填空:a=___________,b=____________;(2)数轴上是否存在点C,C点在A点的右侧,且点C到A点的距离是点C到B点的距离的2倍?若存在,请求出点C表示的数;若不存在,请说明理由;(3)点P以每秒2个单位的速度从A点出发向左运动,同时点Q以3个单位每秒的速度从B点出发向右运动,点M以每秒4个单位的速度从原点O点出发向左运动.若N为PQ的中点,当PQ=16时,求MN的长.【答案】解:(1)−4 2 ;(2)设C点表示的数为x,根据题意得,①当点C在A、B之间时,有c+4=2(2−c),解得,c=0;②当点C在B的右侧时,有c+4=2(c−2),解得,c=8.故点C表示的数为0或8;(3)设运动的时间为t秒,根据题意得,2t+3t+AB=16,即2t+3t+6=16,解得,t=2,∴运动2秒后,各点表示的数分别为:=0,P:−4−2×2=−8,Q:2+3×2=8,M:0−4×2=−8,N:−8+82∴MN=0−(−8)=8.11。

2023-2024年人教版七年级上册数学期末一元一次方程应用题专题训练(含答案)

2023-2024年人教版七年级上册数学期末一元一次方程应用题专题训练(含答案)

2023-2024年人教版七年级上册数学期末一元一次方程应用题专题训练1.一艘船在甲码头到乙码头顺流行驶,用了2小时;再从乙码头返回甲码头逆水行驶,用了3小时,已知这艘船在静水中航行的速度为15千米/小时,则水流的速度为多少千米每小时?2.一艘船从甲码头到乙码头顺流而行,用了2.5 h;从乙码头返回甲码头逆流而行,用了3 h.已知水流的速度是2 km/h,求船在静水中的平均速度.3.某中学学生步行到郊外旅行,七年级(1)班学生组成前队,步行速度为4千米/小时,七(2)班的学生组成后队,速度为6千米/小时;前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米/小时.(1)后队追上前队需要多长时间?(2)后队追上前队的时间内,联络员走的路程是多少?(3)七年级(1)班出发多少小时后两队相距2千米?4.鄞州公园计划在园内的坡地上栽种树苗和花圃,树苗和花苗的比例是1:25,已知每人每天种植树苗3棵或种植花苗50棵,现有15人参与种植劳动.(1)怎样分配种植树苗和花苗的人数,才能使得种植任务同时完成?(2)现计划种植树苗60棵,花苗1500棵,要求在3天内完成,原有人数能完成吗?如果完成,请说明理由;如不能完成,请问至少派多少人去支援才能保证3天内完成任务?5.某工厂加工螺栓、螺帽,已知每1块金属原料可以加工成3个螺栓或4个螺帽(说明:每块金属原料无法同时既加工螺栓又加工螺帽),已知1个螺栓和2个螺帽组成一个零件,为了加工更多的零件,要求螺栓和螺帽恰好配套.请列方程解决下列问题:(1)现有20块相同的金属原料,问最多能加工多少个这样的零件?(2)若把26块相同的金属原料全部加工完,问加工的螺栓和螺帽恰好配套吗?说明理由(3)若把块相同的金属原料全部加工完,为了使这样加工出来的螺栓与螺帽恰好配套,请求出所满足的条件.6.红星纺织厂为了应对疫情需求,安排甲、乙两个车间生产防疫口罩.第一周甲、乙两个车间各生产5天后,乙车间周六加班多生产1天,结果两个车间生产的口罩数量一样多:第二周甲、乙两个车间各生产4天后乙车间又多生产口罩3000个,结果甲车间比乙车间仍多生产口罩1000个.(1)甲、乙两车间每天生产口罩各多少个?(2)第三周,纺织厂又接到生产40000个口罩的订单,且要求必须4天完成任务,同时甲车间要抽调一半的工人去生产防护服,因此,甲车间生产口罩的效率只有原来的一半,厂部要求乙车间必须提高口罩生产效率,保证按时完成任务,乙车间生产效率提高的百分比是多少?7.请根据图中提供的信息,回答下列问题:(1)一个水瓶是多少元?(2)商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买个水瓶和个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)n n 520要2个桶底才能构成一个铁桶,为使每天生产的桶身和桶底刚好配套,应该安排生产桶身和桶底的工人各多少名?15.某中学库存若干套桌椅,准备修理后支援贫困山区学校.现有甲、乙两木工组,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲单独修完这些桌椅比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.(1)该中学库存多少套桌椅?(2)在修理过程中,学校要派一名工人进行质量监督,并且付给他每天10元生活补助费,现有三种修理方案, A 方案:由甲单独修理;B 方案:由乙单独修理;C 方案:甲、乙合作同时修理.你认为哪种方案省时又省钱?为什么?16.某超市进行新年促销活动,将某种年货礼包按原价的9折销售,此时的利润率为12.5%.若这种年货礼包的进价为每个80元(1)年货礼包的原售价是多少元?(2)开展促销活动后,实际销量为按原价销售时的3倍,则实际利润和未开展促销活动时相比,是增多,不变,还是减少?请通过计算说明.17.某工厂中秋节前要制作一批盒装月饼,每盒装4块大月饼和6块小月饼,制作1块大月饼要用面粉,1块小月饼要用面粉.(1)若制作若干盒月饼共用了面粉,请问制作大小两种月饼各用了多少面粉?(2)在(1)的条件下,已知制作一个精美月饼包装盒的成本为5元,面粉的进价为25元/千克,在不计其它成本的情况下,工厂想达到的利润率,则应如何制定每盒月饼的出厂价?18.为进一步加强居民对电信诈骗的防范意识,提高对电信诈骗的鉴别、自我保护能力,营造全民反诈的浓厚氛围,我校志愿者积极配合社区开展反诈骗宣传工作,志愿者们准备印制一些反诈骗宣传小册子,利用中秋国庆假期到公园里开展防诈骗、反诈骗宣传活0.05kg 0.02kg 640kg 50%参考答案:13.(1)48(2)该户居民3月份用水4t ,4月份用水11t 14.(1)(2)30名工人生产桶身,36名工人生产桶底15.(1)该中学库存桌椅960套.(2)选择C 方案省时又省钱.16.(1)100元(2)增多17.(1)制作大月饼用了面粉,制作小月饼用了面粉(2)每盒月饼的出厂价应定为26元18.(1)印刷册,两家的印刷总费用是相等(2)乙店是打七五折优惠19.(1),(2)若交费时间为1年,选择方案一更合适,(3)交费时间为10个月时,两种方案费用相同20.(1)这个公司要加工960件新产品(2)该公司应选择第③种方案,由两个工厂合作同时完成时,既省钱,又省时间18400kg 240kg 403004000M x =+6001000N x =+。

人教版七上数学一元一次方程单元专题培优

人教版七上数学一元一次方程单元专题培优

第1讲 一元一次方程知识理解1、下列由等式的性质进行的变形,错误的是( )A 、如果b a =,那么33+=+b aB 、如果b a =,那么33-=-b aC 、如果b a =,那么a a 32= D 、如果a a 32=,那么3=a2、下列方程中:①312+=-x x ;②21=-x ;③123222=+;④3-x ;⑤6=+y x .其中是一元一次方程的有( )A 、1个B 、2个C 、3个D 、4个 3、已知方程x m x 743-=+的解为1=x ,则m 的值为( ) A 、- 2 B 、- 5 C 、6 D 、- 64、若y x =,下列各式中:①33-=-y x ;②55+=+y x ;③88-=-y x ;④y x x +=2;其中正确的个数有( )A 、1个B 、2个C 、3个D 、4个5、下列等式变形:①如果y x =,那么ay ax = B ;②如果y x =,那么a y a x =;③如果ay ax =,那么y x = ;④如果a y a x =,那么y x =.其中正确的是( )A 、③④B 、①②C 、①④D 、②③6、下列说法:①在等式42=x 两边都加上2,可得等式64=x ;②在等式42=x 两边都减去2,可得等式2=x ;③在等式42=x 两边都乘以21,等式变为2=x ;④等式两边都除以同一个数,等式仍然成立.其中正确的说法有( )A 、1个B 、2个C 、3个D 、4个7、中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球的质量等于( )个正方体的重量.A 、2B 、3C 、4D 、58、已知a 是任意有理数,在下面各题:(1)方程0=ax 的解是1=x ;(2)方程a ax =的解是1=x ;(3)方程1=ax 的解是ax 1=;(4)方程a x a =的解是1±=x .其中结论正确的个数是( )A 、1个B 、2个C 、3个D 、4个9、如果652=-x ,那么_________2=x ,其中依据是__________________________. 10、若方程()0122=+++c bx x a 是关于x 的一元一次方程,则字母系数a 、b 、c 满足的条件是_____________________________.方法运用 11、解方程: (1)23141x x x --=--; (2)214311--=++x x x ; (3)()x x x =-⎥⎦⎤⎢⎣⎡+-1151321 ; (4)121103121412+--=-+x x x ;12、已知1=x 是方程()x x a 2312=--的解,那么关于x 的方程()()3225-=--x a x a 的解是多少?13、某书有一道方程:x x=+*+132,*处的一个数十阿紫印刷时被墨盖住了,查后面的答案,知道方程的解为5.2-=x ,那么*处被墨盖住的数应该是多少?14、若a 、b 为定值,关于x 的方程6232bkx a kx -+=+,无论k 为何值,此方程的解总是1=x ,求a 、b 的值.第2讲 一元一次方程(2)一、基础知识1、若3-=x 是方程()52=+k x 的解,求k 的值.2、讨论12=x 是不是方程14732+=x x 的解.3、已知3-=x 是1312-=--m x 的解,求代数式132--m m 的值.4、已知1-=y 是关于y 的方程08432=+++-m y y 的解,求式子mm m 122+-的值.5、已知方程()0243=+--a x a 是关于x 的一元一次方程,求a 的值.6、如果关于x 的方程06365=+-kx 是一元一次方程,求k 的值.7、关于x 的方程()()0241122=-+-+-a x a x a 是一元一次方程求a 的值.8、方程432-=+x m x 与方程626-=-x 的解相同,求m 的值.9、已知:关于x 的方程1232-=---x ax a x 与方程()5423-=-x x 同解,求a 的值.10、若关于x 的方程①a x =+2和②a a x 32=-,若①的解比②的解大1,求a 的值.11、设关于x 的方程55=-m x ,m x 244=-,当m 为何值时,这两个方程的解互为相反数?12、方程()0132=+-x 的解与关于x 的方程x k xk 2232=--+的解互为倒数,求k 的值.13、当4=x 时,式子a x ax A 642--=的值是- 1,那么当5-=x 时,A 的值是多少?14、小明在解关于x 的方程1123=-x a 是,误将x 2-看成了x 2+,得到的解为2-=x ,请你帮小明算一算,方程正确的解为多少?二、列方程解应用题(行程问题和工程问题)15、小红和小明绕周长为1200米的湖晨练,小红的速度为85米/分,小明比她快10米/分, (1)如果两人同时同向同一地点开跑,多少分钟两人相遇? (2)如果两人同时相向开跑,多少分钟两人相遇?(3)如果小红在小明前面200米两人同时反向开跑,多少分钟两人相遇?16、甲乙骑自行车,从相距60千米的两地相向而行,甲每小时走12千米,乙每小时走10千米,如果走15分钟后乙出发,问甲出发后几小时与乙相遇?17、某项工程,甲单独完成要12天,乙单独完成要18天,如果甲先做了7天,乙来支援,由甲、乙合做完成余下的工程,求乙做多少天?18、整理一批或污物,由甲一人做需80小时完成,现由一部分人先做2小时后,在增加5人做8小时,恰好完成这项工作的43,怎样安排参与整理货物的具体人数?19、北京市为了能够成功举办2008年奥运会,市政府要求各项工程在确保质量的前提下完成任务,其中一项工程,请甲工程队独做要3个月完成,每月耗资12万元,若请乙工程队独做要6个月完成,每月耗资5万元,那么请甲、乙两工程队合做要几个月完成?耗资多少万元?三、方案选择20、一件工程,甲工程队独做10天完成,每天需费用160元;乙工程队独做15天完成,每天需费用100元.(1)若由甲、乙两个工程队合做3天后,剩余工程有乙工程队独做完成,求工程所需的总费用是多少元?(2)由于场地限制,两队不能同时施工.若先安排甲工程队单独施工做一部分工程再由乙工程队单独施工完成剩余工程,预计公付工程总费用1500元,你知道甲、乙两个工程队各做了工程的几分之几吗?(3)为了保证工程质量,工程指挥部决定安排一名质检员全程进行质量监督,每天需付给质检员工作、生活补助30元,请你安排甲、乙两个工程队进行施工,使工程所需的总费用最少?21、一件工作,甲独做20天可以完成,乙独做30天可以完成.若由甲、乙共同完成这项工作,且两人工作平均按整数日安排,且甲每天需要工作费用80元,乙每天需要工作费用50元.(1)问共有多少种安排方案?(2)问完成这项工作的最低费用是多少?应该如何安排两队工作?(3)要使工程的总费用不超过1540元,问甲最多工作多少天?22、某工厂生产某种产品,每件产品的出产价为1000元,其原材料成本价为550元,同时在生产过程中平均每生产一件产品有10千克的废渣产生.为了达到国家环保要求,需要对废渣进行处理,现有两种方案可供选择:方案一:由工厂对废渣直接进行处理,每处理10千克废渣所用的原料费为50元,并且每月设备维护及损耗费为2000元.方案二:工厂将废渣集中到废渣处理厂统一处理,每处理10千克废渣需付100元的处理费.(1)设工厂每月生产x件产品,用方案一处理废渣时,每月利润为__________________元;用方案二处理废渣时,每月利润为_________________元(利润=总收入-总支出).(2)若每月生产30件和60件,用方案一和方案二处理废渣时,每月利润分别为多少元?(3)如何根据月生产量选择处理方案,既可达到环保要求又最很划算?23、某中学组织学生春游,原计划租用45座客车若干辆,但有15人没有座位;如果租用同样数量的60座客车则多出一辆,且其余客车恰好坐满,已知45座客车日租金为每辆220元,60座客车每日租金为每辆300元.(1)学生人数是多少?原计划租用45座客车多少量?(2)要使每名同学都有座位,怎样租用车辆更合算?第3讲 一元一次方程(3)一、基础知识1.已知甲数是乙数的3倍多12,甲乙两数的和是60,求乙数.2.已知甲数是乙数的31少5,甲数比乙数大65,求乙数.3.已知关于x 的方程267132xk x --=-+的解是x =-2,求k 的值.4.已知x =21是方程5m +12x =21+x 的解,求关于y 的方程)21(2y m my -=+的解.5.已知关于x 的方程x x a 2)(312=--的解是关于x 的方程x -5-2a =2x -3a 的解的2倍,求a 的值.二、基础应用题6.(总量相等问题)某校春游,若包租相同的大巴13辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,问春游的总人数是多少?7.(数字问题)一个两位数个位数字与十位数字的和为10,如果将个位数字与十位数字交换位置,得到的新的两位数字比原来的两位数大18,求原来的两位数?8.(总分问题)一艘货轮货舱容积是2000立方米,可载重500吨,现有甲、乙两种货物待装,已知甲种货物每吨体积为7立方米,乙种货物每吨体积为2立方米,两种货物各装多少吨最合理?9.(工程问题)满池水的游泳池需要换水,单独打开甲管30小时可将全池水排完,单独打开乙管20小时可将全池水排完,若两管同时打开3小时后,关闭甲管让乙管排水3小时,再打开甲管同时关闭乙管,几小时后可将余下水放完?10.(行程问题)小明上山的速度是每小时3.5千米,下山的速度是每小时5千米,若小明上山比下山多用了3小时,求小明下山走了几小时,这段山路共有多少千米?11.某人从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟,若每小时行18千米,则比火车开车时间迟到15分钟,现在此人打算在火车开车前10分钟到达火车站,求此人此时骑摩托车的速度应该是多少?12.(配套问题)某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配2个螺母,为了使每天的产品刚好配套,应该如何分配多少名工人生产螺钉,多少名工人生产螺母?13.(盈利问题)某商场新进一批同型号的电脑,按进价提高40%标价,此商场为了促销,又对该电脑打8折销售,每台电脑仍可盈利420元,那么该型号电脑每台进价为多少元.三、综合应用问题14.要运送一批货物,若用3台大货车各运7次,结果还有12件货物未运送完;若9台小货车各运4次,结果刚好运送完.已知每台大货车比每台小货车一次多运送3件货物.(1)求这批货物共有多少件?(2)已知每台大货车每次的运送费用为60元,每台小货车每次的运送费用为40元,若要想两次将所有货物运送完(每台货车都运送2次,每次都是满载货物),问如何租用这两种货车,才合算呢?15.某班学生进行篮球投蓝练习,每人投10个,每投进1个球得1分,得分的部分情况如下表所示:(1)若至少得8分的人的总得分比至多得2分的人的总得分的5倍还多5分,求表格中的x;(2)已知在(1)中,至少得3分的人的平均得分为6分,得分不到8分的人的平均得分为3分,你知道这个班有多少人吗?16.某服装店的老板在武汉看中一种夏季衬衫,就用8000元购进若干件,以每件58元的价格出售,很快售完,又用了17600元购进同样衬衫,数量是第一次的2倍,每件进价比第一次多了4元,服装店仍然按每件58元出售全部售完.问该服装店这笔生意的盈利情况如何?17.某农场有300名职工耕种51公顷土地,计划种值水稻、棉花和蔬菜三种农作物,已知种植各种农作物每公顷所需劳动力人数及投入资金如下表:应该怎样安排这三种农作物的种植才能使所有职工都有工作,而且收人的最大?18.某服装店出售货A,B两种规格服装,A种服装的销量比B种低20%,但A种服装质地好,价格比B种高.巳知B种服装的单价为每件80元.(1)当A种服装的单价是多少时,在各方面均等的情况下分别销售A,B两种规格的服装收益相同?(2)若九月该服装店经营A,B两种规格服装的过程中,把A种服装定价为每件120元,而B种服装定价不变,这样在各方面均等的情况下销售A种服装比B种服装要多收入1600元,问A,B两种规格服装九月共销售多少件?19.某项工程,甲工程队单独做需要6个月完成,每月的费用为10万元,乙工程队单独做需要12个月完成,每月的费用为4万元.(1)两队合做完成共需多少万元.(2)为了节约资金,且保证8个月完成任务,应怎样安排施工(按整月计算).第4讲一元一次方程(4)(-)行程问题1.A、B两地间的路程为360km,甲车从A地出发开往B地,每小时72km,甲车出发25分钟后,乙车从B地出发开往A地,每小时行驶48km,两车相遇后,各自仍按原速度原方向继续行驶,那么相遇后两车相距100km时,甲车从出发共行驶了多少小时?2.小明上山的速度是每小时3.5千米,下山的速度是每小时5千米,若小明上山比下山多用了3小时,求小明下山走了几小时,这段山路共有多少千米?3.甲乙两站相距245千米,一列慢车由甲站开出,每小时行驶50千米,同时,一列快车由乙站开出,每小时行驶70千米,两车同向而行,快车在慢车的后面,经过几小时快车可以追上慢车?(二)总分问题5.-份数学试卷有25道选择题,规定做对一题得4分,一题不做或做错扣1分,结果某学生得分为75分,则他做对多少道题?6.-艘货轮货舱容积是2000立方米,可载重500吨,现有甲、乙两种货物待装,已知甲种货物每吨体积为7 立方米,乙种货物每吨体积为2立方米,两种货物各装多少吨最合理?(三)打折问题7.某商品的进价为310元,按标价的8折销售时,利润率为16%,商品的标价为多少元?8.商品按进价增加20%出售,因积压需降价处理,如果仍想获得8%的利润,则出售价需打几折?9.某商品的进价为120元,标价为200元,折价销售时的利润率为10%,此商品是按几折销售的?(四)数字问题10.若有一个七位自然数,它的第一位数字是5,若把5移到末位,其他数位上的数字顺序不变,则原数等于这个新数的3倍还多8,求原来的七位数.11.有一个两位数,十位上的数是个位上的数的2倍,如果把这两个数字的位置调换,那么所得的新的两位数比原来的两位数小27,求这个两位数?(五)调配问题12.-车间与二车间总人数为150人,将一车间的15名工人调动到二车间,两车间人数相等,求二车间人数?13.为了迎接市“两型学校”达标检查,七年级(1)班分成两个组对学校的两个功能室进行卫生大扫除,若从第一组调4人到第二组,则两组人数相等;若从第二组调1人到第一组,则第一组是第二组的1.5倍;求七年级(1)班有多少人参加了卫生大扫除?二、综合题14.某同学在A 、B 两家超市发现他看中的mp3的单价相同,计算器单价也相同,mp3和计算器单价之和是452元,且mp3的单价比计算器单价的4倍少8元. (1)求该同学看中的mp3和计算器的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A 所有商品打八折销售,超市B 全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择在哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?15.某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,其中团体票占总数32,若提前购票,则给予不同程度的优惠:若在五月份内,团体票每张12元,共售出团体票数的53;零售票每张16元,共售出零售票数的一半;如果在六月份内,团体票按每张16元出售,并计划在六月份售出全部余票,设六月份零售票按每张x 元定价,总票数为a 张.(1)五月份的票价总收入为_______元;六月份的总收入为_________元; (2)当x 为多少时,才能使这两个月的票款收入持平?16.为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的,(1)若该户居民2月份用水12.5m,则应收水费_________元;(2)若该户居民3、4月份共用水15m3(4月份用水量超过3月份),共交水费44元,则该户居民3、4月份各用水多少立方米?17.芜湖供电公司分时电价执行时段分为平、谷两个时段,平段为8:00~22:00,14小时,谷段为22:00~次日8:00,10小时.平段用电价格在原销售电价基础上每千瓦时上浮0.03元,谷段电价在原销售电价基础上每千瓦时下浮0.25元,小明家5月份实用平段电量40千瓦时,谷段电量60千瓦时,按分时电价付款42.73元.(1)问小明家该月支付的平段、谷段电价每千瓦时各为多少元?(2)如不使用分时电价结算,5月份小明家将多支电费多少元?18.某工厂餐厅计划购买12张餐桌和一批餐椅,现在从甲乙两商场了解到:同一型号的餐桌报价每张均为200元,餐椅报价每把均为50元,甲商场称,每购买一张餐桌赠送一把餐椅,乙商场规定:所有桌椅均按报价的八五折销售,若该工厂计划购买餐椅x把,则:(1)用含x的式子表示到甲乙两商场购买所需要的费用;(2)当购买多少把餐椅时,到甲乙两商场购买所需的费用相同?15、小明参加了学校组织的数学兴趣小组,在一次数学活动课上,数学老师在黑板上写了一个关于x 的一元一次方程:69312kx x a kx +--=--,方程中的常数a 老师已给出,但常数k 老师却未写出.数学老师让小组中的60名学生每人自己想好一个值()3≠k ,然后代入方程中,在解出方程.小明想了一个k 值后,很快解出了方程的解,他惊奇地发现,全班同学的答案竟然是一模一样,你能告诉小明这是什么原因吗?你知道题中老师给出的a 是多少吗?方程的解是多少吗?16、已知方程423523-=-x x (1)求方程的解;(2)若上述方程与关于x 的方程()a a x a 2383-+=+是同解方程,求a 的值; (3)在(2)的条件下,a 、b 在数轴上对应的点在原点的两侧,且到原点的距离相等,c 是倒数等于本身的数,求()2005c b a ++17、已知2=x 是关于x 的方程c b ax =+的解. (1)求()200312--+c b a (2)求ba c2410+的值;(3)解关于x 的方程()()0242≠++=+c b a c x b a .18、已知,如图,A 、B 、C 分别为数轴上的三点,A 点对应的数位-200,B 点对应的数位为- 20 ,C 点对应的数为40.甲从C 出发,以6单位/秒的速度向左运动.(1)当甲在B 点、C 点之间运动,设运动时间为x 秒,请用x 的代数式表示; 甲到A 点的距离:____________________; 甲到B 点的距离:____________________; 甲到C 点的距离:____________________;(2)当甲运动到B 点时,乙恰好从A 点出发,以4单位/秒的速度向右运动,设两人在数轴上的D 点相遇,求D 点对应的数;(3)当甲运动到B 点时,乙恰好从A 点出发,以4单位/秒的速度向左运动,设两人在数轴上的E 点相遇,求E 点对应的数.19、数轴上A 、B (A 左B 右)所对应的数为a 、b ,()01052=-++b a ,C 为数轴上一动点且对应的数位c ,O 为原点. (1)若2=BC ,求c 的值.(2)是否存在一点C 使得CB=2CA ,若存在求出对应的数位c ,不存在说明理由.(3)是否存在一点C 使得CA+CB=21,若存在求出对应的数位c ,不存在说明理由.。

人教版(2024)七年级上册数学 第5章 一元一次方程 单元培优检测题

人教版(2024)七年级上册数学  第5章   一元一次方程   单元培优检测题

人教版(2024)七年级上册数学第5章一元一次方程单元提升训练一.选择题1.若与可以合并成一项,则的值是()A.B.1C.3D.92.若x=1是方程2x+a=0的解,则a=()A.1B.2C.﹣1D.﹣23.下列等式的变形中,正确的是()A.如果,那么a=b B.如果|a|=|b|,那么a=bC.如果ax=ay,那么x=yD.如果m=n,那么4.方程去分母得()A.2+2(2x﹣4)=﹣(x﹣7)B.12+2(2x﹣4)=﹣x﹣7C.12+(2x﹣4)=﹣(x﹣7)D.12+2(2x﹣4)=﹣(x﹣7)5.解方程2(x﹣2)=5﹣3(x﹣2)时,去括号正确的是()A.2x﹣4=5﹣3x+6B.x﹣4=5﹣x+6C.2x﹣2=5﹣3x﹣2D.2x﹣4=5﹣3x﹣66.若某件商品按原价提价后,欲恢复原价,应降价(A.B.C.D.9.“⊕”表示一种运算符号,其意义是2a b a b ⊕=-,若()132x ⊕⊕=,则x 等于()A.32B.2C.12D.110.如图,宽为50cm 的长方形图案由10个形状大小完全相同的小长方形拼成,其中一个小长方形的面积为()A.2400cm B.2500cm C.2600cm D.24000cm 二.填空题11.若式子3x+4与2﹣5x 的值相等,则x 的值为.12.关于x 的多项式3(4)b a x x x b --+-是二次三项式,则a=_____b=______14.乐乐在解方程时,不小心把其中一个数字用墨水污染成了,他翻阅了答案知道这个方程的解为,于是他判断污染了的数字应该是______.三.解答题17.解下列方程:(1)223146x x +--=;(2)()()1112225x x -=-+18.周末,甲乙两人沿环形生态跑道散步,甲每分钟行80米,乙每分钟行120米,跑道一圈长400米.求:(1)若甲乙两人同时同地同向出发,多少分钟后他们第一次相遇?(2)若两人同时同地反向出发,多少分钟后他们第一次相距100米?19.在阿阳中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇.20.己知a,b满足,a,b分别对应这数轴上的A,B两点.(1)__________,__________,并在数轴上画出A,B两点;(2)若点P从点A出发,以每秒2个单位长度的速度向数轴正半轴运动,求运动时间为多少时,点P 到A的距离是点P到B的距离的2倍?(3)数轴上还有一点C对应的数为50,若点P和点Q同时从点A和点B出发,分别以每秒3个单位长度和每秒1个单位长度向点C运动.P点到达C点后,再立刻以同样的速度返回,向点A运动,当Q运动到点C时,整个运动停止.求点P和点Q运动多少秒时,P,Q两点之间的距离为4?并求此时点Q对应的数.21.某商场用2730元购进甲、乙两种商品共60件,这两种商品的进价、标价如表所示:价格\类型甲乙进价(元/件)3565标价(元/件)50100(1)这两种商品各购进多少件?(2)若甲种商品按标价的9折出售,乙种商品按标价的8.5折出售,且在运输过程中有2件甲种、1件乙种商品不慎损坏,请问这批商品全部售出后,该商场共获利多少元?。

七年级数学上册第三单元《一元一次方程》-解答题专项经典练习(专题培优)

七年级数学上册第三单元《一元一次方程》-解答题专项经典练习(专题培优)

一、解答题1.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打八折.如果王明同学一次性购书付款162元,那么王明所购书的原价为多少?解析:180元或202.5元【分析】先根据题意判断出可能打折的情况,再分别算出可能的可能的原价.【详解】∵200×0.9=180,200×0.8=160,160<162<180,∴一次性购书付款162元,可能有两种情况.162÷0.9=180元;162÷0.8=202.5元.故王明所购书的原价一定为180元或202.5元.【点睛】本题考查打折销售问题,关键在于分类讨论.2.解方程:2x 13+=x 24+-1. 解析:x=-2.【分析】 按去分母,去括号,移项,合并同类项,系数化为1的步骤进行求解即可.【详解】去分母得:4(2x+1)=3(x+2)-12,去括号得:8x+4=3x+6-12,移项得:8x-3x=6-12-4,合并同类项得:5x=-10,系数化为1得:x=-2.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤以及注意事项是解题的关键.3.已知方程3210x a +-=的解与方程20x a -=的解互为相反数,求a 的值. 解析:14a =- 【分析】先分别求出两个方程的解,再根据解互为相反数列方程计算即可.【详解】3210x a +-=,解得123a x -=; 20x a -=,解得2x a =.由题意得,12203a a -+=, 解得14a =-. 【点睛】 本题考查一元一次方程的解法,解题的关键是根据两个方程的解互为相反数列方程求解. 4.解下列方程: (1)51784a -=; (2)22146y y +--=1; (3)2131683x x x -+-= -1 解析:(1)3a =;(2)4y =-;(3)179x =. 【分析】 (1)先方程两边同乘以8去分母,再按照移项、合并同类项、系数化为1的步骤解方程即可得;(2)先方程两边同乘以12去分母,再按照去括号、移项、合并同类项、系数化为1的步骤解方程即可得;(3)先方程两边同乘以24去分母,再按照去括号、移项、合并同类项、系数化为1的步骤解方程即可得.【详解】(1)方程两边同乘以8去分母,得5114a -=,移项,得5141a =+,合并同类项,得515a =,系数化为1,得3a =;(2)方程两边同乘以12去分母,得3(2)2(21)12y y +--=,去括号,得364212y y +-+=,移项,得341262y y -=--,合并同类项,得4y -=,系数化为1,得4y =-;(3)方程两边同乘以24去分母,得4(21)3(31)824x x x --+=-,去括号,得8493824x x x ---=-,移项,得8982443x x x --=-++,合并同类项,得917x -=-,系数化为1,得179x =.【点睛】本题考查了解一元一次方程,熟练掌握解方程的步骤是解题关键.5.解下列方程(1)-9x-4x+8x=-3-7;(2)3x+10x=25+0.5x .解析:(1)x=2;(2)x=2【分析】(1)方程移项合并,把x 系数化为1,即可求出解;(2)方程移项合并,把x 系数化为1,即可求出解.【详解】解:(1)合并同类项,得,-5x=-10系数化为1,得,x=2(2)移项,得3x+10x-0.5x=25合并同类项,得12.5x=25系数化为1,得,x=2【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.6.解方程:(1)5(8)6(27)22m m m +--=-+(2)2(3)7636x x x --+=- 解析:(1)10m =;(2)5x =【分析】(1)直接去括号、移项、合并同类项、化系数为1即可求解;(2)直接去分母、去括号、移项、合并同类项、化系数为1即可求解.【详解】解:(1)5(8)6(27)22m m m +--=-+5m 4012m 42m 22+-+=-+6m 60-=-m 10=(2)2(3)7636x x x --+=- ()6x 4x 336(x 7+-=--)6x 4x 1236x 7+-=-+11x 55=x 5=【点睛】此题主要考查解一元一次方程,解题的关键是熟练掌握解题步骤.7.已知数轴上的A、B两点分别对应数字a、b,且a、b满足|4a-b|+(a-4)2=0(1)a= ,b= ,并在数轴上面出A、B两点;(2)若点P从点A出发,以每秒3个单位长度向x轴正半轴运动,求运动时间为多少时,点P到点A的距离是点P到点B距离的2倍;(3)数轴上还有一点C的坐标为30,若点P和点Q同时从点A和点B出发,分别以每秒3个单位长度和每秒1个单位长度的速度向C点运动,P点到达C点后,再立刻以同样的速度返回,运动到终点A.求点P和点Q运动多少秒时,P、Q两点之间的距离为4,并求此时点Q对应的数.解析:(1)4,16.画图见解析;(2)83或8秒;(3)点P和点Q运动4或8或9或11秒时,P,Q两点之间的距离为4.此时点Q表示的数为20,24,25,27.【分析】(1)根据非负数的性质求出a、b的值即可解决问题;(2)构建方程即可解决问题;(3)分四种情形构建方程即可解决问题.【详解】(1)∵a,b满足|4a-b|+(a-4)2≤0,∴a=4,b=16,故答案为4,16.点A、B的位置如图所示.(2)设运动时间为ts.由题意:3t=2(16-4-3t)或3t=2(4+3t-16),解得t=83或8,∴运动时间为83或8秒时,点P到点A的距离是点P到点B的距离的2倍;(3)设运动时间为ts.由题意:12+t-3t=4或3t-(12+t)=4或12+t+4+3t=52或12+t+3t-4=52,解得t=4或8或9或11,∴点P和点Q运动4或8或9或11秒时,P,Q两点之间的距离为4.此时点Q表示的数为20,24,25,27.【点睛】本题考查多项式、数轴、行程问题的应用等知识,具体的关键是学会构建方程解决问题,学会用分类讨论的思想思考问题.8.某同学在解方程21233x x a-+=-时,方程右边的﹣2没有乘以3,其它步骤正确,结果方程的解为x =1.求a 的值,并正确地解方程.解析:a=2,x=-3【分析】由题意可知x=1是方程2x-1=x+a-2的解,然后可求得a 的值,然后将a 的值代入方程求解即可.【详解】解:将x =1代入2x ﹣1=x +a ﹣2得:1=1+a ﹣2.解得:a =2,将a =2代入21233x x a -+=-得:2x ﹣1=x +2﹣6. 解得:x =﹣3.【点睛】 本题主要考查的是一元一次方程的解,明确x=1是方程2(2x-1)=3(x+a )-2的解是解题的关键.9.某地下停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场的小型汽车数量是中型汽车的3倍,这些车共缴纳停车费270元,则小型汽车有多少辆?解析:小型汽车有45辆【分析】设中型汽车有x 辆,则小型汽车有3x 辆,根据“这些车共缴纳停车费270元”列出关于x 的方程,然后求解方程即可.【详解】设中型汽车有x 辆,则小型汽车有3x 辆,根据题意,得643270+⨯=x x ,合并同类项,得18x =270,系数化为1,得x =15,则3x =45.答:小型汽车有45辆.【点睛】本题主要考查一元一次方程的应用,解此题的关键在于根据题意设出未知数,找到题中相等关系列出方程.10.关于x 的方程357644m x m x +=-的解比方程4(37)1935x x -=-的解大1,求m 的值. 解析:623m =-【分析】 分别求出两方程的解,根据题意列出关于m 的方程,然后求解即可.【详解】解:357644m x m x +=-, 整理得:2(310)321m x m x +=- 313x m =-解得:331m x =-, 4(37)1935x x -=-4747x =1x =由题意得:31131m --= 解得:623m =-【点睛】本题考查了一元二次方程的解和解方程,关键是能先用含有m 的式子表示x ,然后根据题意列出方程.11.如图,甲船逆水,静水速度为28海里/时;乙船顺水,静水速度为12海里/时,两船相距60海里.已知水流速度为3海里/时,两船同时相向而行.(1)两船同时航行1小时,求此时两船之间的距离;(2)再(1)的情况下,两船再继续航行1小时,求此时两船之间的距离;(3)求两船从开始航行到两船相距12海里,需要多长时间?解析:(1) 20海里;(2) 20海里;(3) 1.2小时或1.8小时.【分析】(1)根据1h 后甲、乙间的距离=两船相距-(甲船行驶的路程+乙船行驶的路程)即可得; (2)根据2h 后甲、乙间的距离=甲船行驶的路程-乙船行驶的路程即可得;(3)可分相遇前与相遇后两种情况讨论即可解答.【详解】解:根据题意可知甲船的行驶速度为28-3=25海里/时,乙船的行驶速度为12+3=15海里/时(1)1h 后甲、乙间的距离=60-25×1-15×1=20海里;(2)2h 后甲、乙间的距离=25×2-15×2=20海里;(3)相遇前,设两船从开始航行到两船相距12海里,需要t 小时则12=60-(25+15)t ,求得t=1.2小时相遇后,设两船从开始航行到两船相距12海里,需要t 1小时则12+60=(25+15)t 1,求得t 1=1.8小时故两船从开始航行到两船相距12海里,1.2小时或1.8小时.【点睛】本题主要考查列代数式与一元一次方程的实际应用,掌握船顺流航行时的速度与逆流航行的速度公式是解题的关键.12.图1为全体奇数排成的数表,用十字框任意框出5个数,记框内中间这个数为 a(如图2).(1)请用含a的代数式表示框内的其余4个数;(2)框内的5个数之和能等于 2015,2020 吗?若不能,请说明理由;若能,请求出这5个数中最小的一个数,并写出最小的这个数在图1数表中的位置.(自上往下第几行,自左往右的第几个)解析:(1)详见解析;(2)详见解析.【分析】(1)上下相邻的数相差18,左右相邻的数相差是2,所以可用a表示;(2)根据等量关系:框内的5个数之和能等于2015,2020,分别列方程分析求解.【详解】(1)设中间的数是a,则a的上一个数为a−18,下一个数为a+18,前一个数为a−2,后一个数为a+2;(2)设中间的数是a,依题意有5a=2015,a=403,符合题意,这5个数中最小的一个数是a−18=403−18=385,2n−1=385,解得n=193,193÷9=21…4,最小的这个数在图1数表中的位置第22排第4列.5a=2020,a=404,404是偶数,不合题意舍去;即十字框中的五数之和不能等于2020,能等于2015.【点睛】本题考查一元一次方程的应用,关键是看到表格中中间位置的数和四周数的关系,最后可列出方程求解.13.小丽用的练习本可以从甲乙两家商店购买,已知两家商店的标价都是每本 2 元,甲商店的优惠条件是:购买十本以上,从第 11 本开始按标价的 70%出售;乙商店的优惠条件是:从第一本起按标价的80%出售。

七年级上册培优训练—一元一次方程(1)

七年级上册培优训练—一元一次方程(1)

七年级培优训练专题 一元一次方程一、选择题1、下列各式中是一元一次方程的是( )。

A 、1232x y -=-B 、2341x x x -=-C 、1123y y -=+D 、1226x x-=+ 2、根据“x 的3倍与5的和比x 的13多2”可列方程( )。

A 、3525x x +=- B 、3523x x +=+ C 、3(523x x +=-) D 、3(523x x +=+) 3、解方程20.250.1x 0.10.030.02x -+=时,把分母化为整数,得( )。

A 、200025101032x x -+= B 、20025100.132x x -+= C 、20.250.10.132x x -+= D 、20.250.11032x x -+= 4、三个正整数的比是1:2:4,它们的和是84,那么这三个数中最大的数是( )。

A 、56B 、48C 、36D 、125、方程2152x kx x -+=-的解为-1时,k 的值为( )。

A 、10 B 、-4 C 、-6 D 、-86、国家规定工职人员每月工资超出800元以上部分缴纳个人所得税的20%,小英的母亲10月份交纳了45.89的税,小英母亲10月份的工资是( )。

A 、8045.49元B 、1027.45元C 、1227.45元D 、1045.9元7、某市举行的青年歌手大奖赛今年共有a 人参加,比赛的人数比去年增加 20%还多3人,设去年参赛的人数为x 人,则x 为( )。

A 、3120%a ++B 、(120%)3a ++C 、 3120%a -+ D 、(120%)3a +- 8、某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( )。

A 、赚16元 B 、赔16元 C 、不赚不赔 D 、无法确定9、某工人原计划每天生产a 个零件,现实际每天多生产b 个零件,则生产m 个零件提前的天数为( )。

人教版数学七年级(上)第三章:一元一次方程单元培优训练试卷

人教版数学七年级(上)第三章:一元一次方程单元培优训练试卷

人教版数学七年级(上)第三章:一元一次方程 单元培优训练试卷 第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题 1.若x ﹣3=2y ,则x ﹣2y 的值是( ) A .2 B .﹣2 C .3 D .﹣3 2.x =5是下列哪个方程的解( ) A .x +5=0 B .3x ﹣2=12+x C .x ﹣15x =6 D .1700+150x =2450 3.下列方程的变形中,正确的是( ) A .由3+x =5,得x =5+3 B .由3x ﹣(1+x )=0,得3x ﹣1﹣x =0 C .由102y =,得y =2 D .由7x =﹣4,得74x =- 4.如果293a -与113a +是互为相反数,那么a 的值是( ) A .6 B .2 C .12 D .-6 5.明月从家里骑车去游乐场,若速度为每小时10km ,则可早到8分钟,若速度为每小时8km ,则就会迟到5分钟,设她家到游乐场的路程为xkm ,根据题意可列出方程为( ) A .851060860x x -=- B .851060860x x -=+ C .851060860x x +=- D .85108x x +=+ 6.如果代数式4y 2﹣2y +5的值为1,那么代数式2y 2﹣y +1的值为( ) A .﹣1 B .2 C .3 D .4 7.如图是某年的日历表,在此日历表上可以用一个矩形圈出3×3个位置的9个数(如……○…………………题※※ ……○…………………3,4,5,10,11,12,17,18,19).若用这样的矩形圈圈这张日历表的9个数,则圈出的9个数的和不可能为下列数中的( ) A .81 B .90 C .108 D .216 8.如图,钟面上的时间是8:30,再经过t 分钟,时针、分针第一次重合,则t 为( )A .756B .15011 C .15013 D .180119.某种商品的标价是132元,若以标价的9折销售,仍可获利润10%,则该商品的进价为( )A .105元B .108元C .110元D .118元…装………………线____姓名:_______…装………………线第II 卷(非选择题) 请点击修改第II 卷的文字说明 二、填空题 10.若x =5是方程ax +3bx ﹣10=0的解,则3a +9b 的值为_____. 11.关于x 的方程﹣5x 3m ﹣2+2m =0是关于x 的一元一次方程,那么这个方程的解为_____.12.一件商品的售价为107.9元,盈利30%,则该商品的进价为_____. 13.现定义某种运算“☆”,对给定的两个有理数a ,b ,有a ☆b =2a ﹣b .若12x -☆2=4,则x 的值为_____. 14.某人骑自行车去工厂上班,若每小时骑10km 可早到6min ,若每小时骑8km ,就迟到6min .那他家到工厂路程是_____km . 15.若方程x +5=7﹣2(x ﹣2)的解也是方程6x +3k =14的解,则常数k =_____. 16.小华以8折的优惠价钱买了一双鞋子,比不打折时节省了20元,则他买这双鞋子实际花了_____ 元. 17.按如图所示的程序流程计算,若开始输入的值为x =3,则最后输出的结果是_____. 三、解答题 18.解方程: (1)3x ﹣7(x ﹣1)=3﹣2(x +3); (2)131148x x ---=. 19.一件工作,甲单独完成需5小时,乙单独完成需3小时,先由甲,乙两人合做1小时,再由乙单独完成剩余任务,共需多少小时完成任务? 20.已知关于x 的方程m +3x =4的解是关于x 的方程241346x m x x ---=-的解的2倍,求m 的值.○…………外○…………内21.下面是小刚解方程213x -=1﹣24x +的过程, 4(2x ﹣1)=1﹣3(x +2)① 8x ﹣4=1﹣3x ﹣6 ② 8x +3x =1﹣6+4 ③ 11x =﹣1 ④ x =﹣111⑤ (1)小刚第 步开始解错(填写相应的序号); (2)错误原因: ;(3)写出正确的解的过程:22.小明每天要在8:00之前赶到距家1500m 的学校上学.一天,小明以1.0m /s 的速度出发,5min 后,小明的爸爸发现他忘了带数学书.于是,爸爸立即以1.5m /s 的速度去追小明,并且在途中追上了他.(1)爸爸几分钟后追上小明?(2)追上小明时,距离学校还有多远?23.某超市用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的12多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)(1)该商场购进甲、乙两种商品各多少件?(2)该超市将购进的甲、乙两种商品全部卖完后一共可获得多少利润?24.数轴上A 点对应的数为﹣5,B 点在A 点右边,电子蚂蚁甲、乙在B 分别以2个单位/秒、1个单位/秒的速度向左运动,电子蚂蚁丙在A 以3个单位/秒的速度向右运动. (1)若电子蚂蚁丙经过5秒运动到C 点,求C 点表示的数;(2)若它们同时出发,若丙在遇到甲后1秒遇到乙,求B 点表示的数;(3)在(2)的条件下,设它们同时出发的时间为t 秒,是否存在t 的值,使丙到乙的…○……○…距离是丙到甲的距离的2倍?若存在,求出t 值;若不存在,说明理由.参考答案1.C【解析】【分析】将x-3=2y移项即可得.【详解】∵x-3=2y,∴x-2y=3,故选:C.【点睛】本题考查了代数式求值,题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.2.D【解析】【分析】依次解各个选项中的方程,找出解为x=5的选项即可.【详解】A.解方程x+5=0得:x=-5,A项错误,B.解方程3x-2=12+x得:x=7,B项错误,C.解方程x-12x=6得:x=152,C项错误,D.解方程1700+150x=2450得:x=5,D项正确,故选:D.【点睛】本题考查了一元一次方程的解,正确掌握解一元一次方程的步骤是解题的关键.3.B【解析】【分析】根据等式的性质,依次分析各个选项,选出正确的选项即可.【详解】A.3+x=5,等式两边同时减去3得:x=5-3,A项错误,B.3x-(1+x)=0,去括号得:3x-1-x=0,B项正确,C.12y=0,等式两边同时乘以2得:y=0,C项错误,D.7x=-4,等式两边同时除以7得:x=-47,D项错误,故选:B.【点睛】本题考查了等式的性质,正确掌握等式的性质是解题的关键.4.B【解析】【分析】根据相反数的定义,得到关于a的一元一次方程,解之即可.【详解】根据题意得:2a93-+(13a+1)=0,去括号得:2a93-+13a+1=0,去分母得:2a-9+a+3=0,移项得:2a+a=9-3,合并同类项得:3a=6,系数化为1得:a=2,故选:B.【点睛】本题考查了解一元一次方程和相反数,掌握解一元一次方程的方法和相反数的定义是解题的关键.5.C【解析】【分析】她家到游乐场的路程为xkm,根据时间=路程÷速度结合“若速度为每小时10km,则可早到8分钟,若速度为每小时8km,则就会迟到5分钟”,即可得出关于x的一元一次方程,此题得解.【详解】她家到游乐场的路程为xkm,根据题意得:x8x5 1060860+=-,故选C.【点睛】本题考查了由实际问题抽象出一元一次方程,弄清题意,找准等量关系,正确列出一元一次方程是解题的关键.6.A【解析】【分析】由代数式4y2﹣2y+5的值为1,可得到4y2﹣2y=﹣4,两边除以2得到2y2﹣y=﹣2,然后把2y2﹣y=﹣2代入2y2﹣y+1即可得到答案.【详解】根据题意知:4y2﹣2y+5=1,则4y2﹣2y=﹣4,∴2y2﹣y=﹣2,∴2y2﹣y+1=﹣2+1=﹣1.故选A.【点睛】本题考查了代数式求值:先把代数式变形,然后利用整体代入的方法求代数式的值.7.D【解析】【分析】设中间的数为x, 表示出其他8个数, 根据圈出的9个数的和为9x, 根据题意分别列出方程, 进而求解即可.【详解】解:设中间的数为x,则左右两边数为x-1,x+1,上行邻数为(x-7),下行邻数为(x+7),左右上角邻数为(x-8),(x-6),左右下角邻数为(x+6),(x+8),根据题意得x+x-1+x+1+x-7+x+7+x-8+x-6+x+6+x+8=9x如果9x=81, 那么x=9, 不符合题意;如果9x=90,那么x=10,不符合题意;如果9x=108, 那么=12, 不符合题意;如果9x=216, 那么x=24, 此时最大数x+8=32, 不是日历表上的数, 符合题意;故选:D.【点睛】本题主要考查一元一次方程的应用,根据已知条件列出方程是解题的关键.8.B【解析】【分析】解决这个问题就要弄清楚时针与分针转动速度的关系:每一小时,分针转动360°,而时针转动30°,即分针每分钟转动6°,时针每分钟转动0.5°.【详解】设从8:30点开始,经过x分钟,时针和分针第一次重合,由题意得:6x-0.5x=755.5x=75x=150 11,答:至少再经过15011分钟时针和分针第一次重合.故选:B.【点睛】此题考查一元一次方程的应用,钟表上的分钟与时针的转动问题本质上与行程问题中的两人追及问题非常相似,行程问题中的距离相当于这里的角度,行程问题中的速度相当于这里时(分)针的转动速度.9.B【解析】设进价为x,则依题意可列方程:132×90%-x=10%•x,解得:x=108元;故选B.10.6【解析】【分析】把x=5代入ax+3bx-10=0得:5a+15b-10=0,经过移项,等式两边同时除以5,等式两边同时乘以3,即可得到答案.【详解】把x=5代入ax+3bx-10=0,5a+15b-10=0,移项得:5a+15b=10,等式两边同时除以5得:a+3b=2,等式两边同时乘以3得:3a+9b=6,故答案为:6.【点睛】本题考查了一元一次方程的解,正确掌握解一元一次方程是解题的关键.11.x=2 5【解析】【分析】根据一元一次方程的定义,得到关于m的一元一次方程,解之得到m的值,代入原方程,得到关于x的一元一次方程,解之即可.【详解】根据题意得:3m﹣2=1,解得:m=1,把m=1代入原方程得:﹣5x+2=0,解得:x=25,故答案为:x=25.【点睛】本题考查了一元一次方程的定义,正确掌握一元一次方程的定义是解题的关键.12.83元【解析】【分析】设该商品的进价是x元,根据“售价﹣进价=利润”列出方程并解答.【详解】设该商品的进价是x元,依题意得:107.9﹣x=30%x,解得x=83,故答案为:83元.本题考查一元一次方程的应用,读懂题意,掌握好进价、售价、利润三者之间的关系是解题的关键.13.﹣5或7【解析】【分析】根据“a☆b=2a-b”,设|12x-|=m,得到关于m的一元一次方程,解之,根据不绝对值的定义,得到关于x的一元一次方程,解之即可.【详解】设|12x-|=m,则m☆2=4,根据题意得:2m-2=4,解得:m=3,则|12x-|=3,即12x-=3或12x-=-3,解得:x=-5或7,故答案为:-5或7.【点睛】本题考查了解一元一次方程和有理数的混合运算,正确掌握一元一次方程的解法和有理数的混合运算是解题的关键.14.8【解析】【分析】设他家到工厂的路程是x千米,根据小明到工厂的规定时间不变建立方程求出其解即可.【详解】设他家到工厂的路程是x千米根据题意可得:66 1060860 x x+=-故答案为:8【点睛】本题考查了一元一次方程的应用,解题的关键是明确题意,列出相应的方程.15.2 3【解析】∵x+5=7-2(x-2)∴x=2.把x=2代入6x+3k=14得,12+3k=14,∴k=23 .16.80【解析】设这双鞋子原价为x元,由题意则有:x-0.8x=20,解得x=100,所以100-20=80,即他买这双鞋子实际花了80元,故答案为:80.17.21【解析】【分析】把x=3代入程序流程中计算,判断结果与10的大小,即可得到最后输出的结果.【详解】把x=3代入程序流程中得:342⨯=6<10,把x=6代入程序流程中得:672⨯=21>10,则最后输出的结果为21.故答案为:21【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.18.(1):x=5;(2)x=﹣9.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【详解】(1)去括号得:3x﹣7x+7=3﹣2x﹣6,移项得:3x﹣7x+2x=3﹣6﹣7,合并同类项得:﹣2x=﹣10,系数化为1得:x=5,(2)去分母得:2(x﹣1)﹣(3x﹣1)=8,去括号得:2x﹣2﹣3x+1=8,移项得:2x﹣3x=8+2﹣1,合并同类项得:﹣x=9,系数化为1得:x=﹣9.【点睛】本题考查了解一元一次方程,解方程去分母时注意各项都要乘以各分母的最小公倍数.19.先由甲,乙两人合做1小时,再由乙单独完成剩余任务,共需125小时完成任务.【解析】【分析】设由甲、乙两人一起做1小时,再由乙单独完成剩余部分,还需x时间完成,根据总工作量=各部分的工作量之和建立等量关系列出方程求出其解就可以了.【详解】解:设由甲、乙两人合做1小时,再由乙单独完成剩余部分,还需x小时完成,由题意,得:(1153)×1+13x=1,解得:x=75,即剩余部分由乙单独完成剩余部分,还需75小时完成,则共需1+75=125小时完成任务,答:先由甲,乙两人合做1小时,再由乙单独完成剩余任务,共需125小时完成任务.【点睛】考查了一元一次方程的应用,工作总量等于工作效率乘以工作时间的运用,一元一次方程的解法的运用,解答时根据条件建立方程是关键.20.m=0.【解析】【分析】分别解方程m+x3=4和方程x m2x4x1346---=-,得到两个含有m的解,根据“关于x的方程m+x3=4的解是关于x的方程x m2x4x1346---=-的解的2倍”,列出关于m的一元一次方程,解之即可.【详解】解方程m+x3=4得:x=12﹣3m,解方程x m2x4x1346---=-得:x=m﹣6,根据题意得:2(m﹣6)=12﹣3m,解得:m=0.【点睛】本题考查了一元一次方程的解和解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.21.(1)①.(2)1没有乘以12.(3)10.11 x=【解析】【分析】(1) (2)根据等式的性质,解一元一次方程的步骤即可判断;(3)首先去分母、然后去括号、移项、合并同类项、次数化成1即可求解.【详解】(1)①.故答案为:①;(2)错误的原因是:1没有乘以12.故答案为:1没有乘以12.(3)去分母,得()()4211232,x x -=-+去括号,得841236,x x -=--移项,得831264,x x +=-+合并同类项,得1110,x =系数化为1,得10.11x =【点睛】考查解一元一次方程,一般步骤为:去分母,去括号,移项,合并同类项,把系数化为1. 22.(1)10min ;(2)追上小明时,距离学校还有600m 远.【解析】【分析】(1)可设爸爸追上小明用了xmin ,根据速度差×时间=路程差,路程方程求解即可;(2)先求出追上小明时的路程,再用1500m 减去该路程即可求解.【详解】(1)可设爸爸追上小明用了xmin ,根据题意得:(1.5×60﹣1×60)x =1×60×5,解得x =10.答:爸爸追上小明用了10min ;(2)1500﹣1.5×60×10=1500﹣900=600(m ).答:追上小明时,距离学校还有600m 远.【点睛】本题考查了一元一次方程行程问题的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.23.(1) 该超市第一次购进甲种商品150件、乙种商品90件.(2) 1950元.【解析】【分析】(1)设第一次购进甲种商品x 件,则乙种商品的件数是(12x +15),根据题意列出方程求出其解就可以;(2)由利润=售价-进价作答即可.【详解】解:(1)设第一次购进甲种商品x 件,则购进乙种商品(12x +15)件, 根据题意得:22x +30(12x+15)=6000, 解得:x =150, ∴12x+15=90. 答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(29﹣22)×150+(40﹣30)×90=1950(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.【点睛】本题考查的知识点是利润=售价-进价的运用和列一元一次方程解实际问题的运用及一元一次方程的解法的运用,解题关键是解答时根据题意建立方程.24.(1)10;(2)15;(3) :103t =或307t = 【解析】试题分析:(1)丙运动到c 点表示的数是-53510+⨯=;(2)乙丙相遇的时间比甲丙相遇用的时间多1秒,所以设B 点表示的数为x ,AB 的距离是x+5,,可以得到5513132x x ++-=++,求得x=15;(3)由(2)得AB 距离是20,可以求出甲丙,乙丙相遇所需要的时间,分别是4秒,5秒。

2019-2020年度第一学期人教版七年级数学上第三章 一元一次方程 单元培优试卷(含答案)

2019-2020年度第一学期人教版七年级数学上第三章 一元一次方程 单元培优试卷(含答案)

人教版七年级数学上册第三章一元一次方程单元培优试卷一、选择题(每小题3分,共30分)1.已知x=2是关于x 的一元一次方程mx+2=0的解,则m 的值为( ) A. ﹣1 B. 0 C. 1 D. 22.关于 的一元一次方程 的解为 ,则 的值为( )x 2xa −2+m =4x =1a +m A. 9 B. 8 C. 5 D. 43.已知a =b ,下列等式不一定成立的是()A. a+c =b+cB. c﹣a =c﹣bC. ac =bcD. ac=b c4.下列解方程去分母正确的是( ) A. 由 ,得2x﹣1=3﹣3x B. 由,得2x﹣2﹣x =﹣4x 3−1=1−x 2x −22−x4=−1C. 由,得2y-15=3y D. 由,得3(y+1)=2y+6y 3−1=y5y +12=y3+15.下列方程移项正确的是( )A. 4x﹣2=﹣5移项,得4x =5﹣2B. 4x﹣2=﹣5移项,得4x =﹣5﹣2C. 3x+2=4x 移项,得3x﹣4x =2D. 3x+2=4x 移项,得4x﹣3x =26.已知方程2x+k=6的解为正整数,則k 所能取的正整数值为( )A. 1B. 2或3C. 3D. 2或47.一件毛衣先按成本提高50%标价,再以8折出售,获利28元,求这件毛衣的成本是多少元.若设成本是x 元,可列方程为( )A. 0.8x+28=(1+50%)xB. 0.8x﹣28=(1+50%)xC. x+28=0.8×(1+50%)xD. x﹣28=0.8×(1+50%)x8.某中学向西部山区一中学某班捐了若干本图书.如果该班每位同学分47本,那么还差3本;如果每位同学分45本,那么又多出43本,则该班共有学生( )名.A. 20B. 21C. 22D. 239.寒假期间,小刚组织同学一起去看科幻电影《流浪地球》,票价每张45元,20张以上(不含20张)打八折,他们一共花了900元,则他们买到的电影票的张数是( ) A. 20 B. 22 C. 25 D. 20或2510.某企业接到为地震灾区生产活动房的任务,此企业拥有九个生产车间,现在每个车间原有的成品活动房一样多,每个车间的生产能力也一样.有A 、B 两组检验员,其中A 组有8名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)检验完毕后,再去检验第三、四车间所有成品,又用去三天时间;同时这五天时间B 组检验员也检验完余下的五个车间的所有成品.如果每个检验员的检验速度一样快,那么B 组检验员人数为( )A. 8人B. 10人C. 12人D. 14人二、填空题(每小题4分,共24分)11.一元一次方程3x=2(x+1)的解是________12.已知关于x 的方程3a﹣x =x+2的解为2,则代数式a 2+1=________13.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是________元.14.当 =________时,关于 的方程 与方程 的解相同. a x 3x −1=−4a −5=6x −215.已知代数式-6x+16与7x-18的值互为相反数,则x=________.16.农贸市场鸡蛋买卖按个数计算,一商贩以每个0.48元购进一批鸡蛋,但在途中不慎烂了12个,剩下的鸡蛋以每个0.56元售出,结果仍获利22.4元,设最初购进x 个鸡蛋,那么可列出方程为 ________三、解答题(本大题共8小题,共66分)17.解方程(1)10x +7=12x −5(2)3x −14−1=5x −7618.a 等于什么数时,代数式的值比的值大8?a +12a −17319.小明解方程+ 1 = 时,由于粗心大意,在去分母时,方程左边的 1没有乘 10,由此求得的解2x −15x +a2为 x=4,试求 a 的值,并求出方程正确的解. 20.当n 为何值时,关于x 的方程的解为0?2x +n 3+1=1−x 2+n21.某罐头厂用白铁皮做罐头盒,每张铁皮可制作盒身16个或盒底40个,一个盒身与两个盒底配成一套罐头盒,现有108张白铁皮,用多少张制作盒身,多少张制作盒底,可以正好制成配套罐头盒? 22.某校七年级一班共有学生48人,其中女生人数比男生人数的多3人,这个班有男生多少人?(列方45程解答)23.一艘货轮货舱容积是2000立方米,可载重500吨,现有甲、乙两种货物待装,已知甲种货物每吨体积为7立方米,乙种货物每吨体积为2立方米,两种货物各装多少吨最合理?24.某校七年级400名学生到郊外参加植树活动,已知用2辆小客车和1辆大客车每次可运送学生85人,用3辆小客车和2辆大客车每次可运送学生150人. (1)每辆小客车和每辆大客车各能坐多少名学生?(2)若计划租小客车m 辆,大客车n 辆,一次送完,且恰好每辆车都坐满: ①请你设计出所有的租车方案;②若小客车每辆租金300元,大客车每辆租金500元,请选出最省线的租车方案,并求出最少租金.人教版七年级数学上册第三章一元一次方程单元培优试卷一、选择题(30分)1.解:把x=2代入方程得:2m+2=0, 解得:m=﹣1,故答案为:A .2.解:因为关于x 的一元一次方程2x a-2+m=4的解为x=1,可得:a-2=1,2+m=4,解得:a=3,m=2,所以a+m=3+2=5,故答案为:C .3.解:A 、由a =b 知a+c =b+c ,此选项一定成立; B 、由a =b 知c﹣a =c﹣b ,此选项一定成立;C 、由a =b 知ac =bc ,此选项一定成立;D 、由a =b 知当c =0时无意义,此选项不一定成立;ac=b c 故答案为:D 4.解:A .由 ,得:2x﹣6=3﹣3x ,不符合题意;x 3−1=1−x 2B .由 ,得:2x﹣4﹣x =﹣4,不符合题意;x −22−x4=−1C .由 ,得:5y﹣15=3y ,不符合题意;y 3−1=y 5D .由,得:3( y+1)=2y+6,符合题意.y +12=y 3+1故答案为:D .5.解:A 、4x﹣2=﹣5移项,得4x =﹣5+2,故选项不符合题意; B 、4x﹣2=﹣5移项,得4x =﹣5+2,故选项不符合题意;C 、3x+2=4x 移项,得3x﹣4x =﹣2,故选项不符合题意;D 、3x+2=4x 移项,得3x﹣4x =﹣2,所以,4x﹣3x =2,故选项符合题意.故答案为:D .6.解:2x+k=6, 移项得:2x=6-k ,系数化为1得:x=,6−k2∵方程2x+k=6的解为正整数,∴6-k 为2的正整数倍,6-k=2,6-k=4,6-k=6,6-k=8…,解得:k=4,k=2,k=0,k=-2…,故答案为:D.7.解: 成本是x 元,根据题意得: x+28=0.8×(1+50%)x 故答案为:C8.解:设该班同学有x 人:则47x-3=45x+43, 解得x=23 故答案为:D9.解:①若购买的电影票不超过20张,则其数量为900÷45=20(张); ②若购买的电影票超过20张,设购买了x 张电影票,根据题意,得:45×x×80%=900,解得:x =25;综上,共购买了20张或25张电影票;故答案为:D .10.解:设每个车间原有成品a 件,每个车间每天生产b 件产品,根据检验速度相同得:,2a +2×2b2=2a +2×5b3解得a=4b ;则A组每名检验员每天检验的成品数为:2(a+2b )÷(2×8)=12b÷16= b .34那么B 组检验员的人数为:5(a+5b )÷( b )÷5=45b÷ b÷5=12(人).3434故答案为:C 二、填空题(24分)11.解:方程去括号得:3x=2x+2, 解得:x=2.故答案为:x=212.解:把x=2代入方程3a-x=x+2, 得:3a-2=4,解得:a=2,所以a 2+1=22+1=5,故答案为:513.解:设进价为a 元,则a×(1+40%)×80%=2240, 解得a=2000(元)14.解方程 可得x=-1, 3x −1=−4把x=-1代入方程 得,a −5=6x −2 ,a −5=6×(−1)−2解得a=-3.故答案为:-3.15.解 :由题意得 -6x+16+7x-18 =0, 解得 x=2, 故答案为 :2.16.解:∵总收入-总成本=利润, ∴0.56(x-12)-0.48x=22.4故答案为:0.56(x-12)-0.48x=22.4.三、解答题(66分)17. (1)解: , 10x −12x =−5−7 ,−2x =−12x =6(2)解: , 3(3x −1)−12=2(5x −7) ,9x −3−12=10x −14 ,9x −10x =−14+3+12 ,−x =1x =−118. 解 :由题意得- =8,a +12a −173去分母,得 3(a+1)-2(a-17)=48,去括号,得3a+3-2a+34=48,移项、合并同类项,得a=11.∴ a=11时,代数式的值比的值大8.a +12a −17319. 解:根据题意,x=4 是方程2(2x-1)+1=5(x+a)的解,∴2(2×4-1)+1=5(4+a),解得 a=-1,将a=-1代入方程+ 1 = 2x −15x +a2得+ 1 =,2x −15x -12去分母,得 2(2x-1)+10=5(x-1)去括号,得 4x-2+10=5x-5,移项合并同类项,得 x=13. 20. 解:把0代入得:2x +n 3+1=1−x 2+nn3+1=12+n 去分母的: 2n +6=3+6n ∴n =34即当时,关于x 的方程的解为0.n =342x +n 3+1=1−x 2+n21.解:设x 张制作盒底,则(108-x )张制作盒身,依题意可得,40x=2×16(108-x ),解得x=48答:48张制作盒底,可以正好制成配套罐头盒。

人教版七年级上册 一元一次方程培优专题(含答案)

人教版七年级上册 一元一次方程培优专题(含答案)

人教版七年级上册 解一元一次方程培优专题(含答案)一、单选题1.若关于x 的方程()2018201662018(1)k x x --=-+的解是整数,则整数k 的取值个数是( )A .2B .3C .4D .62.关于x 的方程253x a +=的解及方程220x +=的解相同,则a 的值是(). A .1 B .4 C .-1 D .-43.若3a 及96a -互为相反数,则a 的值为( ) A .32 B .32- C .3 D .3-4.解方程时,去分母后得到的方程是( )A .3(x ﹣5)+2(x ﹣1)=1B .3(x ﹣5)+2x ﹣1=1C .3(x ﹣5)+2(x ﹣1)=6D .3(x ﹣5)+2x ﹣1=65.若代数式32x +及代数式510x -的值互为相反数,则x 的值为()A.1B.0C.-1D.26.方程去分母后正确的结果是( )A. B.C. D.7.若方程:()2160x --=及的解互为相反数,则a 的值为( ) A.-13 B.13 C.73 D.-18.规定,若,则x =( )A.0B.3C.1D.29.方程2y ﹣12=12y ﹣中被阴影盖住的是一个常数,此方程的解是y =﹣53.这个常数应是( ) A.1 B.2C.3D.4 10.已知|m -2|+(n -1)2=0,则关于x 的方程2m +x =n 的解是( )A.x =-4B.x =-3C.x =-2D.x =-1 二、填空题11.代数式及代数式32x -的和为4,则x =_____.12.若1y =-是方程237y a -=的解,则关于x 的方程(31)42a x x a -=+-的解为_______________.13.()00ax b a -=≠,a 、b 互为相反数,则x 等于___________14.代数式31a -及2a 互为相反数,则a =___________15.请你写出一个一元一次方程_____,使它的解及一元一次方程3x x 1的解相同.(只需写出一个满足条件的方程即可)16.若代数式 4x 8- 及 3x 22+ 的值互为相反数,则x 的值是____.17.解一元一次方程时,“去分母”这一变形的依据是等式性质;去分母时,要在方程两边都乘各分母的最小公倍数,注意不要漏乘不含分母的项.(______)三、解答题18.m 为整数,关于x 的方程x=6-mx 的解为正整数,求m 的值19.已知y 1=2x +8,y 2=6﹣2x .当x 取何值时,y 1比y 2小5?20.已知3x =是方程()131234m x x ⎡⎤-⎛⎫++=⎢⎥ ⎪⎝⎭⎣⎦的解,求m 的值.21.已知3120x +=及方程|3|1x a +=-的解相同,求a 的值.22.列方程求解(1)m 为何值时,关于x 的一元一次方程4x ﹣2m=3x ﹣1的解是x=2x ﹣3m 的解的2倍.(2)已知|a ﹣3|+(b+1)2=0,代数式的值比12b ﹣a+m 多1,求m 的值.22.我们来定义一种运算: a b c d =ad-bc.例如2? 34? 5=2×5-3×4=-2;再如 21? 3x =3x-2.按照这种定义,当时,x 的值是多少?24.若24a =,2=b .a b的值;(1)求(2)若a+b>0,①求a,b的值;②解关于x的方程.25.如果方程的解及关于x的方程4x-(3a+1)=6x+2a-1的解相同,求代数式a2+a-1的值.参考答案1.D【解析】【分析】整理方程,得到mx=b的形式,根据k、x都是整数,确定k的个数.【详解】(k−2018)x−2016=6−2018(x+1)整理,得kx=4,由于x、k均为整数,所以当x=±1时,k=±4,当x=±2时,k=±2,当x=±4时,k=±1,所以k的取值共有6个.故选:D.【点睛】本题考查一元一次方程的解,本题所给的方程较繁琐,能将方程整理为mx=b 是解题的关键,还需注意在最终判断k的个数时不能忽略负数.2.A【解析】【分析】利用一元一次方程的解法解出方程2x+2=0,根据同解方程的定义将解得的x的值代入13解答.【详解】解方程2x+2=0,得x=−1,由题意得,−2+5a=3,解得,a=1,故选A.【点睛】本题考查同解方程,解决本题的关键是理解方程解的定义,注意细心运算. 3.C【解析】【分析】根据互为相反数两数之和为0列出方程,求出方程的解即可得到a的值.【详解】解:根据题意得:去分母得:2a+a-9=0,解得:a=3.故选:C.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.4.C【解析】【分析】根据一元一次方程的解法即可求出答案.【详解】解:等式两边同时乘以6可得:3(x﹣5)+2(x﹣1)=6,故选:C.【点睛】本题考查了一元一次方程的解法,解一元一次方程去分母的方法是两边都乘各分母的最小公倍数,一是不要漏乘不含分母的项,二是去掉分母后要把多项式的分子加括号.5.A【解析】【分析】根据互为相反数相加得零列式求解即可.【详解】由题意得x++51032x-=0,解之得x=1.故选A.【点睛】本题考查了相反数的定义,一元一次方程的解法,根据题意正确列出方程是解答本题的关键.6.B【解析】【分析】方程两边乘以8去分母得到结果,即可做出判断.【详解】方程去分母后正确的结果是2(2x−1)=8−(3−x),故选B.【点睛】此题考查解一元一次方程,解题关键在于掌握运算法则. 7.A【解析】试题解析:∵2(x-1)-6=0,∴x=4,∵,∴x=3a-3,∵原方程的解互为相反数,∴4+3a-3=0,解得,a=1.3故选A.8.C【解析】【分析】根据规定,可将转化为方程:()()2133x x ---=,解方程即可.【详解】因为,所以可得()()2133x x ---=,解得1x =,故选C.【点睛】本题主要考查新定义运算,解决本题的关键是要根据新定义规则列出方程.9.C【解析】【详解】设被阴影盖住的一个常数为k ,原方程整理得,k=-32y+12,把代入k=-32y+12,中得,k=-32×(53-)+12==3,故选C. 10.B【解析】∵|m﹣2|+(n﹣1)2=0,∴2010,,-=-=m n∴21,,==m n∴方程2m x n+=,解得3x+=可化为:41x=-.故选B.点睛:(1)一个代数式的绝对值、一个代数式的平方都是非负数;(2)若两个非负数的和为0,则这两个非负数都为0.11.﹣1.【解析】【分析】根据题意列出方程,求出方程的解即可得到x的值.【详解】根据题意得:,去分母得:219612x x-+-=,移项合并得:44-=,x解得:1x=-,故答案为:﹣1.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.12.x=8 13【解析】【分析】先把y=−1代入方程2y−3a=7求出a的值,然后把a的值代入方程a(3x−1)=4x+a−2即可求解.【详解】解:∵y=−1是方程2y−3a=7的解,∴−2−3a=7,∴a=−3,把a=−3代入方程a(3x−1)=4x+a−2得:−3(3x−1)=4x−5,解得:x=813,故答案为:x=813.【点睛】本题考查了一元一次方程解的定义以及解一元一次方程,使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.【解析】【分析】由于a≠0,可以把方程移项后两边同时除以a,而a、b互为相反数,由此即可得到方程的解.【详解】ax-b=0(a≠0),移项得:ax=b(a≠0),系数化1得:,∵a、b互为相反数,∴x=-1.故填-1.【点睛】本题考查解一元一次方程,相反数.能通过解方程的一般步骤将方程化为的形式,并根据相反数的定义,得出互为相反数的两个数(数不为0)的商为-1是解决此题的关键.14.1 5 .【解析】根据互为相反数两数之和为0列出方程,求出方程的解即可得到a的值.【详解】根据题意得:3120a a-+=.移项、合并同类项得51a=,解得.故填1 5 .【点睛】本题考查相反数和解一元一次方程,能根据相反数的定义列出a的方程是解决此题的关键.15.答案不唯一,如2x=3等【解析】【分析】先解方程3x−x=−1,求出方程的解,再根据只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程;它的一般形式是ax+b=0(a,b是常数且a≠0);根据题意,写一个符合条件的方程即可.【详解】x−x=−1,方程3解得x=1.5,符合条件的方程有很多,如2x=3等.故答案是:答案不唯一,如2x=3等.【点睛】考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.注意方程的解是指能使方程成立的未知数的值.16.-2【解析】【分析】根据相反数的定义即可列出方程求出x的值.【详解】由题意可知:4x-8+3x+22=0,∴x=-2,故答案是:-2【点睛】考查一元一次方程,解题的关键是熟练运用一元一次方程的解法.17.正确【解析】【分析】根据解一元一次方程的步骤即可判断.【详解】解:去分母要在方程乘两边乘分母得最小公倍数,否则会加大计算量;根据等式的性质,不含分母的项也要乘此最小公倍数.故答案为:正确.【点睛】此题考查了解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为一.18.0或1或2或5.【解析】【分析】方程整理后,根据解为正整数,求出m的值即可.【详解】解:方程整理得:(1+m)x=6,解得:x=,由解为正整数,得到m+1=1或m+1=2或m+1=3或m+1=6,解得:m=0或m=1或m=2或m=5,故m的值为0或1或2或5.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.19.当x取﹣74时,y1比y2小5.【解析】【分析】y2﹣y1=5即6-2x-(2x+8)=5,解出即可.【详解】解:根据题意得:y2﹣y1=(6﹣2x)﹣(2x+8)=5,解得:x=﹣74,即当x=﹣74时,y1比y2小5.【点睛】此题考查解一元一次方程,解题关键在于掌握运算法则. 20..【解析】【分析】把x=3代入方程()131234m xx⎡⎤-⎛⎫++=⎢⎥⎪⎝⎭⎣⎦,解关于m的方程即可求出m的值.【详解】把x=3代入方程()131234m xx⎡⎤-⎛⎫++=⎢⎥⎪⎝⎭⎣⎦,得:,解得:.【点睛】本题考查一元一次方程的解.使一元一次方程两边等式恒成立的未知数的值叫做一元一次方程的解.21.1a=±【解析】【分析】求出第一个方程的解,把x 的值代入第一个方程,求出方程的解即可.【详解】解:解方程3120x +=得4x =-,把4x =-代入方程|3|1x a +=-,得33a =,所以1a =±.【点睛】本题考查了同解方程和解一元一次方程的应用,关键是得出关于a 的方程.22.(1)-14;(2)0.【解析】试题分析:(1)分别表示出两方程的解,根据解的关系确定出m 的值即可; (2)根据题意列出方程,利用非负数的性质求出a 及b 的值,代入计算即可求出m 的值.试题解析:解:(1)方程4x ﹣2m =3x ﹣1,解得:x =2m ﹣1.方程x =2x ﹣3m ,解得:x =3m .由题意得:2m ﹣1=6m ,解得:m =﹣14; (2)由|a ﹣3|+(b +1)2=0,得到a =3,b =﹣1,代入方程21()122b a m b a m -+--+=,得: 51(3)122m m ----+=,整理得:, 去分母得:m ﹣5+1+6﹣2m =2解得:m =0.点睛:此题考查了解一元一次方程,以及非负数的性质,熟练掌握运算法则是解本题的关键.23.x=-32.【解析】【详解】试题分析:认真阅读新定义的运算,然后直接代入运算格式,再解方程即可.试题解析:根据运算的规则 ,可化为2(2x -1)-2x=(x-1)-(-4)× 12, 化简可得-2x=3,即x=-32.24.(1)0或4或-4(2)①a=b=2②x=1【解析】试题分析:(1)根据乘方和绝对值求出a 、b 的值,然后代入求值即可;(2)根据前面求出的a 、b 的值,确定符合条件的a 、b ,然后代入求解方程即可.试题解析:因为:24a =,2b =所以a=±2,b =±2(1)当a=2,b=2时,a-b=0;当a=2,b=-2时,a-b=4;当a=-2,b=2时,a-b=-4;当a=-2,b=-2时,a-b=0故a-b 的值为0或±4.(2)①因为a+b >0,所以a=2,b=2,②把a=b=2代入方程.可得方程.解得x=125.x=10;a=-4;11.【解析】【分析】根据题意,可先求出方程的解,再将x 的值代入方程()431621x a x a -=-++中,解出a 的值,代入代数式,求2a 1a -+的值即可。

【同步培优】人教版2018年 七年级数学上册 解一元一次方程 同步培优练习卷(含答案)

【同步培优】人教版2018年 七年级数学上册 解一元一次方程 同步培优练习卷(含答案)

2018年七年级数学上册解一元一次方程同步培优练习卷一、选择题:1、下列结论正确的是()A.若m+3=n-7,则m+7=n-11B.若0.25x=-1,则x=-1/4C.若7y-6=5-2y,则7y+6=17-2yD.若7a=-7a,则7=-72、已知关于x的方程(2a+b)x-1=0无解,那么ab的值是()A.负数B.正数C.非负数D.非正数3、若x=﹣1是关于x的方程2x+5a=3的解,则a的值为()A. B.4 C.1 D.﹣14、下列一元一次方程中进行合并同类项,正确的是( ).A.已知x+7x-6x=2-5,则-2x=-3B.已知0.5x+0.9x+0.1=0.4+0.9x,则1.5x=1.3C.已知25x+4x=6-3,得29x=3D.已知5x+9x=4x+7,则18x=75、下列解方程去分母正确的是( )A.由,得2x-1=3-3x;B.由,得2(x-2)-3x-2 =-4C.由,得3y + 3=2y-3y + 1-6y;D.由,得12x-1=5y + 206、若方程的解与关于的方程的解相同,则的值为().A. B. C. D.7、已知代数式的值为7,则的值为()A. B. C.8 D.108、已知|3m-12|+=0,则2m-n等于( ).A.9B.11C.13D.159、定义,若,则的值是()A.3B.4C.6D.910、用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”的个数为( ).A.5B.4C.3D.211、当x=4时,式子5(x+m)-10与式子mx+4x的值相等,则m=()A.-2;B.2;C.4;D.6;12、如图所示的运算程序中,若开始输入的x值为96,我们发现第一次输出的结果为48,第二次输出的结果为24,…,则第2017次输出的结果为()A.6B.3C.D.6024二、填空题:13、已知4m+2n-5=m+5n,试利用等式的性质比较m与n的大小关系:__________.14、小李在解方程5a-x=13(x为未知数)时误将-x看作+x,得方程的解为x=-2,则原方程的解为__________.15、已知x2﹣2x=5,则代数式2x2﹣4x﹣1的值为 .16、用“*”表示一种运算,其意义是a*b=a﹣2b,如果x*(3*2)=3,则x= .17、已知满足方程,则的值为 .18、已知a、b、c、d为有理数,现规定一种新运算,如那么当时,则x的值为 .三、解答题:19、解方程:5x﹣2=7x+8 20、解方程:4x﹣1.5x=﹣0.5x﹣921、解方程: 22、解方程:70%x+(30-x)×55%=30×65%23、解方程:. 24、解方程:.25、﹣=3. 26、27、已知关于x的方程的解与方程的解互为相反数,求k的值.28、a⊗b是新规定的这样一种运算法则:a⊗b=a2+ab,例如3⊗(﹣2)=32+3×(﹣2)=3.(1)求(﹣2)⊗3的值;(2)若(﹣3)⊗x=5,求x的值;(3)若3⊗(2⊗x)=﹣4+x,求x的值.29、阅读下面一段文字:根据你对这段文字的理解,回答下列问题:(1)步骤①到步骤②的依据是;(2)仿照上述探求过程,请你尝试把表示成分数的形式.30、点A、B在数轴上分别表示有理数a、b,点A与原点O两点之间的距离表示为AO,则AO==,类似地,点B与原点O两点之间的距离表示为BO,则BO=,点A与点B两点之间的距离表示为AB=.请结合数轴,思考并回答以下问题:(1)数轴上表示1和-3的两点之间的距离是__________;(2)数轴上表示m和-1的两点之间的距离是__________;(3)数轴上表示m和-1的两点之间的距离是3,则有理数m是___________;(4)若x表示一个有理数,并且x比-3大,比1小,则______;(5)求满足的所有整数x的和.参考答案1、C;2、D;3、C;4、C;5、C;6、B;7、C;8、C;9、C;10、A;11、D; 12、B13、答案为:m>n14、答案为:x=2.15、答案为:9.16、答案为:1.17、答案为:2;18、答案为:-319、x=﹣5.20、x=-3;21、x=0.75.22、x=12.23、x=0.5.24、x=﹣3.25、x=5.26、x=70;27、解:=1+k,去括号得:=1+k,去分母得:1-x=2+2k,移项得:-x=1+2k,把x的系数化为1得:x=-1-2k,,去分母得:15(x-1)-8(3x+2)=2k-30(x-1),去括号得:15x-15-24x-16=2k-30x+30,移项得:15x-24x+30x=2k+30+15+16,合并同类项得:21x=61+2k,把x的系数化为1得:x=,∵两个方程的解为相反数,∴-1-2k+=0,解得:k=1.28、解:(1)根据题意得:(﹣2)⊗3=(﹣2)2﹣2×3=4﹣6=﹣2;(2)利用题中新定义化简(﹣3)⊗x=5得:9﹣3x=5,解得:x=;(3)根据题中的新定义化简2⊗x=4+2x,3⊗(2⊗x)=3⊗(4+2x)=9+12+6x=6x+21,3⊗(2⊗x)=﹣4+x得:6x+21=﹣4+x,解得:x=﹣5.29、解:(1)等式的基本性质2:等式两边都乘以或除以同一个数(除数不能为0),所得的等式仍然成立.(2)设,,,,,,.30、(1)4;(2);(3)或;(4)4;(5).。

2019-2020学年第一学期人教版七年级上册数学第3章一元一次方程培优卷(含答案解析)

2019-2020学年第一学期人教版七年级上册数学第3章一元一次方程培优卷(含答案解析)

2019-2020学年七年级上册数学第3章一元一次方程培优卷考试时间:100分钟;满分:120分姓名:___________班级:___________考号:___________成绩:___________一.选择题(共10小题,满分30分,每小题3分)1.(3分)解方程﹣=2有下列四个步骤,其中变形错误的一步是()A.2(2x+1)﹣x﹣1=12B.4x+2﹣x+1=12C.3x=9D.x=32.(3分)若某件商品的原价为a元,提价10%后,欲恢复原价,应降价()A.B.C.D.3.(3分)方程2(1﹣x)=x的解是()A.x=B.x=C.x=D.x=4.(3分)根据流程右边图中的程序,当输出数值y为1时,输入数值x为()A.﹣8B.8C.﹣8或8D.不存在5.(3分)有下列四种说法中,错误说法的个数是()(1)由5m=6m+2可得m=2;(2)方程的解就是方程中未知数所取的值;(3)方程2x﹣1=3的解是x=2;(4)方程x=﹣x没有解.A.1B.2C.3D.46.(3分)定义“*”运算为a*b=ab+2a,若(3*x)+(x*3)=14,则x=()A.﹣1B.1C.﹣2D.27.(3分)互联网“微商”经营已经成为大众创业的一种新途径,某互联网平台上一件商品的标价为200元,按标价的六折销售,仍可获利20%,则这件商品的进价为()A.80元B.90元C.100元D.110元8.(3分)已知a=b,下列变形不正确的是()A.a+5=b+5B.a﹣5=b﹣5C.5a=5b D.9.(3分)如图是2019年5月的日历表,在此日历表中用阴影十字框选中5个数(如2、8、9、10、16).若这样的阴影十字框上下左右移动选中这张日历表中的5个数,则这5个数的和可能为()A.41B.42C.81D.12010.(3分)某企业接到为地震灾区生产活动房的任务,此企业拥有九个生产车间,现在每个车间原有的成品活动房一样多,每个车间的生产能力也一样.有A、B两组检验员,其中A组有8名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)检验完毕后,再去检验第三、四车间所有成品,又用去三天时间;同时这五天时间B组检验员也检验完余下的五个车间的所有成品.如果每个检验员的检验速度一样快,那么B 组检验员人数为()A.8人B.10人C.12人D.14人二.填空题(共6小题,满分24分,每小题4分)11.(4分)若代数式x﹣1和3x+7互为相反数,则x=.12.(4分)方程(a﹣4)x|a﹣2|+x﹣4=0是关于x的一元一次方程,则a=.13.(4分)若方程(a﹣1)x a﹣1+3=0是一元一次方程,则a=.x=.14.(4分)已知:(a+2b)y2﹣y a﹣1=3是关于y的一元一次方程,则a+b的值为.15.(4分)一列火车匀速行驶,经过一条长200m的隧道需要20s的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s.则这列火车的长度是m.16.(4分)如果对于任意非零的有理数a,b定义运算如下:.已知x⊕2⊕3=5,则x的值为.三.解答题(共9小题,满分66分)17.(6分)解方程:(1)7x﹣4=4x+5;(2)=1﹣.18.(6分).19.(6分)解方程:x﹣2(﹣1)=x+620.(7分)已知y=3是方程6+(m﹣y)=2y的解,那么关于x的方程2m(x﹣1)=(m+1)(3x﹣4)的解是多少?21.(7分)定义新运算:对于任意有理数a,b,都有a※b=a(a﹣b)+1,等式右边是通常的加法,减法及乘法运算,比如:2※5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.(1)求(﹣2)※3的值;(2)若3※x=5※(x﹣1),求x的值.22.(7分)小明解一元一次方程的过程如下:第一步:将原方程化为.第二步:将原方程化为.第三步:去分母……(1)第一步方程变形的依据是;第二步方程变形的依据是;第三步去分母的依据是;(2)请把以上解方程的过程补充完整.23.(9分)同学们,今天我们来学习一个新知识.形如的式子叫做二阶行列式,它的运算法则用公式表示为=ad﹣bc,利用此法则解决以下问题:(1)仿照上面的解释,表示出的结果;(2)依此法则计算的结果;(3)如果=4,那么x的值为多少?24.(9分)实践运用某市居民生活用水实行“阶梯水价”收费政策,具体收费标准见表:例:某用户1月份用水26吨,应缴水费1.65×20+2.48×(26﹣20)=47.88(元)(1)若甲用户1月份用水10吨,则应缴水费多少元?(2)若乙用户1月份共用水35吨,则应缴水费多少元?(3)若丙用户1月份应缴水费67.7元,则用水多少吨?25.(9分)某工人计划加工一批产品,如果每小时加工产品10个,就可以在预定时间完成任务,如果每小时多加工2个,就可以提前1小时完成任务.(1)该产品的预定加工时间为几小时?(2)若该产品销售时的标价为100元/个,按标价的八折销售时,每个仍可以盈利25元,该批产品总成本为多少元?参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)解方程﹣=2有下列四个步骤,其中变形错误的一步是()A.2(2x+1)﹣x﹣1=12B.4x+2﹣x+1=12C.3x=9D.x=3【解答】解:方程去分母得:2(2x+1)﹣(x﹣1)=12,去括号得:4x+2﹣x+1=12,移项合并得:3x=9,解得:x=3,则上述变形错误的为去分母过程,故选:B.2.(3分)若某件商品的原价为a元,提价10%后,欲恢复原价,应降价()A.B.C.D.【解答】解:提价10%后价格为1.1a,设应降价为x,则恢复原价,降价为1.1a﹣a,降价为x=,化简得:x=,故选:C.3.(3分)方程2(1﹣x)=x的解是()A.x=B.x=C.x=D.x=【解答】解:去分母得:4(1﹣x)=x,去括号得:4﹣4x=x,移项合并得:5x=4,解得:x=.故选:B.4.(3分)根据流程右边图中的程序,当输出数值y为1时,输入数值x为()A.﹣8B.8C.﹣8或8D.不存在【解答】解:∵输出数值y为1,∴x+5=1时,解得x=﹣8,﹣x+5=1时,解得x=8,∵﹣8<1,8>1,都不符合题意,故不存在.故选:D.5.(3分)有下列四种说法中,错误说法的个数是()(1)由5m=6m+2可得m=2;(2)方程的解就是方程中未知数所取的值;(3)方程2x﹣1=3的解是x=2;(4)方程x=﹣x没有解.A.1B.2C.3D.4【解答】解:5m=6m+2,5m﹣6m=2,﹣m=2,m=﹣2,故(1)错误;方程的解是指使方程两边相等的未知数的值,(2)错误;2x﹣1=3,2x=4,x=2,故(3)正确;x=﹣x,x+x=0,2x=0,x=0,故(4)错误;错误的个数有3个,故选:C.6.(3分)定义“*”运算为a*b=ab+2a,若(3*x)+(x*3)=14,则x=()A.﹣1B.1C.﹣2D.2【解答】解:根据题意(3*x)+(x*3)=14,可化为:(3x+6)+(3x+2x)=14,解得x=1.故选:B.7.(3分)互联网“微商”经营已经成为大众创业的一种新途径,某互联网平台上一件商品的标价为200元,按标价的六折销售,仍可获利20%,则这件商品的进价为()A.80元B.90元C.100元D.110元【解答】解:设这件商品的进价为x元,根据题意得:200×0.6﹣x=20%x,解得:x=100.答:这件商品的进价为100元.故选:C.8.(3分)已知a=b,下列变形不正确的是()A.a+5=b+5B.a﹣5=b﹣5C.5a=5b D.【解答】解:由a=b得:(c≠0)故选:D.9.(3分)如图是2019年5月的日历表,在此日历表中用阴影十字框选中5个数(如2、8、9、10、16).若这样的阴影十字框上下左右移动选中这张日历表中的5个数,则这5个数的和可能为()A.41B.42C.81D.120【解答】解:设阴影十字框中间的数为x,则十字框中的五个数的和:x+(x﹣7)+(x+7)+(x﹣1)+(x+1)=5x,A、41÷5=,不符合题意;B、42÷5=,不符合题意;C、81÷5=,不符合题意;D、120÷5=24,符合题意;故选:D.10.(3分)某企业接到为地震灾区生产活动房的任务,此企业拥有九个生产车间,现在每个车间原有的成品活动房一样多,每个车间的生产能力也一样.有A、B两组检验员,其中A组有8名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)检验完毕后,再去检验第三、四车间所有成品,又用去三天时间;同时这五天时间B组检验员也检验完余下的五个车间的所有成品.如果每个检验员的检验速度一样快,那么B 组检验员人数为()A.8人B.10人C.12人D.14人【解答】解:设每个车间原有成品a件,每个车间每天生产b件产品,根据检验速度相同得:,解得a=4b;则A组每名检验员每天检验的成品数为:2(a+2b)÷(2×8)=12b÷16=b.那么B组检验员的人数为:5(a+5b)÷(b)÷5=45b÷b÷5=12(人).故选:C.二.填空题(共6小题,满分24分,每小题4分)11.(4分)若代数式x﹣1和3x+7互为相反数,则x=﹣.【解答】解:根据题意得x﹣1+3x+7=0,x+3x=﹣7+1,4x=﹣6,x=﹣,故答案为:﹣12.(4分)方程(a﹣4)x|a﹣2|+x﹣4=0是关于x的一元一次方程,则a=1或2或4.【解答】解:∵方程(a﹣4)x|a﹣2|+x﹣4=0是关于x的一元一次方程,当|a﹣2|=1时,方程可整理为(a﹣3)x﹣4=0,所以|a﹣2|=1且a﹣3≠0解得a=1.当a﹣4=0即a=4时,方程(a﹣4)x|a﹣2|+x﹣4=0为x﹣4=0是关于x的一元一次方程;当a=2时,方程(a﹣4)x|a﹣2|+x﹣4=0为x﹣6=0是关于x的一元一次方程.故答案为:1或2或413.(4分)若方程(a﹣1)x a﹣1+3=0是一元一次方程,则a=2.x=﹣3.【解答】解:由题意得:a﹣1=1,且a﹣1≠0,解得:a=2,方程为x+3=0,解得:x=﹣3,故答案为:2;﹣3.14.(4分)已知:(a+2b)y2﹣y a﹣1=3是关于y的一元一次方程,则a+b的值为1.【解答】解:由一元一次方程的特点得,解得,故a+b=2﹣1=1.故填:1.15.(4分)一列火车匀速行驶,经过一条长200m的隧道需要20s的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s.则这列火车的长度是200m.【解答】解:设这列火车的长度是xm.根据题意,得=解得x=200.答:这列火车的长度是200m.故答案为200.16.(4分)如果对于任意非零的有理数a,b定义运算如下:.已知x⊕2⊕3=5,则x的值为0.6.【解答】解:根据题意得:x⊕2=2x+,则x⊕2⊕3=6x+x+=5,去分母得:36x+9x+4x+x=30,移项合并得:50x=30,解得:x=0.6.故答案为:0.6.三.解答题(共9小题,满分66分)17.(6分)解方程:(1)7x﹣4=4x+5;(2)=1﹣.【解答】解:(1)7x﹣4x=5+4,3x=9,x=3;(2)4(2x﹣1)=12﹣3(x+2),8x﹣4=12﹣3x﹣6,8x+3x=12﹣6+4,11x=10,x=18.(6分).【解答】解:去分母得,4(2x﹣1)﹣2(10x﹣1)=3(2x+1)﹣12,去括号得,8x﹣4﹣20x+2=6x+3﹣12,移项得,8x﹣20x﹣6x=3﹣12+4﹣2,合并同类项得,﹣18x=﹣7,系数化为1得,x=.19.(6分)解方程:x﹣2(﹣1)=x+6【解答】解:去括号得:x﹣x+2=x+6,去分母得:x﹣2x+4=3x+12,移项合并得:﹣4x=8,解得:x=﹣2.20.(7分)已知y=3是方程6+(m﹣y)=2y的解,那么关于x的方程2m(x﹣1)=(m+1)(3x﹣4)的解是多少?【解答】解:把y=3代入方程6+(m﹣y)=2y得:6+(m﹣3)=2×3,解得:m=3;把m=3代入2m(x﹣1)=(m+1)(3x﹣4)得:6(x﹣1)=4(3x﹣4),解得:x=.21.(7分)定义新运算:对于任意有理数a,b,都有a※b=a(a﹣b)+1,等式右边是通常的加法,减法及乘法运算,比如:2※5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.(1)求(﹣2)※3的值;(2)若3※x=5※(x﹣1),求x的值.【解答】解:(1)(﹣2)※3=(﹣2)×(﹣2﹣3)+1=﹣2×(﹣5)+1=10+1=11;(2)由3※x=5※(x﹣1),得到3(3﹣x)+1=5(5﹣x+1)+1,解得:x=10.5.22.(7分)小明解一元一次方程的过程如下:第一步:将原方程化为.第二步:将原方程化为.第三步:去分母……(1)第一步方程变形的依据是分数的基本性质;第二步方程变形的依据是等式的基本性质;第三步去分母的依据是等式的基本性质;(2)请把以上解方程的过程补充完整.【解答】解:(1)第一步方程变形的依据是分数的基本性质;第二步方程变形的依据是等式的基本性质;第三步去分母的依据是等式的基本性质;故答案为:分数的基本性质;等式的基本性质;等式的基本性质;(2)去分母得:5x﹣10﹣(2x+2)=3,去括号得:5x﹣10﹣2x﹣2=3,移项得:5x﹣2x=10+2+3,合并得:3x=15,系数化为1,得:x=5.23.(9分)同学们,今天我们来学习一个新知识.形如的式子叫做二阶行列式,它的运算法则用公式表示为=ad﹣bc,利用此法则解决以下问题:(1)仿照上面的解释,表示出的结果;(2)依此法则计算的结果;(3)如果=4,那么x的值为多少?【解答】解:(1)根据题意得:原式=mq﹣np;(2)原式=8+3=11;(3)由法则得:5x﹣3(x+1)=4,解得:x=3.5.24.(9分)实践运用某市居民生活用水实行“阶梯水价”收费政策,具体收费标准见表:例:某用户1月份用水26吨,应缴水费1.65×20+2.48×(26﹣20)=47.88(元)(1)若甲用户1月份用水10吨,则应缴水费多少元?(2)若乙用户1月份共用水35吨,则应缴水费多少元?(3)若丙用户1月份应缴水费67.7元,则用水多少吨?【解答】解:(1)10×1.65=16.5.答:甲用户1月份用水10吨,则应缴水费16.5元.(2)20×1.65+10×2.48+5×3.3=74.3.答:乙用户1月份共用水35吨,则应缴水费74.3元.(3)设丙用户1月份应缴水费67.7元,则用水x吨.根据题意,得20×1.65+10×2.48+3.3(x﹣30)=67.7解得x=33答:丙用户1月份应缴水费67.7元,则用水33吨.25.(9分)某工人计划加工一批产品,如果每小时加工产品10个,就可以在预定时间完成任务,如果每小时多加工2个,就可以提前1小时完成任务.(1)该产品的预定加工时间为几小时?(2)若该产品销售时的标价为100元/个,按标价的八折销售时,每个仍可以盈利25元,该批产品总成本为多少元?【解答】解:(1)设这批产品需要加工x个,=1,x=60,60÷10=6,答:该产品的预定加工时间为6小时;(2)设该批产品成本为a元/个,100×80%=a+25,a=55,55×60=3300,答:该批产品总成本为3300元.。

七年级数学上册第三单元《一元一次方程》-解答题专项(培优专题)

七年级数学上册第三单元《一元一次方程》-解答题专项(培优专题)

一、解答题1.数学课上,某班同学用天平和一些物品(如图)探究了等式的基本性质.该班科技创新小组的同学提出问题:仅用一架天平和一个10克的砝码能否测量出乒乓球和一次性纸杯的质量?科技创新小组的同学找来足够多的乒乓球和某种一次性纸杯(假设每个乒乓球的质量相同,每个纸杯的质量也相同),经过多次试验得到以下记录:记录天平左边天平右边状态记录一6个乒乓球,1个10克的砝码14个一次性纸杯平衡记录二8个乒乓球7个一次性纸杯,1个10克的砝码平衡请算一算,一个乒乓球的质量是多少克?一个这种一次性纸杯的质量是多少克?解:(1)设一个乒乓球的质量是x克,则一个这种一次性纸杯的质量是______克;(用含x的代数式表示)(2)列一元一次方程求一个乒乓球的质量,并求出一个这种一次性纸杯的质量.解析:(1)61014x+或8107x-;(2)一个乒乓球的质量是3克,一个这种一次性纸杯的质量是2克.【分析】(1)根据题意即可得出答案;(2)弄清题意,找到合适的等量关系,列出方程,解方程即可.【详解】解:(1)61014x+或8107x-(2)根据题意得,610810 147x x+-=6101620 x x+=-6162010 x x-=--1030x-=-3x =.当3x =时,610631021414x +⨯+==(克). 答:一个乒乓球的质量是3克,一个这种一次性纸杯的质量是2克. 【点睛】本题考查了一元一次方程与实际问题,解题的关键是找到合适的等量关系,列出方程,解方程.2.在十一黄金周期间,小明、小华等同学随家长共15人一同到金丝峡游玩,售票员告诉他们:大人门票每张100元,学生门票8折优惠.结果小明他们共花了1400元,那么小明他们一共去了几个家长、几个学生? 解析:10个家长,5个学生 【分析】设小明他们一共去了x 个家长,则有(15﹣x )个学生,根据“大人门票购买费用+学生门票购买费用=1400”列式求解即可. 【详解】解:设小明他们一共去了x 个家长,(15﹣x )个学生, 根据题意得:100x +100×0.8(15﹣x )=1400, 解得:x =10, 15﹣x =5,答:小明他们一共去了10个家长,5个学生. 【点睛】本题考查了一元一次方程的应用. 3.利用等式的性质解下列方程: (1)x -2=5;(2)-23x =6; (3)3x =x +6.解析:(1)x =7;(2)x =-9;(3)x =3 【分析】(1)两边同时加上2即可求解; (2)两边同时乘-32即可求解; (3)两边同时减x ,然后同时除以2即可求解. 【详解】解:(1)等式两边加2,得x -2+2=5+2, 即x =7. (2)等式两边乘-32,得x =6×(-32), 即x =-9.(3)等式两边减x,得2x=6.两边除以2,得x=3.【点睛】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.4.解下列方程(1)-9x-4x+8x=-3-7;(2)3x+10x=25+0.5x.解析:(1)x=2;(2)x=2【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程移项合并,把x系数化为1,即可求出解.【详解】解:(1)合并同类项,得,-5x=-10系数化为1,得,x=2(2)移项,得3x+10x-0.5x=25合并同类项,得12.5x=25系数化为1,得,x=2【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.5.运用等式的性质解下列方程:(1)3x=2x-6;(2)2+x=2x+1;(3)35x-8=-25x+1.解析:(1)x=-6;(2)x=1;(3)x=9【分析】(1)根据等式的性质:方程两边都减2x,可得答案;(2)根据等式的性质:方程两边都减x,化简后方程的两边都减1,可得答案.(3)根据等式的性质:方程两边都加25x,化简后方程的两边都加8,可得答案.【详解】(1)两边减2x,得3x-2x=2x-6-2x.所以x=-6.(2)两边减x,得2+x-x=2x+1-x.化简,得2=x+1.两边减1,得2-1=x+1-1所以x=1.(3)两边加25x , 得35x -8+25x =-25x +1+25x . 化简,得x -8=1.两边加8,得x -8+8=1+8. 所以x =9. 【点睛】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立. 6.已知16y x =-,227y x =+,解析下列问题: (1)当122y y =时,求x 的值; (2)当x 取何值时,1y 比2y 小3-. 解析:(1)215x =;(2)18x 【分析】(1)根据题意列出等式,然后解一元一次方程即可;(2)根据题意得到213y y -=-,然后代入x ,解一元一次方程即可求解. 【详解】(1)由题意得:62(27)x x -=+ 解得215x =215x ∴=. (2)由题意得:27(6)3x x +--=- 解得18x18x ∴=.【点睛】本题考查了解一元一次方程,重点是熟练掌握移项、合并同类项、去括号、去分母的法则,细心求解即可.7.解方程:()()3x 7x 132x 3--=-+① ;5x 2x 3132---=②. 解析:(1)5;(2)138; 【分析】①方程去括号,移项合并,把x 系数化为1,即可求出解;②方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【详解】①去括号得:3x−7x+7=3−2x−6,移项合并得:−2x=−10,解得:x=5;②去分母,去括号得:10−2x−6=6x−9,移项合并得:8x=13,解得:x=13 8.【点睛】此题考查解一元一次方程,解题关键在于掌握方程的解法.8.a※b是新规定的这样一种运算法则:a※b=a2+2ab,例如3※(-2)=32+2×3×(-2)=-3(1)试求(-2)※3的值(2)若1※x=3,求x的值(3)若(-2)※x=-2+x,求x的值.解析:(1)-8;(2)1;(3)65.【分析】(1)根据规定的运算法则求解即可.(2)(3)将规定的运算法则代入,然后对等式进行整理从而求得未知数的值即可.【详解】(1)(-2)※3=(-2)2+2×(-2)×3=4-12=-8;(2)∵1※x=3,∴12+2x=3,∴2x=3-1,∴x=1;(3)-2※x=-2+x,(-2)2+2×(-2)x=-2+x,4-4x=-2+x,-4x-x=-2-4,-5x=-6,x=65.【点睛】此题考查有理数的混合运算,解一元一次方程,解题关键在于掌握运算法则.9.关于x的方程357644m x mx+=-的解比方程4(37)1935x x-=-的解大1,求m的值.解析:623 m=-【分析】分别求出两方程的解,根据题意列出关于m 的方程,然后求解即可. 【详解】解:357644m x m x +=-, 整理得:2(310)321m x m x +=-313x m =-解得:331m x =-, 4(37)1935x x -=-4747x =1x =由题意得:31131m--= 解得:623m =- 【点睛】本题考查了一元二次方程的解和解方程,关键是能先用含有m 的式子表示x ,然后根据题意列出方程.10.如图,甲船逆水,静水速度为28海里/时;乙船顺水,静水速度为12海里/时,两船相距60海里.已知水流速度为3海里/时,两船同时相向而行. (1)两船同时航行1小时,求此时两船之间的距离;(2)再(1)的情况下,两船再继续航行1小时,求此时两船之间的距离; (3)求两船从开始航行到两船相距12海里,需要多长时间?解析:(1) 20海里;(2) 20海里;(3) 1.2小时或1.8小时. 【分析】(1)根据1h 后甲、乙间的距离=两船相距-(甲船行驶的路程+乙船行驶的路程)即可得; (2)根据2h 后甲、乙间的距离=甲船行驶的路程-乙船行驶的路程即可得; (3)可分相遇前与相遇后两种情况讨论即可解答. 【详解】解:根据题意可知甲船的行驶速度为28-3=25海里/时,乙船的行驶速度为12+3=15海里/时(1)1h 后甲、乙间的距离=60-25×1-15×1=20海里; (2)2h 后甲、乙间的距离=25×2-15×2=20海里;(3)相遇前,设两船从开始航行到两船相距12海里,需要t 小时则12=60-(25+15)t,求得t=1.2小时相遇后,设两船从开始航行到两船相距12海里,需要t1小时则12+60=(25+15)t1,求得t1=1.8小时故两船从开始航行到两船相距12海里,1.2小时或1.8小时.【点睛】本题主要考查列代数式与一元一次方程的实际应用,掌握船顺流航行时的速度与逆流航行的速度公式是解题的关键.11.图1为全体奇数排成的数表,用十字框任意框出5个数,记框内中间这个数为 a(如图2).(1)请用含a的代数式表示框内的其余4个数;(2)框内的5个数之和能等于 2015,2020 吗?若不能,请说明理由;若能,请求出这5个数中最小的一个数,并写出最小的这个数在图1数表中的位置.(自上往下第几行,自左往右的第几个)解析:(1)详见解析;(2)详见解析.【分析】(1)上下相邻的数相差18,左右相邻的数相差是2,所以可用a表示;(2)根据等量关系:框内的5个数之和能等于2015,2020,分别列方程分析求解.【详解】(1)设中间的数是a,则a的上一个数为a−18,下一个数为a+18,前一个数为a−2,后一个数为a+2;(2)设中间的数是a,依题意有5a=2015,a=403,符合题意,这5个数中最小的一个数是a−18=403−18=385,2n−1=385,解得n=193,193÷9=21…4,最小的这个数在图1数表中的位置第22排第4列.5a=2020,a=404,404是偶数,不合题意舍去;即十字框中的五数之和不能等于2020,能等于2015.【点睛】本题考查一元一次方程的应用,关键是看到表格中中间位置的数和四周数的关系,最后可列出方程求解.12.某市百货商店元月1日搞促销活动,购物不超200元不予优惠;购物超过200元而不足500元的按全价的90%优惠;超过500元,其中500元按9折优惠,超过部分按8折优惠,某人两次购物分别用了134元和466元.问:(1)列方程求出此人两次购物若其物品不打折共值多少钱? (2)若此人将这两次购物合为一次购买是否更节省?为什么?解析:(1)654元钱;(2)将这两次购物合为一次购买更节省,理由见解析. 【分析】(1)根据“超过200元而不足500元的按9折优惠”可得:200×90%=180元,由于第一次购物134元<180元,故不享受任何优惠;由“超过500元,其中500元按9折优惠,超过部分8折优惠”可知500×90%=450元,466>450元,故此人购物享受“超过500元,其中500元按9折优惠,超过部分8折优惠”,设他所购价值x 元的货物,首先享受500元钱时的9折优惠,再享受超过500元的8折优惠,把两次的花费加起来即可得出此人第二次购物不打折的花费,最后将两次购物不打折的花费相加即可;(2)计算出两次购物合为一次购买实际应付的费用,再与他两次购物所花的费用进行比较即可. 【详解】解:(1)①因为134元<200×90%=180元,所以该人此次购物不享受优惠; ②因为第二次付了466元>500×90%=450元,所以该人享受超过500元,其中500元按9折优惠,超过部分8折优惠. 设他所购货物价值x 元,则90%×500+(x ﹣500)×80%=466, 解得x =520, 520+134=654(元).答:此人两次购物若其物品不打折共值654元钱;(2)500×90%+(654﹣500)×80%=573.2(元),134+466=600(元), ∵573.2<600,∴此人将这两次购物合为一次购买更节省. 【点睛】此题主要考查了一元一次方程的应用,关键是分析清楚付款打折的情况,找出合适的等量关系列出方程.13.某同学在给方程21133x x a-+=-去分母时,方程右边的-1没有乘3,因而求得方程的解为2x =,试求a 的值,并正确地解方程. 解析:2a =,0x = 【分析】根据方程的定义,把2x =代入211x x a -=+-,求得a ,把a 代入原方程,去分母、去括号、移项、合并同类项得出议程的解. 【详解】把2x =代入211x x a -=+-, 得:2a = ∴原方程为:212133x x -+=- 去分母得:2123x x -=+- 移项得:2231x x -=-+ 合并同类项得:0x = 【点睛】本题考查了解分数系数的一元一次方程,熟练掌握解方程的一般步骤是解题的关键. 14.某班将买一些乒乓球和乒乓球拍.了解信息如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元;经洽谈:甲店每买一副球拍赠一盒乒乓球;乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)如果要购买15盒或30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?解析:(1) 购买乒乓球20盒时,两种优惠办法付款一样;(2)买30盒乒乓球时,在甲店买5副乒乓球拍,在乙店买25盒乒乓球省钱. 【分析】(1)设当购买乒乓球x 盒时,两种优惠办法付款一样,根据总价=单价×数量,分别求出在甲、乙两家商店购买需要的钱数是多少;然后根据在甲商店购买需要的钱数=在乙商店购买需要的钱数,列出方程,解方程,求出当购买乒乓球多少盒时,两种优惠办法付款一样即可;(2)首先根据总价=单价×数量,分别求出在甲、乙两家商店购买球拍5副、15盒乒乓球,球拍5副、30盒乒乓球需要的钱数各是多少;然后把它们比较大小,判断出去哪家商店购买比较合算即可. 【详解】(1)设当购买乒乓球x 盒时,两种优惠办法付款一样, 则30×5+5(x −5)=(30×5+5x )×90% 5x +125=135+4.5x 5x +125−4.5x =135+4.5x −4.5x 0.5x +125=135 0.5x +125−125=135−125 0.5x =10 0.5x ×2=10×2 x =20答:当购买乒乓球20盒时,两种优惠办法付款一样.(2)①在甲商店购买球拍5副、15盒乒乓球需要: 30×5+5×(15−5)=150+50=200(元)在乙商店购买球拍5副、15盒乒乓球需要: (30×5+5×15)×90%=225×90%=202.5(元) 因为200<202.5,所以我去买球拍5副、15盒乒乓球时,打算去甲家商店购买,在甲家商店购买比较合算. 答:我去买球拍5副、15盒乒乓球时,打算去甲家商店购买,在甲家商店购买比较合算. ②在甲商店购买球拍5副、30盒乒乓球需要: 30×5+5×(30−5)=150+125=275(元)在乙商店购买球拍5副、30盒乒乓球需要: (30×5+5×30)×90%=300×90%=270(元) 因为270<275,所以我去买球拍5副、30盒乒乓球时,打算去乙家商店购买,在乙家商店购买比较合算. 答:我去买球拍5副、30盒乒乓球时,打算去乙家商店购买,在乙家商店购买比较合算. 考点:1.一元一次方程的应用;2.方案型. 15.已知14y x =-+,222y x =-. (1)当x 为何值时,12y y =; (2)当x 为何值时,1y 的值比2y 的值的12大1; (3)先填表,后回答:根据所填表格,回答问题:随着x 值的增大,1y 的值逐渐 ;2y 的值逐渐 . 解析:(1)2x =;(2)2x =;(3)表格详见解析,减小,增大. 【分析】(1)由题意可得关于x 的方程,解方程即得答案; (2)根据1y =122y +1可得关于x 的方程,解方程即得答案; (3)把x 的值依次代入1y 和2y 的关系式进行计算,即可完成表格;根据所填表格中的数据即可判断1y 和2y 的变化趋势. 【详解】解:(1)由题意得:422x x -+=-,解得:2x =, 所以,当2x =时,12y y =;(2)由题意得: 1(422)21x x -+=-+,解得:2x =, 所以,当2x =时,1y 的值比2y 的值的12大1. (3)x3-2-1-0 1 2 3 4 1y 7 6543 2 1 0 2y8-6- 4- 2-246由表格中的数据可知:随着值的增大,1的值逐渐减小;2的值逐渐增大. 故答案为:减小,增大. 【点睛】本题考查了一元一次方程的解法、代数式求值和根据表格判断代数式的变化趋势,正确列出方程、熟练掌握一元一次方程的解法是解题的关键.16.如图,一块长5厘米、宽2厘米的长方形纸板,一块长4厘米、宽1厘米的长方形纸板,一块小正方形以及另两块长方形的纸板,恰好拼成一个大正方形,求大正方形的面积.解析:大正方形的面积是36cm 2 【分析】设小正方形的边长为x ,然后表示出大正方形的边长,利用正方形的面积相等列出方程求得小正方形的边长,然后求得大正方形的边长即可求得面积. 【详解】设小正方形的边长为x ,则大正方形的边长为4+(5−x )cm 或(x +1+2)cm , 根据题意得:4+(5−x )=(x +1+2), 解得:x =3, ∴4+(5−x )=6, ∴大正方形的面积为36cm 2. 答:大正方形的面积为36cm 2. 【点睛】本题考查了一元一次方程的应用,解题的关键是设出小正方形的边长并表示出大正方形的边长.17.如图,在一条不完整的数轴上从左到右有点A ,B ,C ,其中AB =2BC ,设点A ,B ,C所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为,,m的值为;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.解析:(1)﹣3,﹣1,﹣4;(2)﹣2;(3)8或-40.【分析】(1)根据数轴上的点对应的数即可求解;(2)根据数轴上原点的位置确定其它点对应的数即可求解;(3)根据原点在点C的右边先确定点C对应的数,进而确定点B、点A所表示的数即可求解.【详解】解:(1)∵点C为原点,BC=1,∴B所对应的数为﹣1,∵AB=2BC,∴AB=2,∴点A所对应的数为﹣3,∴m=﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)∵点B为原点,AC=6,AB=2BC,AB+BC=AC,∴AB=4,BC=2,∴点A所对应的数为﹣4,点C所对应的数为2,∴m=﹣4+2+0=﹣2;(3)∵原点O到点C的距离为8,∴点C所对应的数为±8,∵OC=AB,∴AB=8,当点C对应的数为8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为4,点A所对应的数为﹣4,∴m=4﹣4+8=8;当点C所对应的数为﹣8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为﹣12,点A所对应的数为﹣20,∴m=﹣20﹣12﹣8=﹣40.【点睛】本题考查了数轴,解决本题的关键是数形结合思想的灵活运用.18.由于施工,需要拆除学校图书馆,七年级同学主动承担图书馆整理图书的任务,如果由一个人单独做要用30小时完成,现先安排一部分人用1小时整理,随后又增加6人和他们一起又做了2小时,恰好完成整理工作,假设每个人的工作效率相同,那么先按排整理的人员有多少? 解析:6人 【分析】设先安排整理的人员有x 人,根据工作效率×工作时间×工作人数=工作总量结合题意,即可得出关于x 的一元一次方程,解之即可得出结论. 【详解】解:设先安排整理的人员有x 人, 根据题意得:()1126=13030x x +⨯+, 解得:x =6.答:先安排整理的人员有6人. 【点睛】本题考查了一元一次方程的应用,找准等量关系正确列出一元一次方程是解题的关键.19.对于任意四个有理数a b c d ,,,,可以组成两个有理数对(,)a b 与(,)c d . 我们规定:(,)(,)a b c d bc ad =-★. 例如:(1,2)(3,4)23142=⨯-⨯=★. 根据上述规定解决下列问题:(1)有理数对(2,3)(3,2)--=★ ;(2)若有理数对(2,31)(1,1)9x x -+-=★,则x = ;(3)当满足等式(3,21)(,)32x k x k k --+=+★的x 是整数时,求整数k 的值. 解析:(1)-5;(2)2;(3)k=0,-1,-2,-3. 【分析】(1)原式利用规定的运算方法计算即可求出值; (2)原式利用规定的运算方法列方程求解即可;(3)原式利用规定的运算方法列方程,表示出x ,然后根据k 是整数求解即可. 【详解】解:(1)根据题意得:原式=−3×3−2×(−2)=−9+4=−5; 故答案为:−5;(2)根据题意得:3x+1−(−2)×(x−1)=9, 整理得:5x =10, 解得:x =2, 故答案为:2;(3)∵等式(−3,2x−1)★(k ,x +k )=3+2k 的x 是整数, ∴(2x−1)k−(−3)(x +k )=3+2k , ∴(2k +3)x =3,∴323x k =+, ∵k 是整数,∴2k +3=±1或±3, ∴k =0,−1,−2,−3. 【点睛】此题考查了新运算以及解一元一次方程,正确理解新运算是解题的关键. 20.解下列方程(1)32(4)25x x --=-; (2) 212164y y -+-=-; (3)312423(1)32x x x -+-+=-; (4)4 1.550.8 1.20.50.20.1x x x----= ; (5) 315x x +-= ; (6)解下列关于x 的方程211423x m mx ---=. 解析:(1)4x =;(2)4y =-;(3)83x =;(4)117x =-;(5)2x =-或32x =;(6)2+364=-m x m . 【分析】(1)先两边同时乘以5去分母,然后去括号解方程即可; (2)先两边同时乘以12去分母,然后去括号解方程即可; (3)先两边同时乘以6去分母,然后去括号解方程即可; (4)先两边同时乘以1去分母,然后去括号解方程即可; (5)分①当x≤13时,②当x >13时,两种情况,分别求出x 即可; (6)把m 当成已知数,先两边同时乘以12去分母,然后去括号解方程即可. 【详解】解:(1)103(4)510--=-x x10312510-+=-x x 351022--=--x x 832-=-x4x =;(2)()()4216224--+=-y y8461224---=-y y 224+16=-y28y =- 4y =-;(3)()()2311232418(1)--++=-x x x62126121818--++=-x x x 1218182-=-+x x616-=-x83x =;(4)()()()24 1.5550.8101.2---=-x x x832541210--+=-x x x 1710121-+=-x x711-=x117x =-; (5)315x x +-= ①当x≤13时, ()315+-+=x x24x -=2x =-,-2<13,∴2x =-满足;②当x >13时,()315+-=x x46x =32x =3123>, ∴32x =满足, ∴2x =-或32x =; (6)()()32641--=-x m mx63644--=-x m mx 644+3+6-=-x mx m()642+3-=m x m2+364=-mx m . 【点睛】 本题是对解一元一次方程的考查,熟练掌握一元一次方程的解法是解决本题的关键. 21.某市水果批发欲将A 市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时,其它主要参考数据如下:(1) 如果汽车的总支出费用比火车费用多1100元,你知道本市与A 市之间的路程是多少千米吗?请你列方程解答.(总支出包含损耗、运费和装卸费用)(2) 如果A 市与B 市之间的距离为S 千米,你若是A 市水果批发部门的经理,要想将这种水果运往B 市销售,试分析以上两种运输工具中选择哪种运输方式比较合算呢?解析:(1) x =400;(2) 当s >200时,选择火车运输;当s <200时,选择汽车运输;当s =200时,两种方式都一样 【分析】(1)设路程为x 千米,题中等量关系是:汽车的总支出费用比火车费用多1100元,列出方程解答;(2)根据(1)中结论分别算出火车和汽车所需的运费,再进行比较即可求解. 【详解】(1) 设本市与A 市之间的路程是x 千米200•20015200011002090010080x x x x +++=++, 解得x =400(2) 火车的运输费用为•200152000172000100ss s ++=+ 汽车运输的费用为•2002090022.590080ss s ++=+ 当17s +2000=22.5s +900,解得s =200 当s >200时,选择火车运输 当s <200时,选择汽车运输 当s =200时,两种方式都一样 【点睛】本题主要考查了一元一次方程的应用,根据题意列出方程是解答本类问题的关键. 22.老师在黑板上写了一个等式(3)4(3)a x a +=+.王聪说4x =,刘敏说不一定,当4x ≠时,这个等式也可能成立.(1)你认为他们俩的说法正确吗?请说明理由; (2)你能求出当2a =时(3)4(3)a x a +=+中x 的值吗? 解析:(1)王聪的说法不正确,见解析;(2)4x = 【分析】(1)根据等式的性质进行判断即可. (2)利用代入法求解即可. 【详解】(1)王聪的说法不正确.理由:两边除以(3)a +不符合等式的性质2,因为当30a +=时,x 为任意实数. 刘敏的说法正确.理由:因为当30a +=时,x 为任意实数,所以当4x ≠时,这个等式也可能成立. (2)将2a =代入,得(23)4(23)x +=+,解得4x =. 【点睛】本题考查了一元一次方程的问题,掌握一元一次方程的性质、等式的性质是解题的关键. 23.李老师准备购买一套小户型商品房,他去售楼处了解情况得知,该户型商品房的单价是5000元2/m ,如图所示(单位:m ,卫生间的宽未定,设宽为xm ),售楼处为李老师提供了以下两种优惠方案:方案一:整套房的单价为5000元2/m ,其中卫生间可免费赠送一半的面积; 方案二:整套房按原销售总金额的9.5折出售.(1)用含x 的代数式表示该户型商品房的面积及按方案一、方案二购买一套该户型商品房的总金额;(2)当2x =时,通过计算说明哪种方案更优惠,优惠多少元.解析:(1)该户型商品房的面积为2(482)x m +,按方案一购买一套该户型商品房的总金额为(2400005000)x +元,按方案二购买一套该户型商品房的总金额为(2280009500)x +元;(2)当2x =时,方案二更优惠,优惠3000元.【分析】(1)该户型商品房的面积=大长方形的面积-卫生间右侧的长方形,代入计算,也可以利用各间的面积和来求;方案一:(总面积-厨房的12)×单价5000;方案二:总价×0.95; (2)分别把数据代入计算即可; 【详解】解:(1)该户型商品房的面积为:2473(84)2(73)(842)(482)x x m ⨯+⨯-+⨯-+--=+按方案一购买一套该户型商品房的总金额为:147342425000(2400005000)2x x ⎛⎫⨯+⨯+⨯+⨯⨯=+ ⎪⎝⎭元;按方案二购买一套该户型商品房的总金额为:(4734242)500095%(2280009500)x x ⨯+⨯+⨯+⨯⨯=+元.(2)当2x =时,方案一总金额为2400005000250000x +=(元); 方案二总金额为2280009500247000x +=(元). 方案二比方案一优惠2500002470003000-=(元). 所以方案二更优惠,优惠3000元. 【点睛】本题是根据实际应用列代数式,是楼房销售问题,考查了图形面积与销售总额及银行利率的知识;解题的关键是熟练掌握利用代数式表示图形的面积. 24.解方程:(1)3(26)17x x +=--; (2)4(2)13(1)x x --=-; (3)4(1)5(3)11x x +--=; (4)14(1)(26)112x x --+=. 解析:(1)5x =-;(2)6x =;(3)8x =;(4)6x = 【分析】(1)去括号,移项及合并同类项,系数化为1即可求解. (2)去括号,移项及合并同类项,系数化为1即可求解. (3)去括号,移项及合并同类项,系数化为1即可求解. (4)去括号,移项及合并同类项,系数化为1即可求解. 【详解】(1)去括号,得61817x x +=--. 移项及合并同类项,得735x =-. 系数化为1,得5x =-.(2)去括号,得48133x x --=-. 移项,得43381x x -=-++. 合并同类项,得6x =.(3)去括号,得4451511x x +-+=. 移项,得4511415x x -=--. 合并同类项,得8x -=-. 系数化为1,得8x =.(4)去括号,得44311x x ---=.移项,得41143x x -=++. 合并同类项,得318x =. 系数化为1,得6x =. 【点睛】本题考查了解一元一次方程的问题,掌握解一元一次方程的方法是解题的关键. 25.某圆柱形饮料瓶由铝片加工做成,现有若干张一样大小的铝片,若全部用来做瓶身可做900个,若全部用来做瓶底可做1200个.已知每一张这样的铝片全部做成瓶底比全部做成瓶身多20个.(1)问一张这样的铝片可做几个瓶底? (2)这些铝片一共有多少张?(3)若一个瓶身与两个瓶底配成一套,则从这些铝片中取多少张做瓶身,取多少张做瓶底可使配套做成的饮料瓶最多?解析:(1)80个(2)15张(3)6张;9张 【分析】(1)列方程求解即可得到结果; (2)用总量除以(1)的结果即可;(3)设从这15张铝片中取a 张做瓶身,取(15)a -张做瓶底可使配套做成的饮料瓶最多,代入值计算即可; 【详解】解:(1)设一张这样的铝片可做x 个瓶底. 根据题意,得9001200(20)x x =-. 解得80x =.2060x -=. 答:一张这样的铝片可做80个瓶底. (2)12001580=(张) 答:这些铝片一共有15张.(3)设从这15张铝片中取a 张做瓶身,取(15)a -张做瓶底可使配套做成的饮料瓶最多.根据题意,得26080(15)a a ⨯⋅=-. 解得6a =.则159a -=.答:从这些铝片中取6张做瓶身,取9张做瓶底可使配套做成的饮料瓶最多. 【点睛】本题主要考查了一元一次方程的应用,准确理解题意是解题的关键.26.甲、乙两人骑自行车分别从相距36km 的两地匀速同向而行,如果甲比乙先出发半小时,那么在乙出发后经3小时甲追上乙;如果乙比甲先出发1小时,那么在甲出发后经5小时甲才能追上乙.请问:甲、乙两人骑自行车每小时各行多少千米? 解析:甲骑自行车每小时行18千米,乙骑自行车每小时行9千米 【分析】设甲骑自行车每小时行x 千米,先根据“甲比乙先出发半小时,那么在乙出发后经3小时甲追上乙”用含x 的代数式表示出乙的速度,然后根据甲5小时骑行的路程-乙6小时骑行的路程=36千米即可列出方程,解方程即可求出结果. 【详解】解:设甲骑自行车每小时行x 千米,则乙骑自行车每小时行133623x ⎛⎫+- ⎪⎝⎭千米,即7126x ⎛⎫- ⎪⎝⎭千米. 依题意,得()755112366x x ⎛⎫-+-=⎪⎝⎭,解得18x =. 712211296x -=-=. 答:甲骑自行车每小时行18千米,乙骑自行车每小时行9千米. 【点睛】本题考查了一元一次方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键. 27.解方程:(1)36156x x -=--;(2)45173x x +=-; (3) 2.57.5516y y y --=-;(4)11481.5533z z +=-. 解析:(1)1x =-;(2)66x =-;(3)56y =;(4)407z =- 【分析】(1)先移项,再合并同类项,最后系数化为1即可. (2)先移项,再合并同类项,最后系数化为1即可. (3)先移项,再合并同类项,最后系数化为1即可. (4)先移项,再合并同类项,最后系数化为1即可. 【详解】(1)移项,得36156x x +=-+. 合并同类项,得99x =-. 系数化为1,得1x =-.(2)移项,得41753x x -=--. 合并同类项,得1223x =-.系数化为1,得66x =-.(3)移项,得 2.57.5165y y y --+=.合并同类项,得65y =.系数化为1,得56y =. (4)移项,得11841.5533z z -=--. 合并同类项,得7410z =-. 系数化为1,得407z =-. 【点睛】本题考查了解一元一次方程的问题,掌握解一元一次方程的方法是解题的关键.28.我们知道13写成小数形式为0.3,反过来,无限循环小数0.3也可以转化成分数形式.方法如下: 设0.3x =,由0.30.333=,可知10 3.333x =,所以103x x -=.解方程,得13x =,所以10.33=. 例如:把无限循环小数0.32化为分数的方法如下: 设0.32x =,由0.320.323232=,可知10032.323232x =,所以10032x x -=,解方程,得3299x =,所以320.3299=.根据上述材料,解答下列问题: (1)把下列无限循环小数写成分数形式:①0.5=________;②2.58=________;③0.518=________.(2)借鉴材料中的方法,从第(1)题的①②③中任选一个,写出你的转化过程. 解析:(1)①59;②25699;③518999;(2)见解析 【分析】(1)根据题目中的转化方法进行转化即可.(2)根据题目中的转化方法进行转化,并写出过程.【详解】 (1)①59;②25699;③518999. (2)从①②③中任选一个转化即可. ①设0.5x =,则10 5.5555x =⋯,所以105x x -=,解方程,得59x =,所以50.59=. ②设0.58x =,则10058.5858x =⋯,所以10058x x -=,解方程,得5899x =,所以。

人教版七年级上册-一元一次方程培优专题(含答案)

人教版七年级上册-一元一次方程培优专题(含答案)

人教版七年级上册 解一元一次方程培优专题(含答案)一、单选题1.若关于x 的方程()2018201662018(1)k x x --=-+的解是整数,则整数k 的取值个数是( ) A .2B .3C .4D .62.关于x 的方程253x a +=的解与方程220x +=的解相同,则a 的值是( ). A .1 B .4C .-1D .-43.若3a 与96a -互为相反数,则a 的值为( ) A .32 B .32- C .3D .3-4.解方程x 5x 1123--+=时,去分母后得到的方程是( )A .3(x ﹣5)+2(x ﹣1)=1B .3(x ﹣5)+2x ﹣1=1C .3(x ﹣5)+2(x ﹣1)=6D .3(x ﹣5)+2x ﹣1=65.若代数式32x +与代数式510x -的值互为相反数,则x 的值为( ) A.1 B.0C.-1D.26.方程2x−14=1−3−x 8去分母后正确的结果是( )A.2(2x −1)=1−(3−x)B.2(2x −1)=8−(3−x)C.2x −1=8−(3−x)D.2x −1=1−(3−x)7.若方程:()2160x --=与3103a x--=的解互为相反数,则a 的值为( ) A.-13B.13C.73D.-1 8.规定a c ad bc b d ⎛⎫=- ⎪⎝⎭,若2331x x ⎛⎫= ⎪--⎝⎭,则x =( )A.0B.3C.1D.29.方程2y ﹣12=12y ﹣中被阴影盖住的是一个常数,此方程的解是y =﹣53.这个常数应是( ) A.1B.2C.3D.410.已知|m -2|+(n -1)2=0,则关于x 的方程2m +x =n 的解是( ) A.x =-4B.x =-3C.x =-2D.x =-1二、填空题 11.代数式213x -与代数式32x -的和为4,则x =_____. 12.若1y =-是方程237y a -=的解,则关于x 的方程(31)42a x x a -=+-的解为_______________.13.()00ax b a -=≠,a 、b 互为相反数,则x 等于___________ 14.代数式31a -与2a 互为相反数,则a =___________ 15.请你写出一个一元一次方程_____,使它的解与一元一次方程3x-x =-1的解相同.(只需写出一个满足条件的方程即可)16.若代数式 4x 8- 与 3x 22+ 的值互为相反数,则x 的值是____.17.解一元一次方程时,“去分母”这一变形的依据是等式性质;去分母时,要在方程两边都乘各分母的最小公倍数,注意不要漏乘不含分母的项.(______)三、解答题18.m 为整数,关于x 的方程x=6-mx 的解为正整数,求m 的值19.已知y 1=2x +8,y 2=6﹣2x .当x 取何值时,y 1比y 2小5?20.已知3x =是方程()131234m x x ⎡⎤-⎛⎫++=⎢⎥ ⎪⎝⎭⎣⎦的解,求m 的值.21.已知3120x +=与方程|3|1x a +=-的解相同,求a 的值.22.列方程求解(1)m 为何值时,关于x 的一元一次方程4x ﹣2m=3x ﹣1的解是x=2x ﹣3m 的解的2倍. (2)已知|a ﹣3|+(b+1)2=0,代数式22b a m-+的值比12b ﹣a+m 多1,求m 的值.22.我们来定义一种运算: a b c d =ad-bc.例如2? 34? 5=2×5-3×4=-2;再如 21? 3x =3x-2.按照这种定义,当2411?=? 21 212xx x ---时,x 的值是多少?24.若24a =,2=b . (1)求-a b 的值;(2)若a+b >0,①求a ,b 的值;②解关于x 的方程3(21)1x a x b--+=.25.如果方程34217123x x -+-=- 的解与关于x 的方程4x -(3a +1)=6x +2a -1的解相同,求代数式a 2+a -1的值.参考答案1.D【解析】【分析】整理方程,得到mx=b的形式,根据k、x都是整数,确定k的个数.【详解】(k−2018)x−2016=6−2018(x+1)整理,得kx=4,由于x、k均为整数,所以当x=±1时,k=±4,当x=±2时,k=±2,当x=±4时,k=±1,所以k的取值共有6个.故选:D.【点睛】本题考查一元一次方程的解,本题所给的方程较繁琐,能将方程整理为mx=b是解题的关键,还需注意在最终判断k的个数时不能忽略负数.2.A【解析】【分析】利用一元一次方程的解法解出方程2x+2=0,根据同解方程的定义将解得的x的值代入13解答.【详解】解方程2x+2=0,得x=−1,由题意得,−2+5a=3,解得,a=1,故选A.【点睛】本题考查同解方程,解决本题的关键是理解方程解的定义,注意细心运算.【解析】【分析】根据互为相反数两数之和为0列出方程,求出方程的解即可得到a的值.【详解】解:根据题意得:90 36a a-+=去分母得:2a+a-9=0,解得:a=3.故选:C.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.4.C【解析】【分析】根据一元一次方程的解法即可求出答案.【详解】解:等式两边同时乘以6可得:3(x﹣5)+2(x﹣1)=6,故选:C.【点睛】本题考查了一元一次方程的解法,解一元一次方程去分母的方法是两边都乘各分母的最小公倍数,一是不要漏乘不含分母的项,二是去掉分母后要把多项式的分子加括号.5.A【解析】【分析】根据互为相反数相加得零列式求解即可.【详解】由题意得32x++510x-=0,x=1.故选A.【点睛】本题考查了相反数的定义,一元一次方程的解法,根据题意正确列出方程是解答本题的关键. 6.B【解析】【分析】方程两边乘以8去分母得到结果,即可做出判断.【详解】方程2x−14=1−3−x8去分母后正确的结果是2(2x−1)=8−(3−x),故选B.【点睛】此题考查解一元一次方程,解题关键在于掌握运算法则. 7.A【解析】试题解析:∵2(x-1)-6=0,∴x=4,∵3103a x--=,∴x=3a-3,∵原方程的解互为相反数,∴4+3a-3=0,解得,a=1 3 -.故选A. 8.C 【解析】【分析】根据规定a cad bcb d⎛⎫=-⎪⎝⎭,可将2331xx⎛⎫=⎪--⎝⎭转化为方程:()()2133x x---=,解方程即可.因为a c ad bc b d ⎛⎫=- ⎪⎝⎭,所以2331x x ⎛⎫= ⎪--⎝⎭可得()()2133x x ---=,解得1x =, 故选C. 【点睛】本题主要考查新定义运算,解决本题的关键是要根据新定义规则列出方程. 9.C 【解析】 【详解】设被阴影盖住的一个常数为k ,原方程整理得,k=-32y+12,把53y =-代入k=-32y+12,中得,k=-32×(53-)+12=5122+=3,故选C. 10.B 【解析】∵|m ﹣2|+(n ﹣1)2=0, ∴2010m n -=-=,, ∴21m n ==,,∴方程2m x n +=可化为:41x +=,解得3x =-. 故选B.点睛:(1)一个代数式的绝对值、一个代数式的平方都是非负数;(2)若两个非负数的和为0,则这两个非负数都为0. 11.﹣1. 【解析】 【分析】根据题意列出方程,求出方程的解即可得到x 的值. 【详解】根据题意得:213243x x -+-=, 去分母得:219612x x -+-=, 移项合并得:44x -=, 解得:1x =-, 故答案为:﹣1. 【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键. 12.x =813【解析】 【分析】先把y =−1代入方程2y−3a =7求出a 的值,然后把a 的值代入方程a (3x−1)=4x +a−2即可求解. 【详解】解:∵y =−1是方程2y−3a =7的解, ∴−2−3a =7, ∴a =−3,把a =−3代入方程a (3x−1)=4x +a−2得:−3(3x−1)=4x−5,解得:x =813, 故答案为:x =813.【点睛】本题考查了一元一次方程解的定义以及解一元一次方程,使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 13.-1. 【解析】 【分析】由于a≠0,可以把方程移项后两边同时除以a ,而a 、b 互为相反数,由此即可得到方程的解. 【详解】 ax-b=0(a≠0), 移项得:ax=b (a≠0),系数化1得:b x a=, ∵a 、b 互为相反数, ∴x=-1. 故填-1. 【点睛】本题考查解一元一次方程,相反数.能通过解方程的一般步骤将方程化为bx a=的形式,并根据相反数的定义,得出互为相反数的两个数(数不为0)的商为-1是解决此题的关键. 14.15. 【解析】 【分析】根据互为相反数两数之和为0列出方程,求出方程的解即可得到a 的值. 【详解】根据题意得:3120a a -+=. 移项、合并同类项得51a =, 解得15a =. 故填15. 【点睛】本题考查相反数和解一元一次方程,能根据相反数的定义列出a 的方程是解决此题的关键. 15.答案不唯一,如2x=3等 【解析】 【分析】 先解方程3x−x =−1,求出方程的解,再根据只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程;它的一般形式是ax+b=0(a ,b 是常数且a≠0);根据题意,写一个符合条件的方程即可. 【详解】 方程3x−x =−1, 解得x=1.5,符合条件的方程有很多,如2x=3等.故答案是:答案不唯一,如2x=3等.【点睛】考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.注意方程的解是指能使方程成立的未知数的值.16.-2【解析】【分析】根据相反数的定义即可列出方程求出x的值.【详解】由题意可知:4x-8+3x+22=0,∴x=-2,故答案是:-2【点睛】考查一元一次方程,解题的关键是熟练运用一元一次方程的解法.17.正确【解析】【分析】根据解一元一次方程的步骤即可判断.【详解】解:去分母要在方程乘两边乘分母得最小公倍数,否则会加大计算量;根据等式的性质,不含分母的项也要乘此最小公倍数.故答案为:正确.【点睛】此题考查了解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为一.18.0或1或2或5.【解析】【分析】方程整理后,根据解为正整数,求出m的值即可.【详解】解:方程整理得:(1+m)x=6,解得:x=61m +,由解为正整数,得到m+1=1或m+1=2或m+1=3或m+1=6,解得:m=0或m=1或m=2或m=5,故m的值为0或1或2或5.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.19.当x取﹣74时,y1比y2小5.【解析】【分析】y2﹣y1=5即6-2x-(2x+8)=5,解出即可.【详解】解:根据题意得:y2﹣y1=(6﹣2x)﹣(2x+8)=5,解得:x=﹣74,即当x=﹣74时,y1比y2小5.【点睛】此题考查解一元一次方程,解题关键在于掌握运算法则.20.83 m=-.【解析】【分析】把x=3代入方程()131234m xx⎡⎤-⎛⎫++=⎢⎥⎪⎝⎭⎣⎦,解关于m的方程即可求出m的值.【详解】把x=3代入方程()1312 34m xx⎡⎤-⎛⎫++=⎢⎥⎪⎝⎭⎣⎦,得:3222m ⎛⎫+= ⎪⎝⎭, 解得:83m =-. 【点睛】 本题考查一元一次方程的解.使一元一次方程两边等式恒成立的未知数的值叫做一元一次方程的解. 21.1a =±【解析】【分析】求出第一个方程的解,把x 的值代入第一个方程,求出方程的解即可.【详解】解:解方程3120x +=得4x =-,把4x =-代入方程|3|1x a +=-,得33a =,所以1a =±.【点睛】本题考查了同解方程和解一元一次方程的应用,关键是得出关于a 的方程.22.(1)-14;(2)0. 【解析】试题分析:(1)分别表示出两方程的解,根据解的关系确定出m 的值即可;(2)根据题意列出方程,利用非负数的性质求出a 与b 的值,代入计算即可求出m 的值. 试题解析:解:(1)方程4x ﹣2m =3x ﹣1,解得:x =2m ﹣1.方程x =2x ﹣3m ,解得:x =3m . 由题意得:2m ﹣1=6m ,解得:m =﹣14; (2)由|a ﹣3|+(b +1)2=0,得到a =3,b =﹣1,代入方程21()122b a m b a m -+--+=,得: 51(3)122m m ----+=,整理得:513122m m -++-=, 去分母得:m ﹣5+1+6﹣2m =2解得:m =0.点睛:此题考查了解一元一次方程,以及非负数的性质,熟练掌握运算法则是解本题的关键. 23.x=-32.【解析】【详解】试题分析:认真阅读新定义的运算,然后直接代入运算格式,再解方程即可.试题解析:根据运算的规则 ,可化为2(2x -1)-2x=(x-1)-(-4)× 12, 化简可得-2x=3,即x=-32. 24.(1)0或4或-4(2)①a=b=2②x=1【解析】试题分析:(1)根据乘方和绝对值求出a 、b 的值,然后代入求值即可;(2)根据前面求出的a 、b 的值,确定符合条件的a 、b ,然后代入求解方程即可.试题解析:因为:24a =,2b =所以a=±2,b =±2 (1)当a=2,b=2时,a-b=0;当a=2,b=-2时,a-b=4;当a=-2,b=2时,a-b=-4;当a=-2,b=-2时,a-b=0故a-b 的值为0或±4. (2)①因为a+b >0,所以a=2,b=2,②把a=b=2代入方程()3211x a x b --+=. 可得方程()322112x x --+=. 解得x=125.x=10;a=-4;11.【解析】【分析】 根据题意,可先求出方程34217123x x -+-=-的解,再将x 的值代入方程()431621x a x a -=-++中,解出a 的值,代入代数式,求2a 1a -+的值即可。

人教版 七年级数学上册 3.2 解一元一次方程(一) 培优训练有答案

人教版 七年级数学上册 3.2 解一元一次方程(一) 培优训练有答案

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯人教版 七年级数学上册 3.2 解一元一次方程(一) 培优训练一、选择题(本大题共10道小题)1. 方程2x +3=7的解是( )A. x =5B. x =4C. x =3.5D. x =22. 一元一次方程x -2=0的解是( )A .x =2B .x =-2C .x =0D .x =13. 将方程4x +3=8x +7移项后正确的是( )A .4x -8x =7+3B .4x -8x =7-3C .8x -4x =3+7D .8x -4x =7-34. 若某数的3倍与这个数的2倍的和是30,则这个数为( )A .4B .5C .6D .75. 若a -2与1-2a 的值相等,则a 等于( )A .0B .1C .2D .36. 若x =2是关于x 的方程2x +3m -1=0的解,则m 的值为( )A .-1B .0C .1 D.137. 学校机房今年和去年共购置了100台计算机,已知今年购置计算机的数量是去年购置计算机数量的3倍,则今年购置计算机的数量是( )A .25台B .50台C .75台D .100台8. 下列方程变形中,正确的是( ) A .由x -22-2x -33=1,去分母,得3(x -2)-2(2x -3)=1B .由1+x =4,移项,得x =4-1C .由2x -(1-3x )=5,去括号,得2x -1-3x =5D .由2x =-3,系数化为1,得x =-239. 已知⎪⎪⎪⎪⎪⎪2-23x =4,则x 的值是( ) A .-3B .9C .-3或9D .以上结果都不对 10. 2(38)570a b x bx a ++-=是关于x 的一元一次方程,且该方程有惟一解,则x =( )A .2140-B .2140C .5615-D .5615二、填空题(本大题共6道小题)11. 当m =________时,关于x 的方程3x -2m =5x +m 的解是x =3.12. 在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯.”(倍加增指从塔的顶层到底层).请你算出塔的顶层有________盏灯.13.若关于x 的方程2(2)450k x kx k ++-=是一元一次方程,则方程的解x = .14. 已知2(23)(23)1m x m x ---=是关于x 的一元一次方程,则m = .15. 若关于x 的方程1(2)50k k x k --+=是一元一次方程,则k = .16. 对有理数a ,b 规定运算“※”的意义是a ※b =a +2b ,则方程3x ※x =2-x 的解是________.三、解答题(本大题共4道小题)17. 若关于x 的方程2(2||)(2)(52)0m x m x m -+---=是一元一次方程,求m 的解.18. 方程23350m x --=是一元一次方程,求m 的值.19. 解下列方程:(1)4x -9x =10; (2)3x -5x =6+2;(3)-52y +32y =5;(4)3x +2x -9x =30-3×6.20. 已知4553a ax a -+=是关于x 的一元一次方程,求这个方程式的解.。

部编数学七年级上册专题一元一次方程的应用(6)行程问题(重难点培优)同步培优【人教版】含答案

部编数学七年级上册专题一元一次方程的应用(6)行程问题(重难点培优)同步培优【人教版】含答案

【讲练课堂】2022-2023学年七年级数学上册尖子生同步培优题典【人教版】专题3.11一元一次方程的应用(6)行程问题(重难点培优)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,试题共26题,其中选择10道、填空8道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的. 1.(2021·湖北黄石·七年级期末)汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员按一下喇叭,4秒后听到回响,这时汽车离山谷多远?已知空气中声音的转播速度约为340米/秒.设按喇叭时,汽车离山谷x 米,根据题意,可列出方程为( )A .2x +4×72=4×340B .2x ﹣4×72=4×340C .2x +4×20=4×340D .2x ﹣4×20=4×340【答案】C【分析】设听到回响时,汽车离山谷x 米,首先理解题意找出题中存在的等量关系:汽车离山谷距离的2倍+汽车前进的距离=声音传播的距离,根据等量关系列方程即可.【详解】解:设汽车离山谷x 米,则汽车离山谷距离的2倍即2x ,因为汽车的速度是72千米/时即20米/秒,则汽车前进的距离为:4×20米/秒,声音传播的距离为:4×340米/秒,根据等量关系列方程得:2x +4×20=4×340,故选:C .【点睛】本题考查了由实际问题抽象出一元一次方程,关键是找出题目中的相等关系,列方程.2.(2022·河北邢台·七年级期末)某学校七年级进行一次徒步活动,带队教师和学生们以4km/h 的速度从学校出发,20min 后,小王骑自行车前去追赶.如果小王以12km/h 的速度行驶,那么小王要用多少小时才能追上队伍?设小王要用x h 才能追上队伍,那么可列出的方程是( )A .12x =4(x +20)B .12x =4(13+x )C .12x =4×13+x D .4x =12(13+x )良马日行二百四十里.驽马先行一十二日,问良马几何追及之.译文是:跑得慢的马每天走150里,跑得快的马每天走240里.慢马先走12天,问快马需要几天可追上慢马?若设快马需要x天可追上慢马,则由题意,可列方程为( )A.150×12+x=240x B.150(12+x)=240xC.150x=240(x﹣12)D.150x=240(x+12)【答案】B【分析】由慢马先走12天可得出快马追上慢马时慢马走了(12+x)天,利用路程=速度×时间,结合快马追上慢马时两马走过的路程相等,即可得出关于x的一元一次方程,此题得解.【详解】解:∵慢马先走12天,快马需要x天可追上慢马,∴快马追上慢马时慢马走了(12+x)天.由题意得:150(12+x)=240x.故选:B.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.4.(2022·全国·七年级课时练习)李华和赵亮从相距30千米的A、B两地同时出发,李华每小时走4千米,3小时后两个人相遇,设赵亮的速度为x千米/时,所列方程正确的是()A.3(x+4)=30B.3×4+x=30C.3x+4=30D.3(x―4)=30【答案】A【分析】根据李华和赵亮所走的路程之和等于30千米列出方程即可得.【详解】解:由题意,所列方程为3(x+4)=30,故选:A.【点睛】本题考查了列一元一次方程,找准等量关系是解题关键.5.(2022·辽宁铁岭·七年级期末)A、B两地相距200km,大客车以每小时50km的速度从A 地驶向B地,1小时后,小汽车以每小时70km的速度沿着相同的道路同向行驶,设小汽车出发x小时后追上大客车,根据题意可列方程为()A.50x=70(x―1)B.50(x+1)=70xC.50x+70(x―1)=200D.50(x+1)+70x=200【答案】B【分析】根据小汽车追上大客车时,所行驶的路程相等,即可建立等式.【详解】解:设小汽车出发x小时后追上大客车,则追上大客车时,大客车走过的路程为:50(x+1)km,此时,小客车走过的路程为:70x km,则:50(x+1)=70x,故选:B.【点睛】本题考查一元一次方程的实际应用问题,抓住追上时各自走过的路程相等建立等式是解决问题的关键.6.(2022·江苏·七年级专题练习)某人骑电动车到单位上班,若每小时骑30千米,则可早到10分种;若每小时骑20千米,则迟到5分种.设他家到单位的路程为x千米,则所列方程为()A.x30+10=x20―5B.x30+1060=x20―560C.x30+560=x20―1060D.x30―1060=x20+560驽马日行一百五十里.驽马先行一十二日,问良马几何追及之?意思是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可追上慢马?若设快马x天可追上慢马,则由题意可列方程为( )A.240x+150x =12×15B.240x =150x-12×150C.240(x-12)=150x+150D.240x =150x +12×150【答案】D【分析】设快马x天可以追上慢马,根据快马和慢马所走的路程相等建立方程即可.【详解】解:设快马x天可以追上慢马,据题题意:240x=150x+12×150.故选:D.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键8.(2023·江苏·七年级专题练习)小明早上8点从家骑车去图书馆,计划在上午11点30分到达图书馆.出发半小时后,小明发现若原速骑行,将迟到10分钟,于是他加速继续骑行,平均每小时多骑行1千米,恰好准时到达,则小明原来的速度是()A.12千米/小时B.17千米/小时C.18千米/小时D.20千米/小时有一道题目是“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之.”译文:跑得快的马每日走240里,跑得慢的马每日走150里,慢马先走12天,快马几天可以追上慢马?则下列回答正确的是().A.15天B.16天C.18天D.20天【答案】D【分析】设快马x天可以追上慢马,根据慢马先行的路程=快慢马速度之差×快马行走天数,即可列出关于x的一元一次方程,解之即可得出结论.【详解】解:设快马x天可以追上慢马,由题意,得240x-150x=150×12,解得:x=20.即:快马20天可以追上慢马.故选:D.【点睛】本题考查了一元一次方程的应用,根据数量关系列出关于x的一元一次方程是解题的关键.10.(2022·全国·七年级课时练习)我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x天可以追上慢马,则下列方程正确的是()A.240x+150x=150×12B.240x―150x=240×12C.240x+150x=240×12D.240x―150x=150×12【答案】D【分析】设快马x天可以追上慢马,根据路程=速度×时间,即可得出关于x的一元一次方程,此题得解.【详解】解:设快马x天可以追上慢马,依题意,得:240x-150x=150×12.故选:D.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.第II卷(非选择题)二、填空题11.(2022·全国·七年级课时练习)小明每天早上要在7:50之前赶到距家1000m的学校上学.一天,小明以80m/min的速度出发,5min后,小明的爸爸发现他忘了带语文书.于是,爸爸立即以180m/min的速度去追赶小明,并且在途中追上了他.则爸爸追上小明用了___________min.【答案】4【分析】设小明爸爸追上小明用了x min,根据速度差×时间=路程差,列出方程求解即可.【详解】解:设爸爸追上小明用了x min,依题意有(180−80)x=80×5,解得x=4.即:爸爸追上小明用了4min长时间.故答案是:4.【点睛】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.12.(2022·山东济南·七年级期末)如图,已知正方形的边长为4,甲、乙两动点分别从正方形ABCD的项点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的3倍,则它们第2022次相遇在边________上.得火车从开始上桥到完全过桥共用90秒,整列火车完全在桥上的时间是70秒.则这列火车长______米.【答案】200得火车从开始上桥到完全过桥共用90秒,整列火车完全在桥上的时间是70秒.则这列火车长______米.分钟跑240米,两人同时同地同向出发,t分钟后小明追上小丽,则t=_________.【答案】10【分析】根据题意,找出等量关系:小明跑的路程-小丽跑的路程=一圈的长度,列出方程求解即可.【详解】280t-240t=400,解得:t=10故答案为:10【点睛】本题主要考查了一元一次方程的实际应用,根据题意找出等量关系列出方程求解是解题的关键.16.(2022·浙江舟山·七年级期末)张师傅晚上出门散步,出门时6点多一点,他看到手表上的分针与时针的夹角恰好为120°,回来时接近7点,他又看了一下手表,发现此时分针与时针再次成120°,则张师傅此次散步的时间是_____分钟.前队,步行速度为4km/h,二班的学生组成后队,速度为6km/h.前队出发1h后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12km/h.联络员从他出发到第二次追上前队共用时________h.所以,联络员从他出发到第二次追上前队共用时1h.故答案为:1.【点睛】本题考查一元一次方程的应用题——行程问题,正确地用代数式表示前队、后队及联络员行进的距离是解题的关键.18.(2022·湖北武汉·七年级期末)如图,在数轴上点A表示a,点C表示c,且|a+20|+(c﹣30)2=0.动点B从数1对应的点开始向右运动,速度为每秒1个单位长度,同时点A,C在数轴上运动,点A,C的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t秒.若点A向左运动,点C向右运动,2AB﹣mBC的值不随时间t的变化而改变,则m的值是_____.【答案】3【分析】根据题目的已知可得a=―20,c=30,然后再利用两点间距离进行计算即可解答.【详解】解:∵|a+20|+(c-30)2=0,∴a+20=0,c-30=0,∴a=―20,c=30,∴点A表示-20,点C表示30,∴运动时间t秒后,点A对应的数为:-20-2t;点B对应的数为:1+t;点C对应的数为:30+3t;∴AB=1+t-(-20-2t)=21+3t,BC=30+3t-(1+t)=29+2t,∴2AB―mBC=2(21+3t)-m(29+2t)=42+6t-29m-2mt=42+(6-2m)t-29m,当6-2m=0时,即m=3时,2AB-mBC的值不随时间t的变化而改变,故答案为:3.【点睛】本题考查了数轴,绝对值和偶次方的非负性,熟练掌握数轴上两点间距离是解题的关键.三、解答题19.(2022·黑龙江大庆·七年级期中)已知一条船的顺水速度为72 km/h,逆水速度为56km/h,求该船在静水中的速度和水流的速度.(列方程解决问题)【答案】该船在静水中的速度为64 km/h,水流的速度为8 km/h.【分析】设该船在静水中的速度为x km/h,则水流的速度为(72-x) km/h,根据“逆水速度为56 km/h”列出一元一次方程即可求解.【详解】解:设该船在静水中的速度为x km/h,则水流的速度为(72-x) km/h,依题意得:x-(72-x)=56,解得:x=64,则72-64=8,答:该船在静水中的速度为64 km/h,水流的速度为8 km/h.【点睛】此题主要考查了一元一次方程的应用,关键是掌握顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度.20.(2022·黑龙江牡丹江·七年级期末)A,B两地相距300千米,甲车从A地驶向B地,行驶80千米后,乙车从B地出发驶向A地,乙车行驶5小时到达A地,并原地休息.甲、乙倍.两车匀速行驶,甲车速度是乙车速度的43(1)甲车的行驶速度是________千米/ 时,乙车的行驶速度是________千米/ 时;(2)求乙车出发后几小时两车相遇;(列方程解答此问)(3)若甲车到达B地休息一段时间后按原路原速返回,且比乙车晚2小时到达A地.甲车从A 地出发到返回A地过程中,甲车出发________小时,两车相距40千米;甲车在B地休息________小时.不超过3公里都需支付10元;超过3公里,每增加1公里收费为2元.(1)行驶5公里需支付多少元?(2)某同学从家乘出租车到学校共花费18元,则该同学的家到学校的距离是多少?【答案】(1)行驶5公里需要14元(2)该同学的家到学校的距离为7公里【分析】(1)起步价加里程费即可解答;(2)根据题意列出方程18=10+2(x-3),解此方程即可.(1)解:10+2×(5―3)=14(元)答:行驶5公里需14元.(2)解:设该同学的家到学校的距离为x公里,由题意得:18=10+2(x-3)解得x=7答:该同学的家到学校的距离为7公里.【点睛】本题考查一元一次方程的实际应用,是基础考点,掌握相关知识是解题关键.22.(2022·河南驻马店·七年级期末)如图,已知数轴上有A、B两点,点B在原点的右侧,到原点的距离为2,点A在点B的左侧,AB=18.动点P、Q分别从A、B两点同时出发,在数轴上匀速运动,它们的速度分别为3个单位长度/秒、1个单位长度/秒,设运动时间为t秒.(1)点A表示的数为 ,点B表示的数为 (2)若动点P、Q均向右运动.当t=2时,点P对应的数是 ,P、Q两点间的距离为 个单位长度.请问当t为何值时,点P追上点Q,并求出此时点P对应的数;(3)若动点Q从B点向左运动到原点后返回到B点停止,动点P从A点向右运动,当点Q停止时,点P也停止运动.请直接写出当t为何值时,在PA、PB和AB三条线段中,其中一条线段的长度是另一条线段长度的3倍.【答案】(1)2,﹣16(2)﹣10,14;11(3)当t为1.5,2或4时,在PA、PB和AB三条线段中,其中一条线段的长度是另一条线段长度的3倍.【分析】(1)利用两点间的距离,有理数在数轴上的表示可得.(2)利用两点间的距离,有理数在数轴上的表示可得;利用行程公式建立等式求解可得.(3)采用分类讨论,再利用两点间的距离、行程公式建立等式求解即可.(1)解:∵点B在原点的右侧,到原点的距离为2,∴点B表示的数为2.∵点A在点B的左侧,AB=18,∴2﹣18=﹣16.∴点A表示的数为:﹣16.故答案为:﹣16,2.(2)解:当t=2时,3×2=6,1×2=2,∴点P向右运动了6个单位长度,点Q向右运动了2个单位长度.∴﹣16+6=﹣10,2+2=4.∴点P对应的数是:﹣10点,Q对应的数是:4.∴4﹣(﹣10)=4+10=14.∴P、Q两点间的距离为:14个单位长度.当点P追上点Q时,可得点P与点Q表示的数相同,∴﹣16+3t=2+t.∴t=9.∴﹣16+3t=﹣16+27=11.∴此时点P对应的数为:11.∴当t为9时,点P追上点Q,此时点P对应的数为:11.故答案为:﹣10,14;11.(3)解:当Q停止时,所用的时间为4秒,分四种情况:当PB=3PA时,18﹣3t=3×3t,解得:t=1.5.当PA=3PB时,3t=3(18﹣3t),解得:t=4.5(舍去).当AB=3PA时,18=3×3t,解得:t=2.当AB=3PB时,18=3(18﹣3t),解得:t=4.综上所述:当t为1.5,2或4时,在PA、PB和AB三条线段中,其中一条线段的长度是另一条线段长度的3倍.【点睛】本题考查数轴上两点间的距离,数轴及有理数在数轴上的表示,一元一次方程—行程问题的理解与实际运用能力.一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数―a的点在原点的左边,与原点的距离是a个单位长度.数轴上两点之间的距离等于对应两数之差的绝对值.路程=速度×时间.熟练掌握相关知识点,恰当应用分类思想解决实际问题(行程)是解本题的关键.23.(2022·浙江台州·七年级期末)小王和小李每天从A地到B地上班,小王坐公交车以40km/h 的速度匀速行驶,小李开汽车以50km/h的速度匀速行驶.(1)若他们同时从A地出发,15分钟后,两人相距______km;(2)假设途中设有9个站点P1,P2,…,P9公交车在每个站点都停靠0.5分钟.①若两车同时从A地出发,则汽车比公交车早10.5分钟到达.求A,B两地的距离.②若每相邻两个站点间(包含起点站和终点站)的距离相等,小王4:30坐公交车从A地前往B地,8分钟后小李开汽车也从A地前往B地,求小李追上小王的时刻.秒多行4m.(1)若两列火车相向而行,从相遇到全部错开,需要8s.问两车速度各是多少?(2)在(1)的条件下,若两列火车同向行驶,且B车行驶在A车前方,求A车的车头从B 车的车尾开始追及到A车车尾超过B车车头需多少时间?【答案】(1)A车的速度为23m/s,则B车的速度为19m/s;(2)84s【分析】(1)设A车的速度为xm/s,则B车的速度为(x-4)m/s,根据题意,列出方程,即可求解;(2)设A车的车头从B车的车尾开始追及到A车车尾超过B车车头需ts,根据题意,列出方程,即可求解.(1)解:设A车的速度为x m/s,则B车的速度为(x-4)m/s,根据题意得:8(x+x―4)=156+180,解得:x=23,∴x-4=19,答:A车的速度为23m/s,则B车的速度为19m/s;(2)解:设A车的车头从B车的车尾开始追及到A车车尾超过B车车头需ts,根据题意得:23t―19t=156+180,解得:t=84,答:A车的车头从B车的车尾开始追及到A车车尾超过B车车头需84s.【点睛】本题主要考查了一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.25.(2022·山东潍坊·七年级期末)甲车和乙车分别从A,B两地同时出发相向而行,分别去往B地和A地,两车匀速行驶2小时相遇,相遇时甲车比乙车少走了20千米.相遇后,乙车按原速继续行驶1.8小时到达A地.(1)乙车的行驶速度是多少千米/时?(2)相遇后,甲车先以100千米/时的速度行驶了一段路程后,又以120千米/时的速度继续行驶,刚好能和乙车同时到达目的地,试求相遇后,甲车以100千米/时的速度行驶的路程和以120千米/时的速度行驶的路程各是多少千米?【答案】(1)100千米/小时(2)甲车以100千米/时的速度行驶的路程为80千米,以120千米/时的速度行驶的路程为120千米【分析】(1)设乙车速度为x千米/时,根据题意列方程求解即可;(2)设甲车以100千米/时的速度行驶的路程为m千米,则以120千米/时的速度行驶的路程为(2×100―m)千米,根据“甲车先以100千米/时的速度行驶了一段路程后,又以120千米/时的速度继续行驶,刚好能和乙车同时到达目的地,”列方程求解即可.(1)解:设乙车速度为x千米/时,依题意得:1.8x=2x-20,解得,x=100答:乙车速度为100千米/小时.(2)设甲车以100千米/时的速度行驶的路程为m千米,则以120千米/时的速度行驶的路程为(2×100―m)千米,现家中的钟没电了,于是换上电池,把钟暂时调整到8时整.到球馆时球馆的钟刚好是8时整.打球到11时整时他以原速度回家发现家中的钟刚好是12时整.小王根据这些时间关系再次调整了时间.如果小王在路上的速度是60米/分钟,请问从家到球馆的路程是多少?小王到家的准确时间是几点?着四周跑步,甲沿着A-D-C-B-A方向循环跑步,同时乙沿着B-C-D-A-B方向循环跑步,AB=30米,BC=50米,若甲速度为2米/秒,乙速度3米/秒.(1)设经过的时间为t秒,则用含t的代数式表示甲的路程为米;(2)当甲、乙两人第一次相遇时,求所经过的时间t为多少秒?(3)若甲改为沿着A-B-C-D-A的方向循环跑步,而乙仍按原来的方向跑步,两人的速度不变,求经过多少秒,乙追上甲?(4)小明在探索中发现一个非常有趣的结论:在(3)的条件下,甲乙继续跑步,以后遇的地点每次相遇的地点都和第一次遇的地点一样,请同学们试以第n次相遇为例帮小明同学进行简单的论证,并写出每次相遇时点P的位置.【答案】(1)2t;(2)经过26秒(3)经过130秒,乙追上甲(4)见解析,在CD上,离C点20米的地方【分析】(1)根据路程=速度×时间列式即可;(2)设经过t秒甲、乙两人第一次相遇,根据速度×时间=路程结合题意,即可得出关于t 的一元一次方程,解之即可得出t值,(3)设经过t秒乙追上甲,根据乙跑的路程-甲跑的路程=BC+CDd+DA=130,列方程求解即可;(4)先求出(3)中乙追上甲的地点在CD上,离C点20米的地方,若乙第n次追上甲的时间为a秒,根据乙跑的路程-甲跑的路程=160(n-1),列方程为3a-2a=160(n-1),又因为2a=320(n-1),即可得证第n次乙追上甲时,甲又跑了2(n-1)圈.即可得出结论.(1)解:甲的路程=2t米;故答案为:2t;(2)解:设经过t秒甲、乙两人第一次相遇,根据题意得3t+2t=50×2+30 ;t=26答:经过26秒(3)解:设经过t秒乙追上甲,根据题意得3t-2t=130解得t=130答:经过130秒,乙追上甲(4)解:130×2=260(米)260-(50+30)×2=100(米)100-30-50=20(米)所以(3)中乙追上甲的地点在CD上,离C点20米的地方;若乙第n次追上甲的时间为a秒,则3a-2a=160(n-1),解得a=160(n-1)160(n-1)×2=320(n-1)(米)320(n-1)÷160=2(n-1)(圈)第n次乙追上甲时,甲又跑了2(n-1)圈.所以第n次乙追上甲的地方跟(3)一样,在CD上,离C点20米的地方;P点如图【点睛】本题考查了一元一次方程的应用,分析题干找准等量关系,正确列出一元一次方程是解题的关键.28.(2022·陕西·紫阳县师训教研中心七年级期末)如图,数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是______;当点P运动到AB的中点时,它所表示的数是______;(2)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P,Q同时出发,当点P运动多少秒时,点P与点Q间的距离为8个单位长度?【答案】(1)-4;1(2)当点P运动1秒或9秒时,点P与点Q间的距离为8个单位长度.【分析】(1)根据数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.即可得点B表示的数;进而可得当点P运动到AB的中点时,它所表示的数;(2)根据点P与点Q相遇前和相遇后之间的距离为8个单位长度,分两种情况列方程即可求解.(1)。

人教版数学七年级上册 一元一次方程(培优篇)(Word版 含解析)

人教版数学七年级上册 一元一次方程(培优篇)(Word版 含解析)

一、初一数学一元一次方程解答题压轴题精选(难)1.如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,运动到3秒钟时,两点相距15个单位长度.已知动点A、B的运动速度比之是3∶2(速度单位:1个单位长度/秒).(1)求两个动点运动的速度;(2)A、B两点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置;(3)若A、B两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限,问:运动到几秒钟时,A、B两点之间相距4个单位长度?【答案】(1)解:设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据题意得:3×(2x+3x)=15,解得:x=1,∴3x=3,2x=2,答:动点A的运动速度为3个单位长度/秒,动点B的运动速度为2个单位长度/秒;(2)解:3×3=9,2×3=6,∴运动到3秒钟时,点A表示的数为﹣9,点B表示的数为6;(3)解:设运动的时间为t秒,当A、B两点向数轴正方向运动时,有|3t﹣2t﹣15|=4,解得:t1=11,t2=19;当A、B两点相向而行时,有|15﹣3t﹣2t|=4,解得:t3= 或t4= ,答:经过、、11或19秒,A、B两点之间相距4个单位长度.【解析】【分析】(1)根据已知:动点A、B的运动速度比之是3∶2,因此设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据两点相距15,列方程,求解即可。

(2)根据两点的运动速度,就快求出A、B两点运动到3秒时停止运动,就可得出它们的位置。

(3)设运动的时间为t秒,分两种情况:当A、B两点向数轴正方向运动时;当A、B两点相向而行时,分别根据A、B两点之间相距4个单位长度,列方程求出t的值。

2.你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答过程会告诉你原因和方法.(1)阅读下列材料:问题:利用一元一次方程将化成分数.设.由,可知,即.(请你体会将方程两边都乘以10起到的作用)可解得,即.填空:将写成分数形式为________ .(2)请仿照上述方法把小数化成分数,要求写出利用一元一次方程进行解答的过程.【答案】(1)(2)解:设 =m,方程两边都乘以100,可得100× =100x由=0.7373…,可知100× =73.7373…=73+0.73即73+x=100x可解得x= ,即 =【解析】【分析】解:(1)设0.4˙=x,则4+x=10x,∴x= .故答案是:;(2)理解该材料的关键在于:将循环小数扩大的倍数在于循环小数的循环节,释放一个循环节后,循环小数的大小仍不变.3.综合题(1)如图,、、是一条公路上的三个村庄,、间的路程为,、间的路程为,现要在、之间建一个车站,若要使车站到三个村庄的路程之和最小,则车站应建在何处?______A.点处B.线段之间C.线段的中点D.线段之间(2)当整数 ________时,关于的方程的解是正整数.【答案】(1)A(2)或【解析】【解答】(1)故答案为:A;(2)或【分析】(1)根据图形要使车站到三个村庄的路程之和最小,得到车站应建在C处;(2)根据解一元一次方程的步骤去分母、去括号、移项、合并同类项、系数化为一;求出m的值.4.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BOC.①求t的值;②此时ON是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由.【答案】(1)解:①∵∠AON+∠BOM=90°,∠COM=∠MOB,∵∠AOC=30°,∴∠BOC=2∠COM=150°,∴∠COM=75°,∴∠CON=15°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,解得:t=15°÷3°=5秒;②是,理由如下:∵∠CON=15°,∠AON=15°,∴ON平分∠AOC(2)解:15秒时OC平分∠MON,理由如下:∵∠AON+∠BOM=90°,∠CON=∠COM,∵∠MON=90°,∴∠CON=∠COM=45°,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∵∠AOC﹣∠AON=45°,可得:6t﹣3t=15°,解得:t=5秒(3)解:OC平分∠MOB∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∴∠COM为(90°﹣3t),∵∠BOM+∠AON=90°,可得:180°﹣(30°+6t)= (90°﹣3t),解得:t=23.3秒;如图:【解析】【分析】(1)①根据∠AON+∠BOM=90°,∠COM=∠MOB,及平角的定义∠BOC=2∠COM=150°,故∠COM=75°,根据角的和差得出∠CON=15°从而得到AON=∠AOC ﹣∠CON=30°﹣15°=15°,根据旋转的速度,就可以算出t的值了;②根据∠CON=15°,∠AON=15°,即可得出ON平分∠AOC ;(2)15秒时OC平分∠MON,理由如下:∠AON+∠BOM=90°,∠CON=∠COM,从而得出∠CON=∠COM=45°,又三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,根据∠AOC﹣∠AON=45°得出含t的方程,求解得出t的值;(3)根据∠AON+∠BOM=90°,∠BOC=∠COM,及三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,故设∠AON为3t,∠AOC为30°+6t,从而得到∠COM为(90°﹣3t),又∠BOM+∠AON=90°,从而得出含t的方程,就能解出t的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级上册 解一元一次方程培优专题(含答案)一、单选题1.若关于x 的方程()2018201662018(1)k x x --=-+的解是整数,则整数k 的取值个数是( )A .2B .3C .4D .62.关于x 的方程253x a +=的解及方程220x +=的解相同,则a 的值是(). A .1 B .4 C .-1 D .-43.若3a 及96a -互为相反数,则a 的值为( ) A .32 B .32- C .3 D .3-4.解方程时,去分母后得到的方程是( )A .3(x ﹣5)+2(x ﹣1)=1B .3(x ﹣5)+2x ﹣1=1C .3(x ﹣5)+2(x ﹣1)=6D .3(x ﹣5)+2x ﹣1=65.若代数式32x +及代数式510x -的值互为相反数,则x 的值为()A.1B.0C.-1D.26.方程去分母后正确的结果是( )A. B.C. D.7.若方程:()2160x --=及的解互为相反数,则a 的值为( ) A.-13 B.13 C.73 D.-18.规定,若,则x =( )A.0B.3C.1D.29.方程2y ﹣12=12y ﹣中被阴影盖住的是一个常数,此方程的解是y =﹣53.这个常数应是( ) A.1 B.2C.3D.4 10.已知|m -2|+(n -1)2=0,则关于x 的方程2m +x =n 的解是( )A.x =-4B.x =-3C.x =-2D.x =-1 二、填空题11.代数式及代数式32x -的和为4,则x =_____.12.若1y =-是方程237y a -=的解,则关于x 的方程(31)42a x x a -=+-的解为_______________.13.()00ax b a -=≠,a 、b 互为相反数,则x 等于___________14.代数式31a -及2a 互为相反数,则a =___________15.请你写出一个一元一次方程_____,使它的解及一元一次方程3x x 1的解相同.(只需写出一个满足条件的方程即可)16.若代数式 4x 8- 及 3x 22+ 的值互为相反数,则x 的值是____.17.解一元一次方程时,“去分母”这一变形的依据是等式性质;去分母时,要在方程两边都乘各分母的最小公倍数,注意不要漏乘不含分母的项.(______)三、解答题18.m 为整数,关于x 的方程x=6-mx 的解为正整数,求m 的值19.已知y 1=2x +8,y 2=6﹣2x .当x 取何值时,y 1比y 2小5?20.已知3x =是方程()131234m x x ⎡⎤-⎛⎫++=⎢⎥ ⎪⎝⎭⎣⎦的解,求m 的值.21.已知3120x +=及方程|3|1x a +=-的解相同,求a 的值.22.列方程求解(1)m 为何值时,关于x 的一元一次方程4x ﹣2m=3x ﹣1的解是x=2x ﹣3m 的解的2倍.(2)已知|a ﹣3|+(b+1)2=0,代数式的值比12b ﹣a+m 多1,求m 的值.22.我们来定义一种运算: a b c d =ad-bc.例如2? 34? 5=2×5-3×4=-2;再如 21? 3x =3x-2.按照这种定义,当时,x 的值是多少?24.若24a =,2=b .a b的值;(1)求(2)若a+b>0,①求a,b的值;②解关于x的方程.25.如果方程的解及关于x的方程4x-(3a+1)=6x+2a-1的解相同,求代数式a2+a-1的值.参考答案1.D【解析】【分析】整理方程,得到mx=b的形式,根据k、x都是整数,确定k的个数.【详解】(k−2018)x−2016=6−2018(x+1)整理,得kx=4,由于x、k均为整数,所以当x=±1时,k=±4,当x=±2时,k=±2,当x=±4时,k=±1,所以k的取值共有6个.故选:D.【点睛】本题考查一元一次方程的解,本题所给的方程较繁琐,能将方程整理为mx=b 是解题的关键,还需注意在最终判断k的个数时不能忽略负数.2.A【解析】【分析】利用一元一次方程的解法解出方程2x+2=0,根据同解方程的定义将解得的x的值代入13解答.【详解】解方程2x+2=0,得x=−1,由题意得,−2+5a=3,解得,a=1,故选A.【点睛】本题考查同解方程,解决本题的关键是理解方程解的定义,注意细心运算. 3.C【解析】【分析】根据互为相反数两数之和为0列出方程,求出方程的解即可得到a的值.【详解】解:根据题意得:去分母得:2a+a-9=0,解得:a=3.故选:C.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.4.C【解析】【分析】根据一元一次方程的解法即可求出答案.【详解】解:等式两边同时乘以6可得:3(x﹣5)+2(x﹣1)=6,故选:C.【点睛】本题考查了一元一次方程的解法,解一元一次方程去分母的方法是两边都乘各分母的最小公倍数,一是不要漏乘不含分母的项,二是去掉分母后要把多项式的分子加括号.5.A【解析】【分析】根据互为相反数相加得零列式求解即可.【详解】由题意得x++51032x-=0,解之得x=1.故选A.【点睛】本题考查了相反数的定义,一元一次方程的解法,根据题意正确列出方程是解答本题的关键.6.B【解析】【分析】方程两边乘以8去分母得到结果,即可做出判断.【详解】方程去分母后正确的结果是2(2x−1)=8−(3−x),故选B.【点睛】此题考查解一元一次方程,解题关键在于掌握运算法则. 7.A【解析】试题解析:∵2(x-1)-6=0,∴x=4,∵,∴x=3a-3,∵原方程的解互为相反数,∴4+3a-3=0,解得,a=1.3故选A.8.C【解析】【分析】根据规定,可将转化为方程:()()2133x x ---=,解方程即可.【详解】因为,所以可得()()2133x x ---=,解得1x =,故选C.【点睛】本题主要考查新定义运算,解决本题的关键是要根据新定义规则列出方程.9.C【解析】【详解】设被阴影盖住的一个常数为k ,原方程整理得,k=-32y+12,把代入k=-32y+12,中得,k=-32×(53-)+12==3,故选C. 10.B【解析】∵|m﹣2|+(n﹣1)2=0,∴2010,,-=-=m n∴21,,==m n∴方程2m x n+=,解得3x+=可化为:41x=-.故选B.点睛:(1)一个代数式的绝对值、一个代数式的平方都是非负数;(2)若两个非负数的和为0,则这两个非负数都为0.11.﹣1.【解析】【分析】根据题意列出方程,求出方程的解即可得到x的值.【详解】根据题意得:,去分母得:219612x x-+-=,移项合并得:44-=,x解得:1x=-,故答案为:﹣1.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.12.x=8 13【解析】【分析】先把y=−1代入方程2y−3a=7求出a的值,然后把a的值代入方程a(3x−1)=4x+a−2即可求解.【详解】解:∵y=−1是方程2y−3a=7的解,∴−2−3a=7,∴a=−3,把a=−3代入方程a(3x−1)=4x+a−2得:−3(3x−1)=4x−5,解得:x=813,故答案为:x=813.【点睛】本题考查了一元一次方程解的定义以及解一元一次方程,使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.【解析】【分析】由于a≠0,可以把方程移项后两边同时除以a,而a、b互为相反数,由此即可得到方程的解.【详解】ax-b=0(a≠0),移项得:ax=b(a≠0),系数化1得:,∵a、b互为相反数,∴x=-1.故填-1.【点睛】本题考查解一元一次方程,相反数.能通过解方程的一般步骤将方程化为的形式,并根据相反数的定义,得出互为相反数的两个数(数不为0)的商为-1是解决此题的关键.14.1 5 .【解析】根据互为相反数两数之和为0列出方程,求出方程的解即可得到a的值.【详解】根据题意得:3120a a-+=.移项、合并同类项得51a=,解得.故填1 5 .【点睛】本题考查相反数和解一元一次方程,能根据相反数的定义列出a的方程是解决此题的关键.15.答案不唯一,如2x=3等【解析】【分析】先解方程3x−x=−1,求出方程的解,再根据只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程;它的一般形式是ax+b=0(a,b是常数且a≠0);根据题意,写一个符合条件的方程即可.【详解】x−x=−1,方程3解得x=1.5,符合条件的方程有很多,如2x=3等.故答案是:答案不唯一,如2x=3等.【点睛】考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.注意方程的解是指能使方程成立的未知数的值.16.-2【解析】【分析】根据相反数的定义即可列出方程求出x的值.【详解】由题意可知:4x-8+3x+22=0,∴x=-2,故答案是:-2【点睛】考查一元一次方程,解题的关键是熟练运用一元一次方程的解法.17.正确【解析】【分析】根据解一元一次方程的步骤即可判断.【详解】解:去分母要在方程乘两边乘分母得最小公倍数,否则会加大计算量;根据等式的性质,不含分母的项也要乘此最小公倍数.故答案为:正确.【点睛】此题考查了解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为一.18.0或1或2或5.【解析】【分析】方程整理后,根据解为正整数,求出m的值即可.【详解】解:方程整理得:(1+m)x=6,解得:x=,由解为正整数,得到m+1=1或m+1=2或m+1=3或m+1=6,解得:m=0或m=1或m=2或m=5,故m的值为0或1或2或5.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.19.当x取﹣74时,y1比y2小5.【解析】【分析】y2﹣y1=5即6-2x-(2x+8)=5,解出即可.【详解】解:根据题意得:y2﹣y1=(6﹣2x)﹣(2x+8)=5,解得:x=﹣74,即当x=﹣74时,y1比y2小5.【点睛】此题考查解一元一次方程,解题关键在于掌握运算法则. 20..【解析】【分析】把x=3代入方程()131234m xx⎡⎤-⎛⎫++=⎢⎥⎪⎝⎭⎣⎦,解关于m的方程即可求出m的值.【详解】把x=3代入方程()131234m xx⎡⎤-⎛⎫++=⎢⎥⎪⎝⎭⎣⎦,得:,解得:.【点睛】本题考查一元一次方程的解.使一元一次方程两边等式恒成立的未知数的值叫做一元一次方程的解.21.1a=±【解析】【分析】求出第一个方程的解,把x 的值代入第一个方程,求出方程的解即可.【详解】解:解方程3120x +=得4x =-,把4x =-代入方程|3|1x a +=-,得33a =,所以1a =±.【点睛】本题考查了同解方程和解一元一次方程的应用,关键是得出关于a 的方程.22.(1)-14;(2)0.【解析】试题分析:(1)分别表示出两方程的解,根据解的关系确定出m 的值即可; (2)根据题意列出方程,利用非负数的性质求出a 及b 的值,代入计算即可求出m 的值.试题解析:解:(1)方程4x ﹣2m =3x ﹣1,解得:x =2m ﹣1.方程x =2x ﹣3m ,解得:x =3m .由题意得:2m ﹣1=6m ,解得:m =﹣14; (2)由|a ﹣3|+(b +1)2=0,得到a =3,b =﹣1,代入方程21()122b a m b a m -+--+=,得: 51(3)122m m ----+=,整理得:, 去分母得:m ﹣5+1+6﹣2m =2解得:m =0.点睛:此题考查了解一元一次方程,以及非负数的性质,熟练掌握运算法则是解本题的关键.23.x=-32.【解析】【详解】试题分析:认真阅读新定义的运算,然后直接代入运算格式,再解方程即可.试题解析:根据运算的规则 ,可化为2(2x -1)-2x=(x-1)-(-4)× 12, 化简可得-2x=3,即x=-32.24.(1)0或4或-4(2)①a=b=2②x=1【解析】试题分析:(1)根据乘方和绝对值求出a 、b 的值,然后代入求值即可;(2)根据前面求出的a 、b 的值,确定符合条件的a 、b ,然后代入求解方程即可.试题解析:因为:24a =,2b =所以a=±2,b =±2(1)当a=2,b=2时,a-b=0;当a=2,b=-2时,a-b=4;当a=-2,b=2时,a-b=-4;当a=-2,b=-2时,a-b=0故a-b 的值为0或±4.(2)①因为a+b >0,所以a=2,b=2,②把a=b=2代入方程.可得方程.解得x=125.x=10;a=-4;11.【解析】【分析】根据题意,可先求出方程的解,再将x 的值代入方程()431621x a x a -=-++中,解出a 的值,代入代数式,求2a 1a -+的值即可。

相关文档
最新文档