重庆市2020年高职分类考试招生数学(文科)试题及答案(重庆市春招考试)
2020年重庆市巴南区春招数学试卷 (解析版)
![2020年重庆市巴南区春招数学试卷 (解析版)](https://img.taocdn.com/s3/m/a0b084a287c24028915fc3cb.png)
2020年重庆市巴南区春招数学试卷一、选择题(共12小题).1.下列四个数中,是无理数的是()A.B.0C.D.2.据统计,近日前往重庆“龙门皓月”景点参观的人数达到了26000人,将26000用科学记数法表示为()A.0.26×105B.2.6×104C.26×103D.260×1023.不等式﹣x+1>x的解集是()A.x>﹣2B.x<2C.x>﹣D.x<4.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.5.如图,在平行四边形ABCD中,点E在对角线AC上,且BE⊥AB,若∠ACD=20°,则∠CEB的度数是()A.95°B.100°C.110°D.115°6.下列式子计算正确的是()A.m3•m2=m6B.(﹣m)﹣2=﹣C.m2+m2=2m2D.(m+n)2=m2+n27.如图,点A,B分别在x轴,y轴的正半轴上,且△ABO的面积为8,若双曲线y=(k ≠0)经过边AB的中点C,则k的值为()A.4B.6C.8D.128.如图,△ABC与△A1B1C1是以O为位似中心的位似图形,若OA=3AA1,S△ABC=36,则S=()A.64B.68C.81D.929.如图,小张坐在某体育馆的观众席的C处目测(从他的眼睛D处看)得体育馆中心O 处的俯角为18°,若CD=1.4米,BC=1.5米,BC平行于地面OA,台阶AB的坡度为i=3:4,坡长AB=15米,则观众席的底端A处与体育馆中心O处的距离约为()(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)A.20米B.19米C.18米D.17米10.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步200米,先到终点的人原地休息.已知甲先出发2秒,在跑步过程中,若甲、乙两人之间的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则下列结论中正确的是()A.乙的速度为5米/秒B.乙出发10秒钟将甲追上C.当乙到终点时,甲距离终点还有20米D.m=3811.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点(﹣1,0),其对称轴为直线x=1,若2<c<3,则下列结论中错误的是()A.abc<0B.4a+c>0C.﹣1<a<﹣D.4a+2b+c>0 12.如图,在菱形ABCD中,∠D=120°,AB=2,点E在边BC上,若BE=2EC,则点B到AE的距离是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)在每小题中,请将答案直接填写在答题卡中对应题目的横线上.13.计算:+|1﹣|﹣(π﹣3)0=.14.若代数式有意义,则x的取值范围是.15.如图,在四边形ABCD中,AB=BC=1,AB∥CD,∠D=45°,∠B=90°,若以点D为圆心,DA的长为半径画弧交边DC于点E,则图中阴影部分的面积是.16.已知整数a,b满足|ab|=2,如果任意选择一对有序整数(a,b),且每一对这样的有序整数被选择的可能性是相等的,那么关于x的方程x2+bx+a=0有两个相等实数根的概率是.17.若关于x的分式方程﹣=4有正整数解,且关于y的不等式组有解,则所有符合条件的整数a的值的积是.18.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D是线段BC上一动点,在直线AD的右侧找一点E,使EA⊥AD,且∠ADE=30°.当点D从点B运动到点C时,点E随之运动(点A不动),则点E运动的路径长为.三、解答题:(本大题共7个小题,每小题10分,共70分,)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.19.化简:(1)(m﹣3n)2﹣3n(n﹣2m);(2)(﹣a﹣2)÷.20.如图,AB为⊙O的直径,直线CF与⊙O相切于点E,与直线AB相交于点F,BC⊥CF,垂足为C.(1)求证:BE平分∠CBF;(2)若AB=16,∠CFB=30°,求弧的长.21.钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,但不必恐慌,尽量少去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜.”某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并组织社区居民在线参与了新型冠状病毒肺炎防护知识竞赛,社区管理员随机从A、B两个小区各抽取20名人员的竞赛成绩,并对他们的成绩(单位:分)进行统计、分析,过程如下:【收集数据】A小区:95 80 85 100 85 95 90 65 85 75 90 90 70 90 100 80 80 90 95 75B小区:80 80 60 95 65 100 90 80 85 85 95 75 80 90 70 80 95 75 100 90【整理数据】成绩x(分)60≤x≤70 70<x≤80 80<x≤90 90<x≤100 A小区2585B小区3a55【分析数据】统计量平均数中位数众数A小区85.7587.5cB小区83.5b80【应用数据】请根据以上统计分析的过程和结果,解答下列问题:(1)写出a、b、c的值;(2)若B小区共有900人参与知识竞赛,请估计B小区成绩大于80分的人数;(3)你认为哪个小区对新型冠状病毒肺炎防护知识掌握更好,请你写出两条理由.22.下面是小张探索函数y=|x﹣1|﹣2的图象与性质的不完整的过程:【列表格】:列出y与x的几组对应值:x…﹣2﹣101234…y…10﹣1﹣2﹣10m…[…]:…根据上面不完整的探索过程,完成下列问题:(1)直接写出表格中m的值;(2)在答题卡中的平面直角坐标系中,画出函数y=|x﹣1|﹣2的图象;(3)结合您画的函数的图象,解决问题:当|x﹣1|﹣2<x﹣时,写出x的取值范围.23.预防新型冠状病毒期间,某种消毒液A地需要6吨,B地需要10吨,正好M地储备有7吨,N地储备有9吨.市预防新型冠状病毒领导小组决定将这16吨消毒液调往A 地和B地.消毒液的运费价格如表(单位:元/吨).设从M地调运x(0<x≤6)吨到A地.(1)求调运16吨消毒液的总运费y关于x的函数关系式;(2)求出总运费最低的调运方案,最低运费为多少?A地B地终点起点M地70120N地458024.我们在学习勾股定理后知道“能够成为直角三角形三条边长的三个整数,称为勾股数.”例如:15,8,17,因为172=82+152,所以15,8,17是勾股数.(1)已知b=mn,c =(m2+n2),若a,b,c是勾股数,a,b,c,m,n都是正整数,且c为37,n=5,求a,m的值;(2)规定:一个两位正整数N,如果N满足各数位上的数字互不相同且均不为0,那么称N为“扬帆数”,将N的两个数位上的数字对调得到一个新数N1,把N1放在N的后面组成第一个四位数,把N放在N1的后面组成第二个四位数,我们把第一个四位数减去第二个四位数后所得的差再除以81所得的商记为F(N).例如,当N=56时,N1=65,F(56)==﹣11.①求F(37)的值;②s,t为“扬帆数”,其中s=10c+d,t=10p+q(2≤c<d≤5,1≤p≤5,1≤q≤5),且c,d,p,q为整数),且F(s)能被3整除,F(s)+F(t)+22p+55=0.是否存在整数f使s,t,f成勾股数,若存在,求出f的值;若不存在,请说明理由.25.如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0)和点B,与y轴交于点C,该抛物线的对称轴为x =.(1)求a,b的值;(2)若点P在抛物线上,且在x轴的下方,作射线BP,当∠PBA=∠ACO时,求点P 的坐标;(3)若点M在抛物线上,点N在对称轴上,是否存在点B、C、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.四、解答题:(本大题共1个小题,共8分.)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作轴助线),请将解答过程书写在答题卡中对应的位置上.26.已知,在矩形ABCD中,AB=2,点E在边BC上,且AE⊥DE,AE=DE,点F是BC的延长线上一点,AF与DE相交于点G,DH⊥AF,垂足为H,DH的延长线与BC 相交于点K.(1)如图1,求AD的长;(2)如图2,连接KG,求证:AG=DK+KG;(3)如图3,设△ADM与△ADH关于AD对称,点N、Q分别是MA、MD的中点,请直接写出BN+NQ的最大值.参考答案一、选择题:(本大题共12个小题,每小题4分,共48分.)在每小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请使用2B铅笔将答题卡上对应题目右侧正确答案所在的方框涂黑.1.下列四个数中,是无理数的是()A.B.0C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此解答即可.解:A、是分数,是有理数,此选项不符合题意;B、0是整数,是有理数,此选项不符合题意;C、是无理数,此选项符合题意;D、=3是整数,是有理数,此选项不符合题意.故选:C.2.据统计,近日前往重庆“龙门皓月”景点参观的人数达到了26000人,将26000用科学记数法表示为()A.0.26×105B.2.6×104C.26×103D.260×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解:26 000用科学记数法表示是2.6×104.故选:B.3.不等式﹣x+1>x的解集是()A.x>﹣2B.x<2C.x>﹣D.x<【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.解:移项,得:﹣x﹣x>﹣1,合并,得:﹣2x>﹣1,系数化为1,得:x<,故选:D.4.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念判断.解:A、不是轴对称图形,是中心对称图形;B、既不是轴对称图形,也不是中心对称图形;C、既不是轴对称图形,也不是中心对称图形;D、既是轴对称图形,又是中心对称图形.故选:D.5.如图,在平行四边形ABCD中,点E在对角线AC上,且BE⊥AB,若∠ACD=20°,则∠CEB的度数是()A.95°B.100°C.110°D.115°【分析】根据平行四边形的性质得出∠CAB=20°,利用互余和互补解答即可.解:∵四边形ABCD是平行四边形,∴AB∥CD,∵∠ACD=20°,∴∠CAB=20°,∵BE⊥AB,∴∠AEB=90°﹣20°=70°,∴∠CEB=180°﹣70°=110°,故选:C.6.下列式子计算正确的是()A.m3•m2=m6B.(﹣m)﹣2=﹣C.m2+m2=2m2D.(m+n)2=m2+n2【分析】分别按照同底数幂的乘法运算法则、负整数指数幂的运算法则、合并同类项的运算法则和完全平方公式进行判断即可.解:A、m3•m2=m5,故A错误;B、(﹣m)﹣2=,故B错误;C、按照合并同类项的运算法则,该运算正确.D、(m+n)2=m2+2mn+n2,故D错误.故选:C.7.如图,点A,B分别在x轴,y轴的正半轴上,且△ABO的面积为8,若双曲线y=(k ≠0)经过边AB的中点C,则k的值为()A.4B.6C.8D.12【分析】设点A(a,0),点B(0,b),由三角形面积公式可求ab=16,由中点坐标公式可求点C(,),代入解析式可求k的值.解:设点A(a,0),点B(0,b),∴OA=a,OB=b,∵△ABO的面积为8,∴ab=8,∴ab=16,∵点C是AB中点,∴点C(,),∵点C在双曲线y=(k≠0)上,∴k=×=4,故选:A.8.如图,△ABC与△A1B1C1是以O为位似中心的位似图形,若OA=3AA1,S△ABC=36,则S=()A.64B.68C.81D.92【分析】根据位似变换的概念得到△ABC∽△A1B1C1,根据相似三角形的面积比等于相似比的平方列式计算,得到答案.解:∵△ABC与△A1B1C1是以O为位似中心的位似图形,∴△ABC∽△A1B1C1,∵OA=3AA1,∴△ABC与△A1B1C1的相似比为:=,∴△ABC与△A1B1C1的面积比为:()2=,∵S△ABC=36,∴S=36÷=81,故选:C.9.如图,小张坐在某体育馆的观众席的C处目测(从他的眼睛D处看)得体育馆中心O 处的俯角为18°,若CD=1.4米,BC=1.5米,BC平行于地面OA,台阶AB的坡度为i=3:4,坡长AB=15米,则观众席的底端A处与体育馆中心O处的距离约为()(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)A.20米B.19米C.18米D.17米【分析】延长DC交OA延长线于点F,根据题意可得DF⊥OA,过点B作BG⊥OA于点G,可得四边形BCFG是矩形,根据AB的坡度为i=3:4,坡长AB=15,可得BG =9,AG=12,再根据锐角三角函数即可求出OA的长.解:如图,延长DC交OA延长线于点F,根据题意可知:DF⊥OA,过点B作BG⊥OA于点G,则四边形BCFG是矩形,∴CF=BG,FG=BC=1.5,∵AB的坡度为i=3:4,坡长AB=15,∴BG=9,AG=12,∴在Rt△ODF中,∠DOF=18°,OF=OA+AG+GF=OA+12+1.5=13.5+OA,DF=DC+CF=1.4+9=10.4,∴DF=OF•tan18°,即10.4≈(13.5+OA)×0.32,解得OA≈19(米).所以观众席的底端A处与体育馆中心O处的距离约为19米.故选:B.10.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步200米,先到终点的人原地休息.已知甲先出发2秒,在跑步过程中,若甲、乙两人之间的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则下列结论中正确的是()A.乙的速度为5米/秒B.乙出发10秒钟将甲追上C.当乙到终点时,甲距离终点还有20米D.m=38【分析】根据题意和函数图象中的数据,可以判断出各个选项中的说法是否正确,从而可以解答本题.解:由图象可得,乙的速度为:200÷32=6.25(米/秒),故选项A不合题意;甲的速度为:10÷2=5(米/秒),设乙出发x秒将追上甲,6.25x=10+5x,得x=8,故选项B不合题意;当乙到终点时,甲距离终点还有:200﹣(32+2)×5=30(米),故选项C不合题意;a=200÷5﹣2=38,故选项D符合题意.故选:D.11.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点(﹣1,0),其对称轴为直线x=1,若2<c<3,则下列结论中错误的是()A.abc<0B.4a+c>0C.﹣1<a<﹣D.4a+2b+c>0【分析】根据二次函数的图象与系数的关系即可求出答案.解:A.抛物线的对称轴在y轴右侧,则ab<0,而c>0,故abc<0,正确,不符合题意;B.函数的对称轴为直线x=﹣=1,则b=﹣2a,∵从图象看,当x=﹣1时,y=a﹣b+c=3a+c=0,而a<0,故4a+c<0,故B错误,符合题意;C.④∵﹣=1,故b=﹣2a,∵x=﹣1,y=0,故a﹣b+c=0,∴c=﹣3a,∵2<c<3,∴2<﹣3a<3,∴﹣1<a<﹣,故C正确,不符合题意;D.从图象看,当x=2时,y=4a+2b+c>0,故D正确,不符合题意;故选:B.12.如图,在菱形ABCD中,∠D=120°,AB=2,点E在边BC上,若BE=2EC,则点B到AE的距离是()A.B.C.D.【分析】过点B作BH⊥AE于点H,过点E作EF⊥AB交AB的延长线于点F,求出BF=BE=,EF=,可求出AE,由S△ABE=AB•EF可求出BH,则答案可求出.解:过点B作BH⊥AE于点H,过点E作EF⊥AB交AB的延长线于点F,∵菱形ABCD中,AB=2,∴BC=2,∵BE=2EC,∴BE=,CE=,∵∠D=120°,∴∠ABE=120°,∴∠EBF=60°,∴BF=BE=,EF=,∴AF=AB+BF=2+=,∴AE===,∵S△ABE=AB•EF,∴BH===.故选:A.二、填空题:(本大题共6个小题,每小题4分,共24分.)在每小题中,请将答案直接填写在答题卡中对应题目的横线上.13.计算:+|1﹣|﹣(π﹣3)0=.【分析】本题涉及绝对值、负整数指数幂、二次根式化简、三次根式化简4个知识点.在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.解:+|1﹣|﹣(π﹣3)0=2+﹣1﹣1=.故答案为:.14.若代数式有意义,则x的取值范围是x>0.【分析】直接利用二次根式有意义的条件分析得出答案.解:代数式有意义,则x>0.故答案为:x>0.15.如图,在四边形ABCD中,AB=BC=1,AB∥CD,∠D=45°,∠B=90°,若以点D为圆心,DA的长为半径画弧交边DC于点E,则图中阴影部分的面积是1﹣.【分析】作AH⊥CD于H,如图,易得四边形ABCH为正方形,则AH=HC=AB=1,利用∠D=45°得到DH=AH=1,AD=,然后根据扇形的面积公式,利用图中阴影部分的面积=S梯形ABCD﹣S扇形ADE进行计算.解:作AH⊥CD于H,如图,易得四边形ABCH为正方形,∴AH=HC=AB=1,∵∠D=45°,∴DH=AH=1,AD=AH=,∴图中阴影部分的面积=S梯形ABCD﹣S扇形ADE=(1+2)×1﹣=1﹣.故答案为1﹣.16.已知整数a,b满足|ab|=2,如果任意选择一对有序整数(a,b),且每一对这样的有序整数被选择的可能性是相等的,那么关于x的方程x2+bx+a=0有两个相等实数根的概率是.【分析】由|ab|=2列表得出a、b取值的所有等可能结果,从中找到满足b2=4a的结果数,根据概率公式求解可得.解:∵|ab|=2,∴列表如下:﹣1﹣212﹣1(﹣2,﹣1)(2,﹣1)﹣2(﹣1,﹣2)(1,﹣2)1(﹣2,1)(2,1)2(﹣1,2)(1,2)由表可知,共有8种结果,其中满足b2﹣4a=0,即b2=4a的有(1,﹣2)和(1,2)两种情况,∴关于x的方程x2+bx+a=0有两个相等实数根的概率是,故答案为:.17.若关于x的分式方程﹣=4有正整数解,且关于y的不等式组有解,则所有符合条件的整数a的值的积是﹣8.【分析】根据不等式组有解,可得a的范围,根据分式方程的解,可得a的值,根据正整数的定义,可得答案.解:,由①得:y≤8,由②得:y≥a+6,∵关于y的不等式组有解,∴a+6≤8∴a≤2,解分式方程﹣=4,得x=,∵x﹣2≠0,∴≠2,∴a≠0,∵关于x的分式方程﹣=4有正整数解,∴4﹣a=1或4﹣a=2或4﹣a=4或4﹣a=8,∴a=3或a=2或a=0或a=﹣4,∵a≤2,a≠0,∴a=2或﹣4,∴所有符合条件的整数a的值的积=2×(﹣4)=﹣8,故答案为:﹣8.18.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D是线段BC上一动点,在直线AD的右侧找一点E,使EA⊥AD,且∠ADE=30°.当点D从点B运动到点C时,点E随之运动(点A不动),则点E运动的路径长为2.【分析】当点D在点B时,点E是AB的中点,当点D运动到点C时,点E是AC的中点,可得点E运动的路径长即为三角形ABC的中位线,进而可得结果.解:∵EA⊥AD,∴∠DAE=90°,∵∠ADE=30°,∴AE=AD,当点D在点B时,点E是AB的中点,当点D运动到点C时,点E是AC的中点,所以点E运动的路径即为三角形ABC的中位线,所以点E运动的路径长为:BC=2.故答案为:2.三、解答题:(本大题共7个小题,每小题10分,共70分,)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.19.化简:(1)(m﹣3n)2﹣3n(n﹣2m);(2)(﹣a﹣2)÷.【分析】(1)根据完全平方公式和单项式乘多项式可以解答本题;(2)根据分式的减法和除法可以解答本题.解:(1)(m﹣3n)2﹣3n(n﹣2m)=m2﹣6mn+9n2﹣3n2+6mn=m2+6n2;(2)(﹣a﹣2)÷===﹣=﹣2(3+a)=﹣6﹣2a.20.如图,AB为⊙O的直径,直线CF与⊙O相切于点E,与直线AB相交于点F,BC⊥CF,垂足为C.(1)求证:BE平分∠CBF;(2)若AB=16,∠CFB=30°,求弧的长.【分析】(1)连接OE,根据切线的性质得到OE⊥CF,得到OE∥BC,根据平行线的性质、等腰三角形的性质得到∠CBE=∠OBE,根据角平分线的定义证明即可;(2)根据直角三角形的性质求出∠EOF=60°,根据弧长公式计算,得到答案.【解答】(1)证明:连接OE,∵直线CF与⊙O相切,∴OE⊥CF,∵BC⊥CF,∴OE∥BC,∴∠CBE=∠OEB,∵OE=OB,∴∠OBE=∠OEB,∴∠CBE=∠OBE,∴BE平分∠CBF;(2)解:∵∠OEF=90°,∠CFB=30°,∴∠EOF=60°,∴的长==π.21.钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,但不必恐慌,尽量少去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜.”某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并组织社区居民在线参与了新型冠状病毒肺炎防护知识竞赛,社区管理员随机从A、B两个小区各抽取20名人员的竞赛成绩,并对他们的成绩(单位:分)进行统计、分析,过程如下:【收集数据】A小区:95 80 85 100 85 95 90 65 85 75 90 90 70 90 100 80 80 90 95 75B小区:80 80 60 95 65 100 90 80 85 85 95 75 80 90 70 80 95 75 100 90【整理数据】成绩x(分)60≤x≤70 70<x≤80 80<x≤90 90<x≤100 A小区2585B小区3a55【分析数据】统计量平均数中位数众数A小区85.7587.5cB小区83.5b80【应用数据】请根据以上统计分析的过程和结果,解答下列问题:(1)写出a、b、c的值;(2)若B小区共有900人参与知识竞赛,请估计B小区成绩大于80分的人数;(3)你认为哪个小区对新型冠状病毒肺炎防护知识掌握更好,请你写出两条理由.【分析】(1)根据题目中的数据,可以得到a、b、c的值;(2)根据题目中的数据,可以计算出B小区成绩大于80分的人数;(3)根据题目中的数据,可以得到哪个小区对新型冠状病毒肺炎防护知识掌握更好,然后说明理由即可.解:(1)由题目中的数据可得,a=7,b=(80+85)÷2=82.5,c=90;(2)900×=450(人),答:B小区成绩大于80分有450人;(3)A小区对新型冠状病毒肺炎防护知识掌握更好,理由:第一,A小区平均数大于B小区,第二,A小区的中位数大于B小区(第三,A 小区的众数大于B小区).22.下面是小张探索函数y=|x﹣1|﹣2的图象与性质的不完整的过程:【列表格】:列出y与x的几组对应值:x…﹣2﹣101234…y…10﹣1﹣2﹣10m…[…]:…根据上面不完整的探索过程,完成下列问题:(1)直接写出表格中m的值;(2)在答题卡中的平面直角坐标系中,画出函数y=|x﹣1|﹣2的图象;(3)结合您画的函数的图象,解决问题:当|x﹣1|﹣2<x﹣时,写出x的取值范围.【分析】(1)把x=4代入y=|x﹣1|﹣2,即可求出m的值;(2)根据表格数据,描点、连线,画出该函数的图象;(3)根据图象即可求|x﹣1|﹣2<x ﹣时x的取值范围.解:(1)把x=4代入y=|x﹣1|﹣2,得y=1,解∴m=1.(2)该函数的图象如图:(3)由图形可知,当当|x﹣1|﹣2<x ﹣时x 的取值范围是<x<2.23.预防新型冠状病毒期间,某种消毒液A地需要6吨,B地需要10吨,正好M地储备有7吨,N地储备有9吨.市预防新型冠状病毒领导小组决定将这16吨消毒液调往A 地和B地.消毒液的运费价格如表(单位:元/吨).设从M地调运x(0<x≤6)吨到A地.(1)求调运16吨消毒液的总运费y关于x的函数关系式;(2)求出总运费最低的调运方案,最低运费为多少?A地B地终点起点M地70120N地4580【分析】(1)根据题意即可得调运16吨消毒液的总运费y关于x的函数关系式;(2)根据一次函数的性质即可求出总运费最低的调运方案和最低运费.解:(1)由题意可知:y=70x+120(7﹣x)+45(6﹣x)+80[(9﹣(6﹣x)]=﹣15x+1350(0<x≤6).(2)由(1)的函数可知:k=﹣15<0,所以函数的值随x的增大而减小,当x=6时,有最小值y=﹣15×6+1350=1260(元).答:总运费最低的调运方案是从M地调运6吨到A地,1吨到B地,最低运费为1260元.24.我们在学习勾股定理后知道“能够成为直角三角形三条边长的三个整数,称为勾股数.”例如:15,8,17,因为172=82+152,所以15,8,17是勾股数.(1)已知b=mn,c=(m2+n2),若a,b,c是勾股数,a,b,c,m,n都是正整数,且c为37,n=5,求a,m的值;(2)规定:一个两位正整数N,如果N满足各数位上的数字互不相同且均不为0,那么称N为“扬帆数”,将N的两个数位上的数字对调得到一个新数N1,把N1放在N的后面组成第一个四位数,把N放在N1的后面组成第二个四位数,我们把第一个四位数减去第二个四位数后所得的差再除以81所得的商记为F(N).例如,当N=56时,N1=65,F(56)==﹣11.①求F(37)的值;②s,t为“扬帆数”,其中s=10c+d,t=10p+q(2≤c<d≤5,1≤p≤5,1≤q≤5),且c,d,p,q为整数),且F(s)能被3整除,F(s)+F(t)+22p+55=0.是否存在整数f使s,t,f成勾股数,若存在,求出f的值;若不存在,请说明理由.【分析】(1)先求出m的值,分两种情况讨论,由勾股定理可求a的值;(2)①由F(N)的定义可求解;②利用F(N)的定义可求F(s)=11(c﹣d),F(t)=11(p﹣q),由题意可求s和t,利用勾股数定义可求解.解:(1)∵c=(m2+n2)=37,n=5,∴m=7,∴b=mn=35,若a是最大边,则a2=b2+c2=2597,∴a=,∵a是正整数,∴a=不合题意舍去,若c为最大边,则c2=b2+a2,∴a==12答:a=12,m=7;(2)①F(37)==44;②∵F(s)==11(c﹣d),2≤c<d≤5,F(s)能被3整除,∴c=2,d=5,∴F(s)=﹣33,同理可求:F(t)=11(p﹣q),∵F(s)+F(t)+22p+55=0,∴﹣33+11p﹣11q+22p+55=0,∴3p﹣q=﹣2,∵1≤p≤5,1≤q≤5,∴p=1,q=5,∴s=10c+d=25,t=10p+q=15,若s为最大边,则f2=s2﹣t2=400,∴f=20,若f为最大边,则f2=s2+t2=850,∴f=,∵f为整数,∴f=20.25.如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0)和点B,与y轴交于点C,该抛物线的对称轴为x=.(1)求a,b的值;(2)若点P在抛物线上,且在x轴的下方,作射线BP,当∠PBA=∠ACO时,求点P 的坐标;(3)若点M在抛物线上,点N在对称轴上,是否存在点B、C、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【分析】(1)由A点坐标和抛物线的对称轴方程可求出答案;(2)得出tan∠PBA=tan∠ACO=,求出OE=,得出点E的坐标,求出直线BE的解析式,联立直线BE和抛物线方程,则可得出点P的坐标;(3)设出点M,N的坐标,分三种情况,利用中点坐标公式建立方程求解即可得出结论.解:(1)∵抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0),对称轴为x=.∴,解得,.∴a=,b=﹣.(2)如图,设直线PB与OC交于点E,∵抛物线解析式y=x2﹣x﹣3与y轴交于点C,∴C(0,3),又∵A(﹣1,0),∴OA=1,OC=3,∴tan∠ACO=,∵∠PBA=∠ACO,∴tan∠PBA=tan∠ACO=,∴OE=,∴E(0,﹣),设直线BE的解析式为y=mx+n,∴,解得,∴直线BE的解析式为y=x﹣,∴,解得,x1=﹣,x2=4(舍去),∴P(﹣,﹣).(3)由(1)知,抛物线解析式为y=x2﹣x﹣3,对称轴直线为x=,∴设N(,b),M(m,m2﹣m﹣3),∵以B、C、M、N为顶点的四边形是平行四边形,∴①当CB为对角线时,(0+4)=(+m),∴m=,∴M(,﹣),②当CM为对角线时,(m+0)=(4+),∴m=,∴M(,),③当CN为对角线时,(0+)=(4+m),∴m=﹣,∴M(﹣,),即:抛物线上存在这样的点M,点M的坐标分别为:M(,﹣)或(,)或(﹣,).四、解答题:(本大题共1个小题,共8分.)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作轴助线),请将解答过程书写在答题卡中对应的位置上.26.已知,在矩形ABCD中,AB=2,点E在边BC上,且AE⊥DE,AE=DE,点F是BC的延长线上一点,AF与DE相交于点G,DH⊥AF,垂足为H,DH的延长线与BC 相交于点K.(1)如图1,求AD的长;(2)如图2,连接KG,求证:AG=DK+KG;(3)如图3,设△ADM与△ADH关于AD对称,点N、Q分别是MA、MD的中点,请直接写出BN+NQ的最大值.【分析】(1)证明Rt△ABE≌Rt△DCE(HL),推出BE=CE,∠AEB=∠DEC可得结论.(2)如图2中,延长AE交DK的延长线于T.利用全等三角形的性质证明AG=DT,GK=KT即可解决问题.(3)延长AB到T,使得BT=AB,连接TM,取AD的中点O,连接OM,OT.由三角形的中位线定理可得NQ=AD=2,再证明BN=TM,求出TM的最大值即可解决问题.【解答】(1)解:如图1中,∵四边形ABCD是矩形,∴AB=CD,∠B=∠C=90°,∵AE=ED,∴Rt△ABE≌Rt△DCE(HL),∴BE=CE,∠AEB=∠DEC,∵AE⊥DE,∴∠AED=90°,∴∠AEB=∠DEC=45°,∴∠BAE=∠AEB=45°,∴BE=AB=2,∴AD=BC=2BE=4.(2)证明:如图2中,延长AE交DK的延长线于T.∵DH⊥AF,∴∠DHG=∠AEG=90°,∵∠AGE=∠DGH,∴∠1=∠2,∵∠AEG=∠DET=90°,AE=DE,∴△AEG≌△DET(ASA),∴EG=ET,AG=DT,∵∠KEG=∠KET=45°,EK=EK,∴△KEG≌△KET(SAS),∴GK=KT,∵DT=DK+KT=DK+GK,∴AG=GK+DK.(3)延长AB到T,使得BT=AB,连接TM,取AD的中点O,连接OM,OT.∵MN=NA,MQ=QD,∴NQ=AD=2,∴BN的值最大时,BN+NQ的值最大,∵AB=BT,AN=NM,∴BN=TM,∵AB=BT=2,AO=2,∠TAO=90°,∴OT===2,∵∠AMD=90°,AO=OD,∴OM=AD=2,∵MN≤OT+OM,∴MN≤2+2,∴MN的最大值为2+2,∴BN的最大值为1+,∴BN+QN的最大值为3+.。
2020年普通高等学校招生全国统一考试数学文试题(重庆卷,解析版)
![2020年普通高等学校招生全国统一考试数学文试题(重庆卷,解析版)](https://img.taocdn.com/s3/m/d78d3a647c1cfad6195fa7fd.png)
2020年普通高等学校招生全国统一考试数学文试题(重庆卷,解析版)数学试题卷(文史类)共4页。
满分150分。
考试时间l20分钟。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米的黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束,务必将试题卷和答题卡一并上交。
一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中.只有一项是符合题目要求的.(1)4(1)x +的展开式中2x 的系数为(A )4 (B )6 (C )10 (D )20 【答案】B【解析】由通项公式得2234T C 6x x ==.(2)在等差数列{}n a 中,1910a a +=,则5a 的值为 (A )5 (B )6 (C )8 (D )10 【答案】A【解析】由角标性质得1952a a a +=,所以5a =5.(3)若向量(3,)a m =,(2,1)b =-,0a b =g ,则实数m 的值为 (A )32-(B )32(C )2 (D )6 【答案】D【解析】60a b m =-=g ,所以m =6. (4)函数164x y =-的值域是(A )[0,)+∞ (B )[0,4] (C )[0,4) (D )(0,4) 【答案】C【解析】[)40,0164161640,4xxx>∴≤-<∴-∈Q .(5)某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 . 若样本中的青年职工为7人,则样本容量为(A )7 (B )15 (C )25 (D )35 【答案】B【解析】青年职工、中年职工、老年职工三层之比为7:5:3,所以样本容量为715715=.(6)下列函数中,周期为π,且在[,]42ππ上为减函数的是 (A )sin(2)2y x π=+ (B )cos(2)2y x π=+ (C )sin()2y x π=+ (D )cos()2y x π=+ 【答案】A【解析】C 、D 中函数周期为2π,所以错误 当[,]42x ππ∈时,32,22x πππ⎡⎤+∈⎢⎥⎣⎦,函数sin(2)2y x π=+为减函数而函数cos(2)2y x π=+为增函数,所以选A(7)设变量,x y 满足约束条件0,0,220,x x y x y ≥⎧⎪-≥⎨⎪--≤⎩则32z x y =-的最大值为(A )0 (B )2 (C )4 (D )6 【答案】C【解析】不等式组表示的平面区域如图所示,当直线32z x y =-过点B 时,在y 轴上截距最小,z 最大 由B (2,2)知max z =4(8)若直线y x b =-与曲线2cos ,sin x y θθ=+⎧⎨=⎩([0,2)θπ∈)有两个不同的公共点,则实数b 的取值范围为(A )(22,1) (B )[22,22](C )(,22)(22,)-∞-++∞U (D )(22,22)-+ 【答案】D 【解析】2cos ,sin x y θθ=+⎧⎨=⎩化为普通方程22(2)1x y -+=,表示圆,因为直线与圆有两个不同的交点,所以21,2b -<解得2222b -<<+法2:利用数形结合进行分析得22,22AC b b =-=∴=- 同理分析,可知2222b -<<+(9)到两互相垂直的异面直线的距离相等的点(A )只有1个 (B )恰有3个 (C )恰有4个 (D )有无穷多个 【答案】D【解析】放在正方体中研究,显然,线段1OO 、EF 、FG 、GH 、HE 的中点到两垂直异面直线AB 、CD 的距离都相等, 所以排除A 、B 、C ,选D亦可在四条侧棱上找到四个点到两垂直异面直线AB 、CD 的距离相等(10)某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天 . 若6位员工中的甲不值14日,乙不值16日,则不同的安排方法共有(A )30种 (B )36种 (C )42种 (D )48种 【答案】C【解析】法一:所有排法减去甲值14日或乙值16日,再加上甲值14日且乙值16日的排法即2212116454432C C C C C C -⨯+=42法二:分两类甲、乙同组,则只能排在15日,有24C =6种排法甲、乙不同组,有112432(1)C C A +=36种排法,故共有42种方法.二.填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应位置上. (11)设{}{}|10,|0A x x B x x =+>=<,则A B I =____________ . 【答案】{}|-1<0x x <【解析】{}{}{}|1|0|10x x x x x x >-⋂<=-<<.(12)已知0t >,则函数241t t y t-+=的最小值为____________ .【答案】-2【解析】241142(0)t t y t t t t-+==+-≥->Q ,当且仅当1t =时,min 2y =-. (13)已知过抛物线24y x =的焦点F 的直线交该抛物线于A 、B 两点,2AF =,则BF =____________ .【答案】2【解析】由抛物线的定义可知12AF AA KF === AB x ∴⊥轴 故AF =BF =2(14)加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为170、169、168,且各道工序互不影响,则加工出来的零件的次品率为____________ . 【答案】370【解析】加工出来的零件的次品的对立事件为零件是正品,由对立事件公式得 加工出来的零件的次品率6968673170696870p =-⨯⨯=. (15)如题(15)图,图中的实线是由三段圆弧连接而成的一条封闭曲线C ,各段弧所在的圆经过同一点P (点P 不在C 上)且半径相等. 设第i 段弧所对的圆心角为(1,2,3)i i α=,则232311coscossinsin3333αααααα++-=____________ .【答案】1-2【解析】232312311coscossinsincos 33333ααααααααα++++-=又1232αααπ++=,所以1231cos32ααα++=-.三.解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. (16)(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分. )已知{}n a 是首项为19,公差为-2的等差数列,n S 为{}n a 的前n 项和. (Ⅰ)求通项n a 及n S ;(Ⅱ)设{}n n b a -是首项为1,公比为3的等比数列,求数列{}n b 的通项公式及其前n 项和n T.(17)(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分. )在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起. 若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,……,6),求:(Ⅰ)甲、乙两单位的演出序号均为偶数的概率; (Ⅱ)甲、乙两单位的演出序号不相邻的概率.(18).(本小题满分13分), (Ⅰ)小问5分,(Ⅱ)小问8分.)设ABC ∆的内角A 、B 、C 的对边长分别为a 、b 、c,且32b +32c -32a =42bc .(Ⅰ) 求s inA 的值;(Ⅱ)求2sin()sin()441cos 2A B C Aππ+++-的值.(19) (本小题满分12分), (Ⅰ)小问5分,(Ⅱ)小问7分.)已知函数32()f x ax x bx =++(其中常数a,b ∈R),()()()g x f x f x '=+是奇函数.(Ⅰ)求()f x 的表达式;(Ⅱ)讨论()g x 的单调性,并求()g x 在区间[1,2]上的最大值和最小值.(20)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分. )如题(20)图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,2PA AB ==,点E 是棱PB 的中点.(Ⅰ)证明:AE ⊥平面PBC ;(Ⅱ)若1AD =,求二面角B EC D --的平面角的余弦值.(21)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分. )已知以原点O 为中心,(5,0)F 为右焦点的双曲线C 的离心率52e =. (Ⅰ)求双曲线C 的标准方程及其渐近线方程; (Ⅱ)如题(21)图,已知过点11(,)M x y 的直线1l :1144x x y y +=与过点22(,)N x y (其中21x x ≠)的直线2l :2244x x y y +=的交点E 在双曲线C 上,直线MN 与双曲线的两条渐近线分别交于G 、H 两点,求OG OH u u u r u u u rg的值.。
2020年重庆市沙坪坝区春招数学试题、答案
![2020年重庆市沙坪坝区春招数学试题、答案](https://img.taocdn.com/s3/m/c83ff1745901020206409c56.png)
2020年重庆市沙坪坝区春招数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共12小题,共48.0分)1.下列各数中,是负数的是()A. 0B. 2C. 5D. −32.汉字书法博大精深,下列汉字“行“的不同书写字体中,是轴对称图形的是()A. B. C. D.3.已知两个相似三角形的面积之比为4:9,则这两个相似三角形的对应边之比是()A. 16:81B. 4:9C. 9:4D. 2:34.一元二次方程2x2+5x+1=0的根的情况是()A. 有两个不相等的实数根B. 没有实数根C. 有两个相等的实数根D. 无法判断5.如图,AB与⊙O相切于点B,连结AO并延长交⊙O于点C,连结BC.若∠C=34°,则∠A的度数是()A. 17°B. 22°C. 34°D. 56°6.估计√19−2的值应在()A. 4和5之间B. 3和4之间C. 2和3之间D. 1和2之间7.以下尺规作图中,一定能得到线段AD=BD的是()A. B.C. D.8.在数轴上,点A、B在原点O的两侧,分别表示数a、2,将点A向右平移3个单位长度,得到点C.若CO=2BO,则a的值为()A. −1B. −7C. 1或−7D. 7或−19.若关于x的方程2xx−2−a−62−x=1的解为正数,则所有符合条件的正整数a的个数为()A. 1个B. 2个C. 3个D. 4个10.把有理数a代入|a+4|−10得到a1,称为第一次操作,再将a1作为a的值代入得到a2,称为第二次操作,…,若a=23,经过第2020次操作后得到的是()A. −7B. −1C. 5D. 1111.如图,滑动调节式遮阳伞的立柱AC垂直于地面AB,P为立柱上的滑动调节点,伞体的截面示意图为△PDE,F为PD的中点,AC=2.8m,PD=2m,CF=1m,∠DPE=15°.根据生活经验,当太阳光线与PE垂直时,遮阳效果最佳,在上午10:00时,太阳光线与地面的夹角为65°,若要遮阳效果最佳AP的长约为()(参考数据:sin65°≈0.91,cos65°≈0.42,sin50°≈0.77,cos50°≈0.64)A. 1.2mB. 1.3mC. 1.5mD. 2.0m12.近期,某国遭遇了近年来最大的经济危机,导致该国股市大幅震荡,昨天某支股票累计卖出的数量和交易时间之间的关系如图中虚线所示,累计买入的数量和交易时间之间的关系如图中实线所示,其中点A是实线和虚线的交点,点C是BE的中点,CD与横轴平行,则下列关于昨天该股票描述正确的是()A. 交易时间在3.5ℎ时累计卖出的数量为12万手B. 交易时间在1.4ℎ时累计卖出和累计买入的数量相等C. 累计卖出的数量和累计买入的数量相差1万手的时刻有5个D. 从点A对应的时刻到点C对应的时刻,平均每小时累计卖出的数量小于买入的数量二、填空题(本大题共6小题,共24.0分)13.2020年5月22日,李克强总理在政府工作报告中指出,农村贫困人口减少11090000人,脱贫攻坚取得决定性成就,把数11090000用科学记数法表示为______.14.如图,Rt△ABC中,AB=AC,BC=2√2,以点C为圆心,CA长为半径画弧交BC于点D.则图中弧AD的长为______(结果保留π).15.从碳酸钠、锌、铜这三种物质中任选一种,能够与盐酸发生化学反应产生气体的概率是______.16.清代数学家梅文鼎在《勾股举隅》一书中,用四个全等的直角三角形拼出正方形ABDE的方法证明了勾股定理(如图),若Rt△ABC的斜边AB=5,BC=3,则图中线段CE的长为______.17. 如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上,点D 在边OC 上,且BD =OC ,以BD 为边向下作矩形BDEF ,使得点E 在边OA 上,反比例函数y =k x (k ≠0)的图象经过边EF 与AB 的交点G.若AG =32,DE =2,则k 的值为______.18. 如图,Rt △ABC 中,∠ACB =90°,AB =2AC ,BC =3,点E 是AB 上的点,将△ACE沿CE 翻折,得到△A′CE ,过点B 作BF//AC 交∠BAC 的平分线于点F ,连接A′F ,则A′F 长度的最小值为______.三、计算题(本大题共1小题,共10.0分)19. 计算:(1)√25+(13)−1−π0−(−1);(2)(m +9m+6)÷m 2−9m+6.四、解答题(本大题共7小题,共68.0分)20. 如图,在△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC 交AC于点D ,点E 是AB 的中点,连结DE .(1)求证:△ABD 是等腰三角形;(2)求∠BDE 的度数.21.为了解疫情对精神负荷造成的影响,某机构分别在一线城市和三线城市的志愿者中随机选取了50人参加LES测试,根据志愿者的答题情况计算出LES得分,并对得分进行整理,描述和分析,部分信息如下:一、三线城市志愿者得分统计表城市中位数平均数一线城市a17.6三线城市1417.2注:一线城市在14<x≤20中的得分是:15,15,16,17,17,17,17,18,18,20.根据以上信息,解答下列问题:(1)表中a的值为______;(2)得分越低反映个体承受的精神压力越小,排名越靠前,在这次调查中,一线城市的志愿者甲和三线城市的志愿者乙的得分均为15分,请判断甲、乙在各自城市选取的志愿者中得分排名谁更靠前,并说明理由;(3)如果得分超过平均数就需要进行心理干预,请估计一线城市全部2000名志愿者中有多少人需要进行心理干预?22.已知函数y=5,请根据已学知识探究该函数的x2+1图象和性质.(1)列表,写出表中a、b,c的值:a=______,b=______,c=______;x…−3−2−10123…一条性质:______;(3)已知函数y =x −1的图象如图所示,结合你所画的函数图象,直接写出不等式5x +1>x −1的解集:______.23. 抗击“新冠肺炎”疫情期间,口罩是重要的防护物资,今年2月,某社区根据实际需要,采购了5000个口罩,一部分用于社区家庭,其余部分用于社区工作人员. (1)为了保证社区抗疫工作顺利开展,用于社区工作人员的口罩个数应不少于用于社区家庭口罩个数的1.5倍,问用于该社区家庭的口罩最多有多少个?(2)据统计,2月份,该社区有200户家庭有口罩需求,平均每户需要10个,其余口罩刚好满足社区工作人员的抗疫需要,随着疫情的发展,3月份,该社区对口罩的总需求量比2月份增加了20%,需要口罩的家庭户数比2月份增加了a%,社区工作人员需要口罩的个数比2月份增如了1.5a%,同时,由于该社区加大了管控力度,平均每户家庭的口罩需求量减少了a%,求a 的值.24. 阅读下列材料:材料一:最大公约数是指两个或多个整数共有的约数中最大的一个.我们将两个整数a 、b 的最大公约数表示为(a,b),如(12,18)=6;(7,9)=1.材料二:求7x +3y =11的一组整数解,主要分为三个步骤:第一步,用x 表示y ,得y =11−7x3;第二步,找一个整数x ,使得11−7x 是3的倍数,为更容易找到这样的x ,将11−7x 变形为12−9x +2x −1=3(4−3x)+2x −1,即只需2x −1是3的倍数即可,为此可取x =2;第三步,将x =2代入y =11−7x3,得y =−1.∴{x =2y =−1是原方程的一组整数解. 材料三:若关于x ,y 的二元一次方程ax +by =c(a,b ,c 均为整数)有整数解{x =x 0y =y 0,则它的所有整数解为{x =x 0+b(a,b)t y =y 0−a (a,b)t(t 为整数). 利用以上材料,解决下列问题:(1)求方程(15,20)x +(4,8)y =99的一组整数解;(2)求方程(15,20)x +(4,8)y =99有几组正整数解.25.在▱ABCD中,AF平分∠BAD交BC于点F,∠BAC=90°,点E是对角线AC上的点,连结BE.(1)如图1.若AB=AE,BF=3,求BE的长;(2)如图2,若AB=AE,点G是BE的中点,∠FAG=∠BFG,求证:AB=√10FG;(3)如图3,以点E为直角顶点,在BE的右下方作等腰直角△BEM,若点E从点A出发,沿AC运动到点C停止,设在点E运动过程中,BM的中点N经过的路径长为m,AC的长为n,请直接写出nm的值.26.如图1,二次函数y=−18x2+14x+3的图象交x轴于A、B两点(点A在点B的左侧),交y轴于C点,连结AC,过点C作CD⊥AC交AB于点D.(1)求点D的坐标;(2)如图2,已知点E是该二次函数图象的顶点,在线段AO上取一点F,过点F作FH⊥CD,交该二次函数的图象于点H(点H在点E的右侧),当五边形FCEHB的面积最大时,求点H的横坐标;(3)如图3,在直线BC上取一点M(不与点B重合),在直线CD的右上方是否存在这样的点N,使得以C、M、N为顶点的三角形与△BCD全等?若存在,请求出点N的坐标;若不存在,请说明理由.答案和解析1.【答案】D【解析】解:A、0既不是正数,也不是负数,故选项错误;B、2是正数,故选项错误;C、5是正数,故选项错误;D、−3是负数,故选项正确.故选:D.根据有理数可分为正数,负数和零,可作出正确的选择.本题考查了有理数.能够准确理解有理数的概念,掌握有理数的分类是解题的关键.2.【答案】A【解析】解:A、是轴对称图形,故本选项符合题意;B、不是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项不合题意;D、不是轴对称图形,故本选项不合题意.故选:A.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.【答案】D【解析】解:∵相似三角形的面积的比等于相似比的平方.∴两个相似三角形的面积之比为4:9时,这两个相似三角形的对应边之比是2:3.故选:D.根据相似三角形的面积的比等于相似比的平方即可得结论.本题考查了相似三角形的性质,解决本题的关键是掌握相似三角形的性质.4.【答案】A【解析】解:由题意可知:△=25−4×2×1=17>0,故选:A.根据根的判别式即可求出答案.本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.5.【答案】B【解析】解:如图,连接OB,∵AB与⊙O相切于点B,∴∠ABO=90°,∵OB=OC,∴∠OBC=∠C=34°,∴∠AOB=∠OBC+∠C=68°,∴∠A=180°−∠ABO−∠AOB=180°−90°−68°=22°,故选:B.连接OB,由切线的性质可得∠ABO=90°;利用圆的半径相等可得∠OBC=∠C=34°;利用三角形的外角性质可得∠AOB=68°;利用三角形的内角和定理可求得∠A的度数.本题考查了切线的性质、等腰三角形的判定与性质、三角形的外角性质及三角形的内角和定理等知识点,熟练掌握相关性质及定理是解题的关键.6.【答案】C【解析】解:∵4<√19<5,∴2<√19−2<3,∴√19−2的值应在2和3之间;故选:C.先估算出4<√19<5,再根据不等式的性质估算出√19−2的值即可得出答案.本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出4<√19<5是解题关键,又利用了不等式的性质.7.【答案】D【解析】解:A、AD为BC边的高;B、AD为角平分线,C、D点为BC的中点,AD为BC边上的中线,D、点D为AB的垂直平分线与BC的交点,则DA=DB.故选:D.利用基本作图,前面三个作图AD分别为三角形高线、角平分线和中线,第四个作了AB 的垂直平分线,从而得到DA=DB.本题考查了作图−基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.8.【答案】B【解析】解:∵B表示数2,∴CO=2BO=4,由题意得:|a+3|=4,∴a+3=±4,∴a=1或−7,∵点A、B在原点O的两侧,∴a=−7,故选:B.先由已知条件得CO的长,再根据绝对值的含义得关于a的方程,解得a即可.本题考查了数轴上的点所表示的数及绝对值的化简,根据题意正确列式,是解题的关键.9.【答案】B【解析】解:分式方程去分母得:2x+a−6=x−2,解得:x=4−a,由分式方程有正数解,得到4−a>0,且4−a≠2,解得:a<4且a≠2,∴所有符合条件的正整数a的个数为1,3,故选:B.分式方程去分母转化为整式方程,由分式方程有正数解确定出a的范围即可得到结论.此题考查了分式方程的解,熟练分式方程的解法是解本题的关键.10.【答案】A【解析】解:第1次操作,a1=|23+4|−10=17;第2次操作,a2=|17+4|−10=11;第3次操作,a3=|11+4|−10=5;第4次操作,a4=|5+4|−10=−1;第5次操作,a5=|−1+4|−10=−7;第6次操作,a6=|−7+4|−10=−7;第7次操作,a7=|−7+4|−10=−7;…第2020次操作,a2020=|−7+4|−10=−7.故选:A.先确定第1次操作,a1=|23+4|−10=17;第2次操作,a2=|17+4|−10=11;第3次操作,a3=|11+4|−10=5;第4次操作,a4=|5+4|−10=−1;第5次操作,a5=|−1+4|−10=−7;第6次操作,a6=|−7+4|−10=−7;…,后面的计算结果没有变化,据此解答即可.本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.11.【答案】C【解析】解:如图,过点F作FG⊥AC于点G,根据题意可知:当太阳光线与PE垂直时,遮阳效果最佳,∴∠BEP=90°,∵∠A=90°,∠B=65°,∴∠EPA=360°−90°−90°−65°=115°,∵∠DPE=15°,∴∠APD=130°,∴∠CPF=50°,∵F为PD的中点,PD=1,∴DF=PF=12∴CF=PF=1,∴CP=2PG=2×PF⋅cos50°≈2×1×0.64≈1.28,∴AP=AC−PC=2.8−1.28≈1.5(m).所以要遮阳效果最佳AP的长约为1.5米.故选:C.过点F 作FG ⊥AC 于点G ,根据题意可得,当太阳光线与PE 垂直时,遮阳效果最佳,即∠BEP =90°,再根据四边形内角和定理可得∠CPF 的度数,再根据锐角三角函数即可求出CP 的长,进而可得遮阳效果最佳时AP 的长.本题考查了解直角三角形的应用−坡度坡角问题,解决本题的关键是掌握坡度坡角定义. 12.【答案】D【解析】解:∵点B(3,5),点E(4,20),点C 是BE 的中点, ∴点C(72,252),∴交易时间在3.5ℎ时累计卖出的数量为12.5万手,故A 选项不合题意; ∵直线OB 过点(0,0),点B(3,5), ∴直线OB 解析式为:y =53x , ∵直线AC 过点(1,0),点C(72,252), ∴直线AC 解析式为:y =5x −5, 联立方程组可得{y =53xy =5x −5,∴{x =32y =52∴交易时间在1.5ℎ时累计卖出和累计买入的数量相等,故B 选项不合题意; 由图象可得累计卖出的数量和累计买入的数量相差1万手的时刻有4个,故C 选项不合题意,由图象可得从点A 对应的时刻到点C 对应的时刻,实线在虚线的上方,即平均每小时累计卖出的数量小于买入的数量,故D 选项符合题意, 故选:D .由中点坐标公式可求点C 坐标,可得交易时间在3.5ℎ时累计卖出的数量为12.5万手,可判断选项A ;利用待定系数法可求AC ,OB 解析式,可求点B 坐标,可得交易时间在1.5ℎ时累计卖出和累计买入的数量相等,可判断选项B ;由图象可得累计卖出的数量和累计买入的数量相差1万手的时刻有4个,可判断选项C ;由图象可得从点A 对应的时刻到点C 对应的时刻,实线在虚线的上方,即平均每小时累计卖出的数量小于买入的数量,可判断选项D ,即可求解.本题考查了函数的图象,一次函数图象上点的坐标特征,利用待定系数法求解析式,理解图象的点表示的具体意义是本题的关键. 13.【答案】1.109×107【解析】解:11 090000=1.109×107, 故答案是:1.109×107.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.【答案】π2【解析】解:∵Rt△ABC中,AB=AC,∴∠C=45°,∵BC=2√2,∴AC=2,∴弧AD的长为:45π×2180=π2;故答案为:π2.先根据等腰直角三角形的性质可得∠C=45°,根据弧长公式计算即可.本题考查弧长公式,等腰直角三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.【答案】13【解析】解:在这三种物质中,碳酸钠只有与足量盐酸发生化学反应可产生二氧化碳气体;锌与盐酸发生化学反应可产生氢气;铜只有与浓盐酸发生化学反应可产生氢气;所以能够与盐酸发生化学反应产生气体的概率是13,故答案为:13.先分别判断出三种物质能与盐酸发生化学反应产生气体的种类数,再根据概率公式求解可得.本题主要考查概率公式,解题的关键是掌握能与盐酸发生反应产生气体的种类.16.【答案】√17【解析】解:在Rt△ABC中,AC=√AB2−BC2=4,∵Rt△ACB≌Rt△EFA,∴AF=BC=3,EF=AC=4,∴FC=AC−AF=1,∴CE=√EF2+CF2=√17,故答案为:√17.根据勾股定理求出AC,根据全等三角形的性质得到AF=BC=3,EF=AC=4,求出FC,根据勾股定理计算,得到答案.本题考查的是勾股定理、全等三角形的性质,掌握勾股定理、全等三角形的对应边相等是解题的关键.17.【答案】245【解析】解:如图,连接DF,BE,∵四边形OABC是矩形,四边形BDEF是矩形,∴OC=AB,BE=DF,∠BAO=∠BDE=∠DEF=90°,∵BD=OC,∴BD=AB,又∵BE=BE,∴Rt△BDE≌Rt△BAE(HL)∴AE=DE=2,∴EG=√AE2+AG2=√4+94=52,∵∠DEO+∠AEG=90°,∠EDO+∠DEO=90°,∴∠AEG=∠EDO,又∵∠EOD=∠EAG=90°,∴△DEO∽△EGA,∴AGOE =EGDE,∴32OE=522,∴OE=65,∴OA=2+65=165,∴点G(165,32 ),∵反比例函数y=kx(k≠0)的图象经过点G,∴k=165×32=245,故答案为:245.如图,连接DF,BE,由“HL”可证Rt△BDE≌Rt△BAE,可得AE=DE=2,由勾股定理可求EG,通过证明△DEO∽△EGA,可得AGOE =EGDE,可求OE的长,即可求点G坐标,代入解析式可求k的值.本题考查了反比例函数图象上点的坐标特征,全等三角形的判定和性质,勾股定理,相似三角形的判定和性质,矩形的性质等知识,求出点G的坐标是本题的关键.18.【答案】√21−√3【解析】解:如图,∵∠ACB=90°,AB=2AC,∴cos∠CAB=ACAB =12,∴∠CAB=60°,∴tan∠CAB=BCAC=√3,∴AC=√3,∴AB=2√3,∵AF平分∠BAC,∴∠BAF=∠CAF=30°,∵BF//AC,∴∠BFA=∠FAC=30°,∠FBC=∠BCA=90°,∴AB=BF=2√3,∴FC=√BC2+FB2=√12+9=√21,∵将△ACE沿CE翻折,得到△A′CE,∴AC=A′C=√3,∴点A′在以点C为圆心,AC为半径的圆上,则当点A′在FC上时,A′F有最小值,∴A′F最小值为√21−√3,故答案为:√21−√3.先求出AC=√3,AB=2√3,由平行线的性质和角平分线的性质可求AB=BF=2√3,由勾股定理可求CF的长,由点A′在以点C为圆心,AC为半径的圆上,则当点A′在FC 上时,A′F有最小值,即可求解.本题考查了翻折变换,锐角三角函数,直角三角形的性质等知识,求出CF的长是本题的关键.19.【答案】解:(1)√25+(13)−1−π0−(−1)=5+3−1+1=8;(2)(m+9m+6)÷m2−9m+6=m2+6m+9m+6×m+6m2−9=(m+3)2m+6×m+6(m+3)(m−3)=m+3m−3.【解析】(1)分别按照求算术平方根、负整数指数幂、零次幂和去括号的法则化简,再进行有理数的加减法运算即可;(2)将括号内的部分通分,同时将分式的除法变成乘法,再进行因式分解,然后约分即可.本题考查了分式的混合运算及实数的混合运算,熟练掌握相关运算法则是解题的关键.20.【答案】证明:(1)∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∠A=36°,∴BD=AD,即△ABD是等腰三角形;(2)∵点E是AB的中点,∴AE=EB,∴∠DEB=90°,∴∠BDE=90°−36°=54°.【解析】(1)根据等腰三角形的性质和三角形内角和得出∠DBC=36°,进而根据等腰三角形的判定解答即可;(2)根据等腰三角形的性质和三角形内角和解答即可.此题考查等腰三角形的判定和性质,关键是据等腰三角形的性质和三角形内角和得出∠DBC=36°解答.21.【答案】15.5【解析】解:(1)∵2≤x<14的有5+18=23(人),一线城市在14<x≤20这一组的是:15,15,16,17,17,17,17,18,18,20,在一线城市和三线城市的志愿者中随机选取了50人参加LES测试,∴a=(15+16)÷2=15.5,故答案为:15.5;(3)在这次测试中,一线城市的志愿者甲和三线城市的志愿者乙的得分均为15分,三线城市的志愿者乙在各自城市选取的志愿者中得分排名更靠前,理由:∵一线城市的志愿者甲的中位数是15.5,三线城市的志愿者乙的中位数是14,∴在这次测试中,三线城市的志愿者乙在各自城市选取的志愿者中得分排名更靠前;=800(人),(4)2000×3+1750答:估计一线城市全部2000名志愿者中有800人需要进行心理干预.(1)根据统计图和统计表中的数据和一线城市在14<x≤20这一组的数据,可以求得a 的值;(2)根据统计表中的数据可以得到甲、乙在各自城市选取的志愿者中得分排名谁更靠前;(3)根据统计图中的数据和题目中的数据可以计算出一线城市全部2000名志愿者中有多少人需要进行心理干预的人数.本题考查频数分布直方图、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.22.【答案】1 5 1函数的最大值为5 x<22【解析】解:(1)x =−2、0、3分别代入y =5x 2+1,得a =5(−2)2+1=1,b =502+1=5,c =532+1=12故答案为1,5,12; (2)该函数的图象如图:函数的性质:该函数关于y 轴对称,函数的最大值为5;故答案函数关于y 轴对称,函数的最大值为5; (3)由图形可知,不等式5x 2+1>x −1的解集是x <2. 故答案为x <2.(1)把x =−2、0、3分别代入y =5x 2+1,即可求出a 、b 、c 的值; (2)根据表中的数据,描点连线、画出函数的图象; (3)根据图象即可求出不等式5x 2+1>x −1的解集.本题考查了一次函数的图象与性质,一次函数与一元一次不等式,利用数形结合思想,正确画出函数的图象是解题的关键.23.【答案】解:(1)设用于该社区家庭的口罩有x 个,则用于社区工作人员的口罩有(5000−x)个,依题意,得:5000−x ≥1.5x , 解得:x ≤2000.答:用于该社区家庭的口罩最多有2000个.(2)依题意,得:200(1+a%)×10(1−a%)+(5000−200×10)(1+1.5a%)=5000×(1+20%),整理,得:a 2−225a +5000=0,解得:a 1=25,a 2=200(不合题意,舍去). 答:a 的值为25.【解析】(1)设用于该社区家庭的口罩有x 个,则用于社区工作人员的口罩有(5000−x)个,根据用于社区工作人员的口罩个数应不少于用于社区家庭口罩个数的1.5倍,即可得出关于x 的一元一次不等式,解之取其中的最大值即可得出结论;(2)根据3月份该社区对口罩的总需求量比2月份增加了20%,即可得出关于a 的一元二次方程,解之取其较小值即可得出结论.本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出一元二次方程.24.【答案】解:(1)∵(15,20)=5,(4,8)=4,∴原方程变形为:5x +4y =99, ∴x =99−4y 5,∴99−4y 是5的倍数, ∴当y =1时,x =19, ∴{x =19y =1 是原方程的解; (2)∵5x +4y =99的有整数解,∴{x =19y =1,{x =15y =6,{x =11y =11,{x =7y =16,{x =3y =21, ∴原方程有5组正整数解.【解析】(1)先化简原方程,由材料可求解; (2)先求出原方程的整数解,即可求解.本题考查了二元一次方程的解,一元一次方程的解,理解题意是本题的关键. 25.【答案】(1)解:如图1中,∵四边形ABCD 是平行四边形, ∴AD//BC ,∴∠DAF =∠AFB , ∵AF 平分∠BAD , ∴∠DAF =∠BAF , ∴∠BAF =∠AFB , ∴AB =BF =3,∵AB =AE ,∠BAE =90°, ∴BE =√2AB =3√2.(2)证明:连接EF ,过点G 作GH ⊥EF 交EF 的延长线于H.设BG =a ,FG =b .∵AB =AE ,∠BAE =90°,BG =GE , ∴AG ⊥BE ,AG =GB =GE , ∴AB =√2BG =√2a , ∵BF =AB =√2a ,∴BF 2=2a 2,BG ⋅BE =2a 2, ∴BF 2=BG ⋅BE , ∴BFBG =BEBF , ∵∠FBG =∠EBF ,∴△GBF∽△FBE,∴GFEF =BGBF=√22,∠BFG=∠BEF,∴EF=√2GF=√2b,∵∠BAF=∠BFA,∠GAF=∠BFG,∴∠AFG=∠BAG=45°,∠GAF=∠GEF,∴∠AGE=∠AFE=90°,∴∠GFH=45°,∵GH⊥EH,∴GH=FH=√22b,∴EH=FH+EF=3√22b,∴EG=√GH2+EH2=√5b,∴AB=AE=√2GE=√10b,∴AB=√10GF.(3)解:如图3中,在AC上取一点T,使得AT=AB,连接BT,TM,取BT的中点J,连接NJ.∵△ABT,△BEM都是等腰直角三角形,∴BT=√2AB,BM=√2BE,∠ABT=∠EBM=45°,∴ABBT =BEBM,∠ABE=∠TBM,∴△ABE∽△TBM,∴TMAE =ABBT=√22,∠AEB=∠BMT,∵∠AEB+∠BET=180°,∴∠BMT+∠BET=180°,∴∠EBM+∠ETM=180°,∵∠EBM=∠ETB=45°,∴∠ETM=135°,∠BTM=90°,∵BJ=JT,BN=NM,∴NJ//TM,NJ=12TM,∴∠BJN=∠BTM=90°,∴点N的运动轨迹是线段JN,JN=12TM=√22AE,∵点E从A运动到C时,AE=AC=n,∴m=√22n,∴nm=√2.【解析】(1)证明AB=BF,再利用等腰直角三角形的性质求解即可.(2)连接EF,过点G作GH⊥EF交EF的延长线于H.设BG=a,FG=b.利用相似三角形的性质证明EF=√2GF,想办法求出AB(用b表示)即可解决问题.(3)如图3中,在AC上取一点T,使得AT=AB,连接BT,TM,取BT的中点J,连接NJ.首先证明NJ//TM,NJ=12TM,推出∠BJN=∠BTM=90°,推出点N的运动轨迹是线段JN,JN=12TM=√22AE,由此即可解决问题.本题属于四边形综合题,考查了平行四边形的性质,等腰直角三角形的判定和性质,解直角三角形,三角形中位线定理,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数解决问题,属于中考压轴题.26.【答案】解:(1)令x=0,则y=3,∴C(0,3),∴OC=3.令y=0,则−18x2+14x+3=0,解得:x1=−4,x2=6,∴A(−4,0),B(6,0),∴OA=4,OB=6.∵CD⊥AC,∴∠ACD=90°,∵CO⊥AD,∴OC2=OA⋅OD,∴OD=94,∴D(94,0).(2)∵y=−18x2+14x+3=−18(x−1)2+258,∴E(1,258).如图2,连接OE、BE,作HG⊥x轴于点G,交BE于点P.由B、E两点坐标可求得直线BE的解析式为:y=−58x+154.设H(m,−18m2+14m+3),则P(m,−58m+154).∴HG=−18m2+14m+3,HP=y H−y P=−18m2+78m−34.∴S△BHE=12(x B−x E)⋅HP=52(−18m2+78m−34)=−516m2+3516m−158.∵FH⊥CD,AC⊥CD,∴AC//FH,∴∠HFG=∠CAO,∵∠AOC=∠FGH=90°,∴△ACO∼△FHG,∴FGHG =OAOC=43,∴FG=43HG=−16m2+13m+4,∴AF=AG−FG=m+4+16m2−13m−4=16m2+23m,∴S△AFC=12AF⋅OC=32(16m2+32m)=14m2+m,∵S四边形ACEB =S△ACO+S△OCE+S△OEB=12×4×3+12×3×1+126×258=1358,∴S五边形FCEHB =S四边形ACEB+S△BHE−S△AFC=1358+(−516m2+3516m−158)−(14m2+m)=−916m2+1916m+15=−916(m−1918)2+9001576,∴当m=1918时,S五边形FCEHB取得最大值9001576.此时,H的横坐标为1918.(3)∵B(6,0),C(0,3),D(94,0),∴CD=BD=154,BC=3√5,∴∠DCB=∠DBC.①如图3−1,△CMN≌△DCB,MN交y轴于K,则CM=CN=DC=DB=154,MN=BC=3√5,∠CMN=∠CNM=∠DBC=∠DCB,∴MN//AB,∴MN ⊥y 轴,∴∠CKN =∠COB =90°,MK =NK =12MN =3√52, ∴△CKN ∼△COB ,∴CKCN =COCB =√55, ∴CK =3√54,∴OK =OC +CK =12+3√54, ∴N(3√52,12+3√54).②如图3−2,△MCN≌△DBC ,则CN =CB =3√5,∠MCN =∠DBC ,∴CN//AB ,∴N(3√5,3).③如图3−3,△CMN≌△DBC ,则∠CMN =∠DCB ,CM =CN =DC =DB =154,MN =BC =3√5, ∴MN//CD ,作MR ⊥y 轴于R ,则CR CO =RM OB =CMCB =√54, ∴CR =3√54,RM =3√52,∴OR =3−3√54, 作MQ//y 轴,NQ ⊥MQ 于点Q ,则∠NMQ =∠DCO ,∠NQM =∠DOC =90°,∴△COD ∼△MQN ,∴MQ NQ =CO DO =43,∴MQ =45MN =12√55,NQ =35MN =9√55, ∴NQ −RM =3√510,OR +MQ =60+33√520, ∴N(−3√510,60+33√520).综上所述,满足要标的N 点坐标有:(3√52,12+3√54)、(3√5,3)、(−3√510,60+33√520).【解析】(1)先根据抛物线解析式求出A 、B 、C 的坐标,由射影定理可得OD 长度,从而求出D 点坐标;(2)设H 点的横坐标为m ,然后将五边形FCEHB 的面积表示成关于m 的二次函数,利用配方法可求得面积的最大值以及对应的H 点坐标;(3)由B 、C 、D 的坐标可以求得DC 、DB 、BC 的长度,然后分类讨论,分别画出符合要求的对应图形进行计算即可.本题为二次函数综合题,主要考查了二次函数的基本性质、相似三角形的判定与性质、全等三角形的判定与性质等重要知识点,综合性强,难度较大,属于中考压轴题.对于第(2)问,利用割补法表示出五边形的面积是难点,也是解答的关键;对于第(3)问,依次画出对应图形并识别出各种情形下的数量关系是解答的要点所在.。
2020年重庆市沙坪坝区春招数学试卷(含答案解析)
![2020年重庆市沙坪坝区春招数学试卷(含答案解析)](https://img.taocdn.com/s3/m/63fab2ae6c85ec3a86c2c56b.png)
2020年重庆市沙坪坝区春招数学试卷副标题题号一二三四总分得分一、选择题(本大题共12小题,共48.0分)1.下列各数中,是负数的是()A. 0B. 2C. 5D. −32.汉字书法博大精深,下列汉字“行“的不同书写字体中,是轴对称图形的是()A. B. C. D.3.已知两个相似三角形的面积之比为4:9,则这两个相似三角形的对应边之比是()A. 16:81B. 4:9C. 9:4D. 2:34.一元二次方程2x2+5x+1=0的根的情况是()A. 有两个不相等的实数根B. 没有实数根C. 有两个相等的实数根D. 无法判断5.如图,AB与⊙O相切于点B,连结AO并延长交⊙O于点C,连结BC.若∠C=34°,则∠A的度数是()A. 17°B. 22°C. 34°D. 56°6.估计√19−2的值应在()A. 4和5之间B. 3和4之间C. 2和3之间D. 1和2之间7.以下尺规作图中,一定能得到线段AD=BD的是()A. B.C. D.8.在数轴上,点A、B在原点O的两侧,分别表示数a、2,将点A向右平移3个单位长度,得到点C.若CO=2BO,则a的值为()A. −1B. −7C. 1或−7D. 7或−19.若关于x的方程2xx−2−a−62−x=1的解为正数,则所有符合条件的正整数a的个数为()A. 1个B. 2个C. 3个D. 4个10.把有理数a代入|a+4|−10得到a1,称为第一次操作,再将a1作为a的值代入得到a2,称为第二次操作,…,若a=23,经过第2020次操作后得到的是()A. −7B. −1C. 5D. 1111.如图,滑动调节式遮阳伞的立柱AC垂直于地面AB,P为立柱上的滑动调节点,伞体的截面示意图为△PDE,F为PD的中点,AC=2.8m,PD=2m,CF=1m,∠DPE=15°.根据生活经验,当太阳光线与PE垂直时,遮阳效果最佳,在上午10:00时,太阳光线与地面的夹角为65°,若要遮阳效果最佳AP的长约为()(参考数据:sin65°≈0.91,cos65°≈0.42,sin50°≈0.77,cos50°≈0.64)A. 1.2mB. 1.3mC. 1.5mD. 2.0m12.近期,某国遭遇了近年来最大的经济危机,导致该国股市大幅震荡,昨天某支股票累计卖出的数量和交易时间之间的关系如图中虚线所示,累计买入的数量和交易时间之间的关系如图中实线所示,其中点A是实线和虚线的交点,点C是BE的中点,CD与横轴平行,则下列关于昨天该股票描述正确的是()A. 交易时间在3.5ℎ时累计卖出的数量为12万手B. 交易时间在1.4ℎ时累计卖出和累计买入的数量相等C. 累计卖出的数量和累计买入的数量相差1万手的时刻有5个D. 从点A对应的时刻到点C对应的时刻,平均每小时累计卖出的数量小于买入的数量二、填空题(本大题共6小题,共24.0分)13.2020年5月22日,李克强总理在政府工作报告中指出,农村贫困人口减少11090000人,脱贫攻坚取得决定性成就,把数11090000用科学记数法表示为______.14.如图,Rt△ABC中,AB=AC,BC=2√2,以点C为圆心,CA长为半径画弧交BC于点D.则图中弧AD的长为______(结果保留π).15.从碳酸钠、锌、铜这三种物质中任选一种,能够与盐酸发生化学反应产生气体的概率是______.16.清代数学家梅文鼎在《勾股举隅》一书中,用四个全等的直角三角形拼出正方形ABDE的方法证明了勾股定理(如图),若Rt△ABC的斜边AB=5,BC=3,则图中线段CE的长为______.17. 如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上,点D 在边OC 上,且BD =OC ,以BD 为边向下作矩形BDEF ,使得点E 在边OA 上,反比例函数y =kx (k ≠0)的图象经过边EF 与AB 的交点G.若AG =32,DE =2,则k 的值为______.18. 如图,Rt △ABC 中,∠ACB =90°,AB =2AC ,BC =3,点E 是AB 上的点,将△ACE 沿CE 翻折,得到△A′CE ,过点B 作BF//AC 交∠BAC 的平分线于点F ,连接A′F ,则A′F 长度的最小值为______.三、计算题(本大题共1小题,共10.0分) 19. 计算:(1)√25+(13)−1−π0−(−1);(2)(m +9m+6)÷m 2−9m+6.四、解答题(本大题共7小题,共68.0分)20. 如图,在△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC 交AC于点D ,点E 是AB 的中点,连结DE . (1)求证:△ABD 是等腰三角形; (2)求∠BDE 的度数.21.为了解疫情对精神负荷造成的影响,某机构分别在一线城市和三线城市的志愿者中随机选取了50人参加LES测试,根据志愿者的答题情况计算出LES得分,并对得分进行整理,描述和分析,部分信息如下:一、三线城市志愿者得分统计表城市中位数平均数一线城市a17.6三线城市1417.2注:一线城市在中的得分是:15,15,16,17,17,17,17,18,18,20.根据以上信息,解答下列问题:(1)表中a的值为______;(2)得分越低反映个体承受的精神压力越小,排名越靠前,在这次调查中,一线城市的志愿者甲和三线城市的志愿者乙的得分均为15分,请判断甲、乙在各自城市选取的志愿者中得分排名谁更靠前,并说明理由;(3)如果得分超过平均数就需要进行心理干预,请估计一线城市全部2000名志愿者中有多少人需要进行心理干预?22.已知函数y=5,请根据已学知识探究该函数的x2+1图象和性质.一条性质:______;(3)已知函数y =x −1的图象如图所示,结合你所画的函数图象,直接写出不等式5x 2+1>x −1的解集:______.23. 抗击“新冠肺炎”疫情期间,口罩是重要的防护物资,今年2月,某社区根据实际需要,采购了5000个口罩,一部分用于社区家庭,其余部分用于社区工作人员. (1)为了保证社区抗疫工作顺利开展,用于社区工作人员的口罩个数应不少于用于社区家庭口罩个数的1.5倍,问用于该社区家庭的口罩最多有多少个?(2)据统计,2月份,该社区有200户家庭有口罩需求,平均每户需要10个,其余口罩刚好满足社区工作人员的抗疫需要,随着疫情的发展,3月份,该社区对口罩的总需求量比2月份增加了20%,需要口罩的家庭户数比2月份增加了a%,社区工作人员需要口罩的个数比2月份增如了1.5a%,同时,由于该社区加大了管控力度,平均每户家庭的口罩需求量减少了a%,求a 的值.24. 阅读下列材料:材料一:最大公约数是指两个或多个整数共有的约数中最大的一个.我们将两个整数a 、b 的最大公约数表示为(a,b),如(12,18)=6;(7,9)=1. 材料二:求7x +3y =11的一组整数解,主要分为三个步骤: 第一步,用x 表示y ,得y =11−7x 3;第二步,找一个整数x ,使得11−7x 是3的倍数,为更容易找到这样的x ,将11−7x 变形为12−9x +2x −1=3(4−3x)+2x −1,即只需2x −1是3的倍数即可,为此可取x =2;第三步,将x =2代入y =11−7x 3,得y =−1.∴{x =2y =−1是原方程的一组整数解.材料三:若关于x ,y 的二元一次方程ax +by =c(a,b ,c 均为整数)有整数解{x =x 0y =y 0,则它的所有整数解为{x =x 0+b(a,b)ty =y 0−a(a,b)t(t 为整数).利用以上材料,解决下列问题:(1)求方程(15,20)x+(4,8)y=99的一组整数解;(2)求方程(15,20)x+(4,8)y=99有几组正整数解.25.在▱ABCD中,AF平分∠BAD交BC于点F,∠BAC=90°,点E是对角线AC上的点,连结BE.(1)如图1.若AB=AE,BF=3,求BE的长;(2)如图2,若AB=AE,点G是BE的中点,∠FAG=∠BFG,求证:AB=√10FG;(3)如图3,以点E为直角顶点,在BE的右下方作等腰直角△BEM,若点E从点A出发,沿AC运动到点C停止,设在点E运动过程中,BM的中点N经过的路径长为m,AC的长为n,请直接写出nm的值.26.如图1,二次函数y=−18x2+14x+3的图象交x轴于A、B两点(点A在点B的左侧),交y轴于C点,连结AC,过点C作CD⊥AC交AB于点D.(1)求点D的坐标;(2)如图2,已知点E是该二次函数图象的顶点,在线段AO上取一点F,过点F作FH⊥CD,交该二次函数的图象于点H(点H在点E的右侧),当五边形FCEHB的面积最大时,求点H的横坐标;(3)如图3,在直线BC上取一点M(不与点B重合),在直线CD的右上方是否存在这样的点N,使得以C、M、N为顶点的三角形与△BCD全等?若存在,请求出点N的坐标;若不存在,请说明理由.答案和解析1.【答案】D【解析】解:A、0既不是正数,也不是负数,故选项错误;B、2是正数,故选项错误;C、5是正数,故选项错误;D、−3是负数,故选项正确.故选:D.根据有理数可分为正数,负数和零,可作出正确的选择.本题考查了有理数.能够准确理解有理数的概念,掌握有理数的分类是解题的关键.2.【答案】A【解析】解:A、是轴对称图形,故本选项符合题意;B、不是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项不合题意;D、不是轴对称图形,故本选项不合题意.故选:A.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.【答案】D【解析】解:∵相似三角形的面积的比等于相似比的平方.∴两个相似三角形的面积之比为4:9时,这两个相似三角形的对应边之比是2:3.故选:D.根据相似三角形的面积的比等于相似比的平方即可得结论.本题考查了相似三角形的性质,解决本题的关键是掌握相似三角形的性质.4.【答案】A【解析】解:由题意可知:△=25−4×2×1=17>0,故选:A.根据根的判别式即可求出答案.本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.5.【答案】B【解析】解:如图,连接OB,∵AB与⊙O相切于点B,∴∠ABO=90°,∵OB=OC,∴∠OBC=∠C=34°,∴∠AOB=∠OBC+∠C=68°,∴∠A=180°−∠ABO−∠AOB=180°−90°−68°=22°,故选:B.连接OB,由切线的性质可得∠ABO=90°;利用圆的半径相等可得∠OBC=∠C=34°;利用三角形的外角性质可得∠AOB=68°;利用三角形的内角和定理可求得∠A的度数.本题考查了切线的性质、等腰三角形的判定与性质、三角形的外角性质及三角形的内角和定理等知识点,熟练掌握相关性质及定理是解题的关键.6.【答案】C【解析】解:∵4<√19<5,∴2<√19−2<3,∴√19−2的值应在2和3之间;故选:C.先估算出4<√19<5,再根据不等式的性质估算出√19−2的值即可得出答案.本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出4<√19<5是解题关键,又利用了不等式的性质.7.【答案】D【解析】解:A、AD为BC边的高;B、AD为角平分线,C、D点为BC的中点,AD为BC边上的中线,D、点D为AB的垂直平分线与BC的交点,则DA=DB.故选:D.利用基本作图,前面三个作图AD分别为三角形高线、角平分线和中线,第四个作了AB 的垂直平分线,从而得到DA=DB.本题考查了作图−基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.8.【答案】B【解析】解:∵B表示数2,∴CO=2BO=4,由题意得:|a+3|=4,∴a+3=±4,∴a=1或−7,∵点A、B在原点O的两侧,∴a=−7,故选:B.先由已知条件得CO的长,再根据绝对值的含义得关于a的方程,解得a即可.本题考查了数轴上的点所表示的数及绝对值的化简,根据题意正确列式,是解题的关键.9.【答案】B【解析】解:分式方程去分母得:2x+a−6=x−2,解得:x=4−a,由分式方程有正数解,得到4−a>0,且4−a≠2,解得:a<4且a≠2,∴所有符合条件的正整数a的个数为1,3,故选:B.分式方程去分母转化为整式方程,由分式方程有正数解确定出a的范围即可得到结论.此题考查了分式方程的解,熟练分式方程的解法是解本题的关键.10.【答案】A【解析】解:第1次操作,a1=|23+4|−10=17;第2次操作,a2=|17+4|−10=11;第3次操作,a3=|11+4|−10=5;第4次操作,a4=|5+4|−10=−1;第5次操作,a5=|−1+4|−10=−7;第6次操作,a6=|−7+4|−10=−7;第7次操作,a7=|−7+4|−10=−7;…第2020次操作,a2020=|−7+4|−10=−7.故选:A.先确定第1次操作,a1=|23+4|−10=17;第2次操作,a2=|17+4|−10=11;第3次操作,a3=|11+4|−10=5;第4次操作,a4=|5+4|−10=−1;第5次操作,a5=|−1+4|−10=−7;第6次操作,a6=|−7+4|−10=−7;…,后面的计算结果没有变化,据此解答即可.本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.11.【答案】C【解析】解:如图,过点F作FG⊥AC于点G,根据题意可知:当太阳光线与PE垂直时,遮阳效果最佳,∴∠BEP=90°,∵∠A=90°,∠B=65°,∴∠EPA=360°−90°−90°−65°=115°,∵∠DPE=15°,∴∠APD=130°,∴∠CPF=50°,∵F为PD的中点,PD=1,∴DF=PF=12∴CF=PF=1,∴CP=2PG=2×PF⋅cos50°≈2×1×0.64≈1.28,∴AP=AC−PC=2.8−1.28≈1.5(m).所以要遮阳效果最佳AP的长约为1.5米.故选:C.过点F 作FG ⊥AC 于点G ,根据题意可得,当太阳光线与PE 垂直时,遮阳效果最佳,即∠BEP =90°,再根据四边形内角和定理可得∠CPF 的度数,再根据锐角三角函数即可求出CP 的长,进而可得遮阳效果最佳时AP 的长.本题考查了解直角三角形的应用−坡度坡角问题,解决本题的关键是掌握坡度坡角定义. 12.【答案】D【解析】解:∵点B(3,5),点E(4,20),点C 是BE 的中点, ∴点C(72,252),∴交易时间在3.5ℎ时累计卖出的数量为12.5万手,故A 选项不合题意; ∵直线OB 过点(0,0),点B(3,5), ∴直线OB 解析式为:y =53x , ∵直线AC 过点(1,0),点C(72,252), ∴直线AC 解析式为:y =5x −5, 联立方程组可得{y =53xy =5x −5,∴{x =32y =52∴交易时间在1.5ℎ时累计卖出和累计买入的数量相等,故B 选项不合题意; 由图象可得累计卖出的数量和累计买入的数量相差1万手的时刻有4个,故C 选项不合题意,由图象可得从点A 对应的时刻到点C 对应的时刻,实线在虚线的上方,即平均每小时累计卖出的数量小于买入的数量,故D 选项符合题意, 故选:D .由中点坐标公式可求点C 坐标,可得交易时间在3.5ℎ时累计卖出的数量为12.5万手,可判断选项A ;利用待定系数法可求AC ,OB 解析式,可求点B 坐标,可得交易时间在1.5ℎ时累计卖出和累计买入的数量相等,可判断选项B ;由图象可得累计卖出的数量和累计买入的数量相差1万手的时刻有4个,可判断选项C ;由图象可得从点A 对应的时刻到点C 对应的时刻,实线在虚线的上方,即平均每小时累计卖出的数量小于买入的数量,可判断选项D ,即可求解.本题考查了函数的图象,一次函数图象上点的坐标特征,利用待定系数法求解析式,理解图象的点表示的具体意义是本题的关键. 13.【答案】1.109×107【解析】解:11 090000=1.109×107, 故答案是:1.109×107.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.【答案】π2【解析】解:∵Rt△ABC中,AB=AC,∴∠C=45°,∵BC=2√2,∴AC=2,∴弧AD的长为:45π×2180=π2;故答案为:π2.先根据等腰直角三角形的性质可得∠C=45°,根据弧长公式计算即可.本题考查弧长公式,等腰直角三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.【答案】13【解析】解:在这三种物质中,碳酸钠只有与足量盐酸发生化学反应可产生二氧化碳气体;锌与盐酸发生化学反应可产生氢气;铜只有与浓盐酸发生化学反应可产生氢气;所以能够与盐酸发生化学反应产生气体的概率是13,故答案为:13.先分别判断出三种物质能与盐酸发生化学反应产生气体的种类数,再根据概率公式求解可得.本题主要考查概率公式,解题的关键是掌握能与盐酸发生反应产生气体的种类.16.【答案】√17【解析】解:在Rt△ABC中,AC=√AB2−BC2=4,∵Rt△ACB≌Rt△EFA,∴AF=BC=3,EF=AC=4,∴FC=AC−AF=1,∴CE=√EF2+CF2=√17,故答案为:√17.根据勾股定理求出AC,根据全等三角形的性质得到AF=BC=3,EF=AC=4,求出FC,根据勾股定理计算,得到答案.本题考查的是勾股定理、全等三角形的性质,掌握勾股定理、全等三角形的对应边相等是解题的关键.17.【答案】245【解析】解:如图,连接DF,BE,∵四边形OABC是矩形,四边形BDEF是矩形,∴OC=AB,BE=DF,∠BAO=∠BDE=∠DEF=90°,∵BD=OC,∴BD=AB,又∵BE=BE,∴Rt△BDE≌Rt△BAE(HL)∴AE=DE=2,∴EG=√AE2+AG2=√4+94=52,∵∠DEO+∠AEG=90°,∠EDO+∠DEO=90°,∴∠AEG=∠EDO,又∵∠EOD=∠EAG=90°,∴△DEO∽△EGA,∴AGOE =EGDE,∴32OE=522,∴OE=65,∴OA=2+65=165,∴点G(165,32 ),∵反比例函数y=kx(k≠0)的图象经过点G,∴k=165×32=245,故答案为:245.如图,连接DF,BE,由“HL”可证Rt△BDE≌Rt△BAE,可得AE=DE=2,由勾股定理可求EG,通过证明△DEO∽△EGA,可得AGOE =EGDE,可求OE的长,即可求点G坐标,代入解析式可求k的值.本题考查了反比例函数图象上点的坐标特征,全等三角形的判定和性质,勾股定理,相似三角形的判定和性质,矩形的性质等知识,求出点G的坐标是本题的关键.18.【答案】√21−√3【解析】解:如图,∵∠ACB=90°,AB=2AC,∴cos∠CAB=ACAB =12,∴∠CAB=60°,∴tan∠CAB=BCAC=√3,∴AC=√3,∴AB=2√3,∵AF平分∠BAC,∴∠BAF=∠CAF=30°,∵BF//AC,∴∠BFA=∠FAC=30°,∠FBC=∠BCA=90°,∴AB=BF=2√3,∴FC=√BC2+FB2=√12+9=√21,∵将△ACE沿CE翻折,得到△A′CE,∴AC=A′C=√3,∴点A′在以点C为圆心,AC为半径的圆上,则当点A′在FC上时,A′F有最小值,∴A′F最小值为√21−√3,故答案为:√21−√3.先求出AC=√3,AB=2√3,由平行线的性质和角平分线的性质可求AB=BF=2√3,由勾股定理可求CF的长,由点A′在以点C为圆心,AC为半径的圆上,则当点A′在FC 上时,A′F有最小值,即可求解.本题考查了翻折变换,锐角三角函数,直角三角形的性质等知识,求出CF的长是本题的关键.19.【答案】解:(1)√25+(13)−1−π0−(−1)=5+3−1+1=8;(2)(m+9m+6)÷m2−9m+6=m2+6m+9m+6×m+6m2−9=(m+3)2m+6×m+6(m+3)(m−3)=m+3m−3.【解析】(1)分别按照求算术平方根、负整数指数幂、零次幂和去括号的法则化简,再进行有理数的加减法运算即可;(2)将括号内的部分通分,同时将分式的除法变成乘法,再进行因式分解,然后约分即可.本题考查了分式的混合运算及实数的混合运算,熟练掌握相关运算法则是解题的关键.20.【答案】证明:(1)∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∠A=36°,∴BD=AD,即△ABD是等腰三角形;(2)∵点E是AB的中点,∴AE=EB,∴∠DEB=90°,∴∠BDE=90°−36°=54°.【解析】(1)根据等腰三角形的性质和三角形内角和得出∠DBC=36°,进而根据等腰三角形的判定解答即可;(2)根据等腰三角形的性质和三角形内角和解答即可.此题考查等腰三角形的判定和性质,关键是据等腰三角形的性质和三角形内角和得出∠DBC=36°解答.21.【答案】15.5【解析】解:(1)∵2≤x<14的有5+18=23(人),一线城市在14<x≤20这一组的是:15,15,16,17,17,17,17,18,18,20,在一线城市和三线城市的志愿者中随机选取了50人参加LES测试,∴a=(15+16)÷2=15.5,故答案为:15.5;(3)在这次测试中,一线城市的志愿者甲和三线城市的志愿者乙的得分均为15分,三线城市的志愿者乙在各自城市选取的志愿者中得分排名更靠前,理由:∵一线城市的志愿者甲的中位数是15.5,三线城市的志愿者乙的中位数是14,∴在这次测试中,三线城市的志愿者乙在各自城市选取的志愿者中得分排名更靠前;=800(人),(4)2000×3+1750答:估计一线城市全部2000名志愿者中有800人需要进行心理干预.(1)根据统计图和统计表中的数据和一线城市在14<x≤20这一组的数据,可以求得a 的值;(2)根据统计表中的数据可以得到甲、乙在各自城市选取的志愿者中得分排名谁更靠前;(3)根据统计图中的数据和题目中的数据可以计算出一线城市全部2000名志愿者中有多少人需要进行心理干预的人数.本题考查频数分布直方图、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.22.【答案】1 5 1函数的最大值为5 x<22【解析】解:(1)x =−2、0、3分别代入y =5x 2+1,得a =5(−2)2+1=1,b =502+1=5,c =532+1=12故答案为1,5,12; (2)该函数的图象如图:函数的性质:该函数关于y 轴对称,函数的最大值为5;故答案函数关于y 轴对称,函数的最大值为5; (3)由图形可知,不等式5x 2+1>x −1的解集是x <2. 故答案为x <2.(1)把x =−2、0、3分别代入y =5x 2+1,即可求出a 、b 、c 的值; (2)根据表中的数据,描点连线、画出函数的图象; (3)根据图象即可求出不等式5x 2+1>x −1的解集.本题考查了一次函数的图象与性质,一次函数与一元一次不等式,利用数形结合思想,正确画出函数的图象是解题的关键.23.【答案】解:(1)设用于该社区家庭的口罩有x 个,则用于社区工作人员的口罩有(5000−x)个,依题意,得:5000−x ≥1.5x , 解得:x ≤2000.答:用于该社区家庭的口罩最多有2000个.(2)依题意,得:200(1+a%)×10(1−a%)+(5000−200×10)(1+1.5a%)=5000×(1+20%),整理,得:a 2−225a +5000=0,解得:a 1=25,a 2=200(不合题意,舍去). 答:a 的值为25.【解析】(1)设用于该社区家庭的口罩有x 个,则用于社区工作人员的口罩有(5000−x)个,根据用于社区工作人员的口罩个数应不少于用于社区家庭口罩个数的1.5倍,即可得出关于x 的一元一次不等式,解之取其中的最大值即可得出结论;(2)根据3月份该社区对口罩的总需求量比2月份增加了20%,即可得出关于a 的一元二次方程,解之取其较小值即可得出结论.本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出一元二次方程.24.【答案】解:(1)∵(15,20)=5,(4,8)=4,∴原方程变形为:5x +4y =99, ∴x =99−4y 5,∴99−4y 是5的倍数, ∴当y =1时,x =19, ∴{x =19y =1 是原方程的解; (2)∵5x +4y =99的有整数解,∴{x =19y =1,{x =15y =6,{x =11y =11,{x =7y =16,{x =3y =21, ∴原方程有5组正整数解.【解析】(1)先化简原方程,由材料可求解; (2)先求出原方程的整数解,即可求解.本题考查了二元一次方程的解,一元一次方程的解,理解题意是本题的关键. 25.【答案】(1)解:如图1中,∵四边形ABCD 是平行四边形, ∴AD//BC ,∴∠DAF =∠AFB , ∵AF 平分∠BAD , ∴∠DAF =∠BAF , ∴∠BAF =∠AFB , ∴AB =BF =3,∵AB =AE ,∠BAE =90°, ∴BE =√2AB =3√2.(2)证明:连接EF ,过点G 作GH ⊥EF 交EF 的延长线于H.设BG =a ,FG =b .∵AB =AE ,∠BAE =90°,BG =GE , ∴AG ⊥BE ,AG =GB =GE , ∴AB =√2BG =√2a , ∵BF =AB =√2a ,∴BF 2=2a 2,BG ⋅BE =2a 2, ∴BF 2=BG ⋅BE , ∴BFBG =BEBF , ∵∠FBG =∠EBF ,∴△GBF∽△FBE,∴GFEF =BGBF=√22,∠BFG=∠BEF,∴EF=√2GF=√2b,∵∠BAF=∠BFA,∠GAF=∠BFG,∴∠AFG=∠BAG=45°,∠GAF=∠GEF,∴∠AGE=∠AFE=90°,∴∠GFH=45°,∵GH⊥EH,∴GH=FH=√22b,∴EH=FH+EF=3√22b,∴EG=√GH2+EH2=√5b,∴AB=AE=√2GE=√10b,∴AB=√10GF.(3)解:如图3中,在AC上取一点T,使得AT=AB,连接BT,TM,取BT的中点J,连接NJ.∵△ABT,△BEM都是等腰直角三角形,∴BT=√2AB,BM=√2BE,∠ABT=∠EBM=45°,∴ABBT =BEBM,∠ABE=∠TBM,∴△ABE∽△TBM,∴TMAE =ABBT=√22,∠AEB=∠BMT,∵∠AEB+∠BET=180°,∴∠BMT+∠BET=180°,∴∠EBM+∠ETM=180°,∵∠EBM=∠ETB=45°,∴∠ETM=135°,∠BTM=90°,∵BJ=JT,BN=NM,∴NJ//TM,NJ=12TM,∴∠BJN=∠BTM=90°,∴点N的运动轨迹是线段JN,JN=12TM=√22AE,∵点E从A运动到C时,AE=AC=n,∴m=√22n,∴nm=√2.【解析】(1)证明AB=BF,再利用等腰直角三角形的性质求解即可.(2)连接EF,过点G作GH⊥EF交EF的延长线于H.设BG=a,FG=b.利用相似三角形的性质证明EF=√2GF,想办法求出AB(用b表示)即可解决问题.(3)如图3中,在AC上取一点T,使得AT=AB,连接BT,TM,取BT的中点J,连接NJ.首先证明NJ//TM,NJ=12TM,推出∠BJN=∠BTM=90°,推出点N的运动轨迹是线段JN,JN=12TM=√22AE,由此即可解决问题.本题属于四边形综合题,考查了平行四边形的性质,等腰直角三角形的判定和性质,解直角三角形,三角形中位线定理,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数解决问题,属于中考压轴题.26.【答案】解:(1)令x=0,则y=3,∴C(0,3),∴OC=3.令y=0,则−18x2+14x+3=0,解得:x1=−4,x2=6,∴A(−4,0),B(6,0),∴OA=4,OB=6.∵CD⊥AC,∴∠ACD=90°,∵CO⊥AD,∴OC2=OA⋅OD,∴OD=94,∴D(94,0).(2)∵y=−18x2+14x+3=−18(x−1)2+258,∴E(1,258).如图2,连接OE、BE,作HG⊥x轴于点G,交BE于点P.由B、E两点坐标可求得直线BE的解析式为:y=−58x+154.设H(m,−18m2+14m+3),则P(m,−58m+154).∴HG=−18m2+14m+3,HP=y H−y P=−18m2+78m−34.∴S△BHE=12(x B−x E)⋅HP=52(−18m2+78m−34)=−516m2+3516m−158.∵FH⊥CD,AC⊥CD,∴AC//FH,∴∠HFG=∠CAO,∵∠AOC=∠FGH=90°,∴△ACO∼△FHG,∴FGHG =OAOC=43,∴FG=43HG=−16m2+13m+4,∴AF=AG−FG=m+4+16m2−13m−4=16m2+23m,∴S△AFC=12AF⋅OC=32(16m2+32m)=14m2+m,∵S四边形ACEB =S△ACO+S△OCE+S△OEB=12×4×3+12×3×1+126×258=1358,∴S五边形FCEHB =S四边形ACEB+S△BHE−S△AFC=1358+(−516m2+3516m−158)−(14m2+m)=−916m2+1916m+15=−916(m−1918)2+9001576,∴当m=1918时,S五边形FCEHB取得最大值9001576.此时,H的横坐标为1918.(3)∵B(6,0),C(0,3),D(94,0),∴CD=BD=154,BC=3√5,∴∠DCB=∠DBC.①如图3−1,△CMN≌△DCB,MN交y轴于K,则CM=CN=DC=DB=154,MN=BC=3√5,∠CMN=∠CNM=∠DBC=∠DCB,∴MN//AB,∴MN ⊥y 轴,∴∠CKN =∠COB =90°,MK =NK =12MN =3√52, ∴△CKN ∼△COB ,∴CKCN =COCB =√55, ∴CK =3√54,∴OK =OC +CK =12+3√54, ∴N(3√52,12+3√54). ②如图3−2,△MCN≌△DBC ,则CN =CB =3√5,∠MCN =∠DBC ,∴CN//AB ,∴N(3√5,3).③如图3−3,△CMN≌△DBC ,则∠CMN =∠DCB ,CM =CN =DC =DB =154,MN =BC =3√5, ∴MN//CD ,作MR ⊥y 轴于R ,则CR CO =RM OB =CMCB =√54, ∴CR =3√54,RM =3√52,∴OR =3−3√54, 作MQ//y 轴,NQ ⊥MQ 于点Q ,则∠NMQ =∠DCO ,∠NQM =∠DOC =90°,∴△COD ∼△MQN ,∴MQ NQ =CO DO =43,∴MQ =45MN =12√55,NQ =35MN =9√55, ∴NQ −RM =3√510,OR +MQ =60+33√520, ∴N(−3√5,60+33√5). 综上所述,满足要标的N 点坐标有:(3√52,12+3√54)、(3√5,3)、(−3√510,60+33√520).【解析】(1)先根据抛物线解析式求出A 、B 、C 的坐标,由射影定理可得OD 长度,从而求出D 点坐标;(2)设H 点的横坐标为m ,然后将五边形FCEHB 的面积表示成关于m 的二次函数,利用配方法可求得面积的最大值以及对应的H 点坐标;(3)由B 、C 、D 的坐标可以求得DC 、DB 、BC 的长度,然后分类讨论,分别画出符合要求的对应图形进行计算即可.本题为二次函数综合题,主要考查了二次函数的基本性质、相似三角形的判定与性质、全等三角形的判定与性质等重要知识点,综合性强,难度较大,属于中考压轴题.对于第(2)问,利用割补法表示出五边形的面积是难点,也是解答的关键;对于第(3)问,依次画出对应图形并识别出各种情形下的数量关系是解答的要点所在.。
2020年重庆市南岸区春招数学试卷和参考答案
![2020年重庆市南岸区春招数学试卷和参考答案](https://img.taocdn.com/s3/m/cbccad21ec3a87c24128c463.png)
概率为
.
第 3 页(共 31 页)
16.在 Rt△ABC 中,∠ACB=90°,AC=4,BC=2.分别以点 B,A 为圆心,以 BC 长为
半径画弧,交 AB 于点 D,E,交 AC 于点 F,则图中的阴影部分的面积为
.(用
含 π 的代数式表示)
17.在一段长为 1000m 的笔直道路 AB 上,甲、乙两名运动员分别从 A,B 两地出发进行往
2.计算(2x)3 的结果是( )
ቤተ መጻሕፍቲ ባይዱ
A.8x3
B.8x
C.6x3
D.2x3
3.下列命题是真命题的是( )
A.等边三角形是中心对称图形 B.等腰三角形是轴对称图形
C.等腰直角三角形是中心对称图形 D.直角三角形是轴对称图形
4.如图,小树 AB 在路灯 O 的照射下形成投影 BC.若树高 AB=2m,树影 BC=3m,树与
算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡对应的位置上.
19.计算:
(1)(2x+y)(x+y)+(x﹣y)2;(2)(a﹣
)÷
.
20.如图,AB∥CD,AD 与 BC 相交于点 E,AF 平分∠BAD,交 BC 于点 F,交 CD 的延长 线于点 G. (1)若∠G=29°,求∠ADC 的度数; (2)若点 F 是 BC 的中点,求证:AB=AD+CD.
C.16.9m
D.18.1m
11.如图,把△ABC 纸片沿 DE,EF,DG 折叠后,A,B,C 三点都与 BC 边上的点 M 重
合,得到矩形 DEFG,连接 DF,若△DGM 和△DMF 均是等腰三角形,DG=1,则△
ABC 的周长为( )
2020年重庆市北碚区春招数学试卷(解析版)
![2020年重庆市北碚区春招数学试卷(解析版)](https://img.taocdn.com/s3/m/eefeee2301f69e314232944e.png)
2020年重庆市北碚区春招数学试卷一.选择题(共12小题)1.实数a,b在数轴上对应点的位置如图所示,则下列判断正确的是()A.a>0B.b<1C.a<b D.a>﹣22.如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.3.下列计算正确的是()A.(x3)4=x7B.x3•x2=x5C.x+2x=3x2D.x﹣2=﹣4.下列命题正确的是()A.过线段中点的直线上任意一点到线段两端的距离相等B.垂直于线段的直线上任意一点到线段两端的距离相等C.线段垂直平分线上任意一点到线段两端的距离相等D.线段垂直平分线上的点到线段上任意两点的距离相等5.按如图所示的运算程序,能使输出m的值为1的是()A.x=1,y=1B.x=2,y=0C.x=1,y=2D.x=3,y=2 6.估计×+÷的值应在()A.7和8之间B.8和9之间C.9和10之间D.10和11之间7.如图,AB是⊙O的直径,点P在BA的延长线上,P A=AO,PD与⊙O相切于点D,BC⊥AB交PD的延长线于点C,若⊙O的半径为1,则BC的长是()A.1.5B.2C.D.8.如图,在平面直角坐标系中,等腰Rt△ABC与等腰Rt△CDE关于原点O成位似关系,相似比为1:3,∠ACB=∠CED=90°,A、C、E是x轴正半轴上的点,B、D是第一象限的点,BC=2,则点D的坐标是()A.(9,6)B.(8,6)C.(6,9)D.(6,8)9.如图,为加快5G网络建设,某通信公司在一个坡度i=1:2.4的山坡AB上建了一座信号塔CD,信号塔底端C到山脚A的距离AC=13米,在距山脚A水平距离18米的E处,有一高度为10米的建筑物EF,在建筑物顶端F处测得信号塔顶端D的仰角为37°(信号塔及山坡的剖面和建筑物的剖面在同一平面上),则信号塔CD的高度约是()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.22.5米B.27.5米C.32.5米D.45.0米10.如图,在平面直角坐标系中,菱形ABCD的顶点B、D在反比例函数y═(k>0)的图象上,对角线AC与BD相交于坐标原点O,若点A(﹣1,2),菱形的边长为5,则k 的值是()A.4B.8C.12D.1611.若数a使关于x 的分式方程+=1有非负整数解,且使关于y 的不等式组至少有3个整数解,则符合条件的所有整数a的和是()A.﹣5B.﹣3C.0D.212.二次函数y=ax2+bx+c(a,b,c为常数,a≠0,c>0)的自变量x与函数值y的部分对应值如表:x…﹣10123……p t n t0…y=ax2+bx+c有下列结论:①b>0;②关于x的方程ax2+bx+c=0的两个根是0和3;③p+2t<0;④m (am+b)≤﹣4a﹣c(m为任意实数).其中正确结论的个数是()A.1B.2C.3D.4二.填空题(共6小题)13.计算:(3﹣π)0﹣=.14.代数式有意义,则x的取值范围是.15.如图,在Rt△ABC中,∠ACB=90°,∠A=50°,AB=10,D是AB的中点,以点C 为圆心,CD长为半径画弧,交BC于点E,则图中阴影部分的面积是.(结果保留π)16.点A的坐标是A(x,y),从1、2、3这三个数中任取一个数作为x的值,再从余下的两个数中任取一个数作为y的值.则点A落在直线y=﹣x+5与直线y=x及y轴所围成的封闭区域内(含边界)的概率是.17.如图,在等腰△ABC中,AB=AC=2,∠ABC=30°,AD为BC边上的高,E、F分别为AB、AC边上的点,将△ABC分别沿DE、DF折叠,使点B落在DA的延长线上点M 处,点C落在点N处,连接MN,若MN∥AC,则AF的长是.18.如图,在平行四边形ABCD中,AB=2,∠ABC=45°,点E为射线AD上一动点,连接BE,将BE绕点B逆时针旋转60°得到BF,连接AF,则AF的最小值是.三.解答题(共8小题)19.(1)解方程组.(2)计算:(x+)÷.20.如图,在平行四边形ABCD中,E、F分别是DA、BC延长线上的点,且∠ABE=∠CDF.求证:(1)△ABE≌△CDF;(2)四边形EBFD是平行四边形.21.某校为提高学生体考成绩,对全校300名九年级学生进行一分种跳绳训练.为了解学生训练效果,学校体育组在九年级上学期开学初和学期末分别对九年级学生进行一分种跳绳测试,学生成绩均为整数,满分20分,大于18分为优秀.现随机抽取了同一部分学生的两次成绩进行整理、描述和分析.(成绩得分用x表示,共分成五组:A.x<13,B.13≤x<15,C.15≤x<17,D.17≤x<19,E.19≤x≤20)开学初抽取学生的成绩在D组中的数据是:17,17,17,17,17,18,18.学期末抽取学生成绩统计表学生成绩A组B组C组D组E组人数0145a 分析数据:平均数中位数众数开学初抽取学生成绩16b17学期末抽取学生成绩1818.519根据以上信息,解答下列问题:(1)直接写出图表中a、b的值,并补全条形统计图;(2)假设该校九年级学生都参加了两次测试,估计该校学期末成绩优秀的学生人数比开学初成绩优秀的学生人数增加了多少?(3)小莉开学初测试成绩16分,学期末测试成绩19分,根据抽查的相关数据,请选择一个合适的统计量评价小莉的训练效果.22.某数学小组对函数y1=图象和性质进行探究.当x=4时,y1=0.(1)当x=5时,求y1的值;(2)在给出的平面直角坐标系中,补全这个函数的图象,并写出这个函数的一条性质;(3)进一步探究函数图象并解决问题:已知函数y2=﹣的图象如图所示,结合函数y1的图象,直接写出不等式y1≥y2的解集.23.某商场销售A、B两种新型小家电,A型每台进价40元,售价50元,B型每台进价32元,售价40元,4月份售出A型40台,且销售这两种小家电共获利不少于800元.(1)求4月份售出B型小家电至少多少台?(2)经市场调查,5月份A型售价每降低1元,销量将增加10台;B型售价每降低1元,销量将在4月份最低销量的基础上增加15台.为尽可能让消费者获得实惠,商场计划5月份A、B两种小家电都降低相同价格,且希望销售这两种小家电共获利965元,则这两种小家电都应降低多少元?24.对任意一个两位数m,如果m等于两个正整数的平方和,那么称这个两位数m为“平方和数”,若m=a2+b2(a、b为正整数),记A(m)=ab.例如:29=22+52,29就是一个“平方和数”,则A(29)=2×5=10.(1)判断25是否是“平方和数”,若是,请计算A(25)的值;若不是,请说明理由;(2)若k是一个“平方和数”,且A(k)=,求k的值.25.如图,一个二次函数的图象经过点A(0,1),它的顶点为B(1,3).(1)求这个二次函数的表达式;(2)过点A作AC⊥AB交抛物线于点C,点P是直线AC上方抛物线上的一点,当△APC 面积最大时,求点P的坐标和△APC的面积最大值.26.如图1,在正方形ABCD中,对角线AC、BD相交于点O,点E为线段BO上一点,连接CE,将CE绕点C顺时针旋转90°得到CF,连接EF交CD于点G.(1)若AB=4,BE=,求△CEF的面积.(2)如图2,线段FE的延长线交AB于点H,过点F作FM⊥CD于点M,求证:BH+MG =BE;(3)如图3,点E为射线OD上一点,线段FE的延长线交直线CD于点G,交直线AB 于点H,过点F作FM垂直直线CD于点M,请直接写出线段BH、MG、BE的数量关系.参考答案与试题解析一.选择题(共12小题)1.实数a,b在数轴上对应点的位置如图所示,则下列判断正确的是()A.a>0B.b<1C.a<b D.a>﹣2【分析】直接利用a,b在数轴上位置进而分别分析得出答案.【解答】解:由数轴可得:a<﹣2,故选项A错误;b>1,故选项B错误;a<b,故选项C正确;a<﹣2,故选项D错误;故选:C.【点评】此题主要考查了实数与数轴,正确结合数轴分析是解题关键.2.如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看有两层,底层两个正方形,上层左边一个正方形,左齐.故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.下列计算正确的是()A.(x3)4=x7B.x3•x2=x5C.x+2x=3x2D.x﹣2=﹣【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;负整数指数幂a﹣p=(a≠0),对各选项分析判断后利用排除法求解.【解答】解:A、(x3)4=x12,故本选项错误;B、x3•x2=x5,故本选项正确;C、x+2x=3x,故本选项错误;D、x﹣2=,故本选项错误;故选:B.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、负整数指数幂,熟练掌握运算性质和法则是解题的关键.4.下列命题正确的是()A.过线段中点的直线上任意一点到线段两端的距离相等B.垂直于线段的直线上任意一点到线段两端的距离相等C.线段垂直平分线上任意一点到线段两端的距离相等D.线段垂直平分线上的点到线段上任意两点的距离相等【分析】根据线段垂直平分线的性质判断即可.【解答】解:A、线段垂直平分线上任意一点到线段两端的距离相等,原命题是假命题;B、线段垂直平分线上任意一点到线段两端的距离相等,原命题是假命题;C、线段垂直平分线上任意一点到线段两端的距离相等,是真命题;D、线段垂直平分线上任意一点到线段两端的距离相等,原命题是假命题;故选:C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.5.按如图所示的运算程序,能使输出m的值为1的是()A.x=1,y=1B.x=2,y=0C.x=1,y=2D.x=3,y=2【分析】根据题意一一计算即可判断.【解答】解:A、当x=1,y=1时,m=x﹣y=1﹣1=0,不符合题意;B、当x=2,y=0时,m=x﹣y=2﹣0=2,不符合题意;C、当x=1,y=2时,m=﹣2x+y=﹣2+2=0,不符合题意;D、当x=3,y=2时,m=x﹣y=3﹣2=1,符合题意.故选:D.【点评】本题考查代数式求值,有理数的混合运算等知识,解题的关键是理解题意,属于中考常考题型.6.估计×+÷的值应在()A.7和8之间B.8和9之间C.9和10之间D.10和11之间【分析】直接利用二次根式的性质化简,进而利用估算无理数的大小的方法得出答案.【解答】解:×+÷=+=4+,∵3<<4,∴7<4+<8,∴×+÷的值应在7和8之间;故选:A.【点评】此题主要考查了估算无理数的大小,正确估算无理数的范围是解题关键.7.如图,AB是⊙O的直径,点P在BA的延长线上,P A=AO,PD与⊙O相切于点D,BC ⊥AB交PD的延长线于点C,若⊙O的半径为1,则BC的长是()A.1.5B.2C.D.【分析】连接OD,求出BC是⊙O的切线,根据切线长定理得出CD=BC,根据切线的性质求出∠ODP=90°,根据勾股定理求出PD,再根据勾股定理求出BC即可.【解答】解:连接OD,∵PC切⊙O于D,∴∠ODP=90°,∵⊙O的半径为1,P A=AO,AB是⊙O的直径,∴PO=1+1=2,PB=1+1+1=3,OD=1,∴由勾股定理得:PD===,∵BC⊥AB,AB过O,∴BC切⊙O于B,∵PC切⊙O于D,∴CD=BC,设CD=CB=x,在Rt△PBC中,由勾股定理得:PC2=PB2+BC2,即(+x)2=32+x2,解得:x=,即BC=,故选:D.【点评】本题考查了切线的性质和判定,圆周角定理,勾股定理,切线长定理等知识点,能综合运用定理进行推理是解此题的关键.8.如图,在平面直角坐标系中,等腰Rt△ABC与等腰Rt△CDE关于原点O成位似关系,相似比为1:3,∠ACB=∠CED=90°,A、C、E是x轴正半轴上的点,B、D是第一象限的点,BC=2,则点D的坐标是()A.(9,6)B.(8,6)C.(6,9)D.(6,8)【分析】根据位似变换的定义得到△ACB∽△CED,根据相似三角形的性质求出DE,根据等腰直角三角形的性质求出CE,根据△OCB∽△OED,列出比例式,代入计算得到答案.【解答】解:∵等腰Rt△ABC与等腰Rt△CDE关于原点O成位似关系,∴△ACB∽△CED,∵相似比为1:3,∴=,即=,解得,DE=6,∵△CED为等腰直角三角形,∴CE=DE=6,∵BC∥DE,∴△OCB∽△OED,∴=,即=,解得,OC=3,∴OE=OC+CE=3+6=9,∴点D的坐标为(9,6),故选:A.【点评】本题考查的是位似变换、相似三角形的性质、坐标与图形性质、等腰直角三角形的性质,掌握位似变换的两个图形是相似图形是解题的关键.9.如图,为加快5G网络建设,某通信公司在一个坡度i=1:2.4的山坡AB上建了一座信号塔CD,信号塔底端C到山脚A的距离AC=13米,在距山脚A水平距离18米的E处,有一高度为10米的建筑物EF,在建筑物顶端F处测得信号塔顶端D的仰角为37°(信号塔及山坡的剖面和建筑物的剖面在同一平面上),则信号塔CD的高度约是()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.22.5米B.27.5米C.32.5米D.45.0米【分析】过点F作FH⊥DC于点H,延长DC交EA于点G,可得四边形EFHG是矩形,根据AB的坡度i=1:2.4,AC=13,可得CG=5,AG=12,CH=GH﹣CG=10﹣5=5,再根据锐角三角函数即可求出信号塔CD的高度.【解答】解:如图,过点F作FH⊥DC于点H,延长DC交EA于点G,则四边形EFHG是矩形,∴FH=GE,CG=EF,∵AB的坡度i=1:2.4,AC=13,∴CG=5,AG=12,∴CH=GH﹣CG=10﹣5=5,∴GE=AG+AE=12+18=30,∴在Rt△DCF中,∠DFC=37°,FH=GE=30,∴DH=FH•tan37°≈30×0.75≈22.5,∴CD=DH+CH≈22.5+5≈27.5(米).所以信号塔CD的高度约是27.5米.故选:B.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题和坡度坡角问题,解决本题的关键是掌握仰角俯角和坡度坡角定义.10.如图,在平面直角坐标系中,菱形ABCD的顶点B、D在反比例函数y═(k>0)的图象上,对角线AC与BD相交于坐标原点O,若点A(﹣1,2),菱形的边长为5,则k 的值是()A.4B.8C.12D.16【分析】根据菱形的性质得到AC⊥BD,根据勾股定理得到OA=,OD==2,求得直线AC的解析式为y=﹣2x,求得BD的解析式为y=2x,设D(a,2a),根据勾股定理即可得到结论.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,∵点A(﹣1,2),∴OA=,∵菱形的边长为5,∴AD=5,∴OD==2,∵对角线AC与BD相交于坐标原点O,∴直线AC的解析式为y=﹣2x,∴BD的解析式为y=2x,设D(a,2a),∴a2+(2a)2=20,∴a=2(负值舍去),∴D(2,4),∵D在反比例函数y═(k>0)的图象上,∴k=2×4=8,故选:B.【点评】本题考查反比例函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.11.若数a使关于x的分式方程+=1有非负整数解,且使关于y的不等式组至少有3个整数解,则符合条件的所有整数a的和是()A.﹣5B.﹣3C.0D.2【分析】解出分式方程,根据题意确定a的范围,解不等式组,根据题意确定a的范围,根据分式不为0的条件得到a≠﹣2,根据题意计算即可.【解答】解:由①得y>﹣8,由②得y≤a,∴不等式组的解集为:﹣8<y≤a,∵关于y 的不等式组至少有3个整数解,∴a≥﹣5,解分式方程+=1,得x =,∵关于x 的分式方程+=1有非负整数解,且≠3,∴a≤4且a≠﹣2且a为偶数;∴﹣5≤a≤4且a≠﹣2且a为偶数,∴满足条件的整数a为﹣4,0,2,4,∴所有整数a的和=﹣4+0+2+4=2,故选:D.【点评】本题考查的是分式方程的解法、一元一次不等式组的解法,掌握解分式方程、一元一次不等式组的一般步骤是解题的关键.12.二次函数y=ax2+bx+c(a,b,c为常数,a≠0,c>0)的自变量x与函数值y的部分对应值如表:x…﹣10123……p t n t0…y=ax2+bx+c有下列结论:①b>0;②关于x的方程ax2+bx+c=0的两个根是0和3;③p+2t<0;④m (am+b)≤﹣4a﹣c(m为任意实数).其中正确结论的个数是()A.1B.2C.3D.4【分析】由抛物线的对称性可求对称轴为:x =,可得p=0,即x=﹣1,x=3是方程ax2+bx+c=0的两个根,可判断②;当x=0,y=c=t>0,可得p+2t=0+2t>0,可判断③;由抛物线中在对称轴的右边,y随x的增大而减小,可得的a<0,由对称轴x=1可得b=﹣2a>0,可判断①;由x=3,y=0,可得c=﹣3a,由顶点坐标为(1,n),a<0,可得am2+bm+c≤a+b+c,可得am2+bm≤﹣4a﹣c,可判断④,即可求解.【解答】解:∵当x=0和x=2时,y=t,∴对称轴为:x=,∴当x=3和x=﹣1时,y的值相等,∴p=0,∴x=﹣1,x=3是方程ax2+bx+c=0的两个根,故②正确;∵当x=0时,y=t,且c>0,∴t=c>0,∴p+2t=0+2t>0,故③错误;∵x=2,y=t>0,x=3,y=0,∴在对称轴的右边,y随x的增大而减小,∴a<0,∵x=﹣,∴b=﹣2a>0,故①正确;∵当x=3时,y=0,∴9a+3b+c=0,∴3a+c=0,∴c=﹣3a,∴﹣4a﹣c=﹣4a+3a=﹣a,∵顶点坐标为(1,n),a<0,∴am2+bm+c≤a+b+c,∴am2+bm≤a+b,∴am2+bm≤﹣a,∴am2+bm≤﹣4a﹣c,故④正确,故选:C.【点评】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,能够从表格中获取信息确定出对称轴是解题的关键.二.填空题(共6小题)13.计算:(3﹣π)0﹣=﹣1.【分析】本题涉及零指数幂、三次根式化简2个知识点.在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(3﹣π)0﹣=1﹣2=﹣1.故答案为:﹣1.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、三次根式等知识点的运算.14.代数式有意义,则x的取值范围是x>4.【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【解答】解:由题意得,x﹣4>0,解得,x>4,故答案为:x>4.【点评】本题考查的是二次根式有意义的条件、分式有意义的条件,掌握二次根式的被开方数是非负数、分式分母不为0是解题的关键.15.如图,在Rt△ABC中,∠ACB=90°,∠A=50°,AB=10,D是AB的中点,以点C 为圆心,CD长为半径画弧,交BC于点E,则图中阴影部分的面积是π.(结果保留π)【分析】利用斜边上的中线性质得到DA=DC=DB=AB=5,再计算出∠B得到∠DCB =40°,然后利用扇形的面积公式计算.【解答】解:∵∠ACB=90°,D是AB的中点,∴DA=DC=DB=AB=5,∵∠B=90°﹣∠A=90°﹣50°=40°,∴∠DCB=∠B=40°,∴图中阴影部分的面积==π.故答案为π.【点评】本题考查了扇形面积的计算:扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则S扇形=πR2或S扇形=lR(其中l为扇形的弧长).也考查了直角三角形斜边上的中线性质.16.点A的坐标是A(x,y),从1、2、3这三个数中任取一个数作为x的值,再从余下的两个数中任取一个数作为y的值.则点A落在直线y=﹣x+5与直线y=x及y轴所围成的封闭区域内(含边界)的概率是.【分析】先解方程组得直线y=﹣x+5与直线y=x的交点坐标,画出图象,再画树状图展示所有6种等可能的结果数,找出其中点A落在直线y=﹣x+5与直线y=x及y轴所围成的封闭区域内(含边界)的点的个数,然后根据概率公式求解.【解答】解:解方程组得,∴直线y=﹣x+5与直线y=x的交点坐标为(3,2),如图,画树状图为:共有6种等可能的结果数,其中点A落在直线y=﹣x+5与直线y=x及y轴所围成的封闭区域内(含边界)的点为(1,2),(1,3),(2,3),(3,2),所以点A落在直线y=﹣x+5与直线y=x及y轴所围成的封闭区域内(含边界)的概率==.故答案为.【点评】本题考查了几何概率:某随机事件的概率=这个随机事件所占有的面积与总面积之比,也可以计算利用长度比或体积比计算概率.也考查了树状图法.17.如图,在等腰△ABC中,AB=AC=2,∠ABC=30°,AD为BC边上的高,E、F分别为AB、AC边上的点,将△ABC分别沿DE、DF折叠,使点B落在DA的延长线上点M 处,点C落在点N处,连接MN,若MN∥AC,则AF的长是.【分析】过点D作DH⊥AC于H,由等腰三角形的性质和直角三角形的性质可求∠C=30°,AD=AC=1,∠DAC=60°,BD=CD,由折叠的性质可得DN=DC,DB=DM,∠CDF=∠NDF,可证△DMN是等边三角形,可得∠MDN=60°,由折叠的性质可求∠HDF=∠HFD=45°,由直角三角形的性质可求解.【解答】解:如图,过点D作DH⊥AC于H,∵AB=AC=2,∠ABC=30°,AD为BC边上的高,∴∠C=30°,AD=AC=1,∠DAC=60°,BD=CD,∵MN∥AC,∴∠DAC=∠DMN=60°,∵DH⊥AF,∴∠ADH=30°,∴AH=AD=,DH=AH=,∵将△ABC分别沿DE、DF折叠,∴DN=DC,DB=DM,∠CDF=∠NDF,∴DM=DN,∴△DMN是等边三角形,∴∠MDN=60°,∴∠CDN=30°,∴∠CDF=15°,∴∠DFH=∠C+∠CDF=45°,∵DH⊥AF,∴∠HDF=∠HFD=45°,∴DH=HF=,∴AF=AH+HF=,故答案为:.【点评】本题考查了翻折变换,等边三角形的判定和性质,直角三角形的性质,折叠的性质等知识,灵活运用这些性质解决问题是本题的关键.18.如图,在平行四边形ABCD中,AB=2,∠ABC=45°,点E为射线AD上一动点,连接BE,将BE绕点B逆时针旋转60°得到BF,连接AF,则AF的最小值是.【分析】如图,以AB为边向下作等边△ABK,连接EK,在EK上取一点T,使得AT=TK.证明△ABF≌△KBE(SAS),推出AF=EK,根据垂线段最短可知,当KE⊥AD时,KE的值最小,解直角三角形求出EK即可解决问题.【解答】解:如图,以AB为边向下作等边△ABK,连接EK,在EK上取一点T,使得AT=TK.∵BE=BF,BK=BA,∠EBF=∠ABK=60°,∴∠ABF=∠KBE,∴△ABF≌△KBE(SAS),∴AF=EK,根据垂线段最短可知,当KE⊥AD时,KE的值最小,∵四边形ABCD是平行四边形,∴AD∥BC,∵∠ABC=45°,∴∠BAD=180°﹣∠ABC=135°,∵∠BAK=60°,∴∠EAK=75°,∵∠AEK=90°,∴∠AKE=15°,∵TA=TK,∴∠TAK=∠AKT=15°,∴∠ATE=∠TAK+∠AKT=30°,设AE=a,则AT=TK=2a,ET=a,在Rt△AEK中,∵AK2=AE2+EK2,∴a2+(2a+a)2=2,∴a=,∴EK=2a+a=,∴AF的最小值为.故答案为.【点评】本题考查旋转的性质,平行四边形的性质,等边三角形的性质,全等三角形的判定和性质,垂线段最短,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全球的三角形解决问题,学会用转化的思想思考问题.三.解答题(共8小题)19.(1)解方程组.(2)计算:(x+)÷.【分析】(1)根据加减消元法可以解答此方程组;(2)根据分式的加法和除法可以解答本题.【解答】解:(1),①+②,得4x=12,解得,x=3,将x=3代入①,得y=﹣1,故原方程组的解为;(2)(x+)÷====.【点评】本题考查分式的混合运算、解二元一次方程组,解答本题的关键是明确它们各自的解答方法.20.如图,在平行四边形ABCD中,E、F分别是DA、BC延长线上的点,且∠ABE=∠CDF.求证:(1)△ABE≌△CDF;(2)四边形EBFD是平行四边形.【分析】(1)由ASA即可得出△ABE≌△CDF;(2)由全等三角形的性质得出AE=CF,由平行四边形的性质得出AD∥BC,AD=BC,证出DE=BF,即可得出四边形EBFD是平行四边形.【解答】证明:(1)∵四边形ABD是平行四边形,∴AB=CD,∠BAD=∠DCB,∴∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA);(2)∵△ABE≌△CDF,∴AE=CF,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴AD+AE=BC+CF,即DE=BF,∴四边形EBFD是平行四边形.【点评】本题考查了平行四边形的判定与性质、全等三角形的判定与性质等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.21.某校为提高学生体考成绩,对全校300名九年级学生进行一分种跳绳训练.为了解学生训练效果,学校体育组在九年级上学期开学初和学期末分别对九年级学生进行一分种跳绳测试,学生成绩均为整数,满分20分,大于18分为优秀.现随机抽取了同一部分学生的两次成绩进行整理、描述和分析.(成绩得分用x表示,共分成五组:A.x<13,B.13≤x<15,C.15≤x<17,D.17≤x<19,E.19≤x≤20)开学初抽取学生的成绩在D组中的数据是:17,17,17,17,17,18,18.学期末抽取学生成绩统计表学生成绩A组B组C组D组E组人数0145a 分析数据:平均数中位数众数开学初抽取学生成绩16b17学期末抽取学生成绩1818.519根据以上信息,解答下列问题:(1)直接写出图表中a、b的值,并补全条形统计图;(2)假设该校九年级学生都参加了两次测试,估计该校学期末成绩优秀的学生人数比开学初成绩优秀的学生人数增加了多少?(3)小莉开学初测试成绩16分,学期末测试成绩19分,根据抽查的相关数据,请选择一个合适的统计量评价小莉的训练效果.【分析】(1)由A的两个统计图上的数据得抽取的学生人数,再用求得的总数减去学期末抽取学生成绩统计表中A、B、C、D的人数便可得E组的人数a的值,求出开学初抽取人数中成绩由小到大位于最中间的数据或中间两个数据的平均数便为中位数b的值;(2)用总人数300乘以学期末优秀学生数的百分比与开学初优秀学生数的百分比之差,便可得该校学期末成绩优秀的学生人数比开学初成绩优秀的学生人数增加的人数;(3)可比较再次测试成绩的中位数或平均数,进而得出小莉成绩上升情况的总结.【解答】解:(1)开学初抽取的学生总数为:2=20,∴a=20﹣0﹣1﹣4﹣5=10,开学初抽取学生中B组人数为:20﹣2﹣3﹣4﹣7=4,由此可知开学初所抽取学生的成绩A、B、C组共有2+3+4=9人,则将所抽取的20人的成绩由小到大排列,位于第10位和第11位的成绩都位于D组,∵D组中的数据是:17,17,17,17,17,18,18.∴中位数b==17,补全统计图如下:(2)根据题意得,300×=90,答:该校学期末成绩优秀的学生人数比开学初成绩优秀的学生人数增加了90人;(3)从平均数看,小莉开学初测试成绩等于开学初抽取学生成绩的平均数16分,学期末测试成绩19分高于学期末所抽取学生成绩的平均数18分,因此小莉一分钟跳绳练习达到郎的效果;从中位数来看,小莉开学初测试成绩16分低于开学初抽取学生成绩的中位数17分,学期末测试成绩19分高于学期末抽取学生成绩的中位数18,5分,因此小莉一分钟跳绳练习达到郎的效果.【点评】本题考查读条形统计图的能力,利用统计图获取信息的能力,利用统计表获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.某数学小组对函数y1=图象和性质进行探究.当x=4时,y1=0.(1)当x=5时,求y1的值;(2)在给出的平面直角坐标系中,补全这个函数的图象,并写出这个函数的一条性质;(3)进一步探究函数图象并解决问题:已知函数y2=﹣的图象如图所示,结合函数y1的图象,直接写出不等式y1≥y2的解集.【分析】(1)思想利用待定系数法确定b的值,再求出x=5时,y1的值即可.(2)画出x<2时,y=﹣x+2的图形即可.(3)利用图象法写出y1的图象在y2的上方时x的值即可.【解答】解:(1)由题意x=0时,y1=0,∴16+4b+8=0,∴b=﹣6,∴x=5时,y1=25﹣6×5+8=3.(2)函数图象如图所示:性质:x<3时,y随x的增大而减小,x>3时,y随x的增大而增大.(3)观察图形可知:不等式y1≥y2的解集为:x<﹣2或x>0.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是理解题意,灵活运用所学知识解决问题.23.某商场销售A、B两种新型小家电,A型每台进价40元,售价50元,B型每台进价32元,售价40元,4月份售出A型40台,且销售这两种小家电共获利不少于800元.(1)求4月份售出B型小家电至少多少台?(2)经市场调查,5月份A型售价每降低1元,销量将增加10台;B型售价每降低1元,销量将在4月份最低销量的基础上增加15台.为尽可能让消费者获得实惠,商场计划5月份A、B两种小家电都降低相同价格,且希望销售这两种小家电共获利965元,则这两种小家电都应降低多少元?【分析】(1)设4月份售出B型小家电x台,根据“销售这两种小家电共获利不少于800元”列出不等式并解答;(2)设两种型号的小家电都降价y元,根据“销售利润=(售价﹣进价)×销售数量”列出方程并解答.【解答】解:(1)设4月份售出B型小家电x台,根据题意,得(50﹣40)×40﹣(40﹣32)x≥800.解得x≥50.答:4月份售出B型小家电至少50台;(2)设两种型号的小家电都降价y元,根据题意得:(50﹣y﹣40)(40+10y)+(40﹣y﹣32)(50+15y)=965.整理,得5y2﹣26y+33=0.解得y1=3,y2=2.2.为了让消费者得到更多的实惠,所以y=3符合题意.答:两种型号的小家电都降价3元.【点评】本题考查一元一次不等式和一元二次方程的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.24.对任意一个两位数m,如果m等于两个正整数的平方和,那么称这个两位数m为“平方和数”,若m=a2+b2(a、b为正整数),记A(m)=ab.例如:29=22+52,29就是一个“平方和数”,则A(29)=2×5=10.。
文科数学2020年重庆高职分类考试参考答案
![文科数学2020年重庆高职分类考试参考答案](https://img.taocdn.com/s3/m/3e660b5914791711cc7917c6.png)
文科数学参考答案 第1页(共4页)机密★启用前2020年重庆市高等职业教育分类考试文科数学参考答案一、选择题(共10小题,每小题5分,共50分)(1)D (2)C (3)B (4)B (5)A (6)A(7)A(8)C(9)C(10)D二、填空题(共5小题,每小题5分,共25分)(11)1+i (12){}11-, (13)6(14)3(15)14三、解答题(共5小题,每小题15分,共75分)(16)解:(Ⅰ)由等差数列的通项公式知615a a d =+. 将610a =-,2d =代入得11010a +=-,解得120a =-.(Ⅱ)等差数列{}n a 的前n 项和是1(1)2n n n dS na -=+.将120a =-,2d =代入得220(1)21n S n n n n n =-+-=-.再由46k S =得22146k k -=,解得2k =-(舍去)或23k =,所以23k =.文科数学参考答案 第2页(共4页)(17)解:(Ⅰ)由题意知11200.32539m =⨯=,21120(6271833)24m m =-+++++=,240.2120f ==.(Ⅱ)将身高在[)175180,的3名学生分别编号为1,2,3,再将身高在[]180185,的3名学生分别编号为4,5,6,从这6名学生中任取两名,所有可能结果为()()()()()1213141516,,,,,,,,,,()()()()23242526,,,,,,,,()()()343536,,,,,,()()4546,,,,()56,,共计15种取法.抽取的两名学生身高都不低于180 cm ,所有可能结果为()()()454656,,,,,,共计3种取法.于是,所求概率为31155p ==. (18)解:(Ⅰ)对()f x 求导得()22f x x '=-.因此(5)8f '=,所以曲线()y f x =在5x =处的切线斜率为8. (Ⅱ)对()2()22e x g x x x =--求导得()()()22()22e 22e 4e x x x g x x x x x '=-+--=-.文科数学参考答案 第3页(共4页)令()0g x '=得240x -=,解得2x =±. 当2x <-时,()0g x '>; 当22x -<<时,()0g x '<; 2x >时,()0g x '>.所以()g x 在2x =-处取得极大值2(2)6e g --=, 在2x =处取得极小值2(2)2e g =-. (19)(Ⅰ)证明:因为PA AB ⊥,PA AC ⊥,所以PA ABC ⊥平面,又因BC ABC ⊂平面, 故PA BC ⊥. (Ⅱ)由题意,三棱锥P ABC -的体积为1111116244332323P ABC ABC V S PA AB AC PA -=⋅=⋅⋅⋅=⨯⨯⨯⨯=△.在△PBC中,PB ==BC ==PC ==,边PC 上的高为h ==,从而1122PBC S PC h =⋅=⨯=△. 设A 到平面PBC 的距离为d ,则三棱锥A PBC -的体积是13△A PBC PBC A PBC V S d V --=⋅=,因此3△A PBC PBCV d S -===. (20)解:(Ⅰ)由题意2225a λ=-,2216b λ=-.所以3c ===,因此这些椭圆有相同的左、右焦点,其坐标分别为1(30)F -,、2(30)F ,.答(19)图文科数学参考答案 第4页(共4页)(Ⅱ)椭圆的离心率为()c e a λ=2[016)λ∈,.随2λ的增大而增大,故当20λ=即0λ=时,离心率取得最小值.(Ⅲ)由(Ⅱ)知当0λ=时离心率最小,此时椭圆方程为2212516x y +=. ……① 设该椭圆上的点P 的坐标为()P P x y ,,由(Ⅰ)知1(30)F -,,2(30)F ,. 所以12△PF F 的面积为1212132△S PF F P P F F y y =⋅=. 又由已知条件得36P y =,所以2P y =, 代入①得2412516px +=,解得2754p x =.所以2OP ===.。
2020 年重庆市高等职业教育分类考试文化素质测试试卷(含答案)
![2020 年重庆市高等职业教育分类考试文化素质测试试卷(含答案)](https://img.taocdn.com/s3/m/3b1d09910740be1e650e9aaa.png)
机密★启用前【考试时间:5月23日9∶00—11∶30】2020年重庆市高等职业教育分类考试文化素质测试试卷文化素质测试试卷分为语文、数学、英语三个部分,语文部分1至6页,数学部分6至8页,英语部分8至14页,共14页。
满分300分。
考试时间150分钟。
注意事项:1.将自己的姓名、考号准确工整填写在指定位置。
2.作答时,务必将答案写在答题卡上。
写在试卷及草稿纸上无效。
3.考试结束后,将试卷和答题卡一并交回。
语文(共100分)一、基础知识(共6小题,每小题4分,共24分)从每个小题的四个备选答案中,选出一个最符合题目要求的。
1.下列选项中,加点字的读音完全相同的一项是A.船艄.发烧.骚.动稍.微B.牛虻.萌.发朦.胧同盟.C.柏.树帛.书泊.车薄.酒D.年轻.青.春亲.戚倾.斜2.下列选项中,没有..错别字的一项是A.蛰伏部署锁屑立竿见影B.沉湎通缉伫立兵慌马乱C.喝彩缜密肖像励精图治D.秘诀撕混装帧出奇制胜3.下列各项中,加点的词使用正确的一项是A.至今很多国家的边境依然没有划定界限..。
B.我们不赞同以各种理由窜改..成语的做法。
C.接到领导电话时,他正在医院检察..身体。
D.虽在城市,这里的湖光山色却相应..生辉。
文化素质测试试卷第1页(共14页)4.下列各项中,加点的成语使用不正确...的一项是A.老师表扬我说:“你的文章一气呵成,文不加点....,写得真好。
”B.只有坚持不懈....地刻苦努力,才有可能取得优异的成绩。
C.为了核爆炸成功,王淦昌不计个人得失,废寝忘食....地工作着。
D.唐泽跑龙套多年,五十多岁了才成名,算是大智若愚....。
5.下列各项中,没有..语病的一项是A.刚出锅的鱼丸香气扑鼻,味道十分鲜美,毫无一丝多余的腥臭。
B.张娜在女子五项全能赛上奋力冲向终点,率先拿到该项目的冠军。
C.战士们到灾区后顾不上休息,只想迅速找到并且救出被埋的群众。
D.屠呦呦和她的团队终于发现了具有预防和治疗恶性疟疾的青蒿素。
2020年重庆市沙坪坝区春招数学试卷(有详细解析)
![2020年重庆市沙坪坝区春招数学试卷(有详细解析)](https://img.taocdn.com/s3/m/0a38f5bd172ded630a1cb653.png)
2020年重庆市沙坪坝区春招数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共12小题,共48.0分)1.下列各数中,是负数的是()A. 0B. 2C. 5D. −32.汉字书法博大精深,下列汉字“行“的不同书写字体中,是轴对称图形的是()A. B. C. D.3.已知两个相似三角形的面积之比为4:9,则这两个相似三角形的对应边之比是()A. 16:81B. 4:9C. 9:4D. 2:34.一元二次方程2x2+5x+1=0的根的情况是()A. 有两个不相等的实数根B. 没有实数根C. 有两个相等的实数根D. 无法判断5.如图,AB与⊙O相切于点B,连结AO并延长交⊙O于点C,连结BC.若∠C=34°,则∠A的度数是()A. 17°B. 22°C. 34°D. 56°6.估计√19−2的值应在()A. 4和5之间B. 3和4之间C. 2和3之间D. 1和2之间7.以下尺规作图中,一定能得到线段AD=BD的是()A. B.C. D.8.在数轴上,点A、B在原点O的两侧,分别表示数a、2,将点A向右平移3个单位长度,得到点C.若CO=2BO,则a的值为()A. −1B. −7C. 1或−7D. 7或−19.若关于x的方程2xx−2−a−62−x=1的解为正数,则所有符合条件的正整数a的个数为()A. 1个B. 2个C. 3个D. 4个10.把有理数a代入|a+4|−10得到a1,称为第一次操作,再将a1作为a的值代入得到a2,称为第二次操作,…,若a=23,经过第2020次操作后得到的是()A. −7B. −1C. 5D. 1111.如图,滑动调节式遮阳伞的立柱AC垂直于地面AB,P为立柱上的滑动调节点,伞体的截面示意图为△PDE,F为PD的中点,AC=2.8m,PD=2m,CF=1m,∠DPE=15°.根据生活经验,当太阳光线与PE垂直时,遮阳效果最佳,在上午10:00时,太阳光线与地面的夹角为65°,若要遮阳效果最佳AP的长约为()(参考数据:sin65°≈0.91,cos65°≈0.42,sin50°≈0.77,cos50°≈0.64)A. 1.2mB. 1.3mC. 1.5mD. 2.0m12.近期,某国遭遇了近年来最大的经济危机,导致该国股市大幅震荡,昨天某支股票累计卖出的数量和交易时间之间的关系如图中虚线所示,累计买入的数量和交易时间之间的关系如图中实线所示,其中点A是实线和虚线的交点,点C是BE的中点,CD与横轴平行,则下列关于昨天该股票描述正确的是()A. 交易时间在3.5ℎ时累计卖出的数量为12万手B. 交易时间在1.4ℎ时累计卖出和累计买入的数量相等C. 累计卖出的数量和累计买入的数量相差1万手的时刻有5个D. 从点A对应的时刻到点C对应的时刻,平均每小时累计卖出的数量小于买入的数量二、填空题(本大题共6小题,共24.0分)13.2020年5月22日,李克强总理在政府工作报告中指出,农村贫困人口减少11090000人,脱贫攻坚取得决定性成就,把数11090000用科学记数法表示为______.14.如图,Rt△ABC中,AB=AC,BC=2√2,以点C为圆心,CA长为半径画弧交BC于点D.则图中弧AD的长为______(结果保留π).15.从碳酸钠、锌、铜这三种物质中任选一种,能够与盐酸发生化学反应产生气体的概率是______.16.清代数学家梅文鼎在《勾股举隅》一书中,用四个全等的直角三角形拼出正方形ABDE的方法证明了勾股定理(如图),若Rt△ABC的斜边AB=5,BC=3,则图中线段CE的长为______.17. 如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上,点D 在边OC 上,且BD =OC ,以BD 为边向下作矩形BDEF ,使得点E 在边OA 上,反比例函数y =k x (k ≠0)的图象经过边EF 与AB 的交点G.若AG =32,DE =2,则k 的值为______.18. 如图,Rt △ABC 中,∠ACB =90°,AB =2AC ,BC =3,点E 是AB 上的点,将△ACE沿CE 翻折,得到△A′CE ,过点B 作BF//AC 交∠BAC 的平分线于点F ,连接A′F ,则A′F 长度的最小值为______.三、计算题(本大题共1小题,共10.0分)19. 计算:(1)√25+(13)−1−π0−(−1);(2)(m +9m+6)÷m 2−9m+6.四、解答题(本大题共7小题,共68.0分)20. 如图,在△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC 交AC于点D ,点E 是AB 的中点,连结DE .(1)求证:△ABD 是等腰三角形;(2)求∠BDE 的度数.21.为了解疫情对精神负荷造成的影响,某机构分别在一线城市和三线城市的志愿者中随机选取了50人参加LES测试,根据志愿者的答题情况计算出LES得分,并对得分进行整理,描述和分析,部分信息如下:一、三线城市志愿者得分统计表城市中位数平均数一线城市a17.6三线城市1417.2注:一线城市在14<x≤20中的得分是:15,15,16,17,17,17,17,18,18,20.根据以上信息,解答下列问题:(1)表中a的值为______;(2)得分越低反映个体承受的精神压力越小,排名越靠前,在这次调查中,一线城市的志愿者甲和三线城市的志愿者乙的得分均为15分,请判断甲、乙在各自城市选取的志愿者中得分排名谁更靠前,并说明理由;(3)如果得分超过平均数就需要进行心理干预,请估计一线城市全部2000名志愿者中有多少人需要进行心理干预?22.已知函数y=5,请根据已学知识探究该函数的x2+1图象和性质.(1)列表,写出表中a、b,c的值:a=______,b=______,c=______;x…−3−2−10123…一条性质:______;(3)已知函数y =x −1的图象如图所示,结合你所画的函数图象,直接写出不等式5x +1>x −1的解集:______.23. 抗击“新冠肺炎”疫情期间,口罩是重要的防护物资,今年2月,某社区根据实际需要,采购了5000个口罩,一部分用于社区家庭,其余部分用于社区工作人员. (1)为了保证社区抗疫工作顺利开展,用于社区工作人员的口罩个数应不少于用于社区家庭口罩个数的1.5倍,问用于该社区家庭的口罩最多有多少个?(2)据统计,2月份,该社区有200户家庭有口罩需求,平均每户需要10个,其余口罩刚好满足社区工作人员的抗疫需要,随着疫情的发展,3月份,该社区对口罩的总需求量比2月份增加了20%,需要口罩的家庭户数比2月份增加了a%,社区工作人员需要口罩的个数比2月份增如了1.5a%,同时,由于该社区加大了管控力度,平均每户家庭的口罩需求量减少了a%,求a 的值.24. 阅读下列材料:材料一:最大公约数是指两个或多个整数共有的约数中最大的一个.我们将两个整数a 、b 的最大公约数表示为(a,b),如(12,18)=6;(7,9)=1.材料二:求7x +3y =11的一组整数解,主要分为三个步骤:第一步,用x 表示y ,得y =11−7x3;第二步,找一个整数x ,使得11−7x 是3的倍数,为更容易找到这样的x ,将11−7x 变形为12−9x +2x −1=3(4−3x)+2x −1,即只需2x −1是3的倍数即可,为此可取x =2;第三步,将x =2代入y =11−7x3,得y =−1.∴{x =2y =−1是原方程的一组整数解. 材料三:若关于x ,y 的二元一次方程ax +by =c(a,b ,c 均为整数)有整数解{x =x 0y =y 0,则它的所有整数解为{x =x 0+b(a,b)t y =y 0−a (a,b)t(t 为整数). 利用以上材料,解决下列问题:(1)求方程(15,20)x +(4,8)y =99的一组整数解;(2)求方程(15,20)x +(4,8)y =99有几组正整数解.25.在▱ABCD中,AF平分∠BAD交BC于点F,∠BAC=90°,点E是对角线AC上的点,连结BE.(1)如图1.若AB=AE,BF=3,求BE的长;(2)如图2,若AB=AE,点G是BE的中点,∠FAG=∠BFG,求证:AB=√10FG;(3)如图3,以点E为直角顶点,在BE的右下方作等腰直角△BEM,若点E从点A出发,沿AC运动到点C停止,设在点E运动过程中,BM的中点N经过的路径长为m,AC的长为n,请直接写出nm的值.26.如图1,二次函数y=−18x2+14x+3的图象交x轴于A、B两点(点A在点B的左侧),交y轴于C点,连结AC,过点C作CD⊥AC交AB于点D.(1)求点D的坐标;(2)如图2,已知点E是该二次函数图象的顶点,在线段AO上取一点F,过点F作FH⊥CD,交该二次函数的图象于点H(点H在点E的右侧),当五边形FCEHB的面积最大时,求点H的横坐标;(3)如图3,在直线BC上取一点M(不与点B重合),在直线CD的右上方是否存在这样的点N,使得以C、M、N为顶点的三角形与△BCD全等?若存在,请求出点N的坐标;若不存在,请说明理由.答案和解析1.【答案】D【解析】解:A、0既不是正数,也不是负数,故选项错误;B、2是正数,故选项错误;C、5是正数,故选项错误;D、−3是负数,故选项正确.故选:D.根据有理数可分为正数,负数和零,可作出正确的选择.本题考查了有理数.能够准确理解有理数的概念,掌握有理数的分类是解题的关键.2.【答案】A【解析】解:A、是轴对称图形,故本选项符合题意;B、不是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项不合题意;D、不是轴对称图形,故本选项不合题意.故选:A.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.【答案】D【解析】解:∵相似三角形的面积的比等于相似比的平方.∴两个相似三角形的面积之比为4:9时,这两个相似三角形的对应边之比是2:3.故选:D.根据相似三角形的面积的比等于相似比的平方即可得结论.本题考查了相似三角形的性质,解决本题的关键是掌握相似三角形的性质.4.【答案】A【解析】解:由题意可知:△=25−4×2×1=17>0,故选:A.根据根的判别式即可求出答案.本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.5.【答案】B【解析】解:如图,连接OB,∵AB与⊙O相切于点B,∴∠ABO=90°,∵OB=OC,∴∠OBC=∠C=34°,∴∠AOB=∠OBC+∠C=68°,∴∠A=180°−∠ABO−∠AOB=180°−90°−68°=22°,故选:B.连接OB,由切线的性质可得∠ABO=90°;利用圆的半径相等可得∠OBC=∠C=34°;利用三角形的外角性质可得∠AOB=68°;利用三角形的内角和定理可求得∠A的度数.本题考查了切线的性质、等腰三角形的判定与性质、三角形的外角性质及三角形的内角和定理等知识点,熟练掌握相关性质及定理是解题的关键.6.【答案】C【解析】解:∵4<√19<5,∴2<√19−2<3,∴√19−2的值应在2和3之间;故选:C.先估算出4<√19<5,再根据不等式的性质估算出√19−2的值即可得出答案.本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出4<√19<5是解题关键,又利用了不等式的性质.7.【答案】D【解析】解:A、AD为BC边的高;B、AD为角平分线,C、D点为BC的中点,AD为BC边上的中线,D、点D为AB的垂直平分线与BC的交点,则DA=DB.故选:D.利用基本作图,前面三个作图AD分别为三角形高线、角平分线和中线,第四个作了AB 的垂直平分线,从而得到DA=DB.本题考查了作图−基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.8.【答案】B【解析】解:∵B表示数2,∴CO=2BO=4,由题意得:|a+3|=4,∴a+3=±4,∴a=1或−7,∵点A、B在原点O的两侧,∴a=−7,故选:B.先由已知条件得CO的长,再根据绝对值的含义得关于a的方程,解得a即可.本题考查了数轴上的点所表示的数及绝对值的化简,根据题意正确列式,是解题的关键.9.【答案】B【解析】解:分式方程去分母得:2x+a−6=x−2,解得:x=4−a,由分式方程有正数解,得到4−a>0,且4−a≠2,解得:a<4且a≠2,∴所有符合条件的正整数a的个数为1,3,故选:B.分式方程去分母转化为整式方程,由分式方程有正数解确定出a的范围即可得到结论.此题考查了分式方程的解,熟练分式方程的解法是解本题的关键.10.【答案】A【解析】解:第1次操作,a1=|23+4|−10=17;第2次操作,a2=|17+4|−10=11;第3次操作,a3=|11+4|−10=5;第4次操作,a4=|5+4|−10=−1;第5次操作,a5=|−1+4|−10=−7;第6次操作,a6=|−7+4|−10=−7;第7次操作,a7=|−7+4|−10=−7;…第2020次操作,a2020=|−7+4|−10=−7.故选:A.先确定第1次操作,a1=|23+4|−10=17;第2次操作,a2=|17+4|−10=11;第3次操作,a3=|11+4|−10=5;第4次操作,a4=|5+4|−10=−1;第5次操作,a5=|−1+4|−10=−7;第6次操作,a6=|−7+4|−10=−7;…,后面的计算结果没有变化,据此解答即可.本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.11.【答案】C【解析】解:如图,过点F作FG⊥AC于点G,根据题意可知:当太阳光线与PE垂直时,遮阳效果最佳,∴∠BEP=90°,∵∠A=90°,∠B=65°,∴∠EPA=360°−90°−90°−65°=115°,∵∠DPE=15°,∴∠APD=130°,∴∠CPF=50°,∵F为PD的中点,PD=1,∴DF=PF=12∴CF=PF=1,∴CP=2PG=2×PF⋅cos50°≈2×1×0.64≈1.28,∴AP=AC−PC=2.8−1.28≈1.5(m).所以要遮阳效果最佳AP的长约为1.5米.故选:C.过点F 作FG ⊥AC 于点G ,根据题意可得,当太阳光线与PE 垂直时,遮阳效果最佳,即∠BEP =90°,再根据四边形内角和定理可得∠CPF 的度数,再根据锐角三角函数即可求出CP 的长,进而可得遮阳效果最佳时AP 的长.本题考查了解直角三角形的应用−坡度坡角问题,解决本题的关键是掌握坡度坡角定义. 12.【答案】D【解析】解:∵点B(3,5),点E(4,20),点C 是BE 的中点, ∴点C(72,252),∴交易时间在3.5ℎ时累计卖出的数量为12.5万手,故A 选项不合题意; ∵直线OB 过点(0,0),点B(3,5), ∴直线OB 解析式为:y =53x , ∵直线AC 过点(1,0),点C(72,252), ∴直线AC 解析式为:y =5x −5, 联立方程组可得{y =53xy =5x −5,∴{x =32y =52∴交易时间在1.5ℎ时累计卖出和累计买入的数量相等,故B 选项不合题意; 由图象可得累计卖出的数量和累计买入的数量相差1万手的时刻有4个,故C 选项不合题意,由图象可得从点A 对应的时刻到点C 对应的时刻,实线在虚线的上方,即平均每小时累计卖出的数量小于买入的数量,故D 选项符合题意, 故选:D .由中点坐标公式可求点C 坐标,可得交易时间在3.5ℎ时累计卖出的数量为12.5万手,可判断选项A ;利用待定系数法可求AC ,OB 解析式,可求点B 坐标,可得交易时间在1.5ℎ时累计卖出和累计买入的数量相等,可判断选项B ;由图象可得累计卖出的数量和累计买入的数量相差1万手的时刻有4个,可判断选项C ;由图象可得从点A 对应的时刻到点C 对应的时刻,实线在虚线的上方,即平均每小时累计卖出的数量小于买入的数量,可判断选项D ,即可求解.本题考查了函数的图象,一次函数图象上点的坐标特征,利用待定系数法求解析式,理解图象的点表示的具体意义是本题的关键. 13.【答案】1.109×107【解析】解:11 090000=1.109×107, 故答案是:1.109×107.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.【答案】π2【解析】解:∵Rt△ABC中,AB=AC,∴∠C=45°,∵BC=2√2,∴AC=2,∴弧AD的长为:45π×2180=π2;故答案为:π2.先根据等腰直角三角形的性质可得∠C=45°,根据弧长公式计算即可.本题考查弧长公式,等腰直角三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.【答案】13【解析】解:在这三种物质中,碳酸钠只有与足量盐酸发生化学反应可产生二氧化碳气体;锌与盐酸发生化学反应可产生氢气;铜只有与浓盐酸发生化学反应可产生氢气;所以能够与盐酸发生化学反应产生气体的概率是13,故答案为:13.先分别判断出三种物质能与盐酸发生化学反应产生气体的种类数,再根据概率公式求解可得.本题主要考查概率公式,解题的关键是掌握能与盐酸发生反应产生气体的种类.16.【答案】√17【解析】解:在Rt△ABC中,AC=√AB2−BC2=4,∵Rt△ACB≌Rt△EFA,∴AF=BC=3,EF=AC=4,∴FC=AC−AF=1,∴CE=√EF2+CF2=√17,故答案为:√17.根据勾股定理求出AC,根据全等三角形的性质得到AF=BC=3,EF=AC=4,求出FC,根据勾股定理计算,得到答案.本题考查的是勾股定理、全等三角形的性质,掌握勾股定理、全等三角形的对应边相等是解题的关键.17.【答案】245【解析】解:如图,连接DF,BE,∵四边形OABC是矩形,四边形BDEF是矩形,∴OC=AB,BE=DF,∠BAO=∠BDE=∠DEF=90°,∵BD=OC,∴BD=AB,又∵BE=BE,∴Rt△BDE≌Rt△BAE(HL)∴AE=DE=2,∴EG=√AE2+AG2=√4+94=52,∵∠DEO+∠AEG=90°,∠EDO+∠DEO=90°,∴∠AEG=∠EDO,又∵∠EOD=∠EAG=90°,∴△DEO∽△EGA,∴AGOE =EGDE,∴32OE=522,∴OE=65,∴OA=2+65=165,∴点G(165,32 ),∵反比例函数y=kx(k≠0)的图象经过点G,∴k=165×32=245,故答案为:245.如图,连接DF,BE,由“HL”可证Rt△BDE≌Rt△BAE,可得AE=DE=2,由勾股定理可求EG,通过证明△DEO∽△EGA,可得AGOE =EGDE,可求OE的长,即可求点G坐标,代入解析式可求k的值.本题考查了反比例函数图象上点的坐标特征,全等三角形的判定和性质,勾股定理,相似三角形的判定和性质,矩形的性质等知识,求出点G的坐标是本题的关键.18.【答案】√21−√3【解析】解:如图,∵∠ACB=90°,AB=2AC,∴cos∠CAB=ACAB =12,∴∠CAB=60°,∴tan∠CAB=BCAC=√3,∴AC=√3,∴AB=2√3,∵AF平分∠BAC,∴∠BAF=∠CAF=30°,∵BF//AC,∴∠BFA=∠FAC=30°,∠FBC=∠BCA=90°,∴AB=BF=2√3,∴FC=√BC2+FB2=√12+9=√21,∵将△ACE沿CE翻折,得到△A′CE,∴AC=A′C=√3,∴点A′在以点C为圆心,AC为半径的圆上,则当点A′在FC上时,A′F有最小值,∴A′F最小值为√21−√3,故答案为:√21−√3.先求出AC=√3,AB=2√3,由平行线的性质和角平分线的性质可求AB=BF=2√3,由勾股定理可求CF的长,由点A′在以点C为圆心,AC为半径的圆上,则当点A′在FC 上时,A′F有最小值,即可求解.本题考查了翻折变换,锐角三角函数,直角三角形的性质等知识,求出CF的长是本题的关键.19.【答案】解:(1)√25+(13)−1−π0−(−1)=5+3−1+1=8;(2)(m+9m+6)÷m2−9m+6=m2+6m+9m+6×m+6m2−9=(m+3)2m+6×m+6(m+3)(m−3)=m+3m−3.【解析】(1)分别按照求算术平方根、负整数指数幂、零次幂和去括号的法则化简,再进行有理数的加减法运算即可;(2)将括号内的部分通分,同时将分式的除法变成乘法,再进行因式分解,然后约分即可.本题考查了分式的混合运算及实数的混合运算,熟练掌握相关运算法则是解题的关键.20.【答案】证明:(1)∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∠A=36°,∴BD=AD,即△ABD是等腰三角形;(2)∵点E是AB的中点,∴AE=EB,∴∠DEB=90°,∴∠BDE=90°−36°=54°.【解析】(1)根据等腰三角形的性质和三角形内角和得出∠DBC=36°,进而根据等腰三角形的判定解答即可;(2)根据等腰三角形的性质和三角形内角和解答即可.此题考查等腰三角形的判定和性质,关键是据等腰三角形的性质和三角形内角和得出∠DBC=36°解答.21.【答案】15.5【解析】解:(1)∵2≤x<14的有5+18=23(人),一线城市在14<x≤20这一组的是:15,15,16,17,17,17,17,18,18,20,在一线城市和三线城市的志愿者中随机选取了50人参加LES测试,∴a=(15+16)÷2=15.5,故答案为:15.5;(3)在这次测试中,一线城市的志愿者甲和三线城市的志愿者乙的得分均为15分,三线城市的志愿者乙在各自城市选取的志愿者中得分排名更靠前,理由:∵一线城市的志愿者甲的中位数是15.5,三线城市的志愿者乙的中位数是14,∴在这次测试中,三线城市的志愿者乙在各自城市选取的志愿者中得分排名更靠前;=800(人),(4)2000×3+1750答:估计一线城市全部2000名志愿者中有800人需要进行心理干预.(1)根据统计图和统计表中的数据和一线城市在14<x≤20这一组的数据,可以求得a 的值;(2)根据统计表中的数据可以得到甲、乙在各自城市选取的志愿者中得分排名谁更靠前;(3)根据统计图中的数据和题目中的数据可以计算出一线城市全部2000名志愿者中有多少人需要进行心理干预的人数.本题考查频数分布直方图、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.22.【答案】1 5 1函数的最大值为5 x<22【解析】解:(1)x =−2、0、3分别代入y =5x 2+1,得a =5(−2)2+1=1,b =502+1=5,c =532+1=12故答案为1,5,12; (2)该函数的图象如图:函数的性质:该函数关于y 轴对称,函数的最大值为5;故答案函数关于y 轴对称,函数的最大值为5; (3)由图形可知,不等式5x 2+1>x −1的解集是x <2. 故答案为x <2.(1)把x =−2、0、3分别代入y =5x 2+1,即可求出a 、b 、c 的值; (2)根据表中的数据,描点连线、画出函数的图象; (3)根据图象即可求出不等式5x 2+1>x −1的解集.本题考查了一次函数的图象与性质,一次函数与一元一次不等式,利用数形结合思想,正确画出函数的图象是解题的关键.23.【答案】解:(1)设用于该社区家庭的口罩有x 个,则用于社区工作人员的口罩有(5000−x)个,依题意,得:5000−x ≥1.5x , 解得:x ≤2000.答:用于该社区家庭的口罩最多有2000个.(2)依题意,得:200(1+a%)×10(1−a%)+(5000−200×10)(1+1.5a%)=5000×(1+20%),整理,得:a 2−225a +5000=0,解得:a 1=25,a 2=200(不合题意,舍去). 答:a 的值为25.【解析】(1)设用于该社区家庭的口罩有x 个,则用于社区工作人员的口罩有(5000−x)个,根据用于社区工作人员的口罩个数应不少于用于社区家庭口罩个数的1.5倍,即可得出关于x 的一元一次不等式,解之取其中的最大值即可得出结论;(2)根据3月份该社区对口罩的总需求量比2月份增加了20%,即可得出关于a 的一元二次方程,解之取其较小值即可得出结论.本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出一元二次方程.24.【答案】解:(1)∵(15,20)=5,(4,8)=4,∴原方程变形为:5x +4y =99, ∴x =99−4y 5,∴99−4y 是5的倍数, ∴当y =1时,x =19, ∴{x =19y =1 是原方程的解; (2)∵5x +4y =99的有整数解,∴{x =19y =1,{x =15y =6,{x =11y =11,{x =7y =16,{x =3y =21, ∴原方程有5组正整数解.【解析】(1)先化简原方程,由材料可求解; (2)先求出原方程的整数解,即可求解.本题考查了二元一次方程的解,一元一次方程的解,理解题意是本题的关键. 25.【答案】(1)解:如图1中,∵四边形ABCD 是平行四边形, ∴AD//BC ,∴∠DAF =∠AFB , ∵AF 平分∠BAD , ∴∠DAF =∠BAF , ∴∠BAF =∠AFB , ∴AB =BF =3,∵AB =AE ,∠BAE =90°, ∴BE =√2AB =3√2.(2)证明:连接EF ,过点G 作GH ⊥EF 交EF 的延长线于H.设BG =a ,FG =b .∵AB =AE ,∠BAE =90°,BG =GE , ∴AG ⊥BE ,AG =GB =GE , ∴AB =√2BG =√2a , ∵BF =AB =√2a ,∴BF 2=2a 2,BG ⋅BE =2a 2, ∴BF 2=BG ⋅BE , ∴BFBG =BEBF , ∵∠FBG =∠EBF ,∴△GBF∽△FBE,∴GFEF =BGBF=√22,∠BFG=∠BEF,∴EF=√2GF=√2b,∵∠BAF=∠BFA,∠GAF=∠BFG,∴∠AFG=∠BAG=45°,∠GAF=∠GEF,∴∠AGE=∠AFE=90°,∴∠GFH=45°,∵GH⊥EH,∴GH=FH=√22b,∴EH=FH+EF=3√22b,∴EG=√GH2+EH2=√5b,∴AB=AE=√2GE=√10b,∴AB=√10GF.(3)解:如图3中,在AC上取一点T,使得AT=AB,连接BT,TM,取BT的中点J,连接NJ.∵△ABT,△BEM都是等腰直角三角形,∴BT=√2AB,BM=√2BE,∠ABT=∠EBM=45°,∴ABBT =BEBM,∠ABE=∠TBM,∴△ABE∽△TBM,∴TMAE =ABBT=√22,∠AEB=∠BMT,∵∠AEB+∠BET=180°,∴∠BMT+∠BET=180°,∴∠EBM+∠ETM=180°,∵∠EBM=∠ETB=45°,∴∠ETM=135°,∠BTM=90°,∵BJ=JT,BN=NM,∴NJ//TM,NJ=12TM,∴∠BJN=∠BTM=90°,∴点N的运动轨迹是线段JN,JN=12TM=√22AE,∵点E从A运动到C时,AE=AC=n,∴m=√22n,∴nm=√2.【解析】(1)证明AB=BF,再利用等腰直角三角形的性质求解即可.(2)连接EF,过点G作GH⊥EF交EF的延长线于H.设BG=a,FG=b.利用相似三角形的性质证明EF=√2GF,想办法求出AB(用b表示)即可解决问题.(3)如图3中,在AC上取一点T,使得AT=AB,连接BT,TM,取BT的中点J,连接NJ.首先证明NJ//TM,NJ=12TM,推出∠BJN=∠BTM=90°,推出点N的运动轨迹是线段JN,JN=12TM=√22AE,由此即可解决问题.本题属于四边形综合题,考查了平行四边形的性质,等腰直角三角形的判定和性质,解直角三角形,三角形中位线定理,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数解决问题,属于中考压轴题.26.【答案】解:(1)令x=0,则y=3,∴C(0,3),∴OC=3.令y=0,则−18x2+14x+3=0,解得:x1=−4,x2=6,∴A(−4,0),B(6,0),∴OA=4,OB=6.∵CD⊥AC,∴∠ACD=90°,∵CO⊥AD,∴OC2=OA⋅OD,∴OD=94,∴D(94,0).(2)∵y=−18x2+14x+3=−18(x−1)2+258,∴E(1,258).如图2,连接OE、BE,作HG⊥x轴于点G,交BE于点P.由B、E两点坐标可求得直线BE的解析式为:y=−58x+154.设H(m,−18m2+14m+3),则P(m,−58m+154).∴HG=−18m2+14m+3,HP=y H−y P=−18m2+78m−34.∴S△BHE=12(x B−x E)⋅HP=52(−18m2+78m−34)=−516m2+3516m−158.∵FH⊥CD,AC⊥CD,∴AC//FH,∴∠HFG=∠CAO,∵∠AOC=∠FGH=90°,∴△ACO∼△FHG,∴FGHG =OAOC=43,∴FG=43HG=−16m2+13m+4,∴AF=AG−FG=m+4+16m2−13m−4=16m2+23m,∴S△AFC=12AF⋅OC=32(16m2+32m)=14m2+m,∵S四边形ACEB =S△ACO+S△OCE+S△OEB=12×4×3+12×3×1+126×258=1358,∴S五边形FCEHB =S四边形ACEB+S△BHE−S△AFC=1358+(−516m2+3516m−158)−(14m2+m)=−916m2+1916m+15=−916(m−1918)2+9001576,∴当m=1918时,S五边形FCEHB取得最大值9001576.此时,H的横坐标为1918.(3)∵B(6,0),C(0,3),D(94,0),∴CD=BD=154,BC=3√5,∴∠DCB=∠DBC.①如图3−1,△CMN≌△DCB,MN交y轴于K,则CM=CN=DC=DB=154,MN=BC=3√5,∠CMN=∠CNM=∠DBC=∠DCB,∴MN//AB,∴MN ⊥y 轴,∴∠CKN =∠COB =90°,MK =NK =12MN =3√52, ∴△CKN ∼△COB ,∴CKCN =COCB =√55, ∴CK =3√54,∴OK =OC +CK =12+3√54, ∴N(3√52,12+3√54).②如图3−2,△MCN≌△DBC ,则CN =CB =3√5,∠MCN =∠DBC ,∴CN//AB ,∴N(3√5,3).③如图3−3,△CMN≌△DBC ,则∠CMN =∠DCB ,CM =CN =DC =DB =154,MN =BC =3√5, ∴MN//CD ,作MR ⊥y 轴于R ,则CR CO =RM OB =CMCB =√54, ∴CR =3√54,RM =3√52,∴OR =3−3√54, 作MQ//y 轴,NQ ⊥MQ 于点Q ,则∠NMQ =∠DCO ,∠NQM =∠DOC =90°,∴△COD ∼△MQN ,∴MQ NQ =CO DO =43,∴MQ =45MN =12√55,NQ =35MN =9√55, ∴NQ −RM =3√510,OR +MQ =60+33√520, ∴N(−3√510,60+33√520).综上所述,满足要标的N 点坐标有:(3√52,12+3√54)、(3√5,3)、(−3√510,60+33√520).【解析】(1)先根据抛物线解析式求出A 、B 、C 的坐标,由射影定理可得OD 长度,从而求出D 点坐标;(2)设H 点的横坐标为m ,然后将五边形FCEHB 的面积表示成关于m 的二次函数,利用配方法可求得面积的最大值以及对应的H 点坐标;(3)由B 、C 、D 的坐标可以求得DC 、DB 、BC 的长度,然后分类讨论,分别画出符合要求的对应图形进行计算即可.本题为二次函数综合题,主要考查了二次函数的基本性质、相似三角形的判定与性质、全等三角形的判定与性质等重要知识点,综合性强,难度较大,属于中考压轴题.对于第(2)问,利用割补法表示出五边形的面积是难点,也是解答的关键;对于第(3)问,依次画出对应图形并识别出各种情形下的数量关系是解答的要点所在.。
[职高 对口升学] 2020年重庆高职分类考试 文化素质测试 真题
![[职高 对口升学] 2020年重庆高职分类考试 文化素质测试 真题](https://img.taocdn.com/s3/m/b85ce1da32d4b14e852458fb770bf78a65293a8d.png)
机密★启用前【考试时间:5月23日9∶00—11∶30】2020年重庆市高等职业教育分类考试文化素质测试试卷文化素质测试试卷分为语文、数学、英语三个部分,语文部分1至6页,数学部分6至8页,英语部分8至14页,共14页。
满分300分。
考试时间150分钟。
注意事项:1.将自己的姓名、考号准确工整填写在指定位置。
2.作答时,务必将答案写在答题卡上。
写在试卷及草稿纸上无效。
3.考试结束后,将试卷和答题卡一并交回。
语文(共100分)一、基础知识(共6小题,每小题4分,共24分)从每个小题的四个备选答案中,选出一个最符合题目要求的。
1.下列选项中,加点字的读音完全相同的一项是A.船艄.发烧.骚.动稍.微B.牛虻.萌.发朦.胧同盟.C.柏.树帛.书泊.车薄.酒D.年轻.青.春亲.戚倾.斜2.下列选项中,没有..错别字的一项是A.蛰伏部署锁屑立竿见影B.沉湎通缉伫立兵慌马乱C.喝彩缜密肖像励精图治D.秘诀撕混装帧出奇制胜3.下列各项中,加点的词使用正确的一项是A.至今很多国家的边境依然没有划定界限..。
B.我们不赞同以各种理由窜改..成语的做法。
C.接到领导电话时,他正在医院检察..身体。
D.虽在城市,这里的湖光山色却相应..生辉。
文化素质测试试卷第1页(共14页)4.下列各项中,加点的成语使用不正确...的一项是A.老师表扬我说:“你的文章一气呵成,文不加点....,写得真好。
”B.只有坚持不懈....地刻苦努力,才有可能取得优异的成绩。
C.为了核爆炸成功,王淦昌不计个人得失,废寝忘食....地工作着。
D.唐泽跑龙套多年,五十多岁了才成名,算是大智若愚....。
5.下列各项中,没有..语病的一项是A.刚出锅的鱼丸香气扑鼻,味道十分鲜美,毫无一丝多余的腥臭。
B.张娜在女子五项全能赛上奋力冲向终点,率先拿到该项目的冠军。
C.战士们到灾区后顾不上休息,只想迅速找到并且救出被埋的群众。
D.屠呦呦和她的团队终于发现了具有预防和治疗恶性疟疾的青蒿素。
重庆市2023年高等职业教育分类考试数学试题【可编辑全文】
![重庆市2023年高等职业教育分类考试数学试题【可编辑全文】](https://img.taocdn.com/s3/m/da2649371fb91a37f111f18583d049649b660eee.png)
可编辑修改精选全文完整版重庆市2023年高等职业教育分类考试数学试题一、选择题1.与集合{x|x2−4=0}相等的是A.{x|x−2=0}B.{x|−2<x<2}C.{2}D.{−2,2}2.若a>b,c≠0,下列结论正确的是A.a+c>b+cB.ac>bcC.c−a>c−bD.ac >bc3.若sinθ<0,cosθ<0,则角θ为A.第一象限角B.第二象限角C.第三象限角D.第四象限角4.指数函数y=a x(a>0,a≠1)的图像经过点(2,49),则a的值是A.49B.23C.89D.325.不等式|x−2|>1的解集是A.(1,3)B.(−∞,−3)∪(−1,+∞)C.(−3,−1)D.(−∞,1)∪(3,+∞)6.3名同学到两个社区参加志愿者活动,美名同学只去一个社区,每个社区至少有1名同学,则不同的分配方案共有A.3种B.6种C.9种D.12种7.经过点(3,2)与直线x+2y+1=0垂直的直线方程是A.x+2y−7=0B.x−2y+1=0C.2x+y−8=0D.2x−y−4=08.函数f(x)=√3cos x+sin x的最大值是A.1B.√3C.2D.√3+19.在ΔABC中,角A,B,C所对应的边分别是a,b,c,且a+b=2c,sin B=2cos C,则cos A=A.−12B.−14C.13D.2310.函数f(x)是在R上以4为周期的奇函数,在区间[0,1]上为增函数,f(2021),f(2022),f(2023)的大小关系表达正确的是A.f(2021)>f(2022)>f(2023)B.f(2021)>f(2023)>f(2022)C.f(2022)>f(2021)>f(2023)D.f(2023)>f(2022)>f(2021)二、解答题11.等差数列{a n}中,a10=−16,d=−2(1)求a20(2)若S n=0,求n的值12.已知函数y=log3(5−x)+log3(x+1)(1)求函数的定义域(2)当x为何值时,函数有最大值,最大值是多少?+y2=1交不同的两个点A,B13.已知直线y=kx+4(k∈R)与椭圆x22(1)求k的取值范围(2)若O为原点,且OA⊥OB,求k的值。
2020年重庆市高职分类考试招生试题及答案(1)
![2020年重庆市高职分类考试招生试题及答案(1)](https://img.taocdn.com/s3/m/eedb2560b4daa58da1114a42.png)
2020年重庆市高职分类考试招生试题及答案数学(共100分)一、选择题(共10小题,每小题6分,共60分。
在每个小题给出的四个备选项中,只有一项是符合题目要求的. )1.设集合A={0.1),B={-10,1},则AUB=( )(A) {-1} (B) {0,1} (C) {-1,1}(D) {-1,0,1)2.若log.8=3,则实数a=( ) (A) 21 (B)2 (C)3 (D)4 3.不等式|2x+1|<3 的解集为( )(A) (-2,1) (B) (-∞,-2)U0,+∞) (C) (-2,2) (D) (-∞x,-2)U(2,+∞) 4. sin(3-π)的值等于 (A)-23 (B)-21 (C) 21 (D)23 5.函数f(x)=2x -x+2的增区间为( )(A)(-∞, -21] (B)[-21,+∞) (C)(-∞, 21 ] (D)[21,+∞) 6.在∆ABC 中,内角A, B, C 所对的边分别为a, b, e,若a=3, b=5, c=2, 则B=( ). (A)6π(B) 4π (C) 3π (D)43π 7.若实数a 、b 满足a<b ,则下列结论一-定成 立的是(A) -a>-b (B) -a<-b (C) 2a <2b (D) 2a >2b8.某学习小组有男生5人,女生3人,现从男生中任选2人,从女生中任选1人参加测试, 则不同的选法有( )(A) 15种 (B)20种. (C) 30种 (D) 40种9.设函数f(x)、g(x)的定义城均为R ,且f(x)为奇函数,g(x) 为偶函数,则下列说法正确的是( )(A) f(x)+ g(x)必为奇函数 (B) f(x)+ g(x)必为偶函数(C) f(x)g(x)必为奇函数 (D) f(x)g(x) 必为偶函数10. 已知椭圆C 的中心在原点,右焦点坐标为(5, 0),半长轴与半短轴的长度之和为5,则C 的标准方程为( ) (A)19522=+y x (B)19422=+y x (c)15922=+y x (D)14922=+y x 二、解答题(共3小题,共40分)11. (本小题满分14分,(I )小问7分,(II)小问7分)在等比数列{n a }中,2a =8,公比q=21(I)求8a 的值:.(II)若{n a }的前k 项和为31,求k 的值.12. (本小题满分13分,(I )小问6分,(II)小问7分)设直线4x -3y+12=0与x 轴、y 轴的交点分别为A 、B.(I )求|AB|;(II)求过点A 、 B 和原点的圆的方程.13. (本小题满分13分,(I )小问5分,(II)小问8分)设函数f(x)=xx 2cos 12sin -1 ; (I )求f(x)的定义城;(II)若tana=31, 求f(a)的值. .数学标准答案一、选择题(共10小题,每小题6分,共60分)1. D2. B3. A4. A5.D6. B7. A8. C9.C 10. D。
2020年普通高等学校招生全国统一考试数学卷(重庆.文)含答案
![2020年普通高等学校招生全国统一考试数学卷(重庆.文)含答案](https://img.taocdn.com/s3/m/d2878c5616fc700aba68fc17.png)
2020年普通高等学校招生全国统一考试(重庆卷)数学试题卷(文史类)数学试题卷(文史类)共5页,满分150分,考试时间120分钟注意事项:1.答题前,务必将自己的姓名,准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上. 4.所有题目必须在答题卡上作答,在试题卷上答题无效. 5.考试结束后,将试题卷和答题卡一并交回. 参考公式:如果事件A B ,互斥,那么()()()P A B P A P B +=+. 如果事件A B ,相互独立,那么()()()P A B P A P B =.如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中恰好发生k 次的概率()(1)k k n kn n p k C p p -=-.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.在等比数列{}n a 中,25864a a ==,,则公比q 为( ) A .2B .3C .4D .82.设全集{}{}{}U a b c d A a c B b ===,,,,,,,则()U A B =( )A .∅B .{}aC .{}cD .{}a c ,3.垂直于同一平面的两条直线( ) A .平行 B .垂直 C .相交 D .异面4.6(21)x +展开式中2x 的系数为( ) A .15B .60C .130D .2405.“11x -<<”是“21x <”的( ) A .充分必要条件 B .充分但不必要条件C .必要但不充分条件D .既不充分也不必要条件6.下列各式中,值为32的是( ) A .2sin15cos15B .22cos 15sin 15-C .22sin 151-D .22sin 15cos 15+7.从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率为( ) A .14B .79120C .34D .23248.若直线1y kx =+与圆221x y +=相交于P Q ,两点,且120POQ ∠=(其中O 为原点),则k 的值为( ) A .3-或3B .3C .2-或2D .29.已知向量(46)(35)OA OB ==,,,,且OC OA AC OB ⊥,∥,则向量OC =( ) A .3277⎛⎫- ⎪⎝⎭,B .24721⎛⎫- ⎪⎝⎭,C .3277⎛⎫- ⎪⎝⎭,D .24721⎛⎫- ⎪⎝⎭,10.设(31)P ,为二次函数2()2(1)f x ax ax b x =-+≥的图象与其反函数1()y x -=的图象的一个交点,则( )A .1522a b ==, B .1522a b ==, C .1522a b =-=,D .1522a b =-=-,11.设3b 是1a -和1a +的等比中项,则3a b +的最大值为( ) A .1B .2C .3D .412.已知以1(20)F -,,2(20)F ,为焦点的椭圆与直线340x y ++=有且仅有一个交点,则椭圆的长轴长为( ) A .32B .26C .27D .42二、填空题:本大题共4小题,每小题4分,共16分,把答案填写在答题卡相应位置上.13.在ABC △中,1260AB BC B ===,,,则AC = . 14.已知23000.x y x y y +⎧⎪-⎨⎪⎩≤≥,≥则3z x y =-的最小值为 .15.要排出某班一天中语文、数学、政治、英语、体育、艺术6门课各一节的课程表,要求数学课排在前3节,英语课排在第6节,则不同的排法种数为 (以数字作答) 16.函数2232()22x x f x x x ++=-+的最小值为 .三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分13分.(Ⅰ)小问5分.(Ⅱ)小问8分.)设甲、乙两人每次射击命中目标的概率分别为34和45,且各次射击相互独立. (Ⅰ)若甲、乙各射击一次,求甲命中但乙未命中目标的概率; (Ⅱ)若甲、乙各射击两次,求两人命中目标的次数相等的概率. 18.(本小题满分13分,(Ⅰ)小问4分,(Ⅱ)小问9分)已知函数π12cos 24()πsin 2x f x x ⎛⎫+- ⎪⎝⎭=⎛⎫+ ⎪⎝⎭. (Ⅰ)求()f x 的定义域; (Ⅱ)若角α在第一象限且3cos 5α=,求()f α. 19.(本小题满分12分,(Ⅰ)小问6分,(Ⅱ)小问6分) 如题19图,在直三棱柱111ABC A B C -中,90ABC ∠=°,13122AB BC AA ===,,;点D 在棱1BB 上,113BD BB =;11B E A D ⊥,垂足为E ,求:(Ⅰ)异面直线1A D 与11B C 的距离;(Ⅱ)四棱锥C ABDE -的体积.20.(本小题满分12分)用长为18m 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少? 21.(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)如题21图倾斜角为α的直线经过抛物线28y x =的焦点F , 且与抛物线交于A B ,两点.(Ⅰ)求抛物线的焦点F 的坐标及准线l 的方程; (Ⅱ)若α为锐角,作线段AB 的垂直平分线m 交x 轴于点P ,证明cos2FP FP α-为定值,并求此定值. 22.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分) 已知各项均为正数的数列{}n a 的前n 项和n S 满足11S >, 且6(1)(2)n n n S a a n +=++∈N ,.BA C DFE1A1B1C题(19)图 Ol y yαmPBA题(21)图F x(Ⅰ)求{}n a 的通项公式;(Ⅱ)设数列{}n b 满足(21)1n bn a -=,并记n T 为{}n b 的前n 项和,求证:231log (3)n n T a n ++>+∈N ,.2007年普通高等学校招生全国统一考试(重庆卷)数学试题(文史类)答案一、选择题:每小题5分,满分60分 1.A 2.D 3.A 4.B 5.A 6.B7.C 8.A 9.D 10.C 11.B 12.C二、填空题:每小题4分,满分16分 13.314.915.28816.122+三、解答题:满分74分 17.(本小题13分)解:(Ⅰ)设A 表示甲命中目标,B 表示乙命中目标,则A B ,相互独立,且3()4P A =. 4()5P B =,从而甲命中但乙未命中目标的概率为343()()()14520P AB P A P B ⎛⎫==⨯-= ⎪⎝⎭.(Ⅱ)设k A 表示甲在两次射击中恰好命中k 次,l B 表示乙在两次射击中恰好命中l 次.依题意有2231()01244k kk k P A C k -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,,,,2241()01255lll l P B C l -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,,,. 由独立性知两人命中次数相等的概率为001122()()()P A B P A B P A B ++001122()()()()()()P A P B P A P B P A P B =++2222112222221131413445445545C C C C ⎛⎫⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭·········11349161930.482516254251625400=⨯+⨯+⨯==. 18.(本小题13分) 解:(Ⅰ) 由πsin 02x ⎛⎫+≠ ⎪⎝⎭得ππ2x k ≠-+,即ππ2x k ≠-()k ∈Z . 故()f x 的定义域为π|π2x x k k ⎧⎫∈≠-∈⎨⎬⎩⎭R Z ,.(Ⅱ)由已知条件得2234sin 1cos 155αα⎛⎫=-=-= ⎪⎝⎭.从而π12cos 24()πsin 2f ααα⎛⎫+- ⎪⎝⎭=⎛⎫+ ⎪⎝⎭ ππ12cos 2cos sin 2sin 44cos ααα⎛⎫++ ⎪⎝⎭= 21cos 2sin 22cos 2sin cos cos cos ααααααα+++==142(cos sin )5αα=+=. 19.(本小题12分)解法一:(Ⅰ)由直三棱柱的定义知111B C B D ⊥,又因为90ABC ∠=°, 因此1111B C A B ⊥,从而11B C ⊥平面11A B D . 得111B C B E ⊥,又11B E A D ⊥. 故1B E 是异面直线11B C 与1A D 的公垂线.由113BD BB =知143B D =,在11A B D Rt △中,22211145133AD A B B D ⎛⎫=+=+= ⎪⎝⎭.又因11111111122A B D S A B B D A D B E ==△··, DFE1A1B1C故111114143553A B B D B E A D ===··.(Ⅱ)由(Ⅰ)知11B C ⊥平面11A B D ,又11BC B C ∥, 故BC ⊥平面ABDE ,即BC 为四棱锥C ABDE -的高,从而所求四棱锥的体积V 为13C ABDE V V S BC -==··,其中S 为四边形ABDE 的面积,如答(19)图1,过E 作1EF B D ⊥,垂足为F .在1B ED Rt △中,22221144163515ED B D B E ⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭.又因1111122B ED S B E DE B D EF ==△··, 故111625B E DE EF B D ==·.因1A AE △的边1A A 上的高1116912525h A B EF =-=-=, 故1111992222525A AE S A A h ===△···. 又因为11111114212233A B D S A B B D ===△···, 从而111119273225375ABB A A AE A B D S S S S =--=--=△△. 所以117337333752150V S BC ===····. 解法二:(Ⅰ)如答(19)图2,以B 点为坐标原点O 建立空间直角坐标系O xyz -,则11132(010)(012)(000)(002)020023A A B B C D ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,,,,. 因此1(002)AA =,,,(010)AB =-,,,1132B C ⎛⎫=00 ⎪⎝⎭,,,1403A D ⎛⎫=-1- ⎪⎝⎭,,.设00(0)E y z ,,,则100(02)B E y z =-,,,ACDzE1A 1B 1C yx因此1B E 11B C 0=,从而111B C B E ⊥.又由题设11B E A D ⊥,故1B E 是异面直线11B C 与1A D 的公垂线. 下面求点E 的坐标.因11B E A D ⊥,即110B E A D =,从而004(2)03y z --=, ··················· (1) 又100(012)A E y z =--,,,且11A E A D ∥,得0012413y z --=. ·········· (2) 联立(1),(2)解得01625y =,03825z =,即3802525E 16⎛⎫ ⎪⎝⎭,,,161202525B E 1⎛⎫=- ⎪⎝⎭,,. 所以2211612425255B E ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭. (II )由BC AB ⊥,BC DB ⊥,故BC ⊥面ABDE ,即BC 为四棱锥C ABDE -的高.下面求四边形ABDE 的面积.因为1ABDE ABE BDE S S S AB =+=△△,,23BD =. 而01138191222525ABE S AB z ===△. 011216162232575BDE S BD y ===△ 故191673257575ABDE S =+=. 所以117337333752150C ABDE ABDE V S BC -===. 20.(本小题12分)解:设长方体的宽为(m)x ,则长为2(m)x ,高为181234.53(m)042x h x x -⎛⎫==-<< ⎪⎝⎭. 故长方体的体积为22323()2(4.53)96(m )02V x x x x x x ⎛⎫=-=-<< ⎪⎝⎭. 从而2()181818(1)V x x x x x '=-=-.令()0V x '=,解得0x =(舍去)或1x =,因此1x =. 当01x <<时,()0V x '>;当312x <<时,()0V x '<. 故在1x =处()V x 取得极大值,并且这个极大值就是()V x 的最大值.从而最大体积233(1)91613(m )V V ==⨯-⨯=,此时长方体的长为2m ,高为1.5m .答:当长方体的长为2m ,宽为1m ,高为1.5m 时,体积最大,最大体积为33m . 21.(本小题12分)(I )解:设抛物线的标准方程为22y px =,则28p =,从而4p =. 因此焦点02p F ⎛⎫⎪⎝⎭,的坐标为(20),, 又准线方程的一般式为2p x =-. 从而所求准线的方程为2x =-.(II )解法一:如答21图作AC l ⊥,BD l ⊥, 垂足分别为C D ,,则由抛物线的定义知FA AC =,FB BD =.记A B ,的横坐标分别为A x ,B x ,则cos 222A p p p FA AC x FA α==+=++ cos 4FA α=+,解得41cos FA α=-. 类似地有4cos FB FB α=-,解得41cos FB α=+.记直线m 与AB 的交点为E ,则1()22FA FB FE FA AE FA FA FB +=-=-=- 21444cos 21cos 1cos sin αααα⎛⎫=-= ⎪-+⎝⎭. 所以24cos sin FE FP αα==. 故222442sin cos 2(1cos 2)8sin sin FP FP ααααα-=-==·. 解法二:设()A A A x y ,,()B B B x y ,,直线AB 的斜率为tan k α=,则直线方程为(2)y k x =-.将此式代入28y x =得22224(2)40k x k x k -++=,故224(2)A B k x x k ++=.记直线m 与AB 的交点为()E E E x y ,,则222(2)2A B E x x k x k +--=,4(2)E E y k x k=-=, Ol y yαmPBA题(21)图CDxEF故直线m 的方程为224124k y x k k k ⎛⎫+-=-- ⎪⎝⎭, 令0y =,得点P 的横坐标22244p k x k +=+,故2224(1)4sin P E k FP x x k α+=-==. 从而222442sin cos 2(1cos 2)8sin sin FP FP ααααα-=-==为定值. 22.(本小题12分)(I )解由11111(1)(2)6a S a a ==++,解得11a =或12a =,由假设111a S =>,因此12a =, 又由111111(1)(2)(1)(2)66n n n n n n n a S S a a a a ++++=-=++-++,得11()(3)0n n n n a a a a +++--=,即130n n a a +--=或1n n a a +=-,因0n a >,故1n n a a +=-不成立,舍去.因此13n n a a +-=,从而{}n a 是公差为3,首项为2的等差数列,故{}n a 的通项为31n a n =-.(II )证法一:由(21)1n bn a -=可解得22213log 1log 31n nb a n ⎛⎫=+= ⎪-⎝⎭; 从而122363log 2531n n n T b b b n ⎛⎫=+++=⎪-⎝⎭. 因此322363231log (3)log 253132n n n T a n n ⎛⎫+-+=⎪-+⎝⎭. 令33632()253132n f n n n ⎛⎫=⎪-+⎝⎭,则322(1)3233(33)()3532(35)(32)f n n n n f n n n n n ++++⎛⎫== ⎪++++⎝⎭. 因32(33)(35)(32)970n n n n +-++=+>,故(1)()f n f n +>. 特别地27()(1)120f n f =>≥,从而2231log (3)log ()0n n T a f n +-+=>. 即231log (3)n n T a +>+. 证法二:同证法一求得n b 及n T ,由二项式定理知,当0c >时,不等式3(1)13c c +>+成立.由此不等式有333211131log 21112531n T n ⎛⎫⎛⎫⎛⎫+=+++ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭2333log 21112531n ⎛⎫⎛⎫⎛⎫>+++ ⎪⎪⎪-⎝⎭⎝⎭⎝⎭2225832log 2log (32)log (3)2531n n n a n +==+=+-····.证法三:同证法一求得n b 及n T .令36347312531363n n n n A B n n +==-,······,58324731n n C n +=+···. 因3313231331n n n n n n ++>>-+. 因此23+22n n n n n A A B C >=.从而332236331log 2log 22531n n n T A n ⎛⎫+==⎪-⎝⎭222log 2log (32)log (3)n n n n A B C n a >=+=+.。
2020年重庆市巴南区春招数学试卷(解析版)
![2020年重庆市巴南区春招数学试卷(解析版)](https://img.taocdn.com/s3/m/cfbc9a5f52ea551810a687f1.png)
2020年重庆市巴南区春招数学试卷一.选择题(共12小题)1.下列四个数中,是无理数的是()A.B.0C.D.2.据统计,近日前往重庆“龙门皓月”景点参观的人数达到了26000人,将26000用科学记数法表示为()A.0.26×105B.2.6×104C.26×103D.260×1023.不等式﹣x+1>x的解集是()A.x>﹣2B.x<2C.x>﹣D.x<4.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.5.如图,在平行四边形ABCD中,点E在对角线AC上,且BE⊥AB,若∠ACD=20°,则∠CEB的度数是()A.95°B.100°C.110°D.115°6.下列式子计算正确的是()A.m3•m2=m6B.(﹣m)﹣2=﹣C.m2+m2=2m2D.(m+n)2=m2+n27.如图,点A,B分别在x轴,y轴的正半轴上,且△ABO的面积为8,若双曲线y=(k ≠0)经过边AB的中点C,则k的值为()A.4B.6C.8D.128.如图,△ABC与△A1B1C1是以O为位似中心的位似图形,若OA=3AA1,S△ABC=36,则S=()A.64B.68C.81D.929.如图,小张坐在某体育馆的观众席的C处目测(从他的眼睛D处看)得体育馆中心O 处的俯角为18°,若CD=1.4米,BC=1.5米,BC平行于地面OA,台阶AB的坡度为i =3:4,坡长AB=15米,则观众席的底端A处与体育馆中心O处的距离约为()(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)A.20米B.19米C.18米D.17米10.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步200米,先到终点的人原地休息.已知甲先出发2秒,在跑步过程中,若甲、乙两人之间的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则下列结论中正确的是()A.乙的速度为5米/秒B.乙出发10秒钟将甲追上C.当乙到终点时,甲距离终点还有20米D.m=3811.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点(﹣1,0),其对称轴为直线x=1,若2<c<3,则下列结论中错误的是()A.abc<0B.4a+c>0C.﹣1<a<﹣D.4a+2b+c>0 12.如图,在菱形ABCD中,∠D=120°,AB=2,点E在边BC上,若BE=2EC,则点B 到AE的距离是()A.B.C.D.二.填空题(共6小题)13.计算:+|1﹣|﹣(π﹣3)0=.14.若代数式有意义,则x的取值范围是.15.如图,在四边形ABCD中,AB=BC=1,AB∥CD,∠D=45°,∠B=90°,若以点D 为圆心,DA的长为半径画弧交边DC于点E,则图中阴影部分的面积是.16.已知整数a,b满足|ab|=2,如果任意选择一对有序整数(a,b),且每一对这样的有序整数被选择的可能性是相等的,那么关于x的方程x2+bx+a=0有两个相等实数根的概率是.17.若关于x的分式方程﹣=4有正整数解,且关于y的不等式组有解,则所有符合条件的整数a的值的积是.18.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D是线段BC上一动点,在直线AD的右侧找一点E,使EA⊥AD,且∠ADE=30°.当点D从点B运动到点C时,点E 随之运动(点A不动),则点E运动的路径长为.三.解答题(共8小题)19.化简:(1)(m﹣3n)2﹣3n(n﹣2m);(2)(﹣a﹣2)÷.20.如图,AB为⊙O的直径,直线CF与⊙O相切于点E,与直线AB相交于点F,BC⊥CF,垂足为C.(1)求证:BE平分∠CBF;(2)若AB=16,∠CFB=30°,求弧的长.21.钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,但不必恐慌,尽量少去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜.”某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并组织社区居民在线参与了新型冠状病毒肺炎防护知识竞赛,社区管理员随机从A、B两个小区各抽取20名人员的竞赛成绩,并对他们的成绩(单位:分)进行统计、分析,过程如下:【收集数据】A小区:95 80 85 100 85 95 90 65 85 75 90 90 70 90 100 80 80 90 95 75B小区:80 80 60 95 65 100 90 80 85 85 95 75 80 90 70 80 95 75 100 90【整理数据】成绩x(分)60≤x≤70 70<x≤80 80<x≤90 90<x≤100 A小区2585B小区3a55【分析数据】统计量平均数中位数众数A小区85.7587.5cB小区83.5b80【应用数据】请根据以上统计分析的过程和结果,解答下列问题:(1)写出a、b、c的值;(2)若B小区共有900人参与知识竞赛,请估计B小区成绩大于80分的人数;(3)你认为哪个小区对新型冠状病毒肺炎防护知识掌握更好,请你写出两条理由.22.下面是小张探索函数y=|x﹣1|﹣2的图象与性质的不完整的过程:【列表格】:列出y与x的几组对应值:x…﹣2﹣101234…y…10﹣1﹣2﹣10m…[…]:…根据上面不完整的探索过程,完成下列问题:(1)直接写出表格中m的值;(2)在答题卡中的平面直角坐标系中,画出函数y=|x﹣1|﹣2的图象;(3)结合您画的函数的图象,解决问题:当|x﹣1|﹣2<x﹣时,写出x的取值范围.23.预防新型冠状病毒期间,某种消毒液A地需要6吨,B地需要10吨,正好M地储备有7吨,N地储备有9吨.市预防新型冠状病毒领导小组决定将这16吨消毒液调往A地和B地.消毒液的运费价格如表(单位:元/吨).设从M地调运x(0<x≤6)吨到A地.(1)求调运16吨消毒液的总运费y关于x的函数关系式;(2)求出总运费最低的调运方案,最低运费为多少?A地B地终点起点M地70120N地458024.我们在学习勾股定理后知道“能够成为直角三角形三条边长的三个整数,称为勾股数.”例如:15,8,17,因为172=82+152,所以15,8,17是勾股数.(1)已知b=mn,c =(m2+n2),若a,b,c是勾股数,a,b,c,m,n都是正整数,且c为37,n=5,求a,m的值;(2)规定:一个两位正整数N,如果N满足各数位上的数字互不相同且均不为0,那么称N为“扬帆数”,将N的两个数位上的数字对调得到一个新数N1,把N1放在N的后面组成第一个四位数,把N放在N1的后面组成第二个四位数,我们把第一个四位数减去第二个四位数后所得的差再除以81所得的商记为F(N).例如,当N=56时,N1=65,F(56)==﹣11.①求F(37)的值;②s,t为“扬帆数”,其中s=10c+d,t=10p+q(2≤c<d≤5,1≤p≤5,1≤q≤5),且c,d,p,q为整数),且F(s)能被3整除,F(s)+F(t)+22p+55=0.是否存在整数f使s,t,f成勾股数,若存在,求出f的值;若不存在,请说明理由.25.如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0)和点B,与y轴交于点C,该抛物线的对称轴为x =.(1)求a,b的值;(2)若点P在抛物线上,且在x轴的下方,作射线BP,当∠PBA=∠ACO时,求点P 的坐标;(3)若点M在抛物线上,点N在对称轴上,是否存在点B、C、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.26.已知,在矩形ABCD中,AB=2,点E在边BC上,且AE⊥DE,AE=DE,点F是BC 的延长线上一点,AF与DE相交于点G,DH⊥AF,垂足为H,DH的延长线与BC相交于点K.(1)如图1,求AD的长;(2)如图2,连接KG,求证:AG=DK+KG;(3)如图3,设△ADM与△ADH关于AD对称,点N、Q分别是MA、MD的中点,请直接写出BN+NQ的最大值.参考答案与试题解析一.选择题(共12小题)1.下列四个数中,是无理数的是()A.B.0C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此解答即可.【解答】解:A、是分数,是有理数,此选项不符合题意;B、0是整数,是有理数,此选项不符合题意;C、是无理数,此选项符合题意;D、=3是整数,是有理数,此选项不符合题意.故选:C.2.据统计,近日前往重庆“龙门皓月”景点参观的人数达到了26000人,将26000用科学记数法表示为()A.0.26×105B.2.6×104C.26×103D.260×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:26 000用科学记数法表示是2.6×104.故选:B.3.不等式﹣x+1>x的解集是()A.x>﹣2B.x<2C.x>﹣D.x<【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:移项,得:﹣x﹣x>﹣1,合并,得:﹣2x>﹣1,系数化为1,得:x<,故选:D.4.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念判断.【解答】解:A、不是轴对称图形,是中心对称图形;B、既不是轴对称图形,也不是中心对称图形;C、既不是轴对称图形,也不是中心对称图形;D、既是轴对称图形,又是中心对称图形.故选:D.5.如图,在平行四边形ABCD中,点E在对角线AC上,且BE⊥AB,若∠ACD=20°,则∠CEB的度数是()A.95°B.100°C.110°D.115°【分析】根据平行四边形的性质得出∠CAB=20°,利用互余和互补解答即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∵∠ACD=20°,∴∠CAB=20°,∵BE⊥AB,∴∠AEB=90°﹣20°=70°,∴∠CEB=180°﹣70°=110°,故选:C.6.下列式子计算正确的是()A.m3•m2=m6B.(﹣m)﹣2=﹣C.m2+m2=2m2D.(m+n)2=m2+n2【分析】分别按照同底数幂的乘法运算法则、负整数指数幂的运算法则、合并同类项的运算法则和完全平方公式进行判断即可.【解答】解:A、m3•m2=m5,故A错误;B、(﹣m)﹣2=,故B错误;C、按照合并同类项的运算法则,该运算正确.D、(m+n)2=m2+2mn+n2,故D错误.故选:C.7.如图,点A,B分别在x轴,y轴的正半轴上,且△ABO的面积为8,若双曲线y=(k ≠0)经过边AB的中点C,则k的值为()A.4B.6C.8D.12【分析】设点A(a,0),点B(0,b),由三角形面积公式可求ab=16,由中点坐标公式可求点C(,),代入解析式可求k的值.【解答】解:设点A(a,0),点B(0,b),∴OA=a,OB=b,∵△ABO的面积为8,∴ab=8,∴ab=16,∵点C是AB中点,∴点C(,),∵点C在双曲线y=(k≠0)上,∴k=×=4,故选:A.8.如图,△ABC与△A1B1C1是以O为位似中心的位似图形,若OA=3AA1,S△ABC=36,则S=()A.64B.68C.81D.92【分析】根据位似变换的概念得到△ABC∽△A1B1C1,根据相似三角形的面积比等于相似比的平方列式计算,得到答案.【解答】解:∵△ABC与△A1B1C1是以O为位似中心的位似图形,∴△ABC∽△A1B1C1,∵OA=3AA1,∴△ABC与△A1B1C1的相似比为:=,∴△ABC与△A1B1C1的面积比为:()2=,∵S△ABC=36,∴S=36÷=81,故选:C.9.如图,小张坐在某体育馆的观众席的C处目测(从他的眼睛D处看)得体育馆中心O 处的俯角为18°,若CD=1.4米,BC=1.5米,BC平行于地面OA,台阶AB的坡度为i =3:4,坡长AB=15米,则观众席的底端A处与体育馆中心O处的距离约为()(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)A.20米B.19米C.18米D.17米【分析】延长DC交OA延长线于点F,根据题意可得DF⊥OA,过点B作BG⊥OA于点G,可得四边形BCFG是矩形,根据AB的坡度为i=3:4,坡长AB=15,可得BG=9,AG=12,再根据锐角三角函数即可求出OA的长.【解答】解:如图,延长DC交OA延长线于点F,根据题意可知:DF⊥OA,过点B作BG⊥OA于点G,则四边形BCFG是矩形,∴CF=BG,FG=BC=1.5,∵AB的坡度为i=3:4,坡长AB=15,∴BG=9,AG=12,∴在Rt△ODF中,∠DOF=18°,OF=OA+AG+GF=OA+12+1.5=13.5+OA,DF=DC+CF=1.4+9=10.4,∴DF=OF•tan18°,即10.4≈(13.5+OA)×0.32,解得OA≈19(米).所以观众席的底端A处与体育馆中心O处的距离约为19米.故选:B.10.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步200米,先到终点的人原地休息.已知甲先出发2秒,在跑步过程中,若甲、乙两人之间的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则下列结论中正确的是()A.乙的速度为5米/秒B.乙出发10秒钟将甲追上C.当乙到终点时,甲距离终点还有20米【分析】根据题意和函数图象中的数据,可以判断出各个选项中的说法是否正确,从而可以解答本题.【解答】解:由图象可得,乙的速度为:200÷32=6.25(米/秒),故选项A不合题意;甲的速度为:10÷2=5(米/秒),设乙出发x秒将追上甲,6.25x=10+5x,得x=8,故选项B不合题意;当乙到终点时,甲距离终点还有:200﹣(32+2)×5=30(米),故选项C不合题意;a=200÷5﹣2=38,故选项D符合题意.故选:D.11.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点(﹣1,0),其对称轴为直线x=1,若2<c<3,则下列结论中错误的是()A.abc<0B.4a+c>0C.﹣1<a<﹣D.4a+2b+c>0【分析】根据二次函数的图象与系数的关系即可求出答案.【解答】解:A.抛物线的对称轴在y轴右侧,则ab<0,而c>0,故abc<0,正确,不符合题意;B.函数的对称轴为直线x=﹣=1,则b=﹣2a,∵从图象看,当x=﹣1时,y=a﹣b+c=3a+c=0,而a<0,故4a+c<0,故B错误,符合题意;C.④∵﹣=1,故b=﹣2a,∵x=﹣1,y=0,故a﹣b+c=0,∵2<c<3,∴2<﹣3a<3,∴﹣1<a<﹣,故C正确,不符合题意;D.从图象看,当x=2时,y=4a+2b+c>0,故D正确,不符合题意;故选:B.12.如图,在菱形ABCD中,∠D=120°,AB=2,点E在边BC上,若BE=2EC,则点B 到AE的距离是()A.B.C.D.【分析】过点B作BH⊥AE于点H,过点E作EF⊥AB交AB的延长线于点F,求出BF =BE=,EF=,可求出AE,由S△ABE=AB•EF可求出BH,则答案可求出.【解答】解:过点B作BH⊥AE于点H,过点E作EF⊥AB交AB的延长线于点F,∵菱形ABCD中,AB=2,∴BC=2,∵BE=2EC,∴BE=,CE=,∵∠D=120°,∴∠ABE=120°,∴∠EBF=60°,∴BF=BE=,EF=,∴AF=AB+BF=2+=,∴AE===,∵S△ABE=AB•EF,∴BH===.故选:A.二.填空题(共6小题)13.计算:+|1﹣|﹣(π﹣3)0=.【分析】本题涉及绝对值、负整数指数幂、二次根式化简、三次根式化简4个知识点.在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:+|1﹣|﹣(π﹣3)0=2+﹣1﹣1=.故答案为:.14.若代数式有意义,则x的取值范围是x>0.【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:代数式有意义,则x>0.故答案为:x>0.15.如图,在四边形ABCD中,AB=BC=1,AB∥CD,∠D=45°,∠B=90°,若以点D 为圆心,DA的长为半径画弧交边DC于点E,则图中阴影部分的面积是1﹣.【分析】作AH⊥CD于H,如图,易得四边形ABCH为正方形,则AH=HC=AB=1,利用∠D=45°得到DH=AH=1,AD=,然后根据扇形的面积公式,利用图中阴影部分的面积=S梯形ABCD﹣S扇形ADE进行计算.【解答】解:作AH⊥CD于H,如图,易得四边形ABCH为正方形,∴AH=HC=AB=1,∵∠D=45°,∴DH=AH=1,AD=AH=,∴图中阴影部分的面积=S梯形ABCD﹣S扇形ADE=(1+2)×1﹣=1﹣.故答案为1﹣.16.已知整数a,b满足|ab|=2,如果任意选择一对有序整数(a,b),且每一对这样的有序整数被选择的可能性是相等的,那么关于x的方程x2+bx+a=0有两个相等实数根的概率是.【分析】由|ab|=2列表得出a、b取值的所有等可能结果,从中找到满足b2=4a的结果数,根据概率公式求解可得.【解答】解:∵|ab|=2,∴列表如下:﹣1﹣212﹣1(﹣2,﹣1)(2,﹣1)﹣2(﹣1,﹣2)(1,﹣2)1(﹣2,1)(2,1)2(﹣1,2)(1,2)由表可知,共有8种结果,其中满足b2﹣4a=0,即b2=4a的有(1,﹣2)和(1,2)两种情况,∴关于x的方程x2+bx+a=0有两个相等实数根的概率是,故答案为:.17.若关于x的分式方程﹣=4有正整数解,且关于y的不等式组有解,则所有符合条件的整数a的值的积是﹣8.【分析】根据不等式组有解,可得a的范围,根据分式方程的解,可得a的值,根据正整数的定义,可得答案.【解答】解:,由①得:y≤8,由②得:y≥a+6,∵关于y的不等式组有解,∴a+6≤8∴a≤2,解分式方程﹣=4,得x=,∵x﹣2≠0,∴≠2,∴a≠0,∵关于x的分式方程﹣=4有正整数解,∴4﹣a=1或4﹣a=2或4﹣a=4或4﹣a=8,∴a=3或a=2或a=0或a=﹣4,∵a≤2,a≠0,∴a=2或﹣4,∴所有符合条件的整数a的值的积=2×(﹣4)=﹣8,故答案为:﹣8.18.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D是线段BC上一动点,在直线AD的右侧找一点E,使EA⊥AD,且∠ADE=30°.当点D从点B运动到点C时,点E 随之运动(点A不动),则点E运动的路径长为2.【分析】当点D在点B时,点E是AB的中点,当点D运动到点C时,点E是AC的中点,可得点E运动的路径长即为三角形ABC的中位线,进而可得结果.【解答】解:∵EA⊥AD,∴∠DAE=90°,∵∠ADE=30°,∴AE=AD,当点D在点B时,点E是AB的中点,当点D运动到点C时,点E是AC的中点,所以点E运动的路径即为三角形ABC的中位线,所以点E运动的路径长为:BC=2.故答案为:2.三.解答题(共8小题)19.化简:(1)(m﹣3n)2﹣3n(n﹣2m);(2)(﹣a﹣2)÷.【分析】(1)根据完全平方公式和单项式乘多项式可以解答本题;(2)根据分式的减法和除法可以解答本题.【解答】解:(1)(m﹣3n)2﹣3n(n﹣2m)=m2﹣6mn+9n2﹣3n2+6mn=m2+6n2;(2)(﹣a﹣2)÷===﹣=﹣2(3+a)=﹣6﹣2a.20.如图,AB为⊙O的直径,直线CF与⊙O相切于点E,与直线AB相交于点F,BC⊥CF,垂足为C.(1)求证:BE平分∠CBF;(2)若AB=16,∠CFB=30°,求弧的长.【分析】(1)连接OE,根据切线的性质得到OE⊥CF,得到OE∥BC,根据平行线的性质、等腰三角形的性质得到∠CBE=∠OBE,根据角平分线的定义证明即可;(2)根据直角三角形的性质求出∠EOF=60°,根据弧长公式计算,得到答案.【解答】(1)证明:连接OE,∵直线CF与⊙O相切,∴OE⊥CF,∵BC⊥CF,∴OE∥BC,∴∠CBE=∠OEB,∵OE=OB,∴∠OBE=∠OEB,∴∠CBE=∠OBE,∴BE平分∠CBF;(2)解:∵∠OEF=90°,∠CFB=30°,∴∠EOF=60°,∴的长==π.21.钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,但不必恐慌,尽量少去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜.”某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并组织社区居民在线参与了新型冠状病毒肺炎防护知识竞赛,社区管理员随机从A、B两个小区各抽取20名人员的竞赛成绩,并对他们的成绩(单位:分)进行统计、分析,过程如下:【收集数据】A小区:95 80 85 100 85 95 90 65 85 75 90 90 70 90 100 80 80 90 95 75B小区:80 80 60 95 65 100 90 80 85 85 95 75 80 90 70 80 95 75 100 90【整理数据】成绩x(分)60≤x≤70 70<x≤80 80<x≤90 90<x≤100 A小区2585B小区3a55【分析数据】统计量平均数中位数众数A小区85.7587.5cB小区83.5b80【应用数据】请根据以上统计分析的过程和结果,解答下列问题:(1)写出a、b、c的值;(2)若B小区共有900人参与知识竞赛,请估计B小区成绩大于80分的人数;(3)你认为哪个小区对新型冠状病毒肺炎防护知识掌握更好,请你写出两条理由.【分析】(1)根据题目中的数据,可以得到a、b、c的值;(2)根据题目中的数据,可以计算出B小区成绩大于80分的人数;(3)根据题目中的数据,可以得到哪个小区对新型冠状病毒肺炎防护知识掌握更好,然后说明理由即可.【解答】解:(1)由题目中的数据可得,a=7,b=(80+85)÷2=82.5,c=90;(2)900×=450(人),答:B小区成绩大于80分有450人;(3)A小区对新型冠状病毒肺炎防护知识掌握更好,理由:第一,A小区平均数大于B小区,第二,A小区的中位数大于B小区(第三,A 小区的众数大于B小区).22.下面是小张探索函数y=|x﹣1|﹣2的图象与性质的不完整的过程:【列表格】:列出y与x的几组对应值:x…﹣2﹣101234…y…10﹣1﹣2﹣10m…[…]:…根据上面不完整的探索过程,完成下列问题:(1)直接写出表格中m的值;(2)在答题卡中的平面直角坐标系中,画出函数y=|x﹣1|﹣2的图象;(3)结合您画的函数的图象,解决问题:当|x﹣1|﹣2<x﹣时,写出x的取值范围.【分析】(1)把x=4代入y=|x﹣1|﹣2,即可求出m的值;(2)根据表格数据,描点、连线,画出该函数的图象;(3)根据图象即可求|x﹣1|﹣2<x﹣时x的取值范围.【解答】解:(1)把x=4代入y=|x﹣1|﹣2,得y=1,解∴m=1.(2)该函数的图象如图:(3)由图形可知,当当|x﹣1|﹣2<x ﹣时x 的取值范围是<x<2.23.预防新型冠状病毒期间,某种消毒液A地需要6吨,B地需要10吨,正好M地储备有7吨,N地储备有9吨.市预防新型冠状病毒领导小组决定将这16吨消毒液调往A地和B地.消毒液的运费价格如表(单位:元/吨).设从M地调运x(0<x≤6)吨到A地.(1)求调运16吨消毒液的总运费y关于x的函数关系式;(2)求出总运费最低的调运方案,最低运费为多少?A地B地终点起点M地70120N地4580【分析】(1)根据题意即可得调运16吨消毒液的总运费y关于x的函数关系式;(2)根据一次函数的性质即可求出总运费最低的调运方案和最低运费.【解答】解:(1)由题意可知:y=70x+120(7﹣x)+45(6﹣x)+80[(9﹣(6﹣x)]=﹣15x+1350(0<x≤6).(2)由(1)的函数可知:k=﹣15<0,所以函数的值随x的增大而减小,当x=6时,有最小值y=﹣15×6+1350=1260(元).答:总运费最低的调运方案是从M地调运6吨到A地,1吨到B地,最低运费为1260元.24.我们在学习勾股定理后知道“能够成为直角三角形三条边长的三个整数,称为勾股数.”例如:15,8,17,因为172=82+152,所以15,8,17是勾股数.(1)已知b=mn,c=(m2+n2),若a,b,c是勾股数,a,b,c,m,n都是正整数,且c为37,n=5,求a,m的值;(2)规定:一个两位正整数N,如果N满足各数位上的数字互不相同且均不为0,那么称N为“扬帆数”,将N的两个数位上的数字对调得到一个新数N1,把N1放在N的后面组成第一个四位数,把N放在N1的后面组成第二个四位数,我们把第一个四位数减去第二个四位数后所得的差再除以81所得的商记为F(N).例如,当N=56时,N1=65,F(56)==﹣11.①求F(37)的值;②s,t为“扬帆数”,其中s=10c+d,t=10p+q(2≤c<d≤5,1≤p≤5,1≤q≤5),且c,d,p,q为整数),且F(s)能被3整除,F(s)+F(t)+22p+55=0.是否存在整数f使s,t,f成勾股数,若存在,求出f的值;若不存在,请说明理由.【分析】(1)先求出m的值,分两种情况讨论,由勾股定理可求a的值;(2)①由F(N)的定义可求解;②利用F(N)的定义可求F(s)=11(c﹣d),F(t)=11(p﹣q),由题意可求s和t,利用勾股数定义可求解.【解答】解:(1)∵c=(m2+n2)=37,n=5,∴m=7,∴b=mn=35,若a是最大边,则a2=b2+c2=2597,∴a=,∵a是正整数,∴a=不合题意舍去,若c为最大边,则c2=b2+a2,∴a==12答:a=12,m=7;(2)①F(37)==44;②∵F(s)==11(c﹣d),2≤c<d≤5,F(s)能被3整除,∴c=2,d=5,∴F(s)=﹣33,同理可求:F(t)=11(p﹣q),∵F(s)+F(t)+22p+55=0,∴﹣33+11p﹣11q+22p+55=0,∴3p﹣q=﹣2,∵1≤p≤5,1≤q≤5,∴p=1,q=5,∴s=10c+d=25,t=10p+q=15,若s为最大边,则f2=s2﹣t2=400,∴f=20,若f为最大边,则f2=s2+t2=850,∴f=,∵f为整数,∴f=20.25.如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0)和点B,与y轴交于点C,该抛物线的对称轴为x=.(1)求a,b的值;(2)若点P在抛物线上,且在x轴的下方,作射线BP,当∠PBA=∠ACO时,求点P 的坐标;(3)若点M在抛物线上,点N在对称轴上,是否存在点B、C、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【分析】(1)由A点坐标和抛物线的对称轴方程可求出答案;(2)得出tan∠PBA=tan∠ACO=,求出OE=,得出点E的坐标,求出直线BE的解析式,联立直线BE和抛物线方程,则可得出点P的坐标;(3)设出点M,N的坐标,分三种情况,利用中点坐标公式建立方程求解即可得出结论.【解答】解:(1)∵抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0),对称轴为x=.∴,解得,.∴a=,b=﹣.(2)如图,设直线PB与OC交于点E,∵抛物线解析式y=x2﹣x﹣3与y轴交于点C,∴C(0,3),又∵A(﹣1,0),∴OA=1,OC=3,∴tan∠ACO=,∵∠PBA=∠ACO,∴tan∠PBA=tan∠ACO=,∴OE=,∴E(0,﹣),设直线BE的解析式为y=mx+n,∴,解得,∴直线BE的解析式为y=x﹣,∴,解得,x1=﹣,x2=4(舍去),∴P(﹣,﹣).(3)由(1)知,抛物线解析式为y=x2﹣x﹣3,对称轴直线为x=,∴设N(,b),M(m,m2﹣m﹣3),∵以B、C、M、N为顶点的四边形是平行四边形,∴①当CB为对角线时,(0+4)=(+m),∴m=,∴M(,﹣),②当CM为对角线时,(m+0)=(4+),∴m=,∴M(,),③当CN为对角线时,(0+)=(4+m),∴m=﹣,∴M(﹣,),即:抛物线上存在这样的点M,点M的坐标分别为:M(,﹣)或(,)或(﹣,).26.已知,在矩形ABCD中,AB=2,点E在边BC上,且AE⊥DE,AE=DE,点F是BC 的延长线上一点,AF与DE相交于点G,DH⊥AF,垂足为H,DH的延长线与BC相交于点K.(1)如图1,求AD的长;(2)如图2,连接KG,求证:AG=DK+KG;(3)如图3,设△ADM与△ADH关于AD对称,点N、Q分别是MA、MD的中点,请直接写出BN+NQ的最大值.【分析】(1)证明Rt△ABE≌Rt△DCE(HL),推出BE=CE,∠AEB=∠DEC可得结论.(2)如图2中,延长AE交DK的延长线于T.利用全等三角形的性质证明AG=DT,GK=KT即可解决问题.(3)延长AB到T,使得BT=AB,连接TM,取AD的中点O,连接OM,OT.由三角形的中位线定理可得NQ=AD=2,再证明BN=TM,求出TM的最大值即可解决问题.【解答】(1)解:如图1中,∵四边形ABCD是矩形,∴AB=CD,∠B=∠C=90°,∵AE=ED,∴Rt△ABE≌Rt△DCE(HL),∴BE=CE,∠AEB=∠DEC,∵AE⊥DE,∴∠AED=90°,∴∠AEB=∠DEC=45°,∴∠BAE=∠AEB=45°,∴BE=AB=2,∴AD=BC=2BE=4.(2)证明:如图2中,延长AE交DK的延长线于T.∵DH⊥AF,∴∠DHG=∠AEG=90°,∵∠AGE=∠DGH,∴∠1=∠2,∵∠AEG=∠DET=90°,AE=DE,∴△AEG≌△DET(ASA),∴EG=ET,AG=DT,∵∠KEG=∠KET=45°,EK=EK,∴△KEG≌△KET(SAS),∴GK=KT,∵DT=DK+KT=DK+GK,∴AG=GK+DK.(3)延长AB到T,使得BT=AB,连接TM,取AD的中点O,连接OM,OT.∵MN=NA,MQ=QD,∴NQ=AD=2,∴BN的值最大时,BN+NQ的值最大,∵AB=BT,AN=NM,∴BN=TM,∵AB=BT=2,AO=2,∠TAO=90°,∴OT===2,∵∠AMD=90°,AO=OD,∴OM=AD=2,∵MN≤OT+OM,∴MN≤2+2,∴MN的最大值为2+2,∴BN的最大值为1+,∴BN+QN的最大值为3+.。
2020年重庆市长寿区春招数学试卷 (解析版)
![2020年重庆市长寿区春招数学试卷 (解析版)](https://img.taocdn.com/s3/m/7544174d360cba1aa811dacb.png)
2020年重庆市长寿区春招数学试卷一、选择题(共12小题).1.﹣2的绝对值是()A.2B.C.﹣D.﹣22.如图是由4个大小相同的正方体组合而成的几何体,其俯视图是()A.B.C.D.3.下列运算中,正确的是()A.a•a2=a2B.(a2)2=a4C.a2•a3=a6D.(a2b)3=a2•b34.“十三五”以来,我国启动实施了农村饮水安全巩固提升工程.截止去年9月底,各地已累计完成投资1.002×1011元.数据1.002×1011可以表示为()A.10.02亿B.100.2亿C.1002亿D.10020亿5.一个正比例函数的图象过点(2,﹣3),它的表达式为()A.B.C.D.6.若一组数据2,4,x,5,7的平均数为5,则这组数据中的x和中位数分别为()A.5,7B.5,5C.7,5D.7,77.勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是()A.B.C.D.8.用三个不等式a>b,ab>0,<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0B.1C.2D.39.观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72020的结果的个位数字是()A.0B.1C.7D.810.如图,AB是⊙O的直径,C,D是⊙O上的两点,且BC平分∠ABD,AD分别与BC,OC相交于点E,F,则下列结论不一定成立的是()A.OC∥BD B.AD⊥OC C.△CEF≌△BED D.AF=FD11.关于x的一元二次方程x2+2mx+m2+m=0的两个实数根的平方和为12,则m的值为()A.m=﹣2B.m=3C.m=3或m=﹣2D.m=﹣3或m=2 12.从﹣4,﹣3,1,3,4这五个数中,随机抽取一个数,记为m,若m使得关于x,y的二元一次方程组有解,且使关于x的分式方程﹣1=有正数解,那么这五个数中所有满足条件的m的值之和是()A.1B.2C.﹣1D.﹣2二、填空题(本大题6小题,每小题4分,满分24分:请将正确答案填在答题卡相应位置)13.计算()2+1的结果是.14.如图,AD∥CE,∠ABC=100°,则∠2﹣∠1的度数是.15.如图,当小杰沿坡度i=1:5的坡面由B到A行走了26米时,小杰实际上升高度AC =米.(可以用根号表示)16.如图,在P处利用测角仪测得某建筑物AB的顶端B点的仰角为60°,点C的仰角为45°,点P到建筑物的距离为PD=20米,则BC=米.17.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是.18.如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.给出下列结论:①∠AFD=∠C;②DF=BF;③△ADE∽△FDB;④∠BFD=∠CAF.其中正确的结论是(填写所有正确结论的序号).三、解答题(本大题8个小题,第26题8分,其余每小题10分,共78分,解答每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文科数学试卷 第1页(共4页)机密★启用前 【考试时间:5月23日15∶00—17∶00】2020年重庆市高等职业教育分类考试文科数学 试卷文科数学试卷共4页。
满分150分。
考试时间120分钟。
注意事项:1.将自己的姓名、考号准确工整填写在指定位置。
2.作答时,务必将答案写在答题卡上。
写在试卷及草稿纸上无效。
3.考试结束后,将试卷和答题卡一并交回。
一、选择题(共10小题,每小题5分,共50分.在每个小题给出的四个备选项中,只有一项是符合题目要求的) (1)下列函数为奇函数的是(A )2y = (B )2x y =(C )2y x =(D )2y x =(2)一商店在某周内每天的顾客数的茎叶图如下:1 552 3453 67则该商店在这周每天的平均顾客数为 (A )23 (B )24 (C )25 (D )26(3)下列函数中,周期为π的是(A )1sin 2y x =(B )sin 2y x =(C )sin2x y =(D )2sin y x =+文科数学试卷 第2页(共4页)(4)执行如题(4)图所示的程序框图,输出s 的值为(A )8 (B )9 (C )15(D )16(5)已知向量a ,b 满足3=a ,4=b ,0⋅=a b ,则-=a b(A )5 (B )6 (C )7(D )8(6)“0x ≠”是“0x >”的(A )充分必要条件(B )充分而不必要条件 (C )必要而不充分条件(D )既不充分也不必要条件(7)从分别写有1,2,3,4,5的五张卡片中随机抽取两张,则这两张卡片上数字之和为偶数的概率为 (A )25(B )12(C )35(D )23(8)如题(8)图所示,小方格的边长为1,用粗线画出了某几何体的三视图,则该几何体的体积为 (A )32π(B )94π(C )3π (D )9π(9)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若sin B =1cos 3C =, b =c = (A )19(B )18(C )8(D )9(10)设实数a ,b 满足24a b +=,则93a b +的最小值是(A )4(B )8(C )16(D )18题(8)图题(4)图文科数学试卷 第3页(共4页)二、填空题(共5小题,每小题5分,共25分) (11)设i 是虚数单位,则i(1i)-= .(12)已知集合{101}A =-,,,{112}B =-,,,则A B = . (13)圆22(3)(4)25x y -+-=与x 轴的两个交点之间的距离为 . (14)222log 12log 3+= . (15)sin15cos15︒︒的值为 .三、解答题(共5小题,每小题15分,共75分) (16)在等差数列{}n a 中,610a =-,公差2d =.(Ⅰ)求1a 的值;(7分)(Ⅱ)若{}n a 的前k 项和为46,求k 的值.(8分)(17)从某中学高一年级学生中随机抽取120名,他们的身高(单位:cm )的频率分布表如下:分组频数频率[)150155,6 0.05 [)155160, 27 0.225[)160165, m 1 0.325[)165170, 18 0.15[)170175, m 2f[)175180, 3 0.025 []180185,3 0.025(Ⅰ)求频数m 1,m 2和频率f 的值;(6分)(Ⅱ)从身高不低于175 cm 的学生中随机抽取两名,求这两名学生身高都不低于180 cm 的概率.(9分)文科数学试卷 第4页(共4页)(18)设2()22f x x x =--.(Ⅰ)求曲线()y f x =在5x =处的切线斜率;(7分) (Ⅱ)设()()e x g x f x =,求函数()g x 的极值.(8分)(19)如题(19)图,在三棱锥P ABC -中,AB ,AC ,AP两两垂直.(Ⅰ)求证:PA BC ⊥;(5分)(Ⅱ)若2AB =,4AC AP ==,求点A 到平面PBC的距离.(10分)(20)设椭圆方程为222212516x y λλ+=--,其中(4,4)λ∈-.(Ⅰ)证明这些椭圆有相同的焦点,并求焦点坐标;(5分) (Ⅱ)求这些椭圆的离心率最小时对应的λ的值;(5分)(Ⅲ)若离心率最小的椭圆上的点P 与左、右焦点构成的三角形的面积为6,求OP ,其中O 为椭圆中心.(5分)题(19)图文科数学参考答案 第1页(共4页)机密★启用前2020年重庆市高等职业教育分类考试文科数学参考答案一、选择题(共10小题,每小题5分,共50分)(1)D (2)C (3)B (4)B (5)A (6)A(7)A(8)C(9)C(10)D二、填空题(共5小题,每小题5分,共25分)(11)1+i (12){}11-, (13)6(14)3(15)14三、解答题(共5小题,每小题15分,共75分)(16)解:(Ⅰ)由等差数列的通项公式知615a a d =+. 将610a =-,2d =代入得11010a +=-,解得120a =-.(Ⅱ)等差数列{}n a 的前n 项和是1(1)2n n n dS na -=+.将120a =-,2d =代入得220(1)21n S n n n n n =-+-=-.再由46k S =得22146k k -=,解得2k =-(舍去)或23k =,所以23k =.文科数学参考答案 第2页(共4页)(17)解:(Ⅰ)由题意知11200.32539m =⨯=,21120(6271833)24m m =-+++++=,240.2120f ==.(Ⅱ)将身高在[)175180,的3名学生分别编号为1,2,3,再将身高在[]180185,的3名学生分别编号为4,5,6,从这6名学生中任取两名,所有可能结果为()()()()()1213141516,,,,,,,,,,()()()()23242526,,,,,,,,()()()343536,,,,,,()()4546,,,,()56,,共计15种取法.抽取的两名学生身高都不低于180 cm ,所有可能结果为()()()454656,,,,,,共计3种取法.于是,所求概率为31155p ==. (18)解:(Ⅰ)对()f x 求导得()22f x x '=-.因此(5)8f '=,所以曲线()y f x =在5x =处的切线斜率为8. (Ⅱ)对()2()22e x g x x x =--求导得()()()22()22e 22e 4e x x x g x x x x x '=-+--=-.文科数学参考答案 第3页(共4页)令()0g x '=得240x -=,解得2x =±. 当2x <-时,()0g x '>; 当22x -<<时,()0g x '<; 2x >时,()0g x '>.所以()g x 在2x =-处取得极大值2(2)6e g --=, 在2x =处取得极小值2(2)2e g =-. (19)(Ⅰ)证明:因为PA AB ⊥,PA AC ⊥,所以PA ABC ⊥平面,又因BC ABC ⊂平面, 故PA BC ⊥. (Ⅱ)由题意,三棱锥P ABC -的体积为1111116244332323P ABC ABC V S PA AB AC PA -=⋅=⋅⋅⋅=⨯⨯⨯⨯=△.在△PBC中,PB ==BC ==PC ==,边PC 上的高为h ==,从而1122PBC S PC h =⋅=⨯=△. 设A 到平面PBC 的距离为d ,则三棱锥A PBC -的体积是13△A PBC PBC A PBC V S d V --=⋅=,因此3△A PBC PBCV d S -===. (20)解:(Ⅰ)由题意2225a λ=-,2216b λ=-.所以3c ===,因此这些椭圆有相同的左、右焦点,其坐标分别为1(30)F -,、2(30)F ,.答(19)图文科数学参考答案 第4页(共4页)(Ⅱ)椭圆的离心率为()c e a λ=2[016)λ∈,.随2λ的增大而增大,故当20λ=即0λ=时,离心率取得最小值.(Ⅲ)由(Ⅱ)知当0λ=时离心率最小,此时椭圆方程为2212516x y +=. ……① 设该椭圆上的点P 的坐标为()P P x y ,,由(Ⅰ)知1(30)F -,,2(30)F ,. 所以12△PF F 的面积为1212132△S PF F P P F F y y =⋅=. 又由已知条件得36P y =,所以2P y =, 代入①得2412516px +=,解得2754p x =.所以2OP ===.。