初中数学《数与式》综合测试试题

合集下载

数与式测试卷及参考答案

数与式测试卷及参考答案

中考数学数与式测试卷时间:50分钟 总分:120分 请在规定时间内完成作答,注意答题规范. 一、选择题(每小题3分,共30分)1. 21-的绝对值是 【 】 (A )21- (B )21(C )2 (D )2-2. 52-的相反数是 【 】 (A )52- (B )52(C )25- (D )253. 下列各数中最大的数是 【 】 (A )5 (B )3 (C )π (D )8-4. 成年人每天维生素D 的摄入量约为0. 000 004 6克.数据“0. 000 004 6”用科学记数法表示为 【 】 (A )71046-⨯ (B )7106.4-⨯ (C )6106.4-⨯ (D )51046.0-⨯5. 今年一季度,河南对“一带一路”沿线国家进出口总额达214. 7亿元.数据“214. 7亿”用科学记数法表示为 【 】 (A )210147.2⨯ (B )3102147.0⨯ (C )1010147.2⨯ (D )11102147.0⨯6. 下列计算正确的是 【 】 (A )a a a 632=+ (B )()2263a a =-(C )()222y x y x -=- (D )22223=-7. 下列运算正确的是 【 】 (A )()532x x -=- (B )532x x x =+(C )743x x x =⋅ (D )1233=-x x8. 下列运算正确的是 【 】 (A )532=+ (B )3218= (C )532=⋅ (D )2212=÷9. 如果32=-b a ,那么代数式ba ab a b a -⋅⎪⎭⎫ ⎝⎛-+222的值为 【 】(A )3 (B )32 (C )33 (D )34 10. 函数xxy -=42中自变量x 的取值范围是 【 】 (A )4-≠x (B )4≠x (C )x ≤4- (D )x ≤4 二、填空题(每小题3分,共30分) 11. 计算:=--124_________. 12. 计算:=--95_________.13. 计算:=-+⎪⎭⎫⎝⎛⨯-22132_________.14. 若12-=x ,则=++122x x _________. 15. 因式分解:=-ab b a 39________________.16. 化简42212---a aa 的结果等于__________. 17. 如果分式432-+x x 有意义,那么x 的取值范围是__________.18. 计算:()()()=-++-323212020_________.19. 如图,数轴上点A 表示的数为a ,化简:=+-+442a a a _________.a2A20. 若153222=-+y x ,则代数式59622-+y x 的值为_________.三、解答题(共60分)21. 计算:(每小题5分,共20分) (1)()102113230sin 2-⎪⎭⎫ ⎝⎛+-+--︒π; (2)()︒+--⎪⎭⎫⎝⎛+--30cos 4123114.320π;(3)()()202021218312-⎪⎭⎫ ⎝⎛+--⨯-+-π; (4)()︒----+⎪⎭⎫⎝⎛-30cos 22314.32102π.22. 先化简,再求值:(每小题8分,共40分)(1)44212122+--÷⎪⎭⎫⎝⎛--+x x x x x x ,其中3=x ;(2)11112-÷⎪⎭⎫⎝⎛-+x x x ,其中12+=x ;(3)21212--÷⎪⎭⎫ ⎝⎛+-x x x x ,其中x 是方程022=-x x 的根;(4)x x x x x x -+-÷⎪⎭⎫ ⎝⎛+--11441122,其中x 满足022=-+x x ;(5)先化简⎪⎭⎫ ⎝⎛-÷-+-x x x x x x 424422,再从55<<-x 的范围内选取一个合适的正整数作为x 的值代入求值.中考数学数与式测试卷参考答案时间:50分钟 总分:120分 请在规定时间内完成作答,注意答题规范. 一、选择题(每小题3分,共30分)二、填空题(每小题3分,共30分)11.2312. 2 13. 6 14. 2 15. ()()1313-+a a ab 16. 21+-a 17. x ≥23-且4≠x 18. 2 19. 2 20. 13三、解答题(共60分)21. 计算:(每小题5分,共20分)(1)()12113230sin 2-⎪⎭⎫⎝⎛+-+--︒π;解:原式2131212+-+-⨯= 13+= (2)()︒+--⎪⎭⎫⎝⎛+--30cos 4123114.320π;解:原式2343291⨯+-+= 10= (3)()()22021218312-⎪⎭⎫⎝⎛+--⨯-+-π;解:原式42212+--=225-= (4)()︒----+⎪⎭⎫⎝⎛-30cos 22314.32102π.解:原式()2323214⨯---+= 3325-+-= 3=22. 先化简,再求值:(每小题8分,共40分)(1)44212122+--÷⎪⎭⎫⎝⎛--+x x x x x x ,其中3=x . 解:44212122+--÷⎪⎭⎫⎝⎛--+x x x x x x()()xx x x x x x x x x 3223222212=-⋅-=--÷-+-+=当3=x 时 原式333=.(2)11112-÷⎪⎭⎫⎝⎛-+x x x ,其中12+=x . 解:11112-÷⎪⎭⎫⎝⎛-+x x x ()()()()()xx x x x x x x x x x x -=--=-+⋅+-=-+÷+--=1111111111 当12+=x 时 原式2121-=--=.(3)21212--÷⎪⎭⎫ ⎝⎛+-x x x x ,其中x 是方程022=-x x 的根.解:21212--÷⎪⎭⎫ ⎝⎛+-x x x x ()()()()()111122121121222+-=-+-⋅--=--+÷-+-=x x x x x x x x x x x x x 解方程022=-x x 得:2,021==x x ∵02≠-x ∴2≠x ∴当0=x 时原式11010-=+-=. (4)x x x x x x -+-÷⎪⎭⎫ ⎝⎛+--11441122,其中x 满足022=-+x x .解:x x x x x x -+-÷⎪⎭⎫ ⎝⎛+--11441122 ()()()1211211121121112222--=--⋅--=--÷⎥⎦⎤⎢⎣⎡----=x x x x x x x x x x x 解方程022=-+x x 得:2,121-==x x ∵01≠-x ∴1≠x ∴当2-=x 时原式()511221=--⨯-=.(5)先化简⎪⎭⎫⎝⎛-÷-+-x x x x x x 424422,再从55<<-x 的范围内选取一个合适的正整数作为x 的值代入求值.解:⎪⎭⎫⎝⎛-÷-+-x x x x x x 424422 ()()()()2122242222+=-+⋅-=-÷--=x x x xx x xx x x x ∵55<<-x ,且x 为正整数 ∴当1=x 时原式31211=+=.。

九年级数学总复习总结《数与式》测试题

九年级数学总复习总结《数与式》测试题

九年级数学总复习《数与式》测试题一、选择题(每题4分,共32分)1.实数a 、b 在数轴上的位置如图所示,则化简代数式||a +b –a 的结果是( )A .2a +bB .2aC .aD .b 2.下列计算中,正确的是( )A .33x x x =• B .3x x x -= C .32x x x ÷= D .x x x += 3.若2与a 互为倒数,则下列结论正确的是( )。

A 、21=a B 、2-=a C 、21-=a D 、2=a4.计算)3(623m m -÷的结果是( ))(A )m 3- (B )m 2- (C )m 2 (D )m 35.代数式2346x x -+的值为9,则2463x x -+的值为( ) A .7 B .18C .12D .96.2007年10月中国月球探测工程的“嫦娥一号”卫星发射升空飞向月球。

已知地球距离月球表面约为384000千米,那么这个距离用科学记数法(保留三个有效数字)表示应为( ) A 、×410千米 B 、×510千米 C 、×610千米D 、×410千米7.下列因式分解正确的是( )A .x x x x x 3)2)(2(342++-=+-;B .)1)(4(432-+-=++-x x x x ; C .22)21(41x x x -=+-; D .)(232y x y xy x y x xy y x +-=+-。

8.下列等式正确的是( )(A )x b a x b x a )(-=- (B )942188+=+ ;(C )b a b a +=+22 (D )b a b a +=+2)(二、填空题(每题4分,共40分)9.已知点()P x y ,位于第二象限,并且4y x +≤,x y ,为整数,写出一个..符合上述条件的点P 的坐标:10. 用“”定义新运算:对于任意实数a ,b ,都有a b=b 2+1。

中考数学数与式专题训练50题(含答案)

中考数学数与式专题训练50题(含答案)

中考数学数与式专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.下列运算正确的是( ) A .()328-=B .33--=C .()326-=-D .()239--=-2.下列说法正确的是( ) A .1的立方根是它本身 B .4的平方根是2 C .9的立方根是3D .0没有算术平方根3.比﹣2小的数是( ) A .﹣1B .﹣3C .0D .﹣124.下列计算正确的是( ) A .236a a a ⋅=B .22325a b 3ab 3a b -⋅=C .0(π 3.14) 3.14π-=-D .3262(a b)a b =5.长城总长约为670000米,用科学记数法表示为( ) A .56.710⨯米 B .50.6710⨯米 C .46.710⨯米D .60.6710⨯米6.下列计算正确的是( ) A .x 2+x 3=x 5B .x 2•x 3=x 6C .(x 2)3=x 5D .x 5÷x 3=x 27.一定相等的是( ) A .a 2+a 2与a 4B .(a 3)3与a 9C .a 2﹣a 2与2a 2D .a 6÷a 2与a 38.对于有理数a ,b 定义2a b a b =-,则()3x y x +化简后得( )A .2x y +B .2x y -+C .52x y +D .52x y -+9.下列运算正确的是( )A B .2=C .22=D 4=±10.N 是一个单项式,且22223N x y ax y ⋅=(-)-,则N 等于( ) A .32ayB .3ay -C .32xy -D .12axy11.下列计算正确的是( ) A .()235a a =B .()23624m m -=C .623a a a ÷=D .()222a b a b +=+ 12.( )A .2B .C .D .13.下列计算中,结果正确的是( ) A .a 3 +a =2a 4B .a 3•a 2=a 6C .2a 6÷a 2 =2a 3D .(a 2)4 =a 814.下列各组代数式中没有公因式的是 ( ) A .4a 2bc 与8abc 2 B .a 3b 2+1与a 2b 3–1 C .b (a –2b )2与a (2b –a )2 D .x +1与x 2–115.下列计算正确的是( )A 3=±B 3=-C .(23= D .23=-161m -,则m 的取值范围是( ) A .1m >B .1m <C .m 1≥D .1m17.下列运算中,计算结果正确的是( ) A .a2•a3=a6B .a2+a3=a5C .(a2)3=a6D .a12÷a6=a218.下列运算正确的是( )A .824x x x ÷=B =C .()32628aa -=-D .11(1)32-⎛⎫--=- ⎪⎝⎭19的正确结果是( )A .(m ﹣5)5m -B .(5﹣m)5m -C .m ﹣5()5m --D .5﹣m 5m -二、填空题20.已知某种感冒病毒的直径是-0.000000012米,那么这个数可用科学记数法表示为____________. 21.45--=______. 22.2018年我省夏粮总产量达到2299000吨,将数据“2299000吨”用科学记数法表示为__________.23叫做二次根式. 24.2015的相反数为____.25.把202100000用科学记数法表示为______.260,则xzy=_______.27______=______.28.写出一个..绝对值大于2且小于3的无理数____________.29.当2a =+2943a a -+的值等于___.30.将数67500用科学记数法表示为____________.31有意义,则x 的取值范围是___________________. 32.有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是___________.33.213-的倒数是_____,213-的相反数是_____.34.“皮克定理”是用来计算顶点在格点(即图中虚线的交点,如图中的小黑点)上的多边形的面积公式,公式为S = a +2b-1.小明只记得公式中的表示多边形的面积,a和 b 中有一个表示多边形边上(含多边形顶点)的格点个数,另一个表示多边形内部的格点个数,但记不清楚究竟是哪一个表示多边形内部的格点个数,请你利用图 1 探究并运用探究的结果求图 2 中多边形的面积是____.35.若a +b =8,ab =15,则a 2+ab +b 2=________.36.已知甲数是719的平方根,乙数是338的立方根,则甲、乙两个数的积是__.37.分解因式:2244x y y -+-=__________.38.我国古代数学的许多创新与发展都曾居世界前列,其中“杨辉三角”(如图)就是一例,它的发现比欧洲早五百年左右.杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和.事实上,这个三角形给出了()na b +(n =1,2,3,4,5,6)的展开式(按a 的次数由大到小的顺序排列)的系数规律. 例如,在三角形中第三行的三个数1,2,1,恰好对应着222()2a b a ab b +=++展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着+=+++33223()33a b a a b ab b 展开式中各项的系数,等等. (1)当n =4时,4()a b +的展开式中第3项的系数是_________;(2)人们发现,当n 是大于6的自然数时,这个规律依然成立,那么7()a b +的展开式中各项的系数的和为_________.三、解答题39.计算:20220(1)1)-+︒. 40.计算:(1)()232()nn m mn m -⋅÷(2)解不等式组: 10223x x x +>⎧⎪-⎨≤+⎪⎩41.在平面直角坐标系中,已知点P (3,-1)关于原点对称的点Q 的坐标是(),1a b b +-,求b a 的值.42.(1)计算:﹣32+(π﹣2021)0﹣|1|.(2)解不等式组:3(1)25322x xxx-≥-⎧⎪⎨+<⎪⎩①②.43.计算:(1)(﹣1)3+(π+2022)0+(12)﹣2;(2)(-a)3•a2﹣(2a4)2÷a3.44.计算下列各式:(1)(2)45.已知2a-l的算术平方根为3,3a+b-1的算术平方根为4,求a+2b的平方根.46.(1)计算:0112sin3022π-⎛⎫⎛⎫-︒⎪ ⎪⎝⎭⎝⎭;(2)化简:2(21)(1)(1)x x x--+-.47.已知a,b,c在数轴上对应点的位置如图所示,化简||||||a ab b c-+-.48.观察以下等式:第1个等式:211111=+第2个等式:211326=+第3个等式:2115315=+第4个等式:2117428=+第5个等式:2119545=+按照以上规律,解决下列问题:(1)写出第7个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.参考答案:1.D【分析】根据乘方运算、绝对值及相反数的意义,逐个运算得结论.【详解】解:(-2)3=-8,故选项A、C错误;-|-3|=-3,故选项B错误;-(-3)2=-9,故选项D正确.故选:D.【点睛】本题考查了乘方运算,绝对值、相反数的意义.题目相对简单.负数的偶次方是正,负数的奇数次方为负.2.A【分析】根据立方根与平方根的定义即可求出答案.【详解】解:A、1的立方根是它本身,故此选项符合题意;B、4的平方根是2 ,故此选项不符合题意;C、9D、0的算术平方根是0,故此选项不符合题意.故选:A.【点睛】本题考查平方根与立方根,解题的关键是正确理解立方根与平方根的定义.3.B【分析】对于正数绝对值大的数就大;对于负数绝对值大的反而小;负数小于0,0小于正数;【详解】解:A,是个负数绝对值比2小,﹣1>﹣2;B,是个负数绝对值比2大,﹣3<﹣2;C,0比负数大;D,是个负数绝对值比2小,﹣1>﹣2;2故答案选:B【点睛】本题考查有理数大小的判断,先比正负,再比绝对值.4.D【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则、零指数幂的性质分别判断得出答案.【详解】解:A 、a 2•a 3=a 5,故此选项错误; B 、-a 2b 2•3ab 3=-3a 3b 5,故此选项错误; C 、(π-3.14)0=1,故此选项错误; D 、(a 3b 2)2=a 6b 4,正确. 故选D .【点睛】考查了同底数幂的乘除运算以及积的乘方运算等知识,正确掌握相关运算法则是解题关键. 5.A【分析】根据科学记数法的定义即可得. 【详解】解:670000米56.710=⨯米, 故选:A .【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法)是解题关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 6.D【详解】试题分析:A .2x+3x 已经为最简式.B .x 2•x 3=x 5同底数幂相乘,指数相加. C .(x 2)3=x 6求幂的乘方,指数相乘.故只有D 正确 考点:整式运算点评:本题难度较低,主要考查学生对整式运算知识点的掌握.注意同底数幂相乘,指数相加.幂的乘方,指数相乘. 7.B【分析】A .根据整式的加法运算合并同类项即可; B .运用幂的乘法公式,底数不变,指数相乘,化简即可; C .根据整式的减法运算合并同类项即可;D .根据同底数幂的除法,底数不变,指数相减即可得出结论. 【详解】解:A .22242a a a a +=≠,故选项不合题意; B .()339a a =,故选项符合题意;C .22202a a a -=≠,故选项不合题意;D .624a a a ÷=,故选项不合题意; 故选:B .【点睛】本题考查整式的混合运算,熟练掌握每个计算的运算法则是解题的关键. 8.B【分析】根据新定义运算可直接进行求解. 【详解】解:∵2a b a b =-,∵()3x y x +()23x y x =+-223x y x =+-2x y =-+.故选:B .【点睛】本题主要考查整式的加减运算,熟练掌握整式的加减运算是解题的关键. 9.A【分析】根据二次根式的性质以及二次根式的混合运算逐项计算分析判断即可求解.【详解】解:A 、=B 、2C 、253=+-D 4=,故该选项不正确,不符合题意. 故选:A .【点睛】此题主要考查了二次根式的性质以及二次根式的混合运算,掌握二次根式的性质以及运算法则是解题关键. 10.A【分析】利用单项式与单项式除法,把他们的系数,相同字母分别相除,对于只在一个单项式里含有的字母,则连同它的指数作为商的一个因式,进而得出即可. 【详解】解:∵N •(-2x 2y )=-3ax 2y 2, ∵N =-3ax 2y 2÷(-2x 2y )=32ay .故选:A .【点睛】此题主要考查了单项式除以单项式,熟练掌握运算法则是解题关键. 11.B【分析】分别根据幂的乘方运算法则,积的乘方运算法则,同底数幂的除法法则以及完全平方公式逐一进行判断即可得出正确选项. 【详解】A. ()236a a =,故本选项不符合题意;B. ()23624m m -=,正确;C. 624a a a ÷=,故本选项不符合题意;D. ()2222a b a ab b +=++,故本选项不符合题意. 故选:B.【点睛】本题主要考查了同底数幂的除法,完全平方公式以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键. 12.B【详解】试题分析:10099100991009912()22222--⨯-=-⨯=-=-.故选B.考点: 1.负整数指数幂;2.积的乘方. 13.D【分析】分别计算后判断即可.【详解】解:A.不是同类项不能合并,故该选项计算错误; B. a 3•a 2=a 5,故该选项计算错误; C. 2a 6÷a 2 =2a 4,故该选项计算错误; D.(a 2)4 =a 8,故该选项计算正确. 故选:D .【点睛】本题考查合并同类项、同底数幂乘法、单项式除单项式、幂的乘方.掌握相关运算法则是解题关键. 14.B【分析】分别分析各选项中的代数式,能因式分解的先进行因式分解,再确定没有公因式的选项即可.【详解】A 、4a 2bc 与8abc 2有公因式4abc ,故该选项不满足题意;B、a3b2+1与a2b3–1,没有共公因式,故该选项满足题意;C、b(a–2b)2与a(2b–a)2有公因式()2a b-,故该选项不满足题意;2D、x+1与x2–1有公因式x+1,故该选项不满足题意;故选:B.【点睛】本题主要考查公因式的确定,熟练掌握因式分解是解决本题的关键.15.C【分析】根据二次根式的性质即可求出答案.【详解】A. 3=,故原选项错误;B. 3,故原选项错误;C. (23=,正确;D. D错误故选:C.【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的性质,本题属于基础题型.16.D=进行化简,再根据绝对值的意义列出不等式,求解即可.a=-=-,m m11∵1-m≥0,∵m≤1故选:Da二者是等价的,故二者可以互化.17.C【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相减;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.【详解】A、a2•a3=a2+3=a5,故本选项错误;B、a2+a3不能进行运算,故本选项错误;C、(a2)3=a2×3=a6,故本选项正确;D、a12÷a6=a12﹣6=a6,故本选项错误.故选C.【点睛】本题考查了同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算法则是解题的关键.18.C【分析】分别根据同底数幂的除法法则,二次根式的加法法则,积的乘方运算法则以及零指数幂、负整数指数幂的运算法则逐一判断即可.【详解】A、826x x x÷=原计算错误,不符合题意;B、235=+=≠C、()32628a a-=-正确,符合题意;D、11(1)1212-⎛⎫--=-=-⎪⎝⎭原计算错误,不符合题意;故选:C.【点睛】本题主要考查了同底数幂的除法,幂的乘方与积的乘方,二次根式的运算,零指数幂、负整数指数幂的运算,熟记二次根式的运算、幂的运算法则是解答本题的关键.19.B【详解】试题解析:50m∴-≥,即5m≤,∵原式(5m=-故选B.20.-1.2×10-8【详解】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.0.000000012用科学记数法表示为21.4 -5【分析】先求出有理数的绝对值,再求相反数,即可得到答案.【详解】∵45--=45-, 故答案是: 45-. 【点睛】本题主要考查有理数的绝对值法则和相反数的概念,掌握有理数的绝对值法则和相反数的概念是解题的关键.22.2.299×106吨【分析】根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1,可得出答案.【详解】2299000吨=2.299×106吨,故答案为2.299×106吨.【点睛】本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.23.0a ≥【分析】根据二次根式的非负性解题即可.【详解】解:∵0a ≥,故答案为:0a ≥.【点睛】本题主要考查二次根式的定义,能够熟记定义是解题关键.24.-2015.【详解】试题解析:2015的相反数是-2015.考点:相反数.25.82.02110⨯【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:202100000=2.021×108.故答案为:82.02110⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要确定a 的值以及n 的值.26.52【分析】根据根式有意义的条件可知2x+3_≥0,4y-6x_≥0,x+y+z_≥0,再根据已知条件可得到2x+3=0,4y-6x=0,x+y+z=0;通过解方程组即可求出x 、y 、z 的值,即可xz y的值.0=可得2304600x y x x y z +=⎧⎪-=⎨⎪++=⎩, 解得3294154x y z ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩, 将x 、x 、z 的值代入xzy 可得3152494-⨯-=52, 所以xz y 的值为52. 故答案为52. 【点睛】此题考查二次根式有意义的条件,解题关键在于利用其性质进行解答. 27.【分析】(1)根据二次根式的性质即可求解.(2)根据最简二次根式的化简即可求解.=;=;【点睛】此题主要考查二次根式的性质,解题的关键是熟知二次根式的运算法则与性质. 28【分析】根据算术平方根的性质可以把2和3写成带根号的形式,再进一步写出一个被开方数介于两者之间的数即可.∵写出一个大于2小于3.【点睛】本题考查了无理数的估算,估算无理数大小要用逼近法.用有理数逼近无理数,求无理数的近似值.29.92【分析】由2a =2a -=241a a -=-,整体代入即可求解.【详解】解:∵2a =∵2a -=()223a -=,∵2443a a -+=,即241a a -=-, ∵299943132a a ==-+-+. 故答案为:92. 【点睛】本题考查了分式的化简求值,二次根式的性质,掌握整体代入法是解题的关键. 30.46.7510⨯【分析】科学记数法的表示形式为ax10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:67500=46.7510⨯,即答案为:46.7510⨯.【点睛】本题考查用科学记数法表示较大的数,一般形式为ax10n ,其中1≤al<10,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.31.x≤且x≠0【详解】试题分析:当x 满足条件120{0x x -≥≠时,式子有意义,解得x≤且x≠0.考点:代数式有意义的条件.32【分析】直接根据题意列式计算即可.2是有理数,即输出的y【点睛】本题考查了求算术平方根和立方根即根据图片列式计算,能够根据图片正确列出算式是解题的关键.33. ﹣3553 【详解】试题解析:根据乘积为1的两个数互为倒数,可得一个数的倒数;根据只有符号不同的两个数互为相反数,可得一个数的相反数,故:213-的倒数是-35,213-的相反数是213 34.10.【分析】分别找到图1中图形内的格点数和图形上的格点数后,再与公式比较,即可发现表示图上的格点数对应的字母和图形内的格点数对应的字母,再利用图2中的有关数据代入公式即可求得图形的面积.【详解】解:根据图1可得,∵矩形内由2个格点,边上有10个格点,面积为6, 即106=2+12-; 正方形内由1个格点,边上有8个格点,面积为4, 即84=1+12-; ∵公式中表示多边形内部整点个数的字母是a ;表示多边形边上(含多边形顶点)的格点个数为b ,由图2得:8,6,a b ==6=18110.22b S a ∴+-=+-= 故答案为:10.【点睛】本题考查了新定义型的图形的变化类问题,解题的关键是能够仔细弄懂题意,弄懂公式中代数式的含义,根据题意进行探究,找到规律,再利用规律解决问题. 35.49【分析】首先配方得出a 2+ab+b 2=(a+b )2-ab 进而得出答案.【详解】解:∵a+b=8,ab=15,则a 2+ab+b 2=(a+b )2-ab=82-15=49.故答案为49.【点睛】此题主要考查了配方法的应用,正确配方是解题关键.36.2±.【分析】分别根据平方根、立方根的定义可以求出甲数、乙数,进而即可求得题目结果. 【详解】甲数是719的平方根 ∴甲数等于43±; 乙数是338的立方根, ∴乙数等于32. ∵43=232⨯ ∴甲、乙两个数的积是2±.故答案:2±.【点睛】此题主要考查了立方根、平方根的定义,解题的关键是根据平方根和立方根的定义求出甲数和乙数.37.(2)(2)x y x y +--+##(x -y +2)(x +y -2)【分析】先分组成22(44)x y y -+-,再利用完全平方公式化为22(2)x y --,最后利用平方差公式解答.【详解】解:2244x y y -+-22(44)x y y =--+22(2)x y =--(2)(2)x y x y =+--+故答案为:(2)(2)x y x y +--+.【点睛】本题考查因式分解,涉及分组分解法、完全平方公式、平方差公式等知识,是重要考点,掌握相关知识是解题的关键.38. 6 128【分析】(1)当n=4时,4()a b +的展开式的系数恰好对应的是第五行的数,根据第五行的数即刻得出答案;(2)7()a b +的展开式的系数恰好对应第八行的数,据图写出第八行的数求和即可.【详解】解:(1)4()a b +的展开式的系数恰好对应的是第五行的数,为:1,4,6,4,1,故4()a b +的展开式中第3项的系数是6;(2)据题可知第八行的数为:1,7,21,35,35,21,7,1.故7()a b +的展开式中各项的系数的和为:1+7+21+35+35+21+7+1=128.故答案为:(1)6;(2)128.【点睛】本题考查完全平方公式,探索与表达规律.(1)能找出()n a b +的展开式的系数与杨辉三角中行数之间的关系是解题关键;(2)中能依据“杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和”写出“杨辉三角”的第八行数是解题关键.39.1【分析】根据数的乘方、零指数幂、开方法则进行计算,在加上特殊角的三角函数值,即可求解.【详解】解:原式=1+1-2=1121+-+=1.【点睛】本题考查实数的混合运算,熟练掌握实数的运算法则和熟记特殊角的三角函数值是解题的关键.40.(1)53n m n +;(2)- 12x <≤【分析】(1)运用整式的乘法法则计算即可;(2)根据不等式的运算求得解后再联立求解集即可.【详解】解:(1)原式 233253n n n m n m m n +-+=÷= (2)10223x x x +>⎧⎪⎨-≤+⎪⎩①② 解∵的1x >-,解∵得x 2≤,不等式组的解集为- 12x <≤【点睛】本题主要考查整式的乘法法则以及解一元一次不等式组,解题的关键是熟练地掌握整式的乘法的乘法法则以及解一元一次不等式组的解题步骤和方法即可.41.25 【详解】解:点(3,1)P -与点(,1)Q a b b +-关于原点对称,3a b ∴+=-,11b -=,解得:2,5b a ==-,2(5)25b a ∴=-=.42.(1)﹣7;(2)﹣2≤x <1【分析】(1)根据有理数的乘方、零指数幂、绝对值的意义进行化简即可;(2)先分别解不等式,再根据不等式组解集的规律写出解集即可.【详解】(1)原式=﹣9+11)=﹣9+1=﹣7(2)3(1)25322x x x x -≥-⎧⎪⎨+<⎪⎩①②, 解不等式∵,得x ≥﹣2,解不等式∵,得x <1,∵不等式组的解集为﹣2≤x <1.【点睛】本题考查了实数的混合运算和解不等式组,掌握实数的运算法则和解不等式组的步骤是解题的关键.43.(1)4(2)-5a 5【分析】(1)根据有理数的乘方,零指数幂,负整数指数幂分别进行计算即可; (2)根据同底数幂的乘法,积的乘方,单项式除以单项式分别进行计算即可.(1)解:原式=-1+1+4=4;(2)原式=-a3•a2﹣4a8÷a3=-a5-4a5=-5a5.【点睛】本题考查有理数的乘方、零指数幂、负整数指数幂、同底数幂的乘法、积的乘方、单项式除以单项式,解题关键是掌握相关的运算法则.44.2【分析】(1)运用分配律计算即可;(2)先将二次根式化简,然后去括号计算即可.【详解】(1)解:=2(2)==【点睛】题目主要考查二次根式的运算,掌握二次根式的运算法则是解题关键.45.3±【分析】利用平方根及算术平方根的定义列出方程,得到a与b的值,确定出a+2b的值,即可求出平方根.【详解】解:由题意得2a-1=9,3a+b-1=16,解得:a=5,b=2,则a+2b=9,∵a+2b的平方根是3±.【点睛】此题考查了平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.46.(1)4;(2)2-+.x x342【分析】(1)根据零指数幂,特殊角的三角函数值,算术平方根,负整数指数幂计算即可;(2)利用完全平方公式和平方差公式展开,化简即可.【详解】(1)原式112222=-⨯++ 1122=-++4=;(2)原式()224411x x x =-+--224411x x x =-+-+2342x x =-+.【点睛】本题考查了零指数幂,特殊角的三角函数值,算术平方根,负整数指数幂,完全平方公式和平方差公式,注意第(2)个小题平方差公式展开要加括号.47.-a +2c .【分析】根据已知判断出a +b ,c -a 及b -c 的符号,进而确定出二次根式、绝对值里边式子的符号,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】解:∵a <b <0<c ,a +b <0,c -a >0,b -c <0.∵||||||a a b b c -+-||||||||a a b c a b c =-++-+-=-a +(a +b )+(c -a )+(c -b )=-a +a +b +c -a +c -b=-a +2c .【点睛】此题考查了二次根式的性质与化简,整式的加减,以及绝对值的性质,去括号法则,以及合并同类项法则.正确得出各项符号是解题关键.48.(1)21113791=+ (2)21121(21)n n n n =+--;证明见解析 【分析】(1)观察前几个等式即可写出第7个等式;(2)结合(1)观察数字的变化规律即可写出第n 个等式,并进行证明.【详解】解:观察以下等式:第1个等式:211111=+, 第2个等式:211326=+,答案第16页,共16页 第3个等式:2115315=+, 第4个等式:2117428=+, 第5个等式:2119545=+, ……按照以上规律, (1)第7个等式:21113791=+; 故答案为:21113791=+; (2)第n 个等式:21121(21)n n n n =+-- 证明:∵等式右边11(21)n n n =+- 21122(21)(21)(21)21n n n n n n n n n -=+==---- ∵左边=右边∵猜想得证. 故答案为:21121(21)n n n n =+-- 【点睛】本题考查了规律型:数字的变化类、列代数式,解决本题的关键是观察数字的变化寻找规律.。

中考数学总复习《数与式》专项检测卷(附带答案)

中考数学总复习《数与式》专项检测卷(附带答案)

中考数学总复习《数与式》专项检测卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一、选择题(共20小题) 1.(2022•无锡)分式32x-中x 的取值范围是( ) A .2x ≠B .2x ≠-C .2x -D .2x2.(2022•无锡)下列运算正确的是( ) A .2222a a -=B .224()ab ab =C .236a a a ⋅=D .844a a a ÷=3.(2022•钢城区)7-的相反数是( ) A .7-B .17-C .7D .174.(2022•陕西)计算:32(4)(a b -= ) A .538a bB .6216a bC .628a b -D .5216a b5.(2022•陕西)2022年6月5日上午10时44分07秒,熊熊的火焰托举着近500000千克的火箭和飞船冲上云霄,这是我国长征2F 运载火箭将“神舟十四号”载人飞船送入太空的壮观情景.其中,数据500000用科学记数法可以表示为( ) A .60.510⨯B .45010⨯C .4510⨯D .5510⨯6.(2022•陕西)21-的绝对值为( ) A .21B .21-C .121D .121-7.(2022•德州)下列实数为无理数的是( ) A .12B .0.2C .5-D 38.(2022•德州)已知2M a a =-,2(N a a =-为任意实数),则M N -的值( ) A .小于0B .等于0C .大于0D .无法确定9.(2022•德州)下列运算正确的是( ) A .22423a a a +=B .236(2)8a a =C .326a a a ⋅=D .222()a b a b -=-10.(2022•淮安)计算23a a ⋅的结果是( ) A .2aB .3aC .5aD .6a11.(2022•淮安)2022年十三届全国人大五次会议审议通过的政府工作报告中提出,今年城镇新增就业目标为11000000人以上.数据11000000用科学记数法表示应为( ) A .80.1110⨯B .71.110⨯C .61110⨯D .61.110⨯12.(2022•攀枝花)2的平方根是( ) A .2B .2±C 2D .213.(2022•攀枝花)下列各式不是单项式的为( ) A .3B .aC .baD .212x y14.(2022•攀枝花)实数a 、b 在数轴上的对应点位置如图所示,下列结论中正确的是( )A .2b >-B .||b a >C .0a b +>D .0a b -<15.(2022•内蒙古)下列计算正确的是( ) A .336a a a +=B .1a b a b÷⋅=C .22211a a a -=--D .3325()b b a a=16.(2022•内蒙古)实数a 在数轴上的对应位置如图所示,21|1|a a +-的化简结果是( )A .1B .2C .2aD .12a -17.(2022•淄博)计算3262(2)3a b a b --的结果是( ) A .627a b -B .625a b -C .62a bD .627a b18.(2022•淄博)若实数a 的相反数是1-,则1a +等于( ) A .2B .2-C .0D .1219.(2022•淄博)下列分数中,和π最接近的是( ) A .355113B .22371C .15750D .22720.(2022•巴中)下列运算正确的是( ) A 2(2)2-- B .111()33-=- C .236()a a =D .842(0)a a a a ÷=≠二、填空题(共5小题)21.(2022•无锡)我市2021年GDP 总量为14000亿元,14000这个数据用科学记数法可表示为 .22.(2022•038(1)--= .23.(2022•黄石)计算:20(2)(20223)--= . 24.(2022•襄阳)化简分式:ma mba b a b+=++ .25.(2022•菏泽)若22150a a --=,则代数式244()2a a a a a --⋅-的值是 . 三、解答题(共6小题) 26.(2022•无锡)计算: (1)1|5|(2)tan 45--+-+︒; (2)26142m m m----. 27.(2022•陕西)计算:115(2)28()3-⨯-+⨯-.28.(2022•内蒙古)先化简,再求值:2344(1)11x x x x x -+--÷--,其中3x =. 29.(2022•淮安)(1)计算:0|5|(32)2tan 45-+--︒; (2)化简:23(1)93a a a ÷+--. 30.(2022•阜新)先化简,再求值:22691(1)22a a a a a -+÷---,其中4a =.31.(2022•徐州)计算: (1)202211(1)|33|()93--+--+;(2)22244(1)x x x x+++÷.一、选择题(共14小题)1.(2023•绥化一模)2±是4的( )区域模拟A .平方根B .相反数C .绝对值D .倒数2.(2023•达州一模)12023-的倒数的绝对值是( ) A .2023B .12023C .2023-D .12023-3.(2023•汶上县一模)2022年3月11日,新华社发文总结2021年中国取得的科技成?.其中中国高铁运营里程超40000000米.则数据40000000用科学记数法可表示为( ) A .80.410⨯B .7410⨯C .84.010⨯D .6410⨯4.(2023•张家口二模)“中国智造”势在必行.据2023年1月21日消息,英特尔公司定购了一台AML 公司的约23亿元人民币的最先进的EUV 光刻机;据2022年9月8日消息,武汉购买了一台价格约为5亿元人民币的非EUV 光刻机.由于美国的干涉,我国买不到最先进的EUV 光刻机;就连我国购买较低端的DUV 光刻机,美国近期都开始干涉.据2022年8月14日的消息:“中国已经购买了700多台AML 公司的光刻机.”这700台光刻机,按平均每台2亿元人民币计算,总共约合是人民币( ) A .111.410⨯元B .121.410⨯元C .101410⨯元D .120.1410⨯元5.(2023•沭阳县一模)计算33()ab 的结果是( ) A .6abB .36a bC .6a bD .39a b6.(2023•寻乌县一模)下面的计算正确的是( ) A .326a a a ⋅=B .222()a b a b -=-C .326()a a -=D .55a a -=7.(2023•明光市一模)下列运算错误的是( ) A 42=±B .2124-=C .22232a a a -=D .633a a a ÷=8.(2023•明光市一模)把多项式424a a -分解因式,结果正确的是( ) A .22(2)(2)a a a a -+B .22(4)a a -C .2(2)(2)a a a +-D .22(2)a a -9.(2023•张家口二模)下列计算不正确的是( ) A 222+=B 222C 0.452=D 1232=10.(2023•韩城市一模)下列运算正确的是( ) A .3515m m m ⋅= B .235()m m -=- C .23246()m n m n -=D .22321m m -=11.(2023•兴隆台区一模)下列运算正确的是( ) A 255=± B .0.40.2= C .3(1)1--=-D .222(3)6m m n -=-12.(2023•泰山区一模)在实数:(6)--,-5,0,|3|-中,最小的数是( ) A .(6)--B .5-C .0D .|3|-13.(2023•白塔区校级一模)化简 的结果是( ) A .﹣3B .±3C .3D .914.(2023•黄浦区二模)设a 是一个不为零的实数,下列式子中,一定成立的是( ) A .32a a ->-B .32a a >C .32a a ->-D .32aa>二、填空题(共10小题)15.(2023•兴隆台区一模)分解因式:2()9()a x y y x -+-= . 16.(2023•梁园区一模)计算:3|5|8---= .17.(2023•潮南区一模)若与y n +3x 4是同类项,则(m +n )= .18.(2023•海曙区一模)若2(2)30a b -++=,则2023()a b +的值是 . 19.(2023•慈溪市一模)在1-,-2,1,0这四个数中,最小的数是 . 20.(2023•崂山区一模)计算:433(2)x y xy ÷-= . 21.(2023•364 . 22.(2023•1205. 23.(2023•杨浦区二模)如果关于x 的二次三项式25x x k -+在实数范围内不能因式分解,那么k 的取值范围是 .24.(2023•张店区一模)化简22()m n mn n m m m--÷-的结果为 .三、解答题(共7小题)25.(2023•大丰区一模)计算:40218()2sin 453π---︒. 26.(2023•长安区四模)计算:2021(2)3(3)()3--︒+--. 27.(2023•1125()|234cos302-+-︒. 28.(2023•青海一模)先化简,再求值:2221111()()aba b ++-,其中11()2a -= 1b =.29.(2023•齐齐哈尔模拟)(1)计算:202302(1)(2022)(3)12tan 60π-⨯-÷-︒︒; (2)因式分解:22222()4x y x y +-.30.(2023•襄垣县一模)(131148(2)()1224-⨯-(2)下面是小颖对多项式因式分解的过程,请认真阅读并完成相应任务. 分解因式:22(3)(3)x y x y +-+.解:原式(33)(33)x y x y x y x y =++++--⋯⋯第一步(44)(22)x y x y =+-⋯⋯第二步 8()()x y x y =+-⋯⋯第三步 228()x y =- ⋯⋯第四步任务一:以上变形过程中,第一步依据的公式用字母a ,b 表示为 ;任务二:以上分解过程第 步出现错误,具体错误为 ,分解因式的正确结果为 . 31.(2023•官渡区校级模拟)已知:2420a a --=. (1)求2(4)1a a --的值; (2)求证:42204a a -=-;(3)若24251100404a b a a -=-+ 以下结论:0b > 0b = 0b < 你认为哪个正确?请证明你认为正确的那个结论.1.下列实数中 比3-小的数是( ) A .2-B .1C .0D .π-2.太阳的主要成分是氢 氢原子的半径约为0.000000000053m .这个数用科学记数法可以表示为( ) A .100.5310-⨯B .105.310-⨯C .115.310-⨯D .125310-⨯考前押题3.(1)计算:011(32)()4cos30|123-++︒--; (2)因式分解:29x y y -.4.已知2a b += 2ab = 求32231122a b a b ab ++的值.5.如图 约定:上方相邻两整式之和等于这两个整式下方箭头共同指向的整式. (1)求整式M 、P ; (2)将整式P 因式分解; (3)P 的最小值为 .参考答案一、选择题(共20小题)1.【答案】A有意义【解答】解:分式3-2x∴-≠x20解得2x≠故选:A.2.【答案】D【解答】解:222-=故A错误不符合题意;2a a a2224()=故B错误不符合题意;ab a b235⋅=故C错误不符合题意;a a a844÷=故D正确符合题意;a a a故选:D.3.【答案】C【解答】解:7-的相反数为7故选:C.4.【答案】B【解答】解:32-a b(4)2322a b=-(4)()62=;16a b故选:B.5.【答案】D【解答】解:数据500000用科学记数法表示为5⨯.510故选:D.6.【答案】A【解答】解:21-的绝对值为21故选:A.7.【答案】D是分数属于有理数故本选项不合题意;【解答】解:A.12B.0.2是有限小数属于有理数故本选项不合题意;C.5-是整数属于有理数故本选项不合题意;D3故本选项符合题意;故选:D.8.【答案】C【解答】解:M N-2(2)=---a a a222=-+a a2=-+(1)1a2a-(1)02a∴-+(1)11∴-大于0M N故选:C.9.【答案】B【解答】解:A .因为22223a a a += 故A 选项不符合题意; B .因为236(2)8a a = 故B 选项符合题意; C .因为23235a a a a +⋅== 故C 选项不符合题意; D .因为222()2a b a ab b -=-+ 故D 选项不符合题意. 故选:B .10.【答案】C【解答】解:235a a a ⋅=. 故选:C .11.【答案】B【解答】解:711000000 1.110=⨯. 故选:B .12.【答案】D【解答】解:因为2(2)2±= 所以2的平方根是2故选:D .13.【答案】C【解答】解:A 、3是单项式 故本选项不符合题意; B 、a 是单项式 故本选项不符合题意; C 、b a不是单项式 故本选项符合题意; D 、212x y 是单项式 故本选项不符合题意; 故选:C .14.【答案】B【解答】解:由数轴知 12a << 32b -<<- A ∴错误||b a > 即B 正确0a b +< 即C 错误0a b -> 即D 错误.故选:B .15.【答案】C【解答】解:3332a a a += 故A 错误 不符合题意; 2111a a b a b b b b÷⋅=⋅⋅= 故B 错误 不符合题意; 22222(1)21111a a a a a a a ---===---- 故C 正确 符合题意; 3326()b b a a= 故D 错误 不符合题意; 故选:C .16.【答案】B【解答】解:根据数轴得:01a << 0a ∴> 10a -<∴原式||11a a =++-11a a =++-2=.故选:B .17.【答案】C【解答】解:原式62626243a b a b a b =-= 故选:C .18.【答案】A【解答】解:实数a 的相反数是1- 1a ∴=12a ∴+=.故选:A .19.【答案】A【解答】解:355 3.1416113≈; 223 3.140871≈; 157 3.1450=; 22 3.14287≈因为 3.1416π≈所以和π最接近的是355113. 故选:A .20.【答案】C【解答】解:A 2(2)2- 选项错误 不符合题意;B 、11()33-= 选项错误 不符合题意; C 、236()a a = 选项正确 符合题意; D 、844(0)a a a a ÷=≠ 选项错误 不符合题意;故选:C .二、填空题(共5小题)21.【答案】41.410⨯.【解答】解:414000 1.410=⨯ 故答案为:41.410⨯.22.【答案】3-.【解答】解:原式21=-- 3=-.故答案为:3-.23.【答案】3.【解答】解:原式41=- 3=.故答案为:3.24.【答案】m .【解答】解:原式ma mba b +=+()m a b a b +=+m =故答案为:m .25.【答案】15.【解答】解:244()2a a a a a --⋅-22442a a a a a -+=⋅-22(2)2a a a a -=⋅-22a a =-22150a a --=2215a a ∴-=∴原式15=.故答案为:15.三、解答题(共6小题)26.【答案】(1)112;(2)22m +.【解答】解:(1)原式1512=-+112=;(2)原式62(2)(2)(2)(2)m m m m m m -+=++-+-24(2)(2)m m m -=+-22m =+.27.【答案】9-.【解答】解:原式10163=- 1043=-+-9=-.28.【答案】22x x +-- 5-.【解答】解:原式223(1)11(2)x x x x ---=⋅-- 2(2)(2)11(2)x x x x x +--=-⋅-- 22x x +=-- 当3x =时 原式3232+=-- 5=-. 29.【答案】(1)4;(2)13a +. 【解答】解:(1)原式5121=+-⨯ 512=+-4=;(2)原式(3)(3)3a a a a a =÷+-- 3(3)(3)a a a a a-=⨯+- 13a =+. 30.【答案】3a a- 14. 【解答】解:原式2(3)21()(2)22a a a a a a --=÷---- 2(3)3(2)2a a a a a --=÷-- 2(3)2(2)3a a a a a --=⋅-- 3a a -=当4a =时 原式43144-==.31.【答案】(1)43-; (2)2x x +. 【解答】解:(1)202211(1)|33|()93--+--+13333=+--+43=-;(2)22244(1)x x x x +++÷ 222(2)x x x x +=⋅+ 2x x =+.一、选择题(共14小题)1.【答案】A【解答】解:2±是4的平方根. 故选:A .2.【答案】A【解答】解:12023-的倒数是2023- 12023∴-的倒数的绝对值是|2023|2023-=. 故选:A .3.【答案】B区域模拟【解答】解:740000000410=⨯. 故选:B .4.【答案】A【解答】解:11200000000700140000000000 1.410⨯==⨯元. 故选:A .5.【答案】D【解答】解:33()ab333()a b =39a b =.故选:D .6.【答案】C【解答】解:A 、32a a a ⋅= 故原计算错误 不合题意; B 、222()2a b a b ab -=+- 故原计算错误 不合题意; C 、326()a a -= 故原计算正确 符合题意; D 、54a a a -= 故原计算错误 不合题意; 故选:C .7.【答案】A【解答】解:A 42= 故A 符合题意;B 、2124-= 故B 不符合题意; C 、22232a a a -= 故C 不符合题意; D 、633a a a ÷= 故D 不符合题意;故选:A .8.【答案】C【解答】解:原式22(4)a a =- 2(2)(2)a a a =+-. 故选:C .9.【答案】C【解答】解:A 、原式2= 所以A 选项正确 不合题意; B 、原式2= 所以B 选项正确 不合题意; C 、原式10= 所以C 选项错误 符合题意; D 、原式2= 所以D 选项正确 不合题意. 故选:C .10.【答案】C【解答】解:A 、358m m m ⋅= 故A 不符合题意; B 、236()m m -=- 故B 不符合题意; C 、23246()m n m n -= 故C 符合题意; D 、22232m m m -= 故D 不符合题意; 故选:C .11.【答案】C【解答】解:A 255 故A 不符合题意; B 100.4= 故B 不符合题意;C 、3(1)1--=- 故C 符合题意;D 、22(3)9m m -= 故D 不符合题意;故选:C .12.【答案】B【解答】解:(6)6--= |3|3-=50|3|(6)∴-<<-<--.故选:B .13.【答案】C【解答】解:=3.故选:C .14.【答案】A【解答】解:A .32a a ->- 故本选项符合题意;B .若1a =- 则32a a < 故本选项不符合题意;C .若1a = 则32a a -<- 故本选项不符合题意;D .若1a =- 则32a a< 故本选项不符合题意. 故选:A .二、填空题(共10小题)15.【答案】()(3)(3)x y a a -+-.【解答】解:2()9()a x y y x -+-2()(9)x y a =--()(3)(3)x y a a =-+-故答案为:()(3)(3)x y a a -+-16.【答案】3-.【解答】解:3|5|8----5(2)=---52=-+3=-故答案为:3-.17.【答案】﹣1.【解答】解:∵与y n +3x 4是同类项∴m +3=4 n +3=1∴m =1 n =﹣2∴m +n=1+(﹣2)=﹣1.故答案为:﹣1.18.【答案】1-.【解答】解:由题意得 20a -= 30b +=解得2a = 3b =-所以 20232023()(23)1a b +=-=-.故答案为:1-.19.【答案】2-.【解答】解:|1|1-=|2|2-=21> 21∴-<-2101∴-<-<<∴在1-2- 1 0中最小的数为:2-.故答案为:2-.20.【答案】18x-.【解答】解:原式4333(8)x y x y=÷-1 8x=-.故答案为:18x-.21.【答案】4.【解答】3644=.故答案为:4.22.【答案】0.【解答】解:原式52510=2525==.故答案为:0.23.【答案】254k>.【解答】解:关于x的二次三项式25x x k-+在实数范围内不能分解因式就是对应的二次方程250x x k -+=无实数根∴△2(5)42540k k =--=-<254k ∴>. 故答案为:254k >. 24.【答案】1m n-. 【解答】解:原式222m n m mn n m m--+=÷ 2()m n m m m n -=⋅- 1m n=-. 故答案为:1m n -. 三、解答题(共7小题)25.2.【解答】解:40218()2sin 453π---︒212212=-+- 12212=-+2=26.【答案】5-.【解答】解:2021(2)3(3)()3--︒+--34319=+-4119=-+-5=-.27.【答案】533-【解答】1125()|234cos302-+-︒ 352(23)4=-+--522323=-+533=-28.【答案】222a ba b + 32.【解答】解:2221111()()a b a b ++-22222()a b b a ab a b +-=+2222222a ab b b a a b +++-=22222ab b a b +=222a ba b += 当11()22a -== 1b =时 原式2222121⨯+⨯=⨯424+=32=.29.【答案】(1)829;(2)22()()x y x y +-.【解答】解:(1)原式11192332=-⨯÷+139=-+ 829=; (2)原式2222(2)(2)x y xy x y xy =+++-22()()x y x y =+-.30.【答案】22()()a b a b a b -=+- 进行乘法运算 8()()x y x y +-.【解答】解:(1)原式1143(8)()2324=-⨯--1143238()24=+⨯- 2342=- 232=;(2)原式(33)(33)x y x y x y x y =++++--⋯⋯第一步(44)(22)x y x y =+-⋯⋯第二步8()()x y x y =+-⋯⋯第三步228()x y =-.⋯⋯第四步任务一:以上变形过程中 第一步依据的公式用字母a b 表示为22()()a b a b a b -=+-;任务二:以上分解过程第四步出现错误 具体错误为进行乘法运算 分解因式的正确结果为8()()x y x y +-.故答案为:22()()a b a b a b -=+- 进行乘法运算 8()()x y x y +-.31.【答案】(1)3;(2)见解答;(3)0b >.【解答】(1)解:2420a a --= 242a a ∴-=2(4)1a a ∴--2281a a =--22(4)1a a =--221=⨯-3=;(2)证明:2420a a --=224a a ∴-=222(2)(4)a a ∴-= 即4224416a a a -+= 42204a a ∴-=-;(3)解:0b > 证明如下: 由(2)知42204a a -=-42204a a ∴=-4222()(204)a a ∴=-84240016016a a a ∴=-+ ∴842110040164a a a =-+由(2)知42204a a -=-42204a a ∴=-∴421514a a =-4242481511411004044a a b a a a a -∴===-+2420a a --=0a '≠40a ∴>0b ∴>.1.【答案】D【解答】解:A 、|2||3|-<- 因此23->- 故A 不符合题意; B 、31-< 故B 不符合题意; C 、30-< 故C 不符合题意; D 、|||3|π->- 因此3π-<- 故D 符合题意. 故选:D .2.【答案】C【解答】解:110.000000000053 5.310-=⨯. 故选:C .3.【解答】解:(1)原式3134232=++⨯- 4=; (2)原式2(9)y x =-考前押题(3)(3)y x x =+-.4.【解答】解:原式32231122a b a b ab =++ 221(2)2ab a ab b =++21()2ab a b =+2a b += 2ab =∴原式12442=⨯⨯=.5.【答案】(1)520x -;(2)4(2)(2)P x x =+-;(3)16-.【解答】解:(1)根据题意得:2(3420)3(3)M x x x x =----22342039x x x x =---+520x =-;223420(2)P x x x =--++ 22342044x x x x =--+++ 2416x =-;(2)2416P x =-24(4)x =-4(2)(2)x x =+-;(3)2416P x =- 20x∴当0x =时,P 的最小值为16-. 故答案为:16-。

初中数学:数与式_整式_整式的混合运算(综合题)

初中数学:数与式_整式_整式的混合运算(综合题)

轩爸辅导初中数学:数与式_整式_整式的混合运算初中七年级下学期数学整式的混合运算综合题真题及答案(54题)阴影部分的面积.化.(泰兴2019七下期中) 已知 ,(1) 求2A-B的值,其中 , ;(2) 试比较代数式A、B的大小.(成都2019七下期中) 为了改善小区环境,搞好绿化管理工作,更好地服务于居民,某小区物业绿化工作人员李师傅,规划在 米, 米的长方形的场地上,修建两横一纵三条宽为 米的小路,其余部分铺上地毯草.(2) 所铺地毯草的面积和是多少平方米?(3) 如果 ,并且每平方米地毯草的价格是20元,那么请你帮李师傅计算一下,买地毯草需要多少元?(深圳2018七下期中) 杨辉三角是一个由数字排列成等腰三角形数表,一般形式如图所示,其中每一横行都表示 (此处 , , , , , , )的展开式中的系数,杨辉三角最本质的特征是,它的两条斜边都是由数字 组成的,而其余的数则是等于它“肩”上的两个数之和.(1) 请你直接写出 .杨辉三角还有另一个特征(2) 从第二行到第五行,每一行数字组成的数(如第三行为 )都是上一行的数与积.(3) 由此你可写出 =.(a+b) (此处n=0,1,2,3,4,5..)的计算结果中的各项系数:(1) 请根据上题中的杨辉三角系数集”,仔细观察下列各式中系数的规律,并填空: 各项系数之和各项系数之和各项系数之和⑴ ;⑵ 。

②请写出 各项系数之和:(2) 设 ,求 的值.(3) 你能在(2)的基础上求出 的值吗?若能,请写出过程.(扬州2017七下期中) 对于任何实数,我们规定符号 =ad﹣bc,例如: =1×4﹣2×3=(1) 按照这个规律请你计算 的值;2(2) 按照这个规定请你计算,当a﹣3a+1=0时,求 的值.(4) 用不同的方法计算这个正方体的体积,就可以得到一个等式,这个等式可以为;(5) 已知 , ,利用上面的规律求 的值.要比较代数式A、B的大小,可以作差A-B,比较差的取值,当A-B>0时,有A>B;当A-B=0时,有A=B;当A-B<0时,有A<B.”例如,当a<0时,比较 的大小.可以观察因为当a<0时,-a>0,所以当a<0时,(1) 已知M= ,比较M、N的大小关系.(2) 某种产品的原料提价,因而厂家决定对于产品进行提价,现有三种方案:方案3:第一、二次提价均为(2) 劳格数有如下运算性质:若m、n为正数,则d(mn)=d(m)+d(n),d( )根据运算性质,填空: =(a为正数),若d(2)=0.3010,则d(16)=,d(5)=,,其中x=﹣ .①代数式:2x+ 的最小值是;(岱岳2016七下期末) 计算(1) (﹣ ax) •2y(2) (x﹣2)(x+2)﹣(x+1)(x﹣3)+(﹣3)示.根据图中的数据(单位:m),解答下列问题:。

初中数与式测试题及答案

初中数与式测试题及答案

初中数与式测试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项是单项式?A. 3x^2yB. 2x + 3yC. 5x^2 - 7x + 1D. 4xy^2 + 3答案:A2. 计算 (2x - 3)^2 的结果是什么?A. 4x^2 - 12x + 9B. 4x^2 + 12x + 9C. 4x^2 - 6x + 9D. 4x^2 + 6x + 9答案:A3. 合并同类项 3x^2 + 5x^2 - 2x^2 的结果是?A. 6x^2B. 2x^2C. 4x^2D. 5x^2答案:C4. 已知 a = 2,b = 3,求代数式 2a + b 的值。

A. 7B. 8C. 9D. 10答案:A5. 以下哪个代数式可以被因式分解为 (x - 2)(x + 3)?A. x^2 + x - 6B. x^2 - 5x + 6C. x^2 + 5x - 6D. x^2 + x + 6答案:B二、填空题(每题3分,共15分)1. 多项式 4x^3 - 7x^2 + 2x - 5 的次数是 _______。

答案:32. 代数式 3x^2 - 2x + 1 可以被因式分解为 _______。

答案:(3x - 1)(x - 1)3. 计算 (x + 1)(x - 1) 的结果是 _______。

答案:x^2 - 14. 代数式 2x^2 + 4x + 2 可以被简化为 _______。

答案:2(x^2 + 2x + 1)5. 已知 a = 5,b = -3,代数式 a^2 - b^2 的值是 _______。

答案:34三、解答题(每题5分,共20分)1. 计算 (x + 2)(x - 3) 的展开式。

答案:x^2 - x - 62. 已知 x = 1,求代数式 3x^2 - 4x + 5 的值。

答案:43. 合并同类项:7x^2 - 2x^2 + 5x - 3x + 6。

答案:5x^2 + 2x + 64. 因式分解:x^2 - 9。

中考数学《数与式》专项练习题(含答案)

中考数学《数与式》专项练习题(含答案)

中考数学《数与式》专项练习题(含答案)一、单选题1.一条河的水流速度是2.5km /h ,某船在静水中的速度是km /h v ,则该船在这条河中逆流行驶的速度是( )A .()2.5km /h v +B .()2.5km /h v -C .()2.5km /h v -D .()5km /h v - 2.-24的相反数是( )A .-24B .24C .124-D .124 3.当2x =时,代数式234(2)(8)x x x x x -+的值是( )A .-4B .-2C . 2D . 44.有理数a ,b ,c 在数轴上对应的点的位置如图所示,有下列式子:①c -a >b -a ;②a +b >a +c ;③bc >ac ;④b a >c a.其中正确的有( )A .1个B .2个C .3个D .4个5.—0.25的相反数是:( )A .14B .4C .-4D .-56.把式子()()()()()2482562121212121++++⋅⋅⋅+化简的结果为()A .102421-B .102421+C .51221-D .51221+ 7.下列各式从左到右的变形,是因式分解的是( )A .()ab ac d a b c d ++=++B .21(1)(1)a a a -=+-C .222()2a b a ab b +=++D .222(2)a a a a --=- 8.下列各式的结果为3-的是( )A .()()()2933---++--B .012345-+-+-C .4.5 2.3 2.5 3.72-+-+D .()()()27603---+-+++ 9.已知a 2+ab=5,ab+b 2=﹣2,那么a 2﹣b 2的值为( )A .3B .7C .10D .﹣1010.实数4的平方根是()A .2B .-2C .2±D .16±11.下面的说法正确的是( )A .正有理数和负有理数统称有理数B .整数和分数统称有理数C .正整数和负整数统称整数D .有理数包括整数、自然数、零、负数和分数12.国家统计局公布的数据显示,经初步核算,2020年尽管受到新冠疫情的影响,前三个季度国内生产总值仍然达到近697800亿元,按可比价格计算,同比增长了6.2%.将数据697800用科学记数法表示为( )A .3697.810⨯B .469.7810⨯C .56.97810⨯D .60.697810⨯二、填空题13.下面给出的五个结论中:①最大的负整数是-1;②数轴上表示数3和-3的点到原点的距离相等;③当a≤0时,|a|=-a 成立;④若a 2=9,则a 一定等于3; ⑤2110a +一定是正数.说法正确的有_________________ 14.现有一列数a 1,a 2,a 3,…,其中a 1=1,a 2=111+a ,a 3=211+a ,…,a n =111+n a -,则a 17的值为________.15.计算21()2-____.16.已知132n xy +-与34y x 是同类项,则n 的值是__________. 17.计算:23÷25=______.18.三个连续奇数,中间一个为2n ﹣1,则这三个连续奇数之和为_____.19.有一列数a 1,a 2,a 3,…,a n ,已知a 1=1,a 2=2,从第三个数开始,每个数都等于它前面的两个数中第二个数除以第一个数所得的商,例a 3=a 2÷a 1=2……,那么a 2018=_____.20.用正负数表示具有相反意义的量:(1)高出海平面342米记为+342米,那么-20米表示的是__________;(2)某工厂增产1 200吨记为+1 200吨,那么减产13吨记为__________.三、解答题21.计算:(1)﹣13+10﹣7 (2)21—41??59÷()()22.计算:(1;(2.23.已知a+b=-8 , ab=10,求22a b +和 2()a b -的值.24.先化简,再求值:2211111a a a a a --÷+--+,其中a=4.25.请回答下列问题:(1介于连续的两个整数a 和b 之间,且a b <,那么a = ,b = ;(2)x 2的小数部分,y 1的整数部分,求x = ,y = ;(3)求)yx 的平方根.26.已知在纸面上画一数轴,折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣2表示的点与数 表示的点重合(2)若﹣2表示的点与4表示的点重合,回答以下问题:①数7对应的点与数 对应的点重合;②若数轴上A 、B 两点之间的距离为2020(点A 在B 的左侧),且A 、B 两点经折叠后重合,求A 、B 两点表示的数是多少?(3)点C 在数轴上,将它向右移动4个单位,再向左2个单位后,若新位置与原位置到原点的距离相等,则C 原来表示的数是多少?请列式计算,说明理由.27.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是 (写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式);(3)比较图1、图2阴影部分的面积,可以得到公式 ;(4)运用你所得到的公式,计算下列各题:① 20.2×19.8 ;②()()22m n p m n p +--+.28.在解决数学问题时,我们一般先仔细读题干,找出有用信息作为已知条件,然后用这些信息解决问题,但是有的题目信息比较明显,我们把这样的信息称为显性条件,而有的信息不太明显需要结合图形,特殊式子成立的条件,实际问题等发现隐含信息作为条件,这样的条件称为隐含条件,所以我们在做题时更注意发现题目中的隐含条件(阅读理解)读下面的解题过程,体会加何发现隐含条件,并回答. 化简:2(13x)1x ---.解:隐含条件1-3x≥0,解得:x 13≤,∴原式=(1-3x )-(1-x )=1-3x-1+x=-2x(启发应用)已知△ABC 22x 1(5x)4(4x)+---,,,记△ABC 的周长为C △ABC(1)当x=2时,△ABC 的最长边的长度是______(请直接写出答案).(2)请求出C △ABC (用含x 的代数式表示,结果要求化简).29.某检修小组乘一辆汽车沿一条东西向公路检修线路,约定向东走为正,某天从A 地出发到收工时,行走记录如下:(单位:km )+15,-2,+5,-3,+8,-3,-1,+11,+4,-5,-2,+7,-3,+5(1)请问,收工时检修小组距离A地多远?在A地的那一边?(2)若检修小组所乘汽车的平均油耗是7.5升/100km,则汽车在路上行走大约耗油多少升?(精确到0.1升)参考答案1.B2.B3.A4.C5.A6.C7.B8.B9.B10.C11.B12.C13.①②③⑤14.1597 258415.4 16.317.1 418.6n﹣319.2.20.低于海平面20米, -13吨21.⑴ -10 ⑵ -322.(1)0;(2)423.44,24.24.1 525.(1)4;b=(2−4;3(3)±826.(1)2;(2)①-5;②点A表示的数是-1009、点B表示的数是1011;(3)-1.27.(1)a2−b2;(2)a−b,a+b,(a+b)(a−b);(3)(a+b)(a−b)=a2−b2;(4)①99.96;②4m2−n2+2np−p2.28.(1)3;(229.(1)所以检修小组最后在A地东面36km处;(2)汽车在路上行走大约耗油5.6升.。

初中数学综合版数与式有理数正数和负数-章节测试习题(5)

初中数学综合版数与式有理数正数和负数-章节测试习题(5)

章节测试题1.【答题】如果收入15元记作+15元,那么支出20元记作()元.A.+5B.+20C.﹣5D.﹣20【答案】D【分析】利用相反意义量的定义判断即可.【解答】解:“正”和“负”相对,所以如果收入15元记作+15元,那么支出20元记作-20元.2.【答题】有一种记分的方法:80分以上如88分记为+8分,某个学生在记分表上记为﹣6分,则这个学生的分数应该是()分.A.74B.﹣74C.86D.﹣86【答案】A【分析】利用相反意义量的定义判断即可.【解答】解:∵把88分的成绩记为+8分,∴80分为基准点.∴74的成绩记为-6分.∴这个学生的分数应该是74分.选A.3.【答题】有一种记分方法:以75分为基准,80分记为分,某同学得71分,则应记为()A.+4分B.-4分C.+1分D.-1分【答案】B【分析】利用相反意义量的定义判断即可.【解答】解:以75分为准,80分记为+5分,某同学得分为71分,则应记为-4分,选B.4.【答题】如果水位下降,记作,那么水位上升,记作()A. B. C. D.【答案】D【分析】利用相反意义量的定义判断即可.【解答】解:“正”和“负”相对,所以若+3表示水位下降3米,那么水位上升4米表示为-4米.选D.5.【答题】一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的是()A. 24.70千克B. 25.30千克C. 24.80千克D. 25.51千克【答案】C【分析】利用相反意义量的定义判断即可.【解答】“25±0.25 千克”表示合格范围在 25 上下 0.25 的范围内的是合格品,即24.75 到 25.25 之间的合格,故只有 24.80 千克合格,选C.6.【答题】下列各组数中,具有相反意义的量是()A. 身高180cm和身高90cmB. 向东走5公里和向南走5公里C. 收入300元和支出300元D. 使用汽油10公斤和浪费酒精10公斤【答案】C【分析】根据正数和负数表示相反意义的量,可得答案.【解答】解: A.不是相反意义的量,故A错误;B.向东走与向南走,不是相反意义的量,故B错误;C.收入与支出是相反意义的量,故C正确;D.使用汽油10公斤和浪费酒精10公斤不是相反意义的量,故D错误.故选: C.7.【答题】如果零上记作,那么零下记作()A. B. C. D.【答案】D【分析】根据正、负数表示意义相反的量,若零上记为正,则零下记为负;【解答】解:因为零上记作,所以零下记作;选D.8.【答题】有下列各数:,,,,,其中属于负数的共有()A.个B.个C.个D.个【答案】B【分析】先对绝对值、括号的式子进行化简,再根据负数的定义来判断是否为负数;【解答】解:因为=-2,=3.5,所以,,,,,中负数有、和共3个;选B.9.【答题】若向西走16米记为-16米,则向东走37米记为()A.+37米B.-37米C.-21米D.+21米【答案】A【分析】根据正负数表示具有相反意义的量,若向西为负,则向东为正.【解答】根据正负数表示具有相反意义的量,若向西走16米记为-16米,则向东走37米记为+37米;选A.10.【答题】规定向北为正,某人走了+5米,又继续走了﹣10米,那么,他实际上()A.向北走了15mB.向南走了15mC.向北走了5mD.向南走了5m【答案】D【分析】根据正负数的意义,列出加法算式,再进行计算,看结果的符号,确定实际意义.【解答】解:∵5+(-10)=-5km,∴实际上向南走了5米.选D.11.【答题】用-a表示的数一定是()A.负数B.负整数C.正数或负数或0D.以上结论都不对【答案】C【分析】明确“正”和“负”所表示的意义;再根据题意作答即可.【解答】当a表示正数时,-a表示负数;当a表示负数时,-a表示正数;当a表示0时,-a表示0.选C.12.【答题】如果将“收入100元”记作“+100元”,那么“支出50元”应记作()A.+50元B.-50元C.+150元D.-150元【答案】B【分析】利用相反意义量的定义判断即可.【解答】由相反意义量的定义知将“收入100元”记作“+100元”,那么“支出50元”应记作“−50元”,选B.13.【答题】某项科学研究,以45min为1个时间单位,并记每天上午l0时为0,10时以前记为负,10时以后记为正.例如,9︰15记为-1;10︰45记为l等等.以此类推,上午7︰45应记为()A.3B.-3C.-2.15D.-7.45【答案】B【分析】本题主要考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.利用相反意义量的定义判断即可.【解答】由于记每天上午10时为0,10时以前记为负,10时以后记为正,故上午7:45距10:00有135分钟,记为-3,选B.14.【答题】在下列各数:,-7,-3,0.56,0,-0.0l,25中,负数有()A.3个B.4个C.5个D.6个【答案】A【分析】明确“正”和“负”所表示的意义;再根据题意作答即可.【解答】,-7,-3,0.56,0,-0.0l,25中,负数有-7,-3,-0.0l共3个,选A.15.【答题】下列各组量中具有相反意义的量是( )A. 某同学在操场上慢跑500m后,加速跑了200mB. 某超市上周亏损3000元,本周盈利l2 000元C. 学生甲比学生乙身高高1.5cm,学生乙比学生甲体重轻2.4kgD. 小明期中数学考试为50分,期末考试为70分【答案】B【分析】利用相反意义量的定义判断即可.【解答】A. 某同学在操场上慢跑500m后,加速跑了200m,不符合相反意义的量,故错误;B. 某超市上周亏损3000元,本周盈利l2 000元,符合相反意义的量,故正确;C. 学生甲比学生乙身高高1.5cm,学生乙比学生甲体重轻2.4kg,不符合相反意义的量,故错误;D. 小明期中数学考试为50分,期末考试为70分,不符合相反意义的量,故错误,选B.16.【答题】-10是一个()A.正整数B.负整数C.自然数D.非负数【答案】B【分析】明确“正”和“负”所表示的意义;再根据题意作答即可.【解答】-10是整数,也是负整数,选B.17.【答题】当A地高于海平面152米时,记作“海拔+152米”,那么B地低于海平面23米时,记作()A.海拔23米B.海拔﹣23米C.海拔175米D.海拔129米【答案】B【分析】利用相反意义量的定义判断即可.【解答】由已知,当A地高于海平面152米时,记作“海拔+152米”,那么B地低于海平面23米时,则应该记作“海拔-23米”,选B.18.【答题】一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的有()A.25.30千克B.25.51千克C.24.80千克D.24.70千克【答案】C【分析】利用相反意义量的定义判断即可.【解答】由题意可知这种面粉最多为:25+0.25=25.25,最少为25-0.25=24.75,25.30>25.25,故不合格;25.51>25.25,故不合格;24.75<24.80<25.25,故合格;24.70<24.75,故不合格,选C.19.【答题】下列说法中正确的有()①0是最小的自然数;②0是最小的正数;③0是最小的非负数;④0既不是奇数,也不是偶数;⑤0表示没有温度.A.1个B.2个C.3个D.4个.【答案】B【分析】本题考查了与零相关的概念.0是一个重要且特殊的有理数,0的意义以及相关知识是常见的考点,需要重点理解和掌握.本题涉及的几个重要结论:0既不是正数也不是负数;0是整数,也是自然数;0不仅可以表示“没有”的意义而且还是正数和负数的分界.另外,一般认为0可以被2整除,故0是偶数.【解答】说法①:因为自然数包括正整数和0,正整数一定大于0,所以0是最小的自然数.故说法①正确.说法②:0既不是正数也不是负数.故说法②错误.说法③:因为非负数包括正数和0,正数一定大于0,所以0是最小的非负数.故说法③正确.说法④:0是偶数.故说法④错误.说法⑤:0不只可以表示没有温度,该说法过于片面.故说法⑤错误.综上所述,正确的说法有①③,共2个.故本题应选B.20.【答题】在0,1,-2,-3.5这四个数中,是负整数的是()A.0B.1C.-2D.-3.5【答案】C【分析】明确“正”和“负”所表示的意义;再根据题意作答即可.【解答】负整数应该既是负数又是整数.在本题给出的四个数中,负数是:-2,-3.5;整数是:0,1,-2.由此可知,在这四个数中,-2是负整数.故本题应选C.。

中考数学专题复习《数与式》测试卷(附带答案)

中考数学专题复习《数与式》测试卷(附带答案)

中考数学专题复习《数与式》测试卷(附带答案) 学校:___________班级:___________姓名:___________考号:___________一.科学记数法—表示较大的数(共13小题)1.(2024•平谷区一模)从水利部长江水利委员会获悉,截止2024年3月24日,南水北调中线一期工程自2014年12月全面通水以来,已累计调水700亿立方米.其中70000000000用科学记数法表示为()A.7×108B.7×109C.7×1010D.7×10112.(2024•房山区一模)据中国国家铁路集团有限公司消息:在2024年为期40天的春运期间,全国铁路累计发送旅客4.84亿人次,日均发送12089000人次.将12089000用科学记数法表示应为()A.12.089×106B.1.2089×106C.1.2089×107D.0.12089×1083.(2024•石景山区一模)2023年10月26日,搭载神舟十七号载人飞船的长征二号F摇十七运载火箭在酒泉卫星发射中心成功发射.长征二号F(代号:CZ﹣2F,简称:长二F,绰号:神箭)主要用于发射神舟飞船和大型目标飞行器到近地轨道,其近地轨道运载能力是8500千克.将8500用科学记数法表示应为()A.85×102B.8.5×102C.8.5×103D.0.85×1044.(2024•通州区一模)2024年政府工作报告中提出“大力推进现代化产业体系建设,加快发展新质生产力”.北京正在建设国际科技创新中心,人工智能产业是北京的主导产业之一.目前,人工智能相关企业数量约2200家,全国40%人工智能企业聚集于此.2023年,北京在人工智能领域融资总额约223亿元,约占全国四分之一.数据22300000000用科学记数法表示应为()A.0.223×1011B.2.23×1010C.22.3×109D.223×1085.(2024•北京一模)2023年,我国共授权发明专利92.1万件,同比增长15.4%.将921000用科学记数法表示应为()A.92.1×104B.9.21×104C.9.21×105D.0.921×1066.(2024•西城区一模)2024年5.5G技术正式开始商用,它的数据下载的最高速率从5G初期的1Gbps 提升到10Gbps,给我们的智慧生活“提速”.其中10Gbps表示每秒传输10000000000位(bit)的数据.将10000000000用科学记数法表示应为()A.0.1×1011B.1×1010C.1×1011D.10×1097.(2024•朝阳区一模)2024年1月21日北京市第十六届人民代表大会第二次会议开幕,在政府工作报告中提到,2023年北京向天津、河北输出技术合同成交额74870000000元,将74870000000用科学记数法表示应为()A.74.87×109B.7.487×1010C.7.487×109D.0.7487×10118.(2024•大兴区一模)2024年是京津冀协同发展十周年,高标准建设雄安新区成效显著.从新区设立至2023年底,累计开发面积184平方公里,4017栋楼宇拔地而起,总建筑面积4370万平方米.将43700000用科学记数法表示应为()A.43.7×106B.4.37×107C.4.37×108D.0.437×1099.(2024•海淀区一模)据报道,2024年春节假期北京接待游客约1750万人次,旅游收入同比增长近四成.将17500000用科学记数法表示应为()A.175×105B.1.75×106C.1.75×107D.0.175×10810.(2024•东城区一模)2024年2月29日,在国家统计局发布的《中华人民共和国2023年国民经济和社会发展统计公报》中,2023年全年完成造林面积400万公顷,其中人工造林面积133万公顷.将数字1330000用科学记数法表示应为()A.1.33×107B.13.3×105C.1.33×106D.0.13×10711.(2024•丰台区一模)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.一架C919飞机最大储油量超过19000千克.将数据19000用科学记数法表示为()A.0.19×105B.1.9×104C.1.9×103D.19×10312.(2024•顺义区一模)全国绿化委员会办公室发布的《2023年中国国土绿化状况公报》显示,2023年全国完成国土绿化任务超800万公顷,其中造林3998000公顷.将3998000用科学记数法表示应为()A.3.998×107B.3.998×106C.3998×103D.3.998×10313.(2024•门头沟区一模)近几年全国各省市都在发展旅游业,让游客充分感受地域文化,据统计,某市2023年的游客接待量为210000000人次,将210000000用科学记数法表示为()A.2.1×107B.2.1×108C.2.1×109D.2.1×1010二.实数与数轴(共4小题)14.(2024•大兴区一模)实数a,b,c在数轴上的对应点的位置如图所示,下列结论中正确的是()A.b﹣c>0B.ac>0C.b+c<0D.ab<115.(2024•海淀区一模)实数a在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a≥﹣2B.a<﹣3C.﹣a>2D.﹣a≥316.(2024•东城区一模)若实数a,b在数轴上的对应点的位置如图所示,在下列结论中,正确的是()A.|a|<|b|B.a+1<b+1C.a2<b2D.a>﹣b17.(2024•顺义区一模)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.a>﹣1B.b>1C.﹣a<b D.﹣b>a三.估算无理数的大小(共1小题)18.(2024•平谷区一模)写出一个大于1且小于4的无理数.(答案不唯一)四.实数的运算(共12小题)19.(2024•平谷区一模)计算:2cos30°+()﹣1+|﹣1|﹣.20.(2024•房山区一模)计算:.21.(2024•石景山区一模)计算:.22.(2024•通州区一模)计算:.23.(2024•北京一模)计算:4sin45°+|﹣2|﹣+()﹣1.24.(2024•西城区一模)计算:|﹣|﹣()﹣1+2sin60°﹣.25.(2024•朝阳区一模)计算:+|1﹣|+(2﹣π)0﹣2sin45°.26.(2024•大兴区一模)计算:.27.(2024•海淀区一模)计算:2sin60°+|﹣1|+()﹣1﹣.28.(2024•东城区一模)计算:.29.(2024•丰台区一模)计算:|﹣3|+2cos30°﹣.30.(2024•顺义区一模)计算:.五.整式的混合运算—化简求值(共5小题)31.(2024•通州区一模)已知2x2﹣x﹣1=0,求代数式4x(x﹣1)+(2x+1)(2x﹣1)的值.31.(2024•北京一模)已知2x2﹣x﹣1=0,求代数式(3x+2)(3x﹣2)﹣3x(x+1)的值.32.(2024•西城区一模)已知x2﹣x﹣4=0,求代数式(x﹣2)2+(x﹣1)(x+3)的值.33.(2024•大兴区一模)已知a2+3a﹣1=0,求代数式(a+1)2+a(a+4)﹣2的值.34.(2024•顺义区一模)已知x2+2x=1,求代数式4(x+1)+(x﹣1)2的值.六.提公因式法与公式法的综合运用(共11小题)36.(2024•平谷区一模)分解因式:ax2+2ax+a=.37.(2024•房山区一模)分解因式:x2y﹣4y=.38.(2024•石景山区一模)分解因式:xy2﹣4x=.39.(2024•北京一模)分解因式:8a2﹣8b2=.40.(2024•西城区一模)分解因式:x2y﹣12xy+36y=.41.(2024•朝阳区一模)分解因式:3x2+6xy+3y2=.42.(2024•大兴区一模)分解因式:ax2﹣4a=.43.(2024•海淀区一模)分解因式:a3﹣4a=.44.(2024•东城区一模)因式分解:2xy2﹣18x=.45.(2024•丰台区一模)分解因式:ax2﹣4ay2=.46.(2024•顺义区一模)分解因式:4m2﹣4=.七.分式有意义的条件(共3小题)47.(2024•房山区一模)若代数式有意义,则实数x的取值范围是.48.(2024•丰台区一模)若代数式有意义,则实数x的取值范围是.49.(2024•顺义区一模)代数式有意义,则实数x的取值范围是.八.分式的值(共2小题)50.(2024•海淀区一模)已知b2﹣4a=0,求代数式的值.51.(2024•东城区一模)已知2x﹣y﹣9=0,求代数式的值.九.分式的加减法(共1小题)52.(2024•平谷区一模)化简:的结果为.一十.分式的化简求值(共2小题)52.(2024•石景山区一模)已知x2﹣3x﹣6=0,求代数式的值.53.(2024•丰台区一模)已知x﹣3y﹣2=0,求代数式的值.一十一.二次根式有意义的条件(共6小题)55.(2024•平谷区一模)若代数式有意义,则实数x的取值范围是.56.(2024•石景山区一模)若在实数范围内有意义,则实数x的取值范围是.57.(2024•通州区一模)若在实数范围内有意义,则实数x的取值范围为.58.(2024•朝阳区一模)若式子在实数范围内有意义,则x的取值范围是.59.(2024•海淀区一模)代数式在实数范围内有意义,则x的取值范围是.60.(2024•东城区一模)若二次根式有意义,则实数x的取值范围是.参考答案与试题解析一.科学记数法—表示较大的数(共13小题)1.(2024•平谷区一模)从水利部长江水利委员会获悉,截止2024年3月24日,南水北调中线一期工程自2014年12月全面通水以来,已累计调水700亿立方米.其中70000000000用科学记数法表示为()A.7×108B.7×109C.7×1010D.7×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:70000000000=7×1010.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(2024•房山区一模)据中国国家铁路集团有限公司消息:在2024年为期40天的春运期间,全国铁路累计发送旅客4.84亿人次,日均发送12089000人次.将12089000用科学记数法表示应为()A.12.089×106B.1.2089×106C.1.2089×107D.0.12089×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:12089000=1.2089×107故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2024•石景山区一模)2023年10月26日,搭载神舟十七号载人飞船的长征二号F摇十七运载火箭在酒泉卫星发射中心成功发射.长征二号F(代号:CZ﹣2F,简称:长二F,绰号:神箭)主要用于发射神舟飞船和大型目标飞行器到近地轨道,其近地轨道运载能力是8500千克.将8500用科学记数法表示应为()A.85×102B.8.5×102C.8.5×103D.0.85×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:8500=8.5×103故选:C.【点评】本题考查了科学记数法表示绝对值较大的数的方法,掌握科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数是关键.4.(2024•通州区一模)2024年政府工作报告中提出“大力推进现代化产业体系建设,加快发展新质生产力”.北京正在建设国际科技创新中心,人工智能产业是北京的主导产业之一.目前,人工智能相关企业数量约2200家,全国40%人工智能企业聚集于此.2023年,北京在人工智能领域融资总额约223亿元,约占全国四分之一.数据22300000000用科学记数法表示应为()A.0.223×1011B.2.23×1010C.22.3×109D.223×108【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:22300000000=2.23×1010故选:B.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.5.(2024•北京一模)2023年,我国共授权发明专利92.1万件,同比增长15.4%.将921000用科学记数法表示应为()A.92.1×104B.9.21×104C.9.21×105D.0.921×106【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:921000=9.21×105故选:C.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.6.(2024•西城区一模)2024年5.5G技术正式开始商用,它的数据下载的最高速率从5G初期的1Gbps 提升到10Gbps,给我们的智慧生活“提速”.其中10Gbps表示每秒传输10000000000位(bit)的数据.将10000000000用科学记数法表示应为()A.0.1×1011B.1×1010C.1×1011D.10×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:10000000000=1×1010.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(2024•朝阳区一模)2024年1月21日北京市第十六届人民代表大会第二次会议开幕,在政府工作报告中提到,2023年北京向天津、河北输出技术合同成交额74870000000元,将74870000000用科学记数法表示应为()A.74.87×109B.7.487×1010C.7.487×109D.0.7487×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:74870000000=7.487×1010故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(2024•大兴区一模)2024年是京津冀协同发展十周年,高标准建设雄安新区成效显著.从新区设立至2023年底,累计开发面积184平方公里,4017栋楼宇拔地而起,总建筑面积4370万平方米.将43700000用科学记数法表示应为()A.43.7×106B.4.37×107C.4.37×108D.0.437×109【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:43700000=4.37×107.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.9.(2024•海淀区一模)据报道,2024年春节假期北京接待游客约1750万人次,旅游收入同比增长近四成.将17500000用科学记数法表示应为()A.175×105B.1.75×106C.1.75×107D.0.175×108【分析】根据科学记数法的规则进行作答即可.【解答】解:17500000=1.75×107.故选:C.【点评】本题主要考查科学记数法,解题的关键是熟练掌握科学记数法的规则.10.(2024•东城区一模)2024年2月29日,在国家统计局发布的《中华人民共和国2023年国民经济和社会发展统计公报》中,2023年全年完成造林面积400万公顷,其中人工造林面积133万公顷.将数字1330000用科学记数法表示应为()A.1.33×107B.13.3×105C.1.33×106D.0.13×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:1330000=1.33×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(2024•丰台区一模)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.一架C919飞机最大储油量超过19000千克.将数据19000用科学记数法表示为()A.0.19×105B.1.9×104C.1.9×103D.19×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:19000=1.9×104.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(2024•顺义区一模)全国绿化委员会办公室发布的《2023年中国国土绿化状况公报》显示,2023年全国完成国土绿化任务超800万公顷,其中造林3998000公顷.将3998000用科学记数法表示应为()A.3.998×107B.3.998×106C.3998×103D.3.998×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:3998000=3.998×106.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(2024•门头沟区一模)近几年全国各省市都在发展旅游业,让游客充分感受地域文化,据统计,某市2023年的游客接待量为210000000人次,将210000000用科学记数法表示为()A.2.1×107B.2.1×108C.2.1×109D.2.1×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:210000000=2.1×108故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二.实数与数轴(共4小题)14.(2024•大兴区一模)实数a,b,c在数轴上的对应点的位置如图所示,下列结论中正确的是()A.b﹣c>0B.ac>0C.b+c<0D.ab<1【分析】根据数轴可知:﹣3<a<﹣2<b<﹣1<0<c<1,由此逐一判断各选项即可.【解答】解:由数轴可知:﹣3<a<﹣2<b<﹣1<0<c<1A、∵﹣2<b<﹣1,0<c<1,∴b﹣c<0,故选项A不符合题意;B、∵﹣3<a<﹣2,0<c<1,∴ac<0,故选项B不符合题意;C、∵﹣2<b<﹣1,0<c<1,∴b+c<0,故选项C符合题意;D、∵﹣3<a<﹣2<b<﹣1,∴ab>1,故选项D不符合题意;故选:C.【点评】本题考查的是实数与数轴,熟悉数轴上各点的分布特点是解题的关键.15.(2024•海淀区一模)实数a在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a≥﹣2B.a<﹣3C.﹣a>2D.﹣a≥3【分析】由数轴可知,﹣3<a<﹣2,由此逐一判断各选项即可.【解答】解:由数轴可知,﹣3<a<﹣2A、﹣3<a<﹣2,故选项A不符合题意;B、﹣3<a<﹣2,故选项B不符合题意;C、∵﹣3<a<﹣2,∴2<﹣a<3,故选项C符合题意;D、∵﹣3<a<﹣2,∴2<﹣a<3,故选项D不符合题意;故选:C.【点评】本题考查的是实数与数轴,从题目中提取已知条件是解题的关键.16.(2024•东城区一模)若实数a,b在数轴上的对应点的位置如图所示,在下列结论中,正确的是()A.|a|<|b|B.a+1<b+1C.a2<b2D.a>﹣b【分析】根据图示,可得﹣2<a<﹣1,0<b<1,据此逐项判断即可.【解答】解:根据图示,可得﹣2<a<﹣1,0<b<1∵﹣2<a<﹣1,0<b<1∴1<|a|<2,0<|b|<1∴|a|>|b|∴选项A不符合题意;∵﹣2<a<﹣1,0<b<1∴a<b∴a+1<b+1∴选项B符合题意;∵﹣2<a<﹣1,0<b<1∴1<a2<4,0<b2<1∴a2>b2∴选项C不符合题意;∵0<b<1∴﹣1<﹣b<0∵﹣2<a<﹣1∴a<﹣b∴选项D不符合题意.故选:B.【点评】此题主要考查了实数大小比较的方法,以及数轴的特征:一般来说,当数轴正方向朝右时,右边的数总比左边的数大.17.(2024•顺义区一模)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.a>﹣1B.b>1C.﹣a<b D.﹣b>a【分析】根据图示,可得﹣2<a<﹣1,0<b<1,据此逐项判断即可.【解答】解:根据图示,可得﹣2<a<﹣1,0<b<1∵a<﹣1∴选项A不符合题意;∵b<1∴选项B不符合题意;∵﹣2<a<﹣1∴1<﹣a<2∵0<b<1∴﹣a>b∴选项C不符合题意;∵0<b<1∴﹣1<﹣b<0∵﹣2<a<﹣1∴﹣b>a∴选项D符合题意.故选:D.【点评】此题主要考查了实数大小比较的方法,以及数轴的特征:一般来说,当数轴正方向朝右时,右边的数总比左边的数大.三.估算无理数的大小(共1小题)18.(2024•平谷区一模)写出一个大于1且小于4的无理数π.(答案不唯一)【分析】由于开方开不尽的数是无理数,然后确定的所求数的范围即可求解.【解答】解:∵1=,4=∴只要是被开方数大于1而小于16,且不是完全平方数的都可.同时π也符合条件.【点评】此题主要考查了无理数的大小的比较,其中无理数包括开方开不尽的数,和π有关的数,有规律的无限不循环小数.四.实数的运算(共12小题)19.(2024•平谷区一模)计算:2cos30°+()﹣1+|﹣1|﹣.【分析】根据特殊角的三角函数值、负整数指数幂、绝对值、二次根式的化简分别计算即可.【解答】解:2cos30°+()﹣1+|﹣1|﹣===1.【点评】本题考查了实数的运算,熟练掌握特殊角的三角函数值、负整数指数幂、绝对值、二次根式的化简是解题的关键.20.(2024•房山区一模)计算:.【分析】利用特殊锐角三角函数值,负整数指数幂,绝对值的性质,二次根式的性质计算即可.【解答】解:原式=6×+2+3﹣3=3+2+3﹣3=5.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.21.(2024•石景山区一模)计算:.【分析】利用绝对值的性质,二次根式的性质,特殊锐角三角函数值及负整数指数幂计算即可.【解答】解:原式=2﹣+2﹣2×+5=2﹣+2﹣+5=7.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.22.(2024•通州区一模)计算:.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负整数指数幂的性质分别化简得出答案.【解答】解:原式=4×=2+4+1=5.【点评】此题主要考查了实数运算,正确化简各数是解题关键.23.(2024•北京一模)计算:4sin45°+|﹣2|﹣+()﹣1.【分析】sin45°=,再根据实数和指数幂的运算法则计算即可.【解答】解:原式=4×+2﹣3+2=2﹣3+4=4.【点评】本题考查的是实数的运算,指数幂和特殊角的三角函数值,熟练掌握上述知识点是解题的关键.24.(2024•西城区一模)计算:|﹣|﹣()﹣1+2sin60°﹣.【分析】利用特殊角的三角函数值及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式===﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.25.(2024•朝阳区一模)计算:+|1﹣|+(2﹣π)0﹣2sin45°.【分析】分别根据绝对值、零指数幂及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=2=3=2.【点评】本题考查的是实数的运算,熟知绝对值、零指数幂的运算法则,熟记特殊角的三角函数值是解答此题的关键.26.(2024•大兴区一模)计算:.【分析】cos45°=,再根据实数和指数幂的运算法则计算即可.【解答】解:原式==.【点评】本题考查的是实数的运算,指数幂和特殊角的三角函数值,熟练掌握上述知识点是解题的关键.27.(2024•海淀区一模)计算:2sin60°+|﹣1|+()﹣1﹣.【分析】根据实数的运算法则、负整数指数幂和特殊角的三角函数值的定义进行计算.【解答】解:原式=2×+1+2﹣2=+1+2﹣2=3﹣.【点评】本题考查了实数的运算法则、负整数指数幂和特殊角的三角函数值,掌握实数的运算法则、负整数指数幂和特殊角的三角函数值的定义是关键.28.(2024•东城区一模)计算:.【分析】利用二次根式的性质,特殊锐角三角函数值,零指数幂,绝对值的性质计算即可.【解答】解:原式=4﹣2×+1﹣2=4﹣+1﹣2=3﹣1.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.29.(2024•丰台区一模)计算:|﹣3|+2cos30°﹣.【分析】直接利用特殊角的三角函数值、负整数指数幂的性质、二次根式的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=3+2×﹣3﹣2=3+﹣3﹣2=﹣.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.30.(2024•顺义区一模)计算:.【分析】利用负整数指数幂,特殊锐角三角函数值,二次根式的性质,零指数幂计算即可.【解答】解:原式=﹣4×+2+1=﹣2+2+1=.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.五.整式的混合运算—化简求值(共5小题)31.(2024•通州区一模)已知2x2﹣x﹣1=0,求代数式4x(x﹣1)+(2x+1)(2x﹣1)的值.【分析】利用平方差公式,单项式乘多项式的法则进行计算,然后把2x2﹣x=1代入化简后的式子进行计算,即可解答.【解答】解:4x(x﹣1)+(2x+1)(2x﹣1)=4x2﹣4x+4x2﹣1=8x2﹣4x﹣1∵2x2﹣x﹣1=0∴2x2﹣x=1∴当2x2﹣x=1时,原式=4(2x2﹣x)﹣1=4×1﹣1=4﹣1=3.【点评】本题考查了整式的混合运算﹣化简求值,平方差公式,准确熟练地进行计算是解题的关键.32.(2024•北京一模)已知2x2﹣x﹣1=0,求代数式(3x+2)(3x﹣2)﹣3x(x+1)的值.【分析】利用平方差公式,单项式乘多项式的法则进行计算,然后把2x2﹣x=1代入化简后的式子进行计算,即可解答.【解答】解:(3x+2)(3x﹣2)﹣3x(x+1)=9x2﹣4﹣3x2﹣3x=6x2﹣3x﹣4∵2x2﹣x﹣1=0∴2x2﹣x=1当2x2﹣x=1时,原式=3(2x2﹣x)﹣4=3×1﹣4=3﹣4=﹣1.【点评】本题考查了整式的混合运算﹣化简求值,平方差公式,准确熟练地进行计算是解题的关键.33.(2024•西城区一模)已知x2﹣x﹣4=0,求代数式(x﹣2)2+(x﹣1)(x+3)的值.【分析】利用完全平方公式,多项式乘多项式的法则进行计算,然后把x2﹣x=4代入化简后的式子进行计算,即可解答.【解答】解:(x﹣2)2+(x﹣1)(x+3)=x2﹣4x+4+x2+3x﹣x﹣3=2x2﹣2x+1∵x2﹣x﹣4=0∴x2﹣x=4∴当x2﹣x=4时,原式=2(x2﹣x)+1=2×4+1=8+1=9.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,准确熟练地进行计算是解题的关键.34.(2024•大兴区一模)已知a2+3a﹣1=0,求代数式(a+1)2+a(a+4)﹣2的值.【分析】利用完全平方公式,单项式乘多项式法则进行计算,然后把a2+3a=1代入化简后的式子进行计算即可解答.【解答】解:(a+1)2+a(a+4)﹣2=a2+2a+1+a2+4a﹣2=a2+a2+2a+4a+1﹣2=2a2+6a﹣1∵a2+3a﹣1=0∴a2+3a=1当a2+3a=1时,原式=2(a2+3a)﹣1=2×1﹣1=2﹣1=1.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,准确熟练地进行计算是解题的关键.35.(2024•顺义区一模)已知x2+2x=1,求代数式4(x+1)+(x﹣1)2的值.【分析】利用完全平方公式,单项式乘多项式的法则进行计算,然后把x2+2x=1代入化简后的式子进行计算,即可解答.【解答】解:4(x+1)+(x﹣1)2=4x+4+x2﹣2x+1=x2+2x+5当x2+2x=1时,原式=1+5=6.【点评】本题考查了整式的混合运算﹣化简求值,代数式求值,完全平方公式,准确熟练地进行计算是解题的关键.六.提公因式法与公式法的综合运用(共11小题)【分析】先提取公因式,再根据完全平方公式进行二次分解.完全平方公式:a2±2ab+b2=(a±b)2.【解答】解:ax2+2ax+a=a(x2+2x+1)﹣﹣(提取公因式)=a(x+1)2.﹣﹣(完全平方公式)【点评】本题考查了提公因式法与公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意要分解彻底.37.(2024•房山区一模)分解因式:x2y﹣4y=y(x+2)(x﹣2).【分析】先提公因式,再利用平方差公式继续分解即可解答.【解答】解:x2y﹣4y=y(x2﹣4)=y(x+2)(x﹣2)故答案为:y(x+2)(x﹣2).【点评】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.38.(2024•石景山区一模)分解因式:xy2﹣4x=x(y+2)(y﹣2).【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(y2﹣4)=x(y+2)(y﹣2)故答案为:x(y+2)(y﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.39.(2024•北京一模)分解因式:8a2﹣8b2=8(a+b)(a﹣b).【分析】提公因式后利用平方差公式因式分解即可.【解答】解:原式=8(a2﹣b2)=8(a+b)(a﹣b)故答案为:8(a+b)(a﹣b).【点评】本题考查因式分解,熟练掌握因式分解的方法是解题的关键.40.(2024•西城区一模)分解因式:x2y﹣12xy+36y=y(x﹣6)2.【分析】提取公因式后用完全平方公式分解即可.【解答】解:x2y﹣12xy+36y=y(x2﹣12x+36)=y(x﹣6)2故答案为:y(x﹣6)2.【点评】本题考查了因式分解,熟练掌握提取公因式和公式法分解因式是关键.【分析】先利用提取公因式法提取数字3,再利用完全平方公式继续进行分解.【解答】解:3x2+6xy+3y2=3(x2+2xy+y2)=3(x+y)2【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.42.(2024•大兴区一模)分解因式:ax2﹣4a=a(x+2)(x﹣2).【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:ax2﹣4a=a(x2﹣4)=a(x+2)(x﹣2).【点评】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.43.(2024•海淀区一模)分解因式:a3﹣4a=a(a+2)(a﹣2).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.44.(2024•东城区一模)因式分解:2xy2﹣18x=2x(y+3)(y﹣3).【分析】提取公因式后再用平方差公式分解即可.【解答】解:2xy2﹣18x=2x(y2﹣9)=2x(y+3)(y﹣3).故答案为:2x(y+3)(y﹣3).【点评】本题考查了因式分解,熟练掌握公式法和提取公因式法是关键.45.(2024•丰台区一模)分解因式:ax2﹣4ay2=a(x+2y)(x﹣2y).【分析】观察原式ax2﹣4ay2,找到公因式a,提出公因式后发现x2﹣4y2符合平方差公式,利用平方差公式继续分解可得.【解答】解:ax2﹣4ay2=a(x2﹣4y2)。

初中数学《数与式》综合测试试题

初中数学《数与式》综合测试试题

C.(2m)=6m3D.(m+1)=m2+1①b-a<0;②a+b>0;③|a|<|b|;④>0.其中正确的是(C)b∴b-a<0,a+b<0,<0,故①③正确,②④错误.A.a=-2B.a=C.a=1D.a=2《数与式》综合测试卷[分值:120分]一、选择题(每小题3分,共30分)1.-22=(B)A.-2B.-4C.2D.4【解析】-22=-4.2.研究表明,可燃冰是一种可代替石油的新型清洁能源,在我国某海域已探明的可燃冰存储量达150000000000m3,其中数字150000000000用科学记数法可表示为(C) A.15×1010B.0.15×1012C.1.5×1011D.1.5×1012【解析】150000000000=1.5×1011.3.在下列的计算中,正确的是(B)A.m3+m2=m5B.m6÷m3=m332【解析】m6÷m3=m6-3=m3.4.计算|2+5|+|2-5|的结果是(D)A.-25B.-4C.4D.25【解析】原式=2+5+5-2=2 5.5.若a+b=4,ab=2,则(a-b)2=(C)A.0B.6C.8D.12【解析】(a-b)2=(a+b)2-4ab=42-4×2=8.6.已知点A,B在数轴上的位置如图所示,其对应的数分别是a和b,对于以下结论:a(第6题)A.①②B.③④C.①③D.②④【解析】由题意,得b<-3<0<a<3,且|b|>|a|,ba7.能说明“对于任何实数a,|a|>-a”是假命题的一个反例可以是(A)13【解析】若|a|>-a,则|a|+a>0,此时a>0.∴当a≤0时,|a|>-a不成立,∴反例只要是非正数就可以.⎛4⎫a2⎝a⎭a-2的值是(C)【解析】 a-a⎪·=⎛4⎫a2a2-4a2⎭a-2a a-2⎝a1a2a3a19A.202184840760a1a2a3a191×32×43×519×212⎛ 1-+-+…+-⎪+ -11111⎫+-+…+-⎪1⎛1⎫1⎛11⎫58921⎭2⎝220⎭840= 1-⎪+ -⎪=.11.若2有意义,则x的取值范围是__x>3__.8.如果a2+2a-1=0,那么代数式 a-⎪·A.-3B.-1C.1D.3·=a(a+2)=a2+2a.∵a2+2a-1=0,∴a2+2a=1.∴原式=a2+2a=1.9.如图①,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图②所示,再将剪下的两个小矩形拼成一个新的矩形,如图③所示,则新矩形的周长可表示为(B)(第9题)A.2a-3bB.4a-8bC.2a-4bD.4a-10b【解析】由题意,得2[a-b+(a-3b)]=4a-8b.10.如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个1111数为a3……以此类推,则+++…+的值为(C),(第10题))61589431B. C. D.【解析】由图可得:a1=1+2=3,a2=1+2+3+2=8,a3=1+2+3+4+3+2=15,a4=1+2+3+4+5+4+3+2=24,…,a n=n(n+2).111111111∴+++…+=+++…+=11111⎫1⎛1⎝3351921⎭2⎝24461820⎭2⎝二、填空题(每小题4分,共24分)x-3【解析】∵x-3>0,∴x>3.12.如图,数轴上点A表示的实数是5-1.15.若关于 x 的方程 2 x +m =2 的解为正数,则 m 的取值范围是__m <6 且 m ≠0__.【解析】 原方程去分母,得 2-x -m =2(x -2),解得 x =2- .∵原方程的解为正数,∴2- >0,解得 m <6.又∵x ≠2,∴2- ≠2,解得 m ≠0.,a 4= 第 2 次, y 2= 第 3 次, y 3=…,则第 n 次运算的结果 y n = (2n-1)x +1【解析】 将 y 1= 2x代入 y 2= ,得x +1 4x y 2= 2x 3x +1x +1 将 y 2= 4x 代入 y 3=,得3x +1 8x y 3= 4x 7x +13x +1 依此类推,第 n 次运算的结果 y n = (2n-1)x +1,(第 12 题))【解析】 点 A 表示的实数为 12+22-2+1= 5-1.3 5 7 9 11 1713.已知 a 1=-2,a 2=5,a 3=-10 17,a 5=-26,…,则 a 8=__65__.2n +1 17【解析】由题意,得 a n =(-1)nn 2+1 ,∴a 8=65.14.若 m 是最大的负整数,n 是绝对值最小的有理数,c 是倒数等于它本身的自然数,则代数式 m 2017+2017n +c 2018 的值为__0__.【解析】 由题意知 m =-1,n =0,c =1, ∴m 2017+2017n +c 2018=-1+0+1=0.x -2 2-xm3m3m3综上所述,m <6 且 m ≠0.16.有一个计算程序,每次运算都是把一个数先乘2,再除以它与 1 的和,多次重复进 行这种运算的过程如下:输入x , 第 1 次 y 1=2x2y 1 2y 2 x +1 y 1+1 y 2+1(第 16 题) 2n x (用含字母 x 和 n 的代数式表示). 2y 1x +1 y 1+12x 2× =. +12y 2 3x +1y 2+1 4x 2× =.+1… 2n x .1⎫⎛3-1⎝4⎭82,其中a=2+ 2.⎝+2a-4⎭a+2a-2(2) a(a-2)(a-1)a-2a-22222+21⎫a-1+12a-4a-1a-2x x三、解答题(共66分)17.(6分)计算:(1)(-1)2017-|-2|+(3-π)0×8+ ⎪.【解析】原式=-1-2+1×2+4=3.31(2)-32+8+|1-2|-4sin30°+-4cos45°.1121【解析】原式=-9+22+2-1-4×+-4×=-9+32-1-2+-2223=2-.18.(6分)分解因式:(1)(y+2x)2-(x+2y)2.【解析】原式=[(y+2x)+(x+2y)][(y+2x)-(x+2y)]=3(x+y)(x-y).(2)ab4-6ab3+9ab2.【解析】原式=ab2(b2-6b+9)=ab2(b-3)2.19.(6分)已知实数a,b满足ab=1,a+b=3.(1)求代数式a2+b2的值.(2)求a4-b4的值.【解析】(1)a2+b2=(a+b)2-2ab=32-2×1=9-2=7.(2)∵(a-b)2=(a+b)2-4ab=32-4×1=5,即a-b=5或a-b=-5,∴a2-b2=(a-b)(a+b)=±35,∴a4-b4=(a2+b2)(a2-b2)=7×(±35)=±21 5.20.(10分)先化简,再求值:(1)(2a-1)2-2(a+1)(a-1)-a(a-2),其中a=2+1.【解析】原式=4a2-4a+1-2a2+2-a2+2a=a2-2a+3.当a=2+1时,原式=a2-2a+3=(2+1)2-2(2+1)+3=3+22-22-2+3=4.⎛a⎪÷a(a-2)+1a+21【解析】原式=·+(a-1)21a=+=.2+2当a=2+2时,原式==2+1.21x-221.(6分)小明解方程-=1的过程如图所示,请指出他解答过程中的错误,并写出正确的解答过程.合并同类项,得-2x=-3,解得x=.经检验,x=是原方程的解,∴原方程的解为x=.【解析】(1)S阴影4×4×=8,2×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F(12)=.,(第21题))【解析】小明的解法有三处错误,步骤①去分母有误;步骤②去括号有误;步骤⑥少检验.正确解法如下:方程两边同乘x,得1-(x-2)=x.去括号,得1-x+2=x.移项,得-x-x=-1-2.32323222.(8分)如图为4×4的网格(每个小正方形的边长均为1)与数轴.(第22题)(1)求出图①中阴影部分的面积及正方形的边长.(2)在图②的数轴上作出表示8的点A.1=正方形的边长=8=2 2.(2)在数轴上画边长为2的正方形,以原点为圆心、对角线长为半径画弧,交x轴正半轴于点A,则点A即为表示8的点(画图略).23.(12分)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称ppq34(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1.(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位与十位上的数字得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”.⎧⎪x =1,⎧⎪x =2,⎧⎪x =3,⎧⎪x =4,⎧⎪x =5,(3)若 t =15,15=1×15=3×5,F (15)= ;若 t =26,26=1×26=2×13,F (26)= ;若 t =37,37=1×37,F (37)= ;若 t =48,48=1×48=2×24=3×16=4×12=6×8,F (48)= = ;若 t =59,59=1×59,F (59)= .59 37 13 5 4 ∴F (t )的最大值为 .21 3⎛ ⎫23⎛ ⎫222(2)(a +b ) -ab或a =1,⎧⎪2(3)由已知等式可得 a - ⎪ +3 -1⎪ +(c -1) =0,∴⎨b =2,∴a +b +c =4. ⎪⎩c =1,2 2例如:(x -1) +3,(x -2) +2x , x -2⎪ + x 2 是 x 2-2x +4 的三种不同形式的配方(即 ⎛b ⎫ ⎛b ⎫2 2 ⎩ ⎩ ⎩⎩ ⎩(3)在(2)所得“吉祥数”中,求 F (t )的最大值.【解析】 (1)设 m =n 2,则 n ×n 是 m 的最佳分解, ∴F (m )=1.(2)由题意知 10y +x -(10x +y )=36, 解得 y -x =4. ∵1≤x ≤y ≤9,∴x ,y 的值为⎨ ⎨ ⎨ ⎨ ⎨⎪y =5,⎪y =6,⎪y =7,⎪y =8,⎪y =9,∴t =15,26,37,48,59.35213 1376 38 41591 123 3 ∵ < < < < , 3424.(12 分)阅读材料:把形如 ax 2+bx +c 的二次三项式(或其中某一部分)配成完全平方式的方法叫做配方 法.配方法的基本形式是完全平方公式的逆写,即 a 2±2ab +b 2=(a ±b )2.⎝2 ⎭ 4“余项”分别是常数项、一次项、二次项——见横线上的部分).请根据材料解决下列问题:(1)比照上面的例子,写出 x 2-4x +2 的三种不同形式的配方. (2)将 a 2+ab +b 2 配方(至少两种形式).(3)已知 a 2+b 2+c 2-ab -3b -2c +4=0,求 a +b +c 的值. 【解析】 (1)①x 2-4x +2=(x 2-4x +4)-2=(x -2)2-2.②x 2-4x +2=(x 2-2 2x +2)+(2 2-4)x =(x - 2)2+(2 2-4)x .③x 2-4x +2=[( 2x )2-4x +2]-x 2=( 2x - 2)2-x 2.⎝ 2 ⎭4 ⎝2 ⎭ 4⎝ 2⎭ ⎝2 ⎭。

中考数学基础复习-数与式综合检测题

中考数学基础复习-数与式综合检测题

初中数学毕业总复习总复习知识检测试卷(一)数与式分值:100分时量:120分钟命题人:李维军审题人:李维军总分一、填空题(每小题3分,共30分): 1.若m ,n 互为相反数,则m+n=。

2.化简777-=,23=。

3.分解因式27x 63-=。

4.若分式x 1x 1-+的值为零,则x 的值为。

5.小说《达·芬奇密码》中的一个故事里出现了一连串神秘排列的数,将这串另人费解的数按从小到大的顺序排列为:1,1,2,3,5,8,…,则这列数的第8个数是。

6.计算:1233-=7.如图,数轴上表示数3的点是。

5-5-4-221-334-1C B A 8.0o 2(51)2sin 30(3)-++=。

9.计算:23a (ab)•=。

10.计算:24a 1a1aa 1++--的结果是。

二、选择题(每小题3分,共30分): 题号91011121314151617181920总计考号姓名班级——————密封线内不得答题——————密封线内不得答题——————选项11.举世瞩目的三峡大坝的所装发电机组全部投入运行发电量达到847亿度,用科学记数法表示这个发电量为()A .884710⨯度B .108.4710⨯度C .128.4710⨯度D .1084.710⨯度12.若a 与-5互为相反数,那么a 是()A .-5B .15C .15- D .513.计算:2-3=()A .1B .-1 C.5 D .-5 14.下列计算正确的是() A .3x 2x 1-=B .23x 2x 5x +=C .3x 2x 6x •=D .3x 2x x -=15.冬季的一天,室内温度是o 8C ,室外温度是o 2C -,则室内外温度相差()A .o 4CB .o 6C C .o 10CD .o 16C16.若0<x<1,则23x,x ,x 的大小关系是() A .23x x x <<B .32x x x <<C .32x x x <<D .23x x x << 17.函数y x 2=-中自变量x 的取值范围是()A .x 2≥-B .x 2≥C .x 2≠D .x 2<18.如果分式2x 1-与3x 3+的值相等,则x 的值是()A .9B .7C .5D .3 19.计算:2m 62m 3m 39m -÷+--的结果为() A .1B .m 3m 3-+C .m 3m 3+-D .3mm 3+20.已知x=2,则代数式x x 1-的值为()A .22+B .22-C .223+D .223-三、解答题(共40分)21.已知2(a b)1+=,2(a b)25-=,求22a b ab ++的值。

中考数学数与式真题训练50题含参考答案

中考数学数与式真题训练50题含参考答案

中考数学数与式真题训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.下列各数中,是无理数的是( )A .17B C .2π D 2.下列各组单项式中,为同类项的是( ) A .3ab 2与3a 2bB .a 与1C .2bc 与3abcD .a 2b 与23a b3.下列运算正确的是( )A4±B .()3327-=C 2=D 3=4.下列运算正确的是( ) A .a 3+a 3=a 6B .(a 3)2=a 6C .(ab )2=ab 2D .2a 5·3a 5=5a 55.下列计算中,正确的是( ).A 3=-B 6=C 122= D 76.将数据72000000用科学记数法表示是( ) A .72×107B .0.72×109C .7.2×107D .7.2×1087 )AB C D8.在920,5.55,2π,133-,0.232333223332333,,123中,无理数的个数是( ) A .2B .3C .4D .59.当1<x<3 ) A .3 B .-3 C .1 D .-110在两个整数之间,下列结论正确的是( ) A .2-3之间B .3-4之间C .4-5之间D .5-6之间11.将-3-(+6)-(-5)+(-2)写成省略括号的和的形式是( )A .-3+6-5-2B .-3-6+5-2C .-3-6-5-2D .-3-6+5+212.下列结论中,不正确的是( ) A .-1<0<3 B .23>-2>-212C .-4>-3>-2D .-212>-3>-3.113.下列式子中,正确的是( )A8k =-BC )3x >D 1=-14.在31x +,3m +,23a b -,2a ,0,12-中,单项式的个数( )A .2B .3C .4D .515.代数式243x x -+的最小值为( ). A .1-B .0C .3D .516.已知边长分别为a 、b 的长方形的周长为10,面积4,则ab 2+a 2b 的值为( ) A .10B .20C .40D .8017.若x 2+mxy +4y 2是一个完全平方式,那么m 的值是( ) A .±4B .﹣2C .±2D .418.据有关部门统计,2019年“五一小长假”期间,广东各大景点共接待游客约14400000人次,将数14400000用科学记数法表示为( ) A .71.4410⨯ B .70.14410⨯C .81.4410⨯D .80.14410⨯19.在化简分式23311x x x-+--的过程中,开始出现错误的步骤是( )A .AB .BC .CD .D二、填空题 20.函数35y x =-中,自变量x 的取值范围是________. 21.在实数范围内因式分解:222ax ay -=_____. 22.把多项式24a -分解因式的结果是_____.23.14的算术平方根是_________.24.用配方法将方程2210x x +-=变为2()x a b +=的形式,则a b +=______. 25.化简2232a b a b a b--=-+__________.26.若2a b +=,3a b -=-,则22a b -=_____. 27.多项式2412xy xyz +的公因式是______. 28.计算:37-=__________.29_____.30.如图,显示的是新冠肺炎全国(含港澳台)截至4月27日20时30分,现存确诊人数数据统计结果,则昨日(4月26日)现存确诊人数是__________人.31.一种细菌半径是1.91×10-5米,用小数表示为________________米.3233.在实数范围内分解因式:-1+9a 4=____________________。

2023初中数学数与式复习 题集附答案

2023初中数学数与式复习 题集附答案

2023初中数学数与式复习题集附答案一、数与式基本概念1. 请计算下列数的乘积:a) 15 × 6b) 31 × 2c) 8 × 12答案:a) 15 × 6=90b) 31 × 2=62c) 8 × 12=962. 请计算下列数的商:a) 30 ÷ 5b) 56 ÷ 7c) 84 ÷ 6答案:a) 30 ÷ 5=6b) 56 ÷ 7=8c) 84 ÷ 6=143. 将下列数相加,并写出结果的最简形式:a) 1/2 + 1/4b) 3/4 + 2/3c) 5/6 + 2/5答案:a) 1/2 + 1/4=3/4b) 3/4 + 2/3=17/12c) 5/6 + 2/5=37/30二、数与式的转化1. 请将下列描述转化为代数式:a) 一个数减去5的结果等于9。

b) 一个数乘以3再加上7等于22。

c) 两个数的和减去6等于12。

答案:a) x - 5 = 9b) 3x + 7 = 22c) x + y - 6 = 122. 请将下列代数式转化为描述:a) x + 3 = 10b) 2y - 5 = 7c) 3x + 2y = 15答案:a) 一个数加3等于10。

b) 两倍的一个数减去5等于7。

c) 两个数的三倍加上两倍等于15。

三、数学方程1. 解方程:2x + 5 = 13答案:2x + 5 = 132x = 13 - 52x = 8x = 42. 解方程:3(x + 2) = 21答案:3(x + 2) = 213x + 6 = 213x = 21 - 63x = 15x = 53. 解方程:4x - 3 = 25答案:4x - 3 = 254x = 25 + 34x = 28x = 7四、数的应用1. 某书店共卖出了300本书,其中数学书占总量的1/4。

请问,数学书的数量是多少本?答案:数学书的数量 = 300 × 1/4数学书的数量 = 75本2. 某班级一共有50名学生,其中男生占总人数的40%。

数与式综合测试卷(原卷版)—2024年中考数学一轮复习【举一反三】系列(全国通用)

数与式综合测试卷(原卷版)—2024年中考数学一轮复习【举一反三】系列(全国通用)

数与式综合测试卷考试时间:60分钟;满分:100分姓名:___________班级:___________考号:___________考卷信息:本卷试题共23题,单选10题,填空6题,解答7题,满分100分,限时60分钟,本卷题型针对性较高,覆盖面广,选题有深度,可衡量学生掌握本章内容的具体情况!一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2023·青海西宁·统考中考真题)算式―3□1的值最小时,□中填入的运算符号是()A.+B.-C.×D.÷2.(3分)(2023·江苏宿迁·统考中考真题)下列运算正确的是()A.2a―a=1B.a3⋅a2=a5C.(ab)2=ab2D.(a2)4=a63.(3分)(2023·浙江衢州·统考中考真题)手机信号的强弱通常采用负数来表示,绝对值越小表示信号越强(单位:dBm),则下列信号最强的是()A.―50B.―60C.―70D.―804.(3分)(2023·河北·统考中考真题)光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于9.46×1012km.下列正确的是()A.9.46×1012―10=9.46×1011B.9.46×1012―0.46=9×1012C.9.46×1012是一个12位数D.9.46×1012是一个13位数5.(3分)(2023·重庆·×)A.4和5之间B.5和6之间C.6和7之间D.7和8之间6.(3分)(2023·天津·统考中考真题)计算1x―1―2x2―1的结果等于()A.―1B.x―1C.1x+1D.1x2―17.(3分)(2023·山东·统考中考真题)实数a,b,c在数轴上对应点的位置如图所示,下列式子正确的是()A.c(b―a)<0B.b(c―a)<0C.a(b―c)>0D.a(c+b)>08.(3分)(2023·河北·统考中考真题)若k为任意整数,则(2k+3)2―4k2的值总能()A .被2整除B .被3整除C .被5整除D .被7整除9.(3分)(2023·四川德阳·统考中考真题)在“点燃我的梦想,数学皆有可衡”数学创新设计活动中,“智多星”小强设计了一个数学探究活动:对依次排列的两个整式m ,n 按如下规律进行操作:第1次操作后得到整式串m ,n ,n ―m ;第2次操作后得到整式串m ,n ,n ―m ,―m ;第3次操作后…其操作规则为:每次操作增加的项,都是用上一次操作得到的最末项减去其前一项的差,小强将这个活动命名为“回头差”游戏.则该“回头差”游戏第2023次操作后得到的整式中各项之和是( )A .m +nB .mC .n ―mD .2n10.(3分)(2023·四川内江·统考中考真题)对于正数x ,规定f(x)=2xx+1,例如:f(2)=2×22+1=43,=2×1212+1=23,f(3)=2×33+1=32,=2×1313+1=12,计算:+++⋯+++f(1)+f(2)+f(3)+⋯+f(99)+f(100)+f(101)=( )A .199B .200C .201D .202二.填空题(共6小题,满分18分,每小题3分)11.(3分)(2023·四川巴中·统考中考真题)在0,,―π,―2四个数中,最小的实数是.12.(3分)(2023·江苏·统考中考真题)若圆柱的底面半径和高均为a ,则它的体积是 (用含a 的代数式表示).13.(3分)(2023·江苏泰州·统考中考真题)若2a ―b +3=0,则2(2a +b)―4b 的值为 .14.(3分)(2023·山东潍坊·统考中考真题)从―(□+○)2÷“□”与“○”中,计算该算式的结果是 .(只需写出一种结果)15.(3分)(2023·黑龙江大庆·统考中考真题)1261年,我国宋朝数学家杨辉在其著作《详解九章算法》中提到了如图所示的数表,人们将这个数表称为“杨辉三角”.观察“杨辉三角”与右侧的等式图,根据图中各式的规律,(a+b)7展开的多项式中各项系数之和为.16.(3分)(2023·湖南娄底·统考中考真题)若干个同学参加课后社团——舞蹈活动,一次排练中,先到的n个同学均匀排成一个以O点为圆心,r为半径的圆圈(每个同学对应圆周上一个点),又来了两个同学,先到的同学都沿各自所在半径往后移a米,再左右调整位置,使这(n+2)个同学之间的距离与原来n个同学之间的距离(即在圆周上两人之间的圆弧的长)相等.这(n+2)个同学排成圆圈后,又有一个同学要加入队伍,重复前面的操作,则每人须往后移米(请用关于a的代数式表示),才能使得这(n+3)个同学之间的距离与原来n个同学之间的距离相等.三.解答题(共7小题,满分52分)17.(6分)(2023·江苏无锡·统考中考真题)(1)计算:(―3)2―+|―4|(2)化简:(x+2y)(x―2y)―x(x―y)18.(6分)(2023·广东广州·统考中考真题)已知a>3,代数式:A=2a2―8,B=3a2+6a,C=a3―4a2+4a.(1)因式分解A;(2)在A,B,C中任选两个代数式,分别作为分子、分母,组成一个分式,并化简该分式.19.(8分)(2023·河北·统考中考真题)现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图1所示(a>1).某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如图2和图3,其面积分别为S1,S2.(1)请用含a的式子分别表示S1,S2;当a=2时,求S1+S2的值;(2)比较S1与S2的大小,并说明理由.20.(8分)(2023·四川攀枝花·统考中考真题)2022年卡塔尔世界杯共有32支球队进行决赛阶段的比赛.决赛阶段分为分组积分赛和复赛.32支球队通过抽签被分成8个小组,每个小组4支球队,进行分组积分赛,分组积分赛采取单循环比赛(同组内每2支球队之间都只进行一场比赛),各个小组的前两名共16支球队将获得出线资格,进入复赛;进入复赛后均进行单场淘汰赛,16支球队按照既定的规则确定赛程,不再抽签,然后进行18决赛,14决赛,最后胜出的4支球队进行半决赛,半决赛胜出的2支球队决出冠、亚军,另外2支球队决出三、四名.(1)本届世界杯分在C 组的4支球队有阿根廷、沙特、墨西哥、波兰,请用表格列一个C 组分组积分赛对阵表(不要求写对阵时间).(2)请简要说明本届世界杯冠军阿根廷队在决赛阶段一共踢了多少场比赛?(3)请简要说明本届世界杯32支球队在决赛阶段一共踢了多少场比赛?21.(8分)(2023·福建厦门·统考模拟预测)“歌唱家在家唱歌”“蜜蜂酿蜂蜜”这两句话从左往右读和从右往左读,结果完全相同.文学上把这样的现象称为“回文”,数学上也有类似的“回文数”,比如252,7887,34143,小明在计算两位数减法的过程中意外地发现有些等式从左往右读的结果和从右往左读的结果一样,如:65―38=83―56;91―37=73―19;54―36=63―45.数学上把这类等式叫做“减法回文等式”.(1)①观察以上等式,请你再写出一个“减法回文等式”;②请归纳“减法回文等式”的被减数ab (十位数字为a ,个位数字为b )与减数cd 应满足的条件,并证明.(2)两个两位数相乘,是否也存在“乘法回文等式”?如果存在,请你直接写出“乘法回文等式”的因数xy 与因数mn 应满足的条件.22.(8分)(2023·山东青岛·统考中考真题)如图①,正方形ABCD 的面积为1.(1)如图②,延长AB到A1,使A1B=BA,延长BC到B1,使B1C=CB,则四边形AA1B1D的面积为______;(2)如图③,延长AB到A2,使A2B=2BA,延长BC到B2,使B2C=2CB,则四边形AA2B2D的面积为______;(3)延长AB到A n,使A n B=nBA,延长BC到B n,使B n C=nCB,则四边形AA n B n D的面积为______.23.(8分)(2023·山东潍坊·统考中考真题)[材料阅读]用数形结合的方法,可以探究q +q 2+q 3+...+q n +…的值,其中0<q <1.例求12+++⋯++⋯的值.方法1:借助面积为1的正方形,观察图①可知12+++⋯++⋯的结果等于该正方形的面积,即12+++⋯++⋯=1.方法2:借助函数y =12x +12和y =x 的图象,观察图②可知12+++⋯++⋯的结果等于a 1,a 2,a 3,…,a n …等各条竖直线段的长度之和,即两个函数图象的交点到x 轴的距离.因为两个函数图象的交点(1,1)到x 轴的距为1,所以,12+++⋯++⋯=1.【实践应用】任务一 完善23+++⋯++⋯的求值过程.方法1:借助面积为2的正方形,观察图③可知23+++⋯++⋯=______.方法2:借助函数y =23x +23和y =x 的图象,观察图④可知因为两个函数图象的交点的坐标为______,所以,23+++⋯++⋯=______.任务二 参照上面的过程,选择合适的方法,求34+++⋯++⋯的值.任务三 用方法2,求q +q 2+q 3+⋯+q n +⋯的值(结果用q 表示).【迁移拓展】的矩形是黄金矩形,将黄金矩形依次截去一个正方形后,得到的新矩形仍是黄金矩形.观察图⑤+++⋯++⋯的值.。

中考数学复习《数与式》专项检测卷(附带答案)

中考数学复习《数与式》专项检测卷(附带答案)

中考数学复习《数与式》专项检测卷(附带答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题(本大题共15道小题)1. (2023•淄博)设m=,则( )A.0<m<1B.1<m<2C.2<m<3D.3<m<42. (2023•杭州)因式分解:1﹣4y2=( )A.(1﹣2y)(1+2y)B.(2﹣y)(2+y)C.(1﹣2y)(2+y)D.(2﹣y)(1+2y)3. (2023秋•莫旗期末)下列说法中,不正确的是( )A.﹣ab2c的系数是﹣1,次数是4B.3xy-1是整式C.6x2﹣3x+1的项是6x2、﹣3x,1D.2πR+πR2是三次二项式4. (2023•东营)下列运算结果正确的是( )A.x2+x3=x5B.(﹣a﹣b)2=a2+2ab+b2C.(3x3)2=6x6D.5. (2023•雅安)若分式的值等于0,则x的值为( )A.﹣1B.0C.1D.±16. (2023春•渝中区校级月考)已知x是整数,当|x-23|取最小值时,x的值是( )A.3B.4C.5D.67. (2023•乐山)某种商品m千克的售价为n元,那么这种商品8千克的售价为( )A.(元)B.(元)C.(元)D.(元)8. (2023•达州)实数+1在数轴上的对应点可能是( )A.A点B.B点C.C点D.D点9. (2022·贵州贵阳)若代数式3(2-x)与代数式122x 的值相等,则x的值为( )A.87B.85C.﹣87D.10710. (2023•宁波)2023年5月15日,“天问一号”着陆巡视器成功着陆于火星乌托邦平原,此时距离地球约320000000千米.数320000000用科学记数法表示为( )A.32×107B.3.2×108C.3.2×109D.0.32×10911. (2023•台州)将x克含糖10%的糖水与y克含糖30%的糖水混合,混合后的糖水含糖( )A.20%B.×100%C.×100%D.×100%12. (2023•绍兴)第七次全国人口普查数据显示,绍兴市常住人口约为5270000人,这个数字5270000用科学记数法可表示为( )A.0.527×107B.5.27×106C.52.7×105D.5.27×10713. (2022八下·冠县期末)有三个实数a1,a2,a3满足a1-a2=a2-a3>0,若a1+a3<0 则下列判断中正确的是( )A.a1<0B.a2<0C.a1+a2<0D.a2×a3=014. (2022·太原模拟)中国人很早就开始使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放着表示正数,斜放着表示负数,如图(1)表示(+2)+(-2).按照这种表示法,如图(2)表示的是( )A.(+3)+(+6)B.(-3)+(-6)C.(-3)+(+6)D.(+3)+(-6)15. (2023•达州)生活中常用的十进制是用0~9这十个数字来表示数,满十进一,例:12=1×10+2,212=2×10×10+1×10+2;计算机也常用十六进制来表示字符代码,它是用0~F来表示0~15,满十六进一,它与十进制对应的数如表:例:十六进制2B对应十进制的数为2×16+11=43,10C对应十进制的数为1×16×16+0×16+12=268,那么十六进制中14E对应十进制的数为( )A.28B.62C.238D.334二、填空题(本大题共8道小题)16. (2023•浙江自主招生)分解因式:2x2+7xy-15y2-3x+11y-2=.17. (2023•温州)分解因式:2m2﹣18=.18. (2023•宁波)分解因式:x2﹣3x=.19. (2023秋•沙坪坝区校级月考)实数a,b在数轴上对应点的位置如图所示,则下列式子正确的是.(填序号)①ab<0;②|a|<|b|;③﹣a>b;④a﹣b>0.20. (2023•广元)如图,实数﹣,,m在数轴上所对应的点分别为A,B,C,点B关于原点O的对称点为D.若m为整数,则m的值为.21. (2023秋•顺城区期末)有一数值转换器,原理如图所示,如果开始输入x的值为1,则第一次输出的结果是4,第二次输出的结果是5,……;那么2023次输出的结果是.22. (2023•嘉兴)观察下列等式:1=12﹣02,3=22﹣12,5=32﹣22,…按此规律,则第n个等式为2n﹣1=.23. (2023•眉山)观察下列等式:x1===1+;x2===1+;x3===1+;…根据以上规律,计算x1+x2+x3+…+x2023﹣2023=.三、解答题(本大题共6道小题)24. (2023秋•长春期末)已知多项式A=2m2-4mn+2n2,B=m2+mn-3n2,求:(1)3A+B;(2)A-3B.25. (2023•聊城)先化简,再求值:,其中a=﹣.26. (2023•威海)先化简,然后从﹣1,0,1,3中选一个合适的数作为a的值代入求值.27. (2023秋•达州期中)有理数a,b,c在数轴上的位置如图所示:(1)用“>”或“<”填空:b﹣c 0,a+b 0,c﹣a 0.(2)化简:|a+b|﹣|a+c|+|b﹣c|﹣|a|.28. (2023秋•内江期中)仔细观察,探索规律:(1)(a-b)(a+b)=a2-b2;(a-b)(a2+ab+b2)=a3-b3;(a-b)(a3+a2b+ab2+b3)=a4-b4.(a-b)(a n-1+a n-2b+…+ab n-2+b n-1)=①(其中n为正整数,且n≥2).②(2-1)(2+1)=;③(2-1)(22+2+1)=;④(2-1)(23+22+2+1)=;⑤(2n-1+2n-2+…+2+1)=;(2)根据上述规律,求22019+22018+22017+…+2+1的个位数字是多少?(3)根据上述规律,求29-28+27-…+23-22+2的值?29. (2023秋•内江期中)仔细观察,探索规律:(1)(a﹣b)(a+b)=a2﹣b2;(a﹣b)(a2+ab+b2)=a3﹣b3;(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4.(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)=①(其中n为正整数,且n≥2).②(2﹣1)(2+1)=;③(2﹣1)(22+2+1)=;④(2﹣1)(23+22+2+1)=;⑤(2n﹣1+2n﹣2+…+2+1)=;(2)根据上述规律,求22019+22018+22017+…+2+1的个位数字是多少?(3)根据上述规律,求29﹣28+27﹣…+23﹣22+2的值?答案一、选择题(本大题共15道小题)1. 解:∵4<5<9,∴2<<3,∴1<﹣1<2,∴<<1,∴0<m<1故选:A.2. 解:1﹣4y2=1﹣(2y)2=(1﹣2y)(1+2y).故选:A.3. 故选:D.4. 解:A、x2与x3不能合并,所以A选项错误;B、(﹣a﹣b)2=[﹣(a+b)]2=(a+b)2=a2+2ab+b2,所以B选项正确;C、(3x3)2=9x6,所以C选项错误;D、与不能合并,所以D选项错误.故选:B.5. 解:由题意得:|x|﹣1=0,且x﹣1≠0,解得:x=﹣1,故选:A.【题目】(2023•宜宾)在我国远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,类似现在我们熟悉的“进位制”.如图所示是远古时期一位母亲记录孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满五进一,根据图示可知,孩子已经出生的天数是( )A.27B.42C.55D.2106. 故选:C.7. 解:根据题意,得:×8=(元),故选:A.8. 解:∵1<2<4,∴1<<2,∴2<+1<3则实数+1在数轴上的对应点可能是点D,故选:D.9. A10. 解:320000000=3.2×108,故选:B.11. 解:由题意可得,故选:D.12. 解:5270000=5.27×106.故选:B.13. D14. D15. 解:由题意得14E=1×16×16+4×16+14=334.故选:D.二、填空题(本大题共8道小题)16. 解:∵2x2+7xy-15y2=(x+5y)(2x-3y)∴可设2x2+7xy-15y2-3x+11y-2=(x+5y+a)(2x-3y+b),a、b为待定系数∴2a+b=-3,5b-3a=11,ab=-2,解得a=-2,b=1∴原式=(x+5y-2)(2x-3y+1).故答案为:(x+5y-2)(2x-3y+1).17. 解:原式=2(m2﹣9)=2(m+3)(m﹣3).故答案为:2(m+3)(m﹣3).18. 解:原式=x(x﹣3),故答案为:x(x﹣3)19. 解:由图可得:a<0<b,且|a|>|b|,∴ab<0,﹣a>b,a﹣b<0,∴正确的有:①③;故答案为:①③.20. 解:∵点B表示的数是,点B关于原点O的对称点是点D∴点D表示的数是﹣,∵点C在点A、D之间∴﹣<m<﹣,∵﹣4<﹣<﹣3,﹣3<﹣<﹣2,∴﹣<﹣3<﹣∵m为整数,∴m的值为﹣3.答案为:﹣3.21. 故答案为:10.22. 解:∵1=12﹣02,3=22﹣12,5=32﹣22,…∴第n个等式为2n﹣1=n2﹣(n﹣1)2,故答案为:n2﹣(n﹣1)2.23. 解:∵x1===1+;x2===1+;x3===1+;…∴x1+x2+x3+…+x2023﹣2023=1++1++1++…+1+﹣2023=2023+1﹣+﹣+﹣+…﹣﹣2023=﹣故答案为:﹣.三、解答题(本大题共6道小题)24. 解:(1)∵A=2m2-4mn+2n2,B=m2+mn-3n2∴3A+B=3(2m2-4mn+2n2)+(m2+mn-3n2)=6m2-12mn+6n2+m2+mn-3n2=7m2-11mn+3n2;(2)∵A=2m2-4mn+2n2,B=m2+mn-3n2∴A-3B=(2m2-4mn+2n2)-3(m2+mn-3n2)=2m2-4mn+2n2-3m2-3mn+9n2=-m2-7mn+11n2.25. 解:原式=+÷=+÷=+•=﹣=当a=﹣时,原式==6.26. 解:原式=[﹣(a+1)]÷=•=•=•=2(a﹣3)=2a﹣6∵a=﹣1或a=3时,原式无意义,∴a只能取1或0当a=1时,原式=2﹣6=﹣4.(当a=0时,原式=﹣6.)27. 解:(1)由数轴可得,a<0<b<c,且|b|<|a|<|c|,∴b﹣c<0,a+b<0,c﹣a>0 故答案为:<,<,>;(2)∵b﹣c<0,a+b<0,a+c>0∴|a+b|﹣|a+c|+|b﹣c|﹣|a|=﹣a﹣b﹣(a+c)+(﹣b+c)﹣(﹣a)=﹣a﹣b﹣a﹣c﹣b+c+a=﹣a﹣2b.28. 解:(1)由上式的规律可得,a n-b n,①故答案为:a n-b n;由题干中提供的等式的规律可得,②(2+1)(2-1)=22-1;故答案为:22-1;③(2-1)(22+2+1)=23-1,故答案为:23-1;④(2-1)(23+22+2+1)=24-1故答案为:24-1;⑤(2n-1+2n-2+…+2+1)=(2-1)(2n-1+2n-2+…+2+1)=2n-1,故答案为:2n-1;(2)22019+22018+22017+…+2+1=(2-1)(22019+22018+22017+…+2+1)=22023-1又∵21=2,22=4,23=8,24=16,25=32,……∴22023的个位数字为6∴22023-1的个位数字为6-1=5,答:22019+22018+22017+…+2+1的个位数字是5.(3)(a-b)(a n-1+a n-2b+…+ab n-2+b n-1)=2n-1,取a=2,b=-1,n=10∴(2-1)(29-28+27-…+23-22+2-1)=210-1∴29-28+27-…+23-22+2=210=1024.29. 解:(1)由上式的规律可得,a n﹣b n①故答案为:a n﹣b n;由题干中提供的等式的规律可得②(2+1)(2﹣1)=22﹣1;故答案为:22﹣1;③(2﹣1)(22+2+1)=23﹣1,故答案为:23﹣1;④(2﹣1)(23+22+2+1)=24﹣1故答案为:24﹣1;⑤(2n﹣1+2n﹣2+…+2+1)=(2﹣1)(2n﹣1+2n﹣2+…+2+1)=2n﹣1,故答案为:2n﹣1;(2)22019+22018+22017+…+2+1=(2﹣1)(22019+22018+22017+…+2+1)=22023﹣1又∵21=2,22=4,23=8,24=16,25=32,……∴22023的个位数字为6,∴22023﹣1的个位数字为6﹣1=5答:22019+22018+22017+…+2+1的个位数字是5.(3)(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)=2n﹣1取a=2,b=﹣1,n=10∴(2﹣1)(29﹣28+27﹣…+23﹣22+2﹣1)=210﹣1∴29﹣28+27﹣…+23﹣22+2=210=1024.。

初中数学《数与式》综合测试卷

初中数学《数与式》综合测试卷

九年级数学《数与式》综合测试一、 填空题:(每题2分,共30分)1.如果收入350元记作+350元,那么-80元表示 。

如果+7℃表示零上7℃,则零下5℃表示为2.﹣5的相反数是______,倒数是______3.如果多项式3x 2+2xy n +y 2是个三次多项式,那么n= 。

4.5x a+2b y 8 与-4x 2y 3a+4b 是同类项,则a+b 的值是________.5. 多项式2x 4y-x 2y 3+12x 3y 2+xy 4-1按x 的降幂排列为______. 6. 三个连续整数中,若n 是大小居中的一个,则这三个连续整数的和是______________.7.99×101=( )( )= .8.当x_______时,(x -4)0等于______.9.当x_________时,x -2在实数范围内有意义;当x 时,分式41-x 有意义.10.11.不改变分式0.50.20.31x y ++的值,使分式的分子分母各项系数都化为整数,结果是 12.计算1x x y x÷⨯的结果为 13.水由氢原子和氧原子组成,其中氢原子的直径约为0.0000000001m ,这个数据用科学记数法表示为________14.6239910≈ (保留四个有效数字)15.李明的作业本上有六道题:(1)3322-=-,(2)24-=-(3)2)2(2-=-,(4)=4±2(5)22414m m =- (6)a a a =-23如果你是他的数学老师,请找出他做对的题是二、选择题(每小题2分,共22分)1.下列说法错误的是( )A 0既不是正数也不是负数B 整数和分数统称有理数C 非负数包括正数和0D 00C 表示没有温度2.下列语句中错误的是( ) A 、数字0也是单项式 B 、单项式-a 的系数与次数都是 1C 、21xy 是二次单项式D 、-32ab 的系数是 -32 3.下列各式中,正确的是( )A 32=3×2B 32=23C (﹣3)2=﹣32D ﹣32=﹣3×34.如果222549x kxy y -+是一个完全平方式,那么k 的值是( )(A )1225. (B )35. (C )70-. (D )70±.5.下列去括号正确的是( )(A )x x x x 253)25(3++=-+; (B )6)6(--=--x x .(C )17)1(7--=+-x x x x ; (D )83)8(3+=+x x .6.下列各式正确的是( )A 、 a 4·a 5=a 20B 、a 2+2a 2=3a 2C 、(-a 2b 3)2= a 4b 9D 、a 4÷a= a 27.我们约定1010a b a b ⊗=⨯,如23523101010⊗=⨯=,那么48⊗为 ( )A 、32B 、3210C 、1210D 、1012 8.分式29(1)(3)x x x ---的值等于0,则x 的值为( ) A 、3 B 、-3 C 、3或-3 D 、09.下列各式中恒等变形正确的是( ) A. 2y y x xy = B. y yz x xz = C. 22y y x x = D. 2y xy x x= 10.正数n 扩大到原来的100倍,则它的算术平方根( ).A .扩大到原来的100倍B .扩大到原来的10倍C .比原来增加了100倍D .比原来增加了10倍n 的最小值是( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C.(2m)=6m3D.(m+1)=m2+1①b-a<0;②a+b>0;③|a|<|b|;④>0.其中正确的是(C)b∴b-a<0,a+b<0,<0,故①③正确,②④错误.A.a=-2B.a=C.a=1D.a=2《数与式》综合测试卷[分值:120分]一、选择题(每小题3分,共30分)1.-22=(B)A.-2B.-4C.2D.4【解析】-22=-4.2.研究表明,可燃冰是一种可代替石油的新型清洁能源,在我国某海域已探明的可燃冰存储量达150000000000m3,其中数字150000000000用科学记数法可表示为(C) A.15×1010B.0.15×1012C.1.5×1011D.1.5×1012【解析】150000000000=1.5×1011.3.在下列的计算中,正确的是(B)A.m3+m2=m5B.m6÷m3=m332【解析】m6÷m3=m6-3=m3.4.计算|2+5|+|2-5|的结果是(D)A.-25B.-4C.4D.25【解析】原式=2+5+5-2=2 5.5.若a+b=4,ab=2,则(a-b)2=(C)A.0B.6C.8D.12【解析】(a-b)2=(a+b)2-4ab=42-4×2=8.6.已知点A,B在数轴上的位置如图所示,其对应的数分别是a和b,对于以下结论:a(第6题)A.①②B.③④C.①③D.②④【解析】由题意,得b<-3<0<a<3,且|b|>|a|,ba7.能说明“对于任何实数a,|a|>-a”是假命题的一个反例可以是(A)13【解析】若|a|>-a,则|a|+a>0,此时a>0.∴当a≤0时,|a|>-a不成立,∴反例只要是非正数就可以.⎛4⎫a2⎝a⎭a-2的值是(C)【解析】 a-a⎪·=⎛4⎫a2a2-4a2⎭a-2a a-2⎝a1a2a3a19A.202184840760a1a2a3a191×32×43×519×212⎛ 1-+-+…+-⎪+ -11111⎫+-+…+-⎪1⎛1⎫1⎛11⎫58921⎭2⎝220⎭840= 1-⎪+ -⎪=.11.若2有意义,则x的取值范围是__x>3__.8.如果a2+2a-1=0,那么代数式 a-⎪·A.-3B.-1C.1D.3·=a(a+2)=a2+2a.∵a2+2a-1=0,∴a2+2a=1.∴原式=a2+2a=1.9.如图①,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图②所示,再将剪下的两个小矩形拼成一个新的矩形,如图③所示,则新矩形的周长可表示为(B)(第9题)A.2a-3bB.4a-8bC.2a-4bD.4a-10b【解析】由题意,得2[a-b+(a-3b)]=4a-8b.10.如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个1111数为a3……以此类推,则+++…+的值为(C),(第10题))61589431B. C. D.【解析】由图可得:a1=1+2=3,a2=1+2+3+2=8,a3=1+2+3+4+3+2=15,a4=1+2+3+4+5+4+3+2=24,…,a n=n(n+2).111111111∴+++…+=+++…+=11111⎫1⎛1⎝3351921⎭2⎝24461820⎭2⎝二、填空题(每小题4分,共24分)x-3【解析】∵x-3>0,∴x>3.12.如图,数轴上点A表示的实数是5-1.15.若关于 x 的方程 2 x +m =2 的解为正数,则 m 的取值范围是__m <6 且 m ≠0__.【解析】 原方程去分母,得 2-x -m =2(x -2),解得 x =2- .∵原方程的解为正数,∴2- >0,解得 m <6.又∵x ≠2,∴2- ≠2,解得 m ≠0.,a 4= 第 2 次, y 2= 第 3 次, y 3=…,则第 n 次运算的结果 y n = (2n-1)x +1【解析】 将 y 1= 2x代入 y 2= ,得x +1 4x y 2= 2x 3x +1x +1 将 y 2= 4x 代入 y 3=,得3x +1 8x y 3= 4x 7x +13x +1 依此类推,第 n 次运算的结果 y n = (2n-1)x +1,(第 12 题))【解析】 点 A 表示的实数为 12+22-2+1= 5-1.3 5 7 9 11 1713.已知 a 1=-2,a 2=5,a 3=-10 17,a 5=-26,…,则 a 8=__65__.2n +1 17【解析】由题意,得 a n =(-1)nn 2+1 ,∴a 8=65.14.若 m 是最大的负整数,n 是绝对值最小的有理数,c 是倒数等于它本身的自然数,则代数式 m 2017+2017n +c 2018 的值为__0__.【解析】 由题意知 m =-1,n =0,c =1, ∴m 2017+2017n +c 2018=-1+0+1=0.x -2 2-xm3m3m3综上所述,m <6 且 m ≠0.16.有一个计算程序,每次运算都是把一个数先乘2,再除以它与 1 的和,多次重复进 行这种运算的过程如下:输入x , 第 1 次 y 1=2x2y 1 2y 2 x +1 y 1+1 y 2+1(第 16 题) 2n x (用含字母 x 和 n 的代数式表示). 2y 1x +1 y 1+12x 2× =. +12y 2 3x +1y 2+1 4x 2× =.+1… 2n x .1⎫⎛3-1⎝4⎭82,其中a=2+ 2.⎝+2a-4⎭a+2a-2(2) a(a-2)(a-1)a-2a-22222+21⎫a-1+12a-4a-1a-2x x三、解答题(共66分)17.(6分)计算:(1)(-1)2017-|-2|+(3-π)0×8+ ⎪.【解析】原式=-1-2+1×2+4=3.31(2)-32+8+|1-2|-4sin30°+-4cos45°.1121【解析】原式=-9+22+2-1-4×+-4×=-9+32-1-2+-2223=2-.18.(6分)分解因式:(1)(y+2x)2-(x+2y)2.【解析】原式=[(y+2x)+(x+2y)][(y+2x)-(x+2y)]=3(x+y)(x-y).(2)ab4-6ab3+9ab2.【解析】原式=ab2(b2-6b+9)=ab2(b-3)2.19.(6分)已知实数a,b满足ab=1,a+b=3.(1)求代数式a2+b2的值.(2)求a4-b4的值.【解析】(1)a2+b2=(a+b)2-2ab=32-2×1=9-2=7.(2)∵(a-b)2=(a+b)2-4ab=32-4×1=5,即a-b=5或a-b=-5,∴a2-b2=(a-b)(a+b)=±35,∴a4-b4=(a2+b2)(a2-b2)=7×(±35)=±21 5.20.(10分)先化简,再求值:(1)(2a-1)2-2(a+1)(a-1)-a(a-2),其中a=2+1.【解析】原式=4a2-4a+1-2a2+2-a2+2a=a2-2a+3.当a=2+1时,原式=a2-2a+3=(2+1)2-2(2+1)+3=3+22-22-2+3=4.⎛a⎪÷a(a-2)+1a+21【解析】原式=·+(a-1)21a=+=.2+2当a=2+2时,原式==2+1.21x-221.(6分)小明解方程-=1的过程如图所示,请指出他解答过程中的错误,并写出正确的解答过程.合并同类项,得-2x=-3,解得x=.经检验,x=是原方程的解,∴原方程的解为x=.【解析】(1)S阴影4×4×=8,2×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F(12)=.,(第21题))【解析】小明的解法有三处错误,步骤①去分母有误;步骤②去括号有误;步骤⑥少检验.正确解法如下:方程两边同乘x,得1-(x-2)=x.去括号,得1-x+2=x.移项,得-x-x=-1-2.32323222.(8分)如图为4×4的网格(每个小正方形的边长均为1)与数轴.(第22题)(1)求出图①中阴影部分的面积及正方形的边长.(2)在图②的数轴上作出表示8的点A.1=正方形的边长=8=2 2.(2)在数轴上画边长为2的正方形,以原点为圆心、对角线长为半径画弧,交x轴正半轴于点A,则点A即为表示8的点(画图略).23.(12分)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称ppq34(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1.(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位与十位上的数字得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”.⎧⎪x =1,⎧⎪x =2,⎧⎪x =3,⎧⎪x =4,⎧⎪x =5,(3)若 t =15,15=1×15=3×5,F (15)= ;若 t =26,26=1×26=2×13,F (26)= ;若 t =37,37=1×37,F (37)= ;若 t =48,48=1×48=2×24=3×16=4×12=6×8,F (48)= = ;若 t =59,59=1×59,F (59)= .59 37 13 5 4 ∴F (t )的最大值为 .21 3⎛ ⎫23⎛ ⎫222(2)(a +b ) -ab或a =1,⎧⎪2(3)由已知等式可得 a - ⎪ +3 -1⎪ +(c -1) =0,∴⎨b =2,∴a +b +c =4. ⎪⎩c =1,2 2例如:(x -1) +3,(x -2) +2x , x -2⎪ + x 2 是 x 2-2x +4 的三种不同形式的配方(即 ⎛b ⎫ ⎛b ⎫2 2 ⎩ ⎩ ⎩⎩ ⎩(3)在(2)所得“吉祥数”中,求 F (t )的最大值.【解析】 (1)设 m =n 2,则 n ×n 是 m 的最佳分解, ∴F (m )=1.(2)由题意知 10y +x -(10x +y )=36, 解得 y -x =4. ∵1≤x ≤y ≤9,∴x ,y 的值为⎨ ⎨ ⎨ ⎨ ⎨⎪y =5,⎪y =6,⎪y =7,⎪y =8,⎪y =9,∴t =15,26,37,48,59.35213 1376 38 41591 123 3 ∵ < < < < , 3424.(12 分)阅读材料:把形如 ax 2+bx +c 的二次三项式(或其中某一部分)配成完全平方式的方法叫做配方 法.配方法的基本形式是完全平方公式的逆写,即 a 2±2ab +b 2=(a ±b )2.⎝2 ⎭ 4“余项”分别是常数项、一次项、二次项——见横线上的部分).请根据材料解决下列问题:(1)比照上面的例子,写出 x 2-4x +2 的三种不同形式的配方. (2)将 a 2+ab +b 2 配方(至少两种形式).(3)已知 a 2+b 2+c 2-ab -3b -2c +4=0,求 a +b +c 的值. 【解析】 (1)①x 2-4x +2=(x 2-4x +4)-2=(x -2)2-2.②x 2-4x +2=(x 2-2 2x +2)+(2 2-4)x =(x - 2)2+(2 2-4)x .③x 2-4x +2=[( 2x )2-4x +2]-x 2=( 2x - 2)2-x 2.⎝ 2 ⎭4 ⎝2 ⎭ 4⎝ 2⎭ ⎝2 ⎭。

相关文档
最新文档