做轴对称图形
画轴对称图形 —初中数学课件PPT
2. 把图1-13-22-3所示的图形补成以直线a为对称轴的 轴对称图形.
解:如答图13-22-3所示.
3. 如图1-13-22-5所示,作出△ABC关于直线BC对称的 图形.
解:如答图13-22-4所示,延长CB,作点A关于直线BC的对称点 A′,连接A′B与A′C,即可得出△A′BC,△A′BC为所求的图 形.
由一个平面图形可以得到与它关于一条直线l 对称 的图形,这个图形与原图形的形状、大小完全相同; 新图形上的每一点都是原图形上的某一点关于直线 l 的对称点; 连接任意一对对应点的线段被对称轴垂直平分.
画轴对称图形
如果有一个图形和一条直线,如何作出这个图形关 于这条直线对称的图形呢?
画轴对称图形
如果有一个图形和一条直线,如何作出这个图形关 于这条直线对称的图形呢?
课堂练习 课本P68页 练习1 、2
练习1 如图,把下列图形补成关于直线l 称的图形.
l
l
l
练习2 用纸片剪一个三角形,分别沿它一边的中 线、高、角平分线对折,看看哪些部分能够重合,哪些 部分不能重合.
沿中线折叠
沿高折叠
沿角一部分线折叠
典型例题 导学案P46
知识点1:轴对称图形的画法 【例1】作已知点关于某直线的对称点的第一步是( B )
关于直线l 对称的图形. B
C
A
O
l
A′ C′
B′
画轴对称图形
例1 如图,已知△ABC 和直线l,画出与△ABC
关于直线l 对称的图形.
画法:(1)如图,过点A 画直
B
线l 的垂线,垂足为点O,在垂线上
C
截取OA′=OA,点A′就是点A 关 A
于直线l 的对称点;
作轴对称图形专题训练
△ B C , 并 求 出多 边 形 A B C C 。 B 的
面积 :
l 对 称 , 点 C 到 c / v = 1 为 2 , A B长 为 、
l 、 点 B的坐 标
— —
( 2 ) 将 △A B C向右 平 移 8个 单 位 , 作 出平 移 后 的 △A ;
1 3
1 0 . 已知 AAB C在 平 面直 角坐 标 系 中 的位 置
如 图所 示.
A
_
—
—
/ / 7 / | / | D
\ \ 2
C 1 3 — 2 - 1 1 2 3 4 5 6
第 1 0 题 图
( 1 ) 作 出 AA B C 关 于 y 轴 对 称 的
0 .\
.
NA
、
.
— —
芽 ; 7题 图
( 3 )认 真 观 察 所 作 的 图 形 , △A 8 C 。 与
△ : 有怎 样 的位置 关系 ?
某 的轴 对称 图 形.
个在 1 9×1 6的点 阵 图 上 画 出l
活得 长 几 乎 是 每个 人 的愿 望 , 但 是 活 得 好 只 是 少 数 人 的抱 负 。— — 兰 斯 顿 ・ 休 斯
出最 短 的放牧路 线 .
’
I
..
●. . 、
.
:
。
河 草 地
・P营 地
第 1 1 题图 { 答 案在 参 考答 案 第 2页 )
T ol i v el o n gi s al mo s t e v e r y o n e ’ sw i s h, b u t t ol i v ew e l l i st h e a mb i t i o n o f af e w .
八年级数学上册 画轴对称图形 人教版4
对称点是 P 1 ,点 P 1 关于直线l的对称点是 P 2 ,求 P 1 P 2
的长(用含a的代数式表示).
图13-2-13
解:(1)由题意可知,A 1 (8,0),B 1 (7,0),C 1 (7,2).
如图13-2-14,A1B1C1 即为所求作的图形.
例2 如图13-2-3,在方格纸上建立的平面直角坐标
系中,Rt△ABC关于y轴对称的图形为Rt△DEF,则点A 的对应点D的坐标是__(2_,_1_)_.
图13-2-3 解析:由题图知点A的坐标是(-2,1),所以点A关于y 轴对称的对应点D的坐标是(2,1).
例3 如图13-2-4,利用关于坐标轴对称的点的坐标 特征,作出△ABC关于x轴对称的图形△A′B′C.
图13-2-4
解:∵△ABC关于x轴对称的图形为△A′B′C′,且 △ABC三个顶点的坐标分别是A(-1,4),B(-3,-3), C(2,1), ∴△A′B′C′三个顶点的坐标分别是A′(-1,-4), B′(-3,3),C′(2,-1). 如图13-2-5,△A′B′C′即为所求.
图13-2-5
图13-2-12
题型五 关于坐标轴对称的点的坐标特征的综合运用 例9 如图13-2-13,在平面直角坐标系中,直线l过点
M(3,0)且平行于y轴. (1)如果△ABC三个顶点的坐标分别是A(-2,0),B(-1,0), C(-1,2),△ABC关于直线l的对称图形是 A1B1C1 ,作
出 A1B1C1,并写出点 A1, B1,C1 的坐标;
图13-2-14
(1) 图13-2-15 (2)
当a=3时,P(-3,0).∵点P与点P 1 关于y轴对称,∴ P 1 (3,0).
轴对称图形知识点
轴对称图形知识点轴对称图形是初中数学中一个很重要的知识点,也是应用十分广泛的一个概念。
轴对称图形可以用于建模、美术、建筑等领域,是我们生活中不可或缺的一部分。
一、轴对称图形的定义及性质轴对称图形,顾名思义,就是指如果平面上一个图形经过一条直线对称后,得到的图形与原来的图形完全一致,那么这个图形就是轴对称图形。
这条直线就被称为轴对称线或对称轴。
轴对称图形的一个显著性质是:对于图形上的任意一对点,它们关于轴对称线是对称的。
我们可以通过画出一条虚线,把两个关于它对称的点连起来,以此获得轴对称图形的对称性。
二、轴对称图形的制作方法制作轴对称图形的方法有几种。
其中一种方法是通过“折纸法”制作轴对称图形。
我们可以把待制作的图形剪下来,然后将其沿着轴对称线对折,再将两部分黏在一起,就可以得到轴对称的图形。
另一种制作轴对称图形的方法是通过使用计算机绘图软件,例如Photoshop、Illustrator等。
这些软件可以帮助我们轻松地制作各种轴对称图形,并且可以灵活地改变图形的颜色、大小等因素。
三、轴对称图形的应用轴对称图形在各个领域中都有很重要的应用。
例如,在美术领域中,我们经常使用轴对称图形进行将来建构,特别是在双面画和复合画中,更是少不了轴对称图形。
建筑领域中,轴对称图形被广泛应用于大厦、广场、宫殿等建筑的设计和建造中。
此外,在语言和文字领域,轴对称图形也被用于设计会标、字体等。
四、轴对称图形的实例以下是一些常见的轴对称图形实例:1. 五角星五角星是一个非常常见的轴对称图形。
它由两个重叠的正五角形所组成。
2. 心形心形是一个非常常见的轴对称图形。
它由两个相似的弧形线条组成,以轴对称线为轴对称。
3. 十字架十字架也是一个经典的轴对称图形,由一个直线和一条相交的线段组成。
它在基督教和天主教中有着非常深厚的象征意义。
总的来说,轴对称图形是一个非常重要的初中数学知识点,也是不可或缺的一个概念,可以应用于各个领域。
这个概念的掌握对我们日常生活和工作中的许多方面都会产生巨大的影响。
轴对称知识点及习题
第十三章轴对称轴对称知识要点1.轴对称图形与轴对称轴对称图形:如果一个平面图形沿一条直线折叠;直线两旁的部分能够互相重合;这个图形就叫做轴对称图形.这条直线是它的对称轴.轴对称:把一个平面图形沿着某一条直线折叠;如果它能够与另一个图形重合;那么就说这两个图形关于这条直线成轴对称;这条直线叫做对称轴.2.轴对称的性质如果两个图形关于某条直线对称;那么对称轴是任何一对对应点所连线段的垂直平分线.3.线段的垂直平分线的性质和判定性质:线段垂直平分线上的点与这条线段两个端点的距离相等.判定:与一条线段两个端点距离相等的点;在这条线段的垂直平分线上.4.关于x轴、y轴对称的点的坐标的特点点x;y关于x轴对称的点的坐标为x;-y;点x;y关于y轴对称的点的坐标为-x;y;温馨提示1.轴对称图形是针对一个图形而言;是指一个具有对称的性质的图形;轴对称是针对两个图形而言;它描述的是两个图形的一种位置关系.2.在平面直角坐标系中;关于x轴对称的两个图形的对应点的横坐标相同;纵坐标互为相反数;关于y轴对称的两个图形的对应点的横坐标互为相反数;纵坐标相同.等腰三角形知识要点1.等腰三角形的性质性质1:等腰三角形的两个底角相等简写成“等边对等角”;性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合简写成“三线合一”.2.等腰三角形的判定方法如果一个三角形有两个角相等;那么这两个角所对的边也相等简写成“等角对等边”.3.等边三角形的性质和判定方法性质:等边三角形的三个内角都相等;并且每一个角都等于60°.判定方法1:三个角都相等的三角形是等边三角形.判定方法2:有一个角是60°的等腰三角形是等边三角形.4.直角三角形的性质在直角三角形中;如果一个锐角等于30°;那么它所对的直角边等于斜边的一半.温馨提示1.“等边对等角”和“等角对等边”只限于在同一个三角形中;在两个三角形中时;上述结论不一定成立.2.在应用直角三角形的性质时应注意以下两点:1必须是在直角三角形中;2必须有一个锐角等于30°.方法技巧1.等腰三角形的性质是证明两个角相等的重要方法;当要证明同一个三角形的两个内角相等时;可尝试用“等边对等角”.2.等腰三角形的判定是证明线段相等的一个重要方法;当要证明位于同一个三角形的两条线段相等时;可尝试用“等角对等边”.3.利用轴对称可以解决几何中的最值问题;本方法的实质是依据轴对称的性质以及两点之间线段最短和三角形两边之和大于第三边.13.1轴对称13.2画轴对称图形专题一轴对称图形1.2012·连云港下列图案是轴对称图形的是2.众所周知;几何图形中有许多轴对称图形;写出一个你最喜欢的轴对称图形是:______________________.答案不唯一3.如图;阴影部分是由5个小正方形组成的一个直角图形;请用两种方法分别在下图方格内涂黑两个小正方形;使它们成为轴对称图形.专题二轴对称的性质4.如图;△ABC和△ADE关于直线l对称;下列结论:①△ABC≌△ADE;②l垂直平分DB;③∠C=∠E;④BC与DE的延长线的交点一定落在直线l上.其中错误的有A.0个 B.1个 C.2个 D.3个5.如图;∠A=90°;E为BC上一点;A点和E点关于BD对称;B点、C点关于DE对称;求∠ABC 和∠C的度数.6.如图;△ABC和△A′B′C′关于直线m对称.1结合图形指出对称点.2连接A、A′;直线m与线段AA′有什么关系3延长线段AC与A′C′;它们的交点与直线m有怎样的关系其他对应线段或其延长线的交点呢你发现了什么规律;请叙述出来与同伴交流.专题三灵活运用线段垂直平分线的性质和判定解决问题7.如图;在Rt△ABC中;∠ACB=90°;AB的垂直平分线DE交于BC的延长线于F;若∠F=30°;DE=1;则EF的长是A.3 B.2 C D.18.如图;在△ABC中;BC=8;AB的垂直平分线交BC于D;AC的垂直平分线交BC与E;则△ADE的周长等于________.9.如图;AD⊥BC;BD=DC;点C在AE的垂直平分线上;那么线段AB、BD、DE之间有什么数量关系并加以证明.专题四利用关于坐标轴对称点的坐标的特点求字母的取值范围10.已知点P-2;3关于y轴的对称点为Qa;b;则a+b的值是A.1 B.-1 C.5 D.-511.已知P1点关于x轴的对称点P23-2a;2a-5是第三象限内的整点横、纵坐标都为整数的点;称为整点;则P1点的坐标是__________.13.3等腰三角形13.4课题学习最短路径问题专题一等腰三角形的性质和判定的综合应用1.如图在△ABC中;BF、CF是角平分线;DE∥BC;分别交AB、AC于点D、E;DE经过点F.结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长=AB+AC;④BF=CF.其中正确的是___________.填序号3.如图;已知△ABC是等腰直角三角形;∠BAC=90°;BE是∠ABC的平分线;DE⊥BC;垂足为D.1请你写出图中所有的等腰三角形;2请你判断AD与BE垂直吗并说明理由.3如果BC=10;求AB+AE的长.专题二等边三角形的性质和判定4.如图;在等边△ABC中;AC=9;点O在AC上;且AO=3;点P是AB上一动点;连接OP;以O为圆心;OP长为半径画弧交BC于点D;连接PD;如果PO=PD;那么AP的长是__________.5.如图.在等边△ABC中;∠ABC与∠ACB的平分线相交于点O;且OD∥AB;OE∥AC.1试判定△ODE的形状;并说明你的理由;2线段BD、DE、EC三者有什么关系写出你的判断过程.6.如图;△ABC中;AB=BC=AC=12 cm;现有两点M、N分别从点A、点B同时出发;沿三角形的边运动;已知点M的速度为1 cm/s;点N的速度为2 cm/s.当点N第一次到达B点时;M、N同时停止运动.1点M、N运动几秒后;M、N两点重合2点M、N运动几秒后;可得到等边三角形△AMN3当点M、N在BC边上运动时;能否得到以MN为底边的等腰三角形AMN 如存在;请求出此时M、N运动的时间.专题三最短路径问题7.如图;A、B两点分别表示两幢大楼所在的位置;直线a表示输水总管道;直线b表示输煤气总管道.现要在这两根总管道上分别设一个连接点;安装分管道将水和煤气输送到A、B两幢大楼;要求使铺设至两幢大楼的输水分管道和输煤气分管道的用料最短.图中;点A′是点A关于直线b的对称点;A′B分别交b、a于点C、D;点B′是点B关于直线a的对称点;B′A 分别交b、a于点E、F.则符合要求的输水和输煤气分管道的连接点依次是A.F和C B.F和E C.D和C D.D和E8.如图;现准备在一条公路旁修建一个仓储基地;分别给A、B两个超市配货;那么这个基地建在什么位置;能使它到两个超市的距离之和最小保留作图痕迹及简要说明。
做完轴对称图形的心得体会
做完轴对称图形的心得体会轴对称图形是经过某个中心轴线旋转180度后重合的图形。
在学习过程中,我对轴对称图形有了更深入的认识,也体会到了其中的奥妙和美妙。
首先,轴对称图形具有很强的对称性。
通过学习轴对称图形,我发现无论是几何图形还是生活中的实物,只要满足轴对称的条件,它们的左右对称部分总是完全一致的。
这种对称性给人一种和谐的感觉,让人觉得图形是平衡的,和平的。
例如,花朵、蝴蝶等生物的翅膀就是轴对称的,它们看起来非常美丽。
因此,轴对称图形的存在不仅是自然界的体现,也是人们追求美的一种表现。
其次,轴对称图形的作画过程需要我们具备一定的观察力和规律发现能力。
在画轴对称图形的过程中,我们需要观察图形的各个部分,找到中心轴线和对称点。
然后按照中心轴线将图形分为左右两部分,将一个部分作画完毕后,再沿着中心轴线将其复制到另一边。
而观察图形、发现规律的能力是成长过程中非常重要的素质之一。
通过观察和发现,我们能够更好地理解问题的本质,从而提高自己解决问题的能力。
另外,轴对称图形的绘制过程需要我们具备一定的耐心和细致的态度。
在绘制轴对称图形时,我们不能急于求成,而是要仔细地勾勒每一个点、每一条线,保证图形的对称性和美观性。
要始终保持稳定的心态,耐心地细致描绘,才能够画出完美的轴对称图形。
这种耐心和细致的态度在学习和生活中同样重要。
只有有耐心,才能够克服困难,坚持不懈地达到自己的目标。
此外,轴对称图形的学习也能培养我们的创造力和想象力。
在做轴对称图形的过程中,我们可以根据已有的图形进行创造和自由发挥。
通过各种组合方式,构建出丰富多样的轴对称图形。
这样的练习培养了我们的创造力和想象力,提升了我们的审美能力和艺术素养。
而创造力和想象力都是在今后的学习和工作中能够派上用场的重要素质。
总结起来,做完轴对称图形,我获得了很多收获和体会。
轴对称图形的对称性让我感受到了美和平衡,轴对称图形的观察和发现让我进一步培养了自己的思维能力,轴对称图形的绘制过程让我学会了耐心和细致,轴对称图形的创造过程让我锻炼了自己的想象力和创造力。
轴对称与轴对称图形概念
轴对称与轴对称图形概念1轴对称:如果把一个图形沿着一条直线对折后,与另一个图形重合,那么这两个图形成轴对称,两个图形中相互重合的点叫做对称点,这条直线叫做对称轴;2轴对称图形:如果把一个图形沿某条直线对折,对折后图形的一部分与另一部分完全重合,我们把具有这样性质的图形叫做轴对称图形,这条直线叫做对称轴;轴对称的性质①轴对称的两个图形是全等图形;轴对称图形的两个部分也是全等图形;②轴对称轴对称图形对应线段相等,对应角相等;③如果两个图形成轴对称,那么对称轴是任何一对对应点所连线段的垂直平分线;④轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;⑤两个图形关于某条直线对称,那么如果它们的对应线段或延长线相交,那么交点一定在在对称轴上;图形的平移定义1平移的定义:在平面内,将一个图形整体沿某一方向由一个位置平移到另一个位置,图形的这种移动,叫做平移变换,简称平移,平移前后互相重合的点叫做对应点;2平移的性质:①对应点的连线平行或共线且相等②对应线段平行或共线且相等,平移前后的两条对应线段的四个端点所围成的四边形为平行四边形四个端点共线除外③对应角相等,对应角两边分别平行,且方向一致;3用坐标表示平移:如果把一个图形各个点的横坐标都加上或减去一个正数a,纵坐标不变,相应的新图形就是把原图形向右或向左平移a个单位长;如果把一个图形各个点的纵坐标都加上或减去一个正数a,横坐标不变,相应的新图形就是把原图形向上或向下平移a个单位长;4平移的条件:图形的原来位置、方向、距离5平移作图的步骤和方法:将原图形的各个特征点按规定的方向平移,得到相应的对称点,再将各对称点进行相应连接,即得到平移后的图形,方法有如下三种:平行线法、对应点连线法、全等图形法;特殊的轴对称图形I线段的垂直平分线①定义:垂直并且平分已知线段的直线叫做线段的垂直平分线或中垂线②性质:a、线段的垂直平分线上的点到线段两端点的距离相等的点在线段的垂直平分线上;b、到线段两端点距离相等的点在线段的垂直平分线上;c、线段是轴对称图形,线段的垂直平分线是线段的一条对称轴,另一条是线段所在的直线;II角平分线的性质①角平分线上的点到已知角两边的距离相等②到已知角两边距离相等的点在已知角的角平分线上③角是轴对称图形,角平分线所在的直线是该角的对称轴;用坐标表示轴对称坐标轴对称点Px,y关于x轴对称的点的坐标是x,-y点Px,y关于y轴对称的点的坐标是-x,y原点对称点Px,y关于原点对称的点的坐标是-x,-y坐标轴夹角平分线对称点Px,y关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是y,x 点Px,y关于第二、四象限坐标轴夹角平分线y= -x对称的点的坐标是-y,-x 平行于坐标轴的直线对称点Px,y关于直线x=m对称的点的坐标是2m-x,y;点Px,y关于直线y=n对称的点的坐标是x,2n-y;常见图形的对称轴与画法常见图形的对称轴①线段有两条对称轴,是这条线段的垂直平分线和线段所在的直线;②角有一条对称轴,是角平分线所在的直线;③等腰三角形有一条对称轴,是顶角平分线所在的直线;④等边三角形有三条对称轴,分别是三个顶角平分线所在的直线;⑤矩形有两条对称轴,是相邻两边的垂直平分线;⑥正方形有四条对称轴,是相邻两边的垂直平分线和对角线所在的直线;⑦菱形有两条对称轴,是对角线所在的直线;⑧等腰梯形有一条对称轴,是两底垂直平分线;⑨正多边形有与边数相同条的对称轴;⑩圆有无数条对称轴,是任何一条直径所在的直线;对称轴的画法①找出一对对称点②连对称点线段③做出对称点所连线段的垂直平分线;用坐标表示轴对称坐标轴对称点Px,y关于x轴对称的点的坐标是x,-y点Px,y关于y轴对称的点的坐标是-x,y原点对称点Px,y关于原点对称的点的坐标是-x,-y坐标轴夹角平分线对称点Px,y关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是y,x点Px,y关于第二、四象限坐标轴夹角平分线y= -x对称的点的坐标是-y,-x平行于坐标轴的直线对称点Px,y关于直线x=m对称的点的坐标是2m-x,y;点Px,y关于直线y=n对称的点的坐标是x,2n-y;轴对称与轴对称图形所具有的性质①任何一对对应点所边线段被对称轴垂直平分②两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上③对应线段相等,对应线段所在的直线如果相交,交点在对称轴上④对应角相等中心对称与中心对称图形两者区别1中心对称:把一个图形绕着一点旋转180°后,如果与另一个图形重合,则这两个图形关于该点成中心对称,这个点叫做其对称中心,旋转前后重合的点叫对称点;2中心对称图形:把一个图形绕着某点旋转180°后,能与其自身重合,这个图形叫做中心对称图形,这个点叫做对称中心;3两者的区别与联系①中心对称是指两个特定图形之间的位置关系,中心对称图形是描述一个图形的形状性质;②将成中心对称的两个图形看作一个整体时,这个整体图形就是中心对称图形;4中心对称图形的性质:①对称点的连线经过对称中心且被对称中心平分②对应线段相等,平行或共线③对应角相等;线段的垂直平分线定义1经过线段的中点并且垂直于这条线段的直线,•叫做这条线段的垂直平分线或线段的中垂线.2线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,•与一条线段两个端点距离相等的点在这条线段的垂直平分线上.因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合轴对称与轴对称图形的区别与联系:①轴对称图形是对一个图形而言,是一个具有特殊形状的图形;轴对称是对二个图形而言,是两个图形的位置关系;;②都具有折叠后互相重合;③如果把轴对称的两个图形看成一个图形,那么它就是一个轴对称图形;如果把轴对称图形的两部分看成两个图形,那么它就是一个轴对称;。
作轴对称图形
例2
下图中的点P关于直线 m的对称点在哪里?
⑴
P
⑵ P (A)
m
m
Q ∴点Q即为所求
∴点A即为所求
一起画一画
l
o
A
.
.
A0
如图:画AA0 l,而且OA=OA0 A0即为所求。
变一变
A
.
l
.
A0
B0
B
如图:画A的对称点A0,画B的对称点B0, 线段A0B0 即为所求。
A
.
C
l
.
A1
你会吗?
变一变
E
●
P
O
F N
B
例1 如图,点A和点B关于某条直线成轴对称
你能作出这条直线吗?
已知:如图AC=BC,AD=BD, 作法 求证:直线CD是线段AB的中垂线 1、连接AB
证明:∵ AC=BC
●
C
A
●
B
D
2、分别以点A、B为圆心,大于AB的 ∴点C在线段AB的垂直平分线上 1/2长为半径作弧(为什么?),两 ∵ AD=BD ,∴点D在线段AB的垂直平分线上 弧相交于C、D两点 ∵两点确定一条直线,线段的中垂线有且 3、 作直线CD。
A1 N C D
A
M
聪明题
小明
B1
B
练练你的眼力
哪一面镜子里是他的像?
2、小明照镜子的时候,发现T恤上的英 文单词在镜子中呈现“ ”的样子, 请你判断这个英文单词是( A ) (A) (C) (B) (D)
百尺竿头,更进一步!
1、请画出⊿ABC关于直线
A C
l 的对称⊿
A’B’C’.
l
B
天生我才必有用!
作轴对称图形
美学原则
美学原则是指根据轴对称图形的特点和性质,按照美的规律和标准,运用美学元 素和技巧,创造出优美、和谐、富有美感的图形。
轴对称图形具有平衡、稳定、和谐的特点,因此在作轴对称图形时,需要运用美 学原理和技巧,结合图形的特点和性质,创造出优美、和谐、富有美感的图形。
03
作轴称图形的基本步骤
确定对称轴
在解决实际问题中的应用
建筑设计
轴对称图形的性质在建筑设计中有着广泛的应用。例如,可以利用轴对称的性质 来设计建筑物的外形和结构,使建筑物更加美观、稳定。
机械设计
轴对称图形在机械设计中也有着广泛的应用。例如,可以利用轴对称的性质来设 计机械零件的外形和结构,使零件更加精确、耐用。
06
自己动手:绘制有趣的轴对 称图形
辅助线的调整
在绘制过程中,可以根据实际情况调整辅助线的位置和数量,以 方便绘制。
注意辅助线的使用技巧
在绘制过程中,要注意辅助线的使用技巧,如通过中垂线的方式 确定对称中心等。
05
轴对称图形的应用
在几何中的应用
判断角度
轴对称图形在几何中有着广泛的应用,可以用来判断角度。 例如,可以利用轴对称的性质,通过比较对称轴两侧的角度 来判断两个角是否相等。
轴对称图形的研究进展
自欧几里得以来,数学家们对轴对称图形的研究不断深入。 在数学、物理学、工程学等领域,轴对称图形都具有重要应 用。例如,在建筑学中,许多建筑物都采用了轴对称的设计 。
轴对称图形的分类
轴对称图形的分类标准
轴对称图形可以根据其具有的不同的对称轴数量进行分类。例如,有些图形 只有一条对称轴,有些图形有多条对称轴。
常见的轴对称图形
常见的轴对称图形包括等腰三角形、正方形、圆形、球体等。其中,正方形 有两条对称轴,圆形有无数条对称轴,球体有无数条对称轴。
3.作轴对称图形知识讲解
作轴对称图形【学习目标】1.理解轴对称变换,能作出已知图形关于某条直线的对称图形.2.能利用轴对称变换,设计一些图案,解决简单的实际问题.3.运用所学的轴对称知识,认识和掌握在平面直角坐标系中,与已知点关于x轴或y轴对称点的坐标的规律,进而能在平面直角坐标系中作出与一个图形关于x轴或y轴对称的图形.4.能运用轴对称的性质,解决简单的数学问题或实际问题,提高分析问题和解决问题的能力.【要点梳理】要点一、对称轴的作法若两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线.因此只要找到一对对应点,再作出连接它们的线段的垂直平分线就可以得到这两个图形的对称轴.轴对称图形的对称轴作法相同.要点诠释:在轴对称图形和成轴对称的两个图形中,对应线段、对应角相等.成轴对称的两个图形,如果它们的对应线段或延长线相交,那么交点一定在对称轴上.如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称.【作轴对称图形,用坐标表示轴对称】要点二、用坐标表示轴对称1.关于x轴对称的两个点的横(纵)坐标的关系已知P点坐标,则它关于x轴的对称点的坐标为,如下图所示:即关于x轴的对称的两点,坐标的关系是:横坐标相同,纵坐标互为相反数.2.关于y轴对称的两个点横(纵)坐标的关系已知P点坐标为,则它关于y轴对称点的坐标为,如上图所示.即关于y轴对称的两点坐标关系是:纵坐标相同,横坐标互为相反数.3.关于与x轴(y轴)平行的直线对称的两个点横(纵)坐标的关系P点坐标关于直线的对称点的坐标为.P点坐标关于直线的对称点的坐标为.【典型例题】类型一、作轴对称图形【作轴对称图形,例1】1、如图,△ABC 和△'''A B C 关于直线MN 对称,△'''A B C 和△''''''A B C 关于直线EF 对称.(1)画出直线EF ;(2)直线MN 与EF 相交于点O ,试探究∠''BOB 与直线MN 、EF 所夹锐角α之间的数量关系.【答案】(1)如图;(2)∠''BOB =2α;【解析】(2)∵△ABC 和△'''A B C 关于直线MN 对称,△'''A B C 和△''''''A B C 关于直线EF 对称.∴∠BOM =∠'B OM ,∠'B OE =∠''B OE ,∵∠'B OM +∠'B OE =α∴∠''BOB =2α【总结升华】在轴对称图形和成轴对称的两个图形中,对应线段、对应角相等.成轴对称的两个图形,如果它们的对应线段或延长线相交,那么交点一定在对称轴上.举一反三:【变式】在下图中,画出△ABC 关于直线MN 的对称图形.【答案】△'''A B C 为所求.类型二、轴对称变换的应用(将军饮马问题)【作轴对称图形,例4】2、如图所示,如果将军从马棚M出发,先赶到河OA上的某一位置P,再马上赶到河OB上的某一位置Q,然后立即返回校场N.请为将军重新设计一条路线(即选择点P 和Q),使得总路程MP+PQ+QN最短.【思路点拨】通过轴对称变换,将MP转化为M'P,QN转化为Q N',要使总路程MP+PQ+QN最短,就是指M'P+PQ+Q N'最短,而这三条线段在一条直线上的时候最短.【答案与解析】见下图作点M关于OA的对称点M',作点N关于OB的对称点N',连接M N''交OA于P、交OB于Q,则M→P→Q→N为最短路线.【总结升华】本题主要是通过作对称点的方法得出结论,并利用了对称线段相等,三角形两边之和大于第三边的性质推得所作的图形符合条件,这是道综合性的应用问题.举一反三:【作轴对称图形,例4练习1】【变式】如图所示,将军希望从马棚M出发,先赶到河OA上的某一位置P,再马上赶到河OB上的某一位置Q.请为将军设计一条路线(即选择点P和Q),使得总路程MP+PQ最短.【答案】作点M 关于OA 的对称点M ',过M '作OB 的垂线交OA 于P 、交OB 于Q ,侧M →P→Q 为最短路线.如图:【作轴对称图形,例4练习2】3、将军要检阅一队士兵,要求(如图所示):队伍长为a ,沿河OB 排开(从点P 到点Q);将军从马棚M 出发到达队头P ,从P 至Q 检阅队伍后再赶到校场N .请问:在什么位置列队(即选择点P 和Q),可以使得将军走的总路程MP +PQ +QN 最短?【答案与解析】见下图作法:作N 关于OB 的对称点N ',再作N N '''∥BO 且N N '''=a (N ''在N '的左侧);连接MN ''交OB 于点P ,再在OB 上取点Q 使得PQ =a (Q 在P 的右侧),此时,MP +PQ +QN 最小.【总结升华】MP +PQ +QN 最小,其中PQ 是定值a ,问题转化为MP +QN 最小.因为将军要沿河走一段线段a ,如果能把这段a 提前走掉就可以转化为熟悉的问题了,于是考虑从'N 沿平行的方向走a 至''N ,连接''MN 即可.类型三、用坐标表示轴对称4、 若点M (2,a )和点N (a b +,3)关于y 轴对称,则a = ,b = .【思路点拨】已知P 点坐标,则它关于x 轴的对称点的坐标为,关于y 轴对称点的坐标为. 【答案】 3,-5 ;【解析】点M 和点N 关于y 轴对称,则横坐标互为相反数,纵坐标相等.∴20a b ++=, 3a =,解得b =-5.【总结升华】要掌握点关于x 轴,y 轴,原点等对称的点的坐标变化规律.举一反三:【变式1】已知点A (2,3-)关于x 轴对称的点的坐标为点B (2m ,m n +),则m n -的值为( ).A . 5-B . 1-C . 1D . 5【答案】B ;提示:2m =2,m +n =3, 解得n =2, m =1,选B.【变式2】如图,ΔABC 中,点A 的坐标为(0,1),点C 的坐标为(4,3),点B 的坐标为(3,1),如果要使ΔABD 与ΔABC 全等,求点D 的坐标.【答案】共3个满足条件的点:1D (4,-1),2D (-1,3),3D (-1,-1)。
轴对称图形制作方法
1.“插入”--“形状”—选择一对称图形—设置
好颜色---右击图形--“剪切”--“编辑”菜单-
-“选择性粘贴”--“图片(Windows 元文件)”。
2.复制图片成两份,利用绘图工具中的“载剪” 工具分别对两份图片载剪成左右对称的两部分。 3.复制右半图成两份,一份置顶层,另一份置底 层(底层这份不用作任,自顶部,慢速 5.左半图:退出层叠,之后,到右侧,慢速 6.右半图:伸展,之后,自左侧,慢速 7.右半图:退出层叠,单击,到左侧,慢速 8.左半图:伸展,之后,自右侧,慢速
1.虚线:擦除,单击,自顶部,慢速 2.左半图:动作路径,之后,向左,慢速 3.右半图:动作路径,之后,向右,慢速
三年级数学轴对称图形实践作业(一)
三年级数学轴对称图形实践作业(一)
我是小小设计师
——设计制作轴对称图形
设计要求:
同学们都认识了美丽的“轴对称图形”,知道“轴对称图形”的特点是沿一条直线对折后,两边的图形能完全重合。
也发现了生活中许许多多的轴对称图形,感受到了轴对称图形带来的和谐的美。
如“剪纸”、“中国京剧脸谱”等等。
为了让同学们更深刻地感受“轴对称图形”的特点,“五一”长假我们布置“小小设计师”的实践作业。
作业要求同学们利用剪纸、拼图或画画的方法创作出自己喜欢的“轴对称图形”。
设计或粘贴区域:(可以设计在其它纸张进行粘贴)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.2作轴对称图形
王建宏
改进前:
【教学目标】
1.知识与能力:
能够做出轴对称图形;
2.过程与方法:
通过模仿学会做轴对称图形
3.情感、态度与价值观:
培养学生的应用意识.
改进后:
13.2作轴对称图形
【教学目标】
1.知识与能力:
(1)能够作轴对称图形;
(2)能够经过探索利用坐标来表示轴对称;
(3)能够用轴对称的知识解决相应的数学问题.
(4)学会使用尺规作图。
2.过程与方法:
在探索问题的过程中体会知识间的关系,感受轴对称及轴对称图与生活的联系.
3.情感、态度与价值观:
培养学生的应用意识和探究精神,感受生活中的对称美。