最新高三数学上学期期末考试试卷
山东省威海市2023-2024学年高三上学期期末考试 数学含答案
高三数学(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{||1|}A x x =-≥1,2{|20}B x x x =--<,则A B = A.(20)-, B.(10)-, C.(20]-, D.(10]-,2.已知向量(22)=,a ,(1)x =,b ,若∥a b ,则||=b A.1D.23.若复数z 满足(1i)|1|z -=+,则z =A .1i- B.1i+ C.22i- D.22i+4.cos 28cos73cos62cos17︒︒︒︒+=A.2B.2-C.2D.2-5.若正实数a ,b ,c 满足235a b c ==,则A.a b c<< B.b a c<< C.b c a<< D.c b a<<6.已知函数()y f x =的图象是连续不断的,且()f x 的两个相邻的零点是1,2,则“0(12)x ∃∈,,0()0f x >”是“(12)x ∀∈,,()0f x >”的A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知1F ,2F 分别为双曲线22221(00)x y a b a b -=>>,的左、右焦点,过点1F 的直线与圆222x y a +=相切于点P ,且与双曲线的右支交于点Q ,若2||||PQ QF =,则该双曲线的离心率为A.2B.3C.2D.58.在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,2PA PD ==,二面角P AD B --为60︒,则该四棱锥外接球的表面积为A.163πB.283π C.649π D.20π二、选择题:本题共4小题,每小题5分,共20分。
福建省福州市福建师范大学附属中学2024届高三上学期期末考试数学试卷
福建省福州市福建师范大学附属中学2024届高三上学期期末考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.集合{}2P x x =<,12xQ y y ⎧⎫⎪⎪⎛⎫==⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则P Q =I ( )A .1,4⎛⎫-∞ ⎪⎝⎭B .10,4⎛⎫⎪⎝⎭C .()0,2D .∅2.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同报名方法有( ) A .10种B .20种C .25种D .32种3.设1,2,3,4,5k =,则5(2)x +的展开式中k x 的系数不可能是( ) A .10B .40C .50D .804.已知(1,0),||1,||a b a b ==-=r rr r a r 与a b -r r 的夹角为( )A .π6B .π3C .2π3D .5π65.已知锐角θ满足2cos21sin 2θθ=+,则tan θ=( ) A .13B .12C .2D .36.设n S 为等差数列{}n a 的前n 项和,则“对*N n ∀∈,1n n a a +>”是“()11n n nS n S +>+”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.已知双曲线C :()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,点P 是C 上的一点,212PF F F ⊥,12F PF ∠的平分线与x 轴交于点A ,记1PF A △,2PF A △的面积分别为1S ,2S ,且1232S S =,则C 的离心率为( ) ABCD .38.我国古代数学名著《九章算术》对立体几何有深入的研究,从其中的一些数学用语可见,譬如将有三条棱互相平行且有一个面为平行四边形的五面体称为刍甍,今有一刍甍,底面ABCD 为平行四边形,//EF 面ABCD ,记该刍甍的体积为1V ,三棱锥E ABD-的体积为2V ,AB a =,EF b =,若2125V V =,则ba=( )A .1B .12C .13D .23二、多选题9.2023年入冬以来,流感高发,某医院统计了一周中连续5天的流感就诊人数y 与第()1,2,3,4,5x x =天的数据如表所示.根据表中数据可知x ,y 具有较强的线性相关关系,其经验回归方程为ˆ2010yx =+,则( )A .样本相关系数在(]0,1内B .当2x =时,残差为-2C .点()3,15a 一定在经验回归直线上D .第6天到该医院就诊人数的预测值为13010.设F 是抛物线C :24y x =的焦点,直线l 过点F 且与抛物线C 交于A ,B 两点,O 为坐标原点,则下列结论正确的是( )A .||4AB ≥B .||||8OA OB +>C .若点(4,1)P ,则||||PA AF +的最小值是5D .若AB 倾斜角为3π,且AF B F >,则3AF BF =11.已知函数()f x 的定义域为()0,∞+,满足对任意(),0,x y ∈+∞,都有()()()()()2f xy f x f y f x f y =⋅--+,且1x >时,()2f x >.则下列说法正确的是( )A .()12f =B .当()0,1x ∈时,()2f x <C .()f x 在()0,1是减函数D .存在实数k 使得函数()y f x k =+在()0,1是减函数三、填空题 12.设复数i 1i 1z +=-(i 为虚数单位),则1z z +=.13.如图,在三棱锥-P ABC 中,AC BC ⊥,PA ⊥平面ABC ,且PA AB =,E 为PB 中点,AF PC ⊥于点F ,写出图中一条一定与EF 垂直的线段为.14.设0a >,已知函数()()e ln xf x a ax b b =-+-,若()0f x ≥恒成立,则ab 的最大值为.四、解答题15.某学校有A 、B 两家餐厅,王同学第1天午餐时随机选择一家餐厅用餐,如果第1天去A 餐厅,那么第2天去A 餐厅的概率为0.6;如果第1天去B 餐厅,那么第2天去A 餐厅的概率为0.8.(1)求王同学第2天去A 餐厅用餐的概率;(2)如果王同学第2天去A 餐厅用餐,求他第1天在A 餐厅用餐的概率;(3)A 餐厅对就餐环境、菜品种类与品质等方面进行了改造与提升.改造提升后,A 餐厅对就餐满意程度进行了调查,统计了100名学生的数据,如下表(单位:人).依据小概率值0.005α=的独立性检验,能否认为学生对于A 餐厅的就餐满意程度与餐厅的改造提升有关联?如果有关联,请分析两者的影响规律.附:()()()()()22n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.16.设ABC V 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,且3C π=.(1)若1a b +=,求c 的最小值; (2)求cos cos cos2A BA B -+-的值. 17.已知数列{}n a 满足:11a =,()*13n n a a n n λ++=+∈N ,R λ∈. (1)证明:数列{}2n a 是等差数列;(2)是否存在λ使得数列{}n a 为等差数列?若存在,求λ的值及数列{}n a 的前n 项和n S ;否则,请说明理由.18.如图,在ABC V 中,90ACB ∠=o ,212AB BC ==,E 是AB 的中点,D 在AC 上,DE AB ⊥,以DE 为折痕把ADE V 折起,使点A 到达点1A 的位置,且二面角1A DE B--的大小为60°.(1)求证:1AC BE ⊥; (2)求直线1A E 与平面1ACD 所成角的正弦值. 19.已知函数()()sin R e xxf x x =∈. (1)求()f x 的单调区间;(2)若对于任意的()π0,,2x f x kx ⎡⎤∈≥⎢⎥⎣⎦恒成立,求实数k 的取值范围.20.已知椭圆()2222:10x y C a b a b +=>>的短轴长为2.(1)求椭圆C 的方程;1,0,且与椭圆C交于M,N两点(2)椭圆C的左、右顶点分别为A,B,直线l经过点()-是否存在最大(均异于A,B两点),直线AM,BN的倾斜角分别记为,αβ,试问αβ-取最大值时,直线AM,BN的方程;若不存在,说明理由.值?若存在,求当αβ。
2024年山东省枣庄市高三上学期期末考试数学试题试题及答案
( ) ON ⊥ l 于点 N ,直线 MF 与 ON 交于点 A ,点 B 5, 0 ,则 AB 的取值范围是__________.
四、解答题:本题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.
17.(10 分)
已知数列 an 中, a1 = 1, n2an+1 = (n +1)2 an .
22.(12 分)
已知双曲线 C 的渐近线方程为 3x y = 0 ,过右焦点 F (2, 0) 且斜率为 k 的直线 l 与 C 相交于 A, B 两点.
(1)求 C 的方程; (2)①若 B 点关于 x 轴的对称点为 E ,求证直线 AE 恒过定点 M ,并求出点 M 的坐标; ②若 k…3,求 AEF 面积的最大值.
比( ) A.极差变小
B.平均数变大
C.方差变小
D.第 25 百分位数变小
10.设 m = (−1,3), n = (1, 2) ,则( )
A. m − 2n = 10
B. (m − 2n) ⊥ m C.若 (m − 2n) ∥ (km + n) ,则 k = − 1
2 D. n 在 m 上的投影向量为 1 m
A1
−
ABD
外接球的表面积最小值为
100π 3
12.已知定义在 R 上的连续函数
f
( x) ,其导函数为
f ( x) ,且
f
(0) = e,
f
1 2
=
1
பைடு நூலகம்,函数
y
=
f
x
+
1 2
为
奇函数,当 x 1 时 f ( x) f ( x) ,则( )
2
北京市房山区2023-2024学年高三上学期期末考试数学含答案解析
房山区2023-2024学年度第一学期期末检测试卷高三数学本试卷共6页,共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将答题卡交回,试卷自行保存.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}2,0,1,2A =-,{}10B x x =->,则A B = ()A.{}2 B.{}1,2 C.{}2,0- D.{}2,0,1,2-2.在复平面内,若复数z 对应的点为()1,1-,则()1i z --=()A.2B.2iC.2i- D.2-3.已知向量()2,0a = ,(),1b m = ,且a 与b 的夹角为π3,则m 的值为()A.33-B.33C. D.4.432x x ⎛⎫+ ⎪⎝⎭的展开式中的常数项是()A.32- B.32C.23- D.235.已知a ,b 为非零实数,且a b >,则下列结论正确的是()A.22a b > B.11a b> C.b a a b> D.2211ab a b>6.已知直线:2l y x b =+与圆()()22:125C x y -++=相切,则实数b =()A.1或9B.1-或9C.1-或9- D.1或9-7.已知函数()f x 满足()()0f x f x --=,且在[0,)+∞上单调递减,对于实数a ,b ,则“22a b <”是“()()f a f b >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.保护环境功在当代,利在千秋,良好的生态环境既是自然财富,也是经济财富,关系社会发展的潜力和后劲.某工厂将生产产生的废气经过过滤后排放,已知过滤过程中的污染物的残留数量P (单位:毫米/升)与过滤时间t (单位:小时)之间的函数关系为0e(0)ktP P t -=⋅≥,其中k 为常数,0k >,0P 为原污染物数量.该工厂某次过滤废气时,若前9个小时废气中的污染物恰好被过滤掉80%,那么再继续过滤3小时,废气中污染物的残留量约为原污染物的(参考数据:1310.5855⎛⎫≈ ⎪⎝⎭)()A.12%B.10%C.9%D.6%9.已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,P 为双曲线C 左支上一动点,Q 为双曲线C 的渐近线上一动点,且2PQ PF +最小时,1PF 与双曲线C 的另一条渐近线平行,则双曲线C 的方程可能是()A .2213y x -= B.2213x y -=C.22122x y -= D.2214x y -=10.数学家祖冲之曾给出圆周率π的两个近似值:“约率”227与“密率”355113.它们可用“调日法”得到:称小于3.1415926的近似值为弱率,大于3.1415927的近似值为强率.由于3141π<<,取3为弱率,4为强率,计算得1711234a ==++,故1a 为强率,与上一次的弱率3计算得23710123a +==+,故2a 为强率,继续计算,….若某次得到的近似值为强率,与上一次的弱率继续计算得到新的近似值;若某次得到的近似值为弱率,与上一次的强率继续计算得到新的近似值,依此类推.已知258m a =,则m =()A.8B.7C.6D.5第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.函数2ln(12)y x x=-+的定义域是______.12.记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-,则n a =______.13.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2cos 2b c a C -=,则A ∠=______.14.已知平面直角坐标系中,动点M 到(0,2)F -的距离比M 到x 轴的距离大2,则M 的轨迹方程是______.15.如图,在棱长为a 的正方体1111ABCD A B C D -中,点P 是线段1B C 上的动点.给出下列结论:①1AP BD ⊥;②//AP 平面11AC D ;③直线AP 与直线11A D 所成角的范围是ππ,43⎡⎤⎢⎥⎣⎦;④点P 到平面11AC D 的距离是3a .其中所有正确结论的序号是______.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.如图,在四棱锥P ABCD -中,PAD 为等腰三角形,PD AD ⊥,PA =,底面ABCD 是正方形,M ,N 分别为棱PD ,BC 的中点.(1)求证://MN 平面PAB ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求MN 与平面PBC 所成角的正弦值.条件①:CD PA ⊥;条件②:PB =.注:如果选择条件①和条件②分别解答,按第一个解答计分.17.已知函数()()π22f x x ϕϕ⎛⎫=+< ⎪⎝⎭的图象上所有点向右平移π8个单位长度,所得函数图象关于原点对称.(1)求ϕ的值;(2)设()()212cos 2g x f x x =-+,若()g x 在区间()0,m 上有且只有一个零点,求m 的取值范围.18.某移动通讯公司为答谢用户,在其APP 上设置了签到翻牌子赢流量活动.现收集了甲、乙、丙3位该公司用户2023年12月1日至7日获得的流量(单位:MB )数据,如图所示.(1)从2023年12月1日至7日中任选一天,求该天乙获得流量大于丙获得流量的概率;(2)从2023年12月1日至7日中任选两天,设X 是选出的两天中乙获得流量大于丙获得流量的天数,求X 的分布列及数学期望()E X ;(3)将甲、乙、丙3位该公司用户在2023年12月1日至7日获得流量的方差分别记为21s ,22s ,23s ,试比较21s ,22s ,23s 的大小(只需写出结论).19.设椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为1A ,2A ,右焦点为F ,已知13A F =,离心率为12.(1)求椭圆C 的标准方程;(2)已知点P 是椭圆C 上的一个动点(不与顶点重合),直线2A P 交y 轴于点Q ,若1A PQ △的面积是2A FP △面积的4倍,求直线2A P 的方程.20.已知函数()1e x f x a x ⎛⎫=+⋅⎪⎝⎭.(1)当0a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)当1a =时,求函数()f x 的单调递增区间;(3)若函数()f x 在区间()0,1上只有一个极值点,求a 的取值范围.21.若无穷数列{}n a 满足:*m ∃∈N ,对于()*00n n n ∀≥∈N,都有n mna q a +=(其中q 为常数),则称{}n a 具有性质“()0,,Q m n q ”.(1)若{}n a 具有性质“(4,2,3)Q ”,且31a =,52a =,691120a a a ++=,求2a ;(2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为2的等比数列,234b c ==,112b c c +=,n n n a b c =+,判断{}n a 是否具有性质“(2,1,3)Q ”,并说明理由;(3)设{}n a 既具有性质“()1,1,Q i q ”,又具有性质“()2,1,Q j q ”,其中i ,*j ∈N ,i j <,求证:{}n a 具有性质“2,1,j ijQ j i i q -⎛⎫-+ ⎪ ⎪⎝⎭”.房山区2023-2024学年度第一学期期末检测试卷高三数学本试卷共6页,共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将答题卡交回,试卷自行保存.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}2,0,1,2A =-,{}10B x x =->,则A B = ()A.{}2 B.{}1,2 C.{}2,0- D.{}2,0,1,2-【答案】C 【解析】【分析】计算出集合B 后由交集定义运算可得.【详解】{}{}101B x x x x =->=<,故{}2,0A B ⋂=-.故选:C.2.在复平面内,若复数z 对应的点为()1,1-,则()1i z --=()A.2B.2iC.2i- D.2-【答案】A 【解析】【分析】利用复数的几何意义可得出复数z ,再利用复数的乘法可求得()1i z --的值.【详解】在复平面内,若复数z 对应的点为()1,1-,由复数的几何意义可得1i z =-+,因此,()()()1i 1i 1i 2z --=--⋅-+=.故选:A.3.已知向量()2,0a = ,(),1b m = ,且a 与b 的夹角为π3,则m 的值为()A.33-B.33C. D.【答案】B 【解析】【分析】先表示出,,a b a b ⋅ ,然后根据πcos 3a b a b ⋅= 求解出m 的值.【详解】因为2a b m ⋅= ,2,a b ==所以πcos 3a b a b ⋅= ,所以1222m =,解得33m =或33m =-(舍去),故选:B.4.432x x ⎛⎫+ ⎪⎝⎭的展开式中的常数项是()A.32-B.32C.23- D.23【答案】B 【解析】【分析】写出二项式展开式通项,令x 的指数为零,求出参数的值,代入通项即可得解.【详解】432x x ⎛⎫+ ⎪⎝⎭的展开式通项为()()431241442C C 20,1,2,3,4kk k kk k k T x x k x --+⎛⎫=⋅⋅=⋅⋅= ⎪⎝⎭,令1240k -=,可得3k =,因此,展开式中的常数项为3334C 24832T =⋅=⨯=.故选:B.5.已知a ,b 为非零实数,且a b >,则下列结论正确的是()A.22a b >B.11a b> C.b a a b > D.2211ab a b>【答案】D 【解析】【分析】对A 、B 、C 举反例即可得,对D 作差计算即可得.【详解】对A :若0a b >>,则22a b <,故错误;对B :若0a b >>,则11a b<,故错误;对C :若0a b >>,则22a b >,0ab >,左右同除ab ,有a bb a>,故错误;对D :由a b >且a ,b 为非零实数,则2222110a b ab a b a b --=>,即2211ab a b>,故正确.故选:D.6.已知直线:2l y x b =+与圆()()22:125C x y -++=相切,则实数b =()A.1或9 B.1-或9 C.1-或9- D.1或9-【答案】D 【解析】【分析】利用圆心到直线的距离等于圆的半径,可求得实数b 的值.【详解】圆C 的圆心为()1,2C -因为直线:20l x y b -+=与圆C=,即45b +=,解得1b =或9-.故选:D.7.已知函数()f x 满足()()0f x f x --=,且在[0,)+∞上单调递减,对于实数a ,b ,则“22a b <”是“()()f a f b >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C 【解析】【分析】根据给定条件,可得函数()f x 是R 上的偶函数,利用充分条件、必要条件的定义,结合偶函数性质及单调性判断即得.【详解】由函数()f x 满足()()0f x f x --=,得函数()f x 是R 上的偶函数,而()f x 在[0,)+∞上单调递减,因此22()()(||)(||)||||f a f b f a f b a b a b >⇔>⇔<⇔<,所以“22a b <”是“()()f a f b >”的充要条件.故选:C8.保护环境功在当代,利在千秋,良好的生态环境既是自然财富,也是经济财富,关系社会发展的潜力和后劲.某工厂将生产产生的废气经过过滤后排放,已知过滤过程中的污染物的残留数量P (单位:毫米/升)与过滤时间t (单位:小时)之间的函数关系为0e(0)ktP P t -=⋅≥,其中k 为常数,0k >,0P 为原污染物数量.该工厂某次过滤废气时,若前9个小时废气中的污染物恰好被过滤掉80%,那么再继续过滤3小时,废气中污染物的残留量约为原污染物的(参考数据:1310.5855⎛⎫≈ ⎪⎝⎭)()A.12%B.10%C.9%D.6%【解析】【分析】根据题意可得9001e5kP P -⋅=,解得1331e 5k -⎛⎫= ⎪⎝⎭,从而求得关于残留数量与过滤时间的函数关系式,再将12t =代入即可求得答案.【详解】因为前9个小时废气中的污染物恰好被过滤掉80%,所以9001e5kP P -⋅=,即91e ,5k -=所以1331e 5k -⎛⎫= ⎪⎝⎭.再继续过滤3小时,废气中污染物的残留量约为()4341230000011ee0.58512%55kkP P P P P --⎛⎫⋅=⨯=⨯≈⨯≈ ⎪⎝⎭.故选:A.9.已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,P 为双曲线C 左支上一动点,Q 为双曲线C 的渐近线上一动点,且2PQ PF +最小时,1PF 与双曲线C 的另一条渐近线平行,则双曲线C 的方程可能是()A.2213y x -= B.2213x y -=C.22122x y -= D.2214x y -=【答案】C 【解析】【分析】根据给定条件,利用双曲线定义确定2PQ PF +最小时,点Q 的位置,进而求出,a b 的关系即得.【详解】双曲线C :22221(0,0)x y a b a b-=>>的渐近线为0bx ay ±=,由对称性不妨令点P 在第二象限,由双曲线定义得211||||2||2PQ PF PQ PF a F Q a +=++≥+,当且仅当P 为线段1FQ 与双曲线的交点时因此2PQ PF +的最小值为1||F Q 的最小值与2a 的和,显然当1FQ 与渐近线0bx ay +=垂直时,1||F Q 取得最小值,而1PF 平行于渐近线0bx ay -=,于是双曲线的两条渐近线互相垂直,即1ba=,则双曲线22221x y a b -=的渐近线方程为0x y ±=,显然选项ABD 不满足,C 满足,所以双曲线C 的方程可能是22122x y -=.故选:C10.数学家祖冲之曾给出圆周率π的两个近似值:“约率”227与“密率”355113.它们可用“调日法”得到:称小于3.1415926的近似值为弱率,大于3.1415927的近似值为强率.由于3141π<<,取3为弱率,4为强率,计算得1711234a ==++,故1a 为强率,与上一次的弱率3计算得23710123a +==+,故2a 为强率,继续计算,….若某次得到的近似值为强率,与上一次的弱率继续计算得到新的近似值;若某次得到的近似值为弱率,与上一次的强率继续计算得到新的近似值,依此类推.已知258m a =,则m =()A.8B.7C.6D.5【答案】B 【解析】【分析】根据题意不断计算即可解出.【详解】因为2a 为强率,由310π13<<可得,373101331.31244159a +==>+,即3a 为强率;由313π14<<可得,473131631.41254159a +==>+,即4a 为强率;由316π15<<可得,573161931.51264159a +==>+,即5a 为强率;由319π16<<可得,673192231.61274159a +==>+,即6a 为强率;由322π17<<可得,763222531.1252183.41597a +===<+,即7a 为弱率,所以7m =,故选:B.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.函数2ln(12)y x x=-+的定义域是______.【答案】()1,00,2⎛⎫-∞⋃ ⎪⎝⎭【解析】【分析】由真数大于零及分母不等于零计算即可得.【详解】由题意可得120x ->、0x ≠,故12x <且0x ≠,故该函数定义域为()1,00,2⎛⎫-∞⋃ ⎪⎝⎭.故答案为:()1,00,2⎛⎫-∞⋃ ⎪⎝⎭.12.记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-,则n a =______.【答案】29n -【解析】【分析】由等差数列及其前n 项和的性质计算即可得.【详解】设()()1171n a a n d n d =+-=-+-,则313321315S a d d =+=-+=-,即2d =,故()72129n a n n =-+-=-.故答案为:29n -.13.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2cos 2b c a C -=,则A ∠=______.【答案】π4【解析】【分析】根据给定条件,利用正弦定理边化角,再利用和角的正弦公式求解即得.【详解】在ABC 中,由2cos 2b c a C -=及正弦定理,得2sin sin sin cos 2B C A C -=,则sin()sin sin cos 2A C C A C +-=,整理得cos sin sin 2A C C =,而sin 0C >,因此2cos 2A =,又0πA <<,所以π4A =.故答案为:π414.已知平面直角坐标系中,动点M 到(0,2)F -的距离比M 到x 轴的距离大2,则M 的轨迹方程是______.【答案】28(0)x y y =-≤或0(0)x y =>【解析】【分析】设出点M 的坐标,利用已知列出方程化简即得.【详解】设点(,)M x y ,依题意,||||2MF y =+||2y =+,整理得24(||)x y y =-,所以M 的轨迹方程是28(0)x y y =-≤或0(0)x y =>.故答案为:28(0)x y y =-≤或0(0)x y =>15.如图,在棱长为a 的正方体1111ABCD A B C D -中,点P 是线段1B C 上的动点.给出下列结论:①1AP BD ⊥;②//AP 平面11AC D ;③直线AP 与直线11A D 所成角的范围是ππ,43⎡⎤⎢⎥⎣⎦;④点P 到平面11AC D 的距离是3a .其中所有正确结论的序号是______.【答案】①②④【解析】【分析】建立空间直角坐标系后逐个分析即可得.【详解】以D 为原点,建立如图所示空间直角坐标系,则有()0,0,0D 、(),0,0A a 、()1,0,A a a 、(),,0B a a 、()10,0,D a 、()1,,B a a a 、()0,,0C a 、()10,,C a a ,则()1,0,B C a a =-- 、()1,,BD a a a =-- 、()11,,0A C a a =- 、()1,0,A D a a =-- 、()10,,AB a a = 、()11,0,0A D a =- 、()10,0,AA a = ,设11B P B C λ= ,[]0,1λ∈,则()11,,AP AB B P a a a a λλ=+=-- ,222210AP BD a a a a λλ⋅=-+-= ,故1AP BD ⊥,故①正确;设平面11AC D 的法向量为(),,n x y z =,则有11100A C n A D n ⎧⋅=⎪⎨⋅=⎪⎩ ,即00ax ay ax az -+=⎧⎨--=⎩,取1x =,则()1,1,1n =- ,有0AP n a a a λλ⋅=-+-+= ,故AP n ⊥ ,又AP ⊄平面11A C D ,则//AP 平面11A C D ,故②正确;当0λ=时,有()0,,AP a a = ,此时110000A A P D =+⋅+= ,即11AP A D ⊥,即此时直线AP 与直线11A D 所成角为π2,故③错误;由()1,1,1n =- ,()11,,PA AA AP a a a λλ=-=- ,则133PA n d n ⋅== ,故④正确.故答案为:①②④.【点睛】关键点睛:对空间中线上动点问题,可设出未知数表示该动点分线段所得比例,从而用未知数的变化来体现动点的变化.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.如图,在四棱锥P ABCD -中,PAD 为等腰三角形,PD AD ⊥,PA =,底面ABCD 是正方形,M ,N 分别为棱PD ,BC 的中点.(1)求证://MN 平面PAB ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求MN 与平面PBC 所成角的正弦值.条件①:CD PA ⊥;条件②:PB =.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】(1)证明见解析(2)6【解析】【分析】(1)由线面平行的判定定理即可得;(2)选①,由题意及CD PA ⊥去推导得到PD 、CD 、AD 两两垂直,即可建立空间直角坐标系解决问题;选②,由题意及PB =结合勾股定理的逆定理去推导得到PD 、CD 、AD 两两垂直,即可建立空间直角坐标系解决问题.【小问1详解】连接点B 与AP 中点E 、连接ME ,又M ,N 分别为棱PD ,BC 的中点,故//ME AD 、12ME AD =,又底面ABCD 是正方形,故//BN AD 、12=BN AD ,故//ME BN 且ME BN =,故四边形MEBN 为平行四边形,故//MN EB ,又EB ⊂平面PAB ,MN ⊄平面PAB ,故//MN 平面PAB ;【小问2详解】选条件①:CD PA ⊥,由PD AD ⊥且PAD 为等腰三角形,故PD AD =,又PA =,故222PD AD ==⨯=,有2PD AD AB BC CD =====,由CD PA ⊥,CD AD ⊥,PA 、AD ⊂平面PAD ,PA AD A ⋂=,故CD ⊥平面PAD ,又PD ⊂平面PAD ,故CD PD ⊥,故PD 、CD 、AD 两两垂直,故可以D 为原点,建立如图所示空间直角坐标系,有()0,0,0D 、()002P ,,、()2,2,0B 、()0,2,0C 、()0,0,1M 、()1,2,0N ,则()1,2,1MN =- 、()2,2,2PB =- 、()0,2,2PC =- ,令平面PBC 的法向量为(),,n x y z = ,则有00PB n PC n ⎧⋅=⎪⎨⋅=⎪⎩ ,即2220220x y z y z +-=⎧⎨-=⎩,令1y =,则()0,1,1n = ,则3cos ,6MN n MN n MN n⋅== ,故MN 与平面PBC所成角的正弦值为6.条件②:PB =,由PD AD ⊥且PAD 为等腰三角形,故PD AD =,又PA =,故222PD AD ==⨯=,有2PD AD AB BC CD =====,由PB =,则222PB PA AB =+,故PA AB ⊥,又//AB CD ,故CD PA ⊥,又CD AD ⊥,PA 、AD ⊂平面PAD ,PA AD A ⋂=,故CD ⊥平面PAD ,又PD ⊂平面PAD ,故CD PD ⊥,故PD 、CD 、AD 两两垂直,故可以D 为原点,建立如图所示空间直角坐标系,有()0,0,0D 、()002P ,,、()2,2,0B 、()0,2,0C 、()0,0,1M 、()1,2,0N ,则()1,2,1MN =- 、()2,2,2PB =- 、()0,2,2PC =- ,令平面PBC 的法向量为(),,n x y z = ,则有00PB n PC n ⎧⋅=⎪⎨⋅=⎪⎩ ,即2220220x y z y z +-=⎧⎨-=⎩,令1y =,则()0,1,1n = ,则3cos ,6MN n MN n MN n⋅== ,故MN 与平面PBC所成角的正弦值为6.17.已知函数()()π22f x x ϕϕ⎛⎫=+< ⎪⎝⎭的图象上所有点向右平移π8个单位长度,所得函数图象关于原点对称.(1)求ϕ的值;(2)设()()212cos 2g x f x x =-+,若()g x 在区间()0,m 上有且只有一个零点,求m 的取值范围.【答案】(1)π4ϕ=(2)π5π,1212⎛⎤ ⎥⎝⎦【解析】【分析】(1)求出平移后所得函数的解析式,根据正弦型函数的奇偶性,结合ϕ的取值范围可求得ϕ的值;(2)利用三角恒等变换化简得出()1sin 22g x x =-,由0x m <<可得022x m <<,结合题意可得出关于m 的不等式,解之即可.【小问1详解】解:将函数()()π22f x x ϕϕ⎛⎫=+< ⎪⎝⎭的图象上所有点向右平移π8个单位长度,可得到函数ππ2284y x x ϕϕ⎡⎤⎛⎫⎛⎫=-+=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由题意可知,函数π24y x ϕ⎛⎫=+- ⎪⎝⎭为奇函数,则()ππ4k k ϕ-=∈Z ,可得()ππ4k k ϕ=+∈Z ,又因为π2ϕ<,则π4ϕ=.【小问2详解】解:由(1)可知,()π2sin 2cos 24f x x x x ⎛⎫=+=+ ⎪⎝⎭,则()()()21112cos sin 2cos 21cos 2sin 2222g x f x x x x x x =-+=+-++=-,因为0x m <<,则022x m <<,由()0g x =,可得1sin 22x =,因为()g x 在区间()0,m 上有且只有一个零点,则π5π266m <≤,解得π5π1212m <≤.因此,实数m 的取值范围是π5π,1212⎛⎤ ⎥⎝⎦.18.某移动通讯公司为答谢用户,在其APP 上设置了签到翻牌子赢流量活动.现收集了甲、乙、丙3位该公司用户2023年12月1日至7日获得的流量(单位:MB )数据,如图所示.(1)从2023年12月1日至7日中任选一天,求该天乙获得流量大于丙获得流量的概率;(2)从2023年12月1日至7日中任选两天,设X 是选出的两天中乙获得流量大于丙获得流量的天数,求X 的分布列及数学期望()E X ;(3)将甲、乙、丙3位该公司用户在2023年12月1日至7日获得流量的方差分别记为21s ,22s ,23s ,试比较21s ,22s ,23s 的大小(只需写出结论).【答案】(1)27(2)X 的分布列见解析,()47E x =(3)23s >2212s s =【解析】【分析】(1)利用古典概型计算公式进行求解即可;(2)利用古典概型计算公式,结合数学期望公式进行求解即可.(3)根据数据的集中趋势进行判断即可.【小问1详解】由图可知,七天中只有1日、2日乙获得流量大于丙获得流量,所以该天乙获得流量大于丙获得流量的概率为27;【小问2详解】由(1)可知七天中只有1日、2日乙获得流量大于丙获得流量,因此0,1,2X =,()2527C 100C 21P X ===,()2227C 12C 21P X ===,()1011011212121P X ==--=,所以X 的分布列如下图所示:X012P 10211021121()1010140122121217E X =⨯+⨯+⨯=;【小问3详解】根据图中数据信息,甲、乙七天的数据相同,都是1个50,2个30,1个10,3个5;而且丙的的数据最分散,所以,23s >2212s s =.19.设椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为1A ,2A ,右焦点为F ,已知13A F =,离心率为12.(1)求椭圆C 的标准方程;(2)已知点P 是椭圆C 上的一个动点(不与顶点重合),直线2A P 交y 轴于点Q ,若1A PQ △的面积是2A FP △面积的4倍,求直线2A P 的方程.【答案】19.22143x y +=20.3260x y ±-=【解析】【分析】(1)由题意计算即可得;(2)设出直线,联立曲线,得到P 、Q 两点的纵坐标,结合面积公式计算即可得.【小问1详解】由13A F a c =+=,12c e a ==,解得2a =,1c =,故3b ==,即椭圆C 的标准方程为22143x y +=;【小问2详解】由椭圆C 的标准方程为22143x y +=,则()12,0A -、()22,0A 、()1,0F ,由题意可得直线2A P 斜率存在且不为0,设2:2A P l x my =+,令0x =,则2y m =-,故20,Q m ⎛⎫- ⎪⎝⎭,联立222143x my x y =+⎧⎪⎨+=⎪⎩,消去x 得()2234120m y my ++=,即()234120m y m y ⎡⎤++=⎣⎦,故0y =或21234m y m -=+,由()22,0A ,故21234P m y m -=+,则112121144222A PQ A A Q A A P Q P Q P S S S y y y y =-=⨯-⨯=- ,又()212122P A FP P y S y =⨯-=,即2422P Q P P y y y y -=⨯=,即Q P P y y y -=,若Q P y y >,则2Q P y y =,即2122234m m m -=⨯+,即223412m m +=,即249m =,则23m =±,若Q P y y <,则P Q P y y y -=,即0Q y =,不符,故舍去,即23m =±,故22:23A P l x y =±+,即直线2A P 的方程为3260x y ±-=.20.已知函数()1e x f x a x ⎛⎫=+⋅ ⎪⎝⎭.(1)当0a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)当1a =时,求函数()f x 的单调递增区间;(3)若函数()f x 在区间()0,1上只有一个极值点,求a 的取值范围.【答案】(1)ey =(2)15,2⎛⎫+-∞- ⎪ ⎪⎝⎭、51,2⎛⎫+∞ ⎪ ⎪⎝⎭(3)()0,∞+【解析】【分析】(1)当0a =时,求出()1f 、()1f '的值,利用导数的几何意义可求得所求切线的方程;(2)当1a =时,求出()f x ',利用函数的单调性与导数的关系可求得函数()f x 的单调递增区间;(3)令()21g x ax x =+-,分析可知,函数()g x 在()0,1上有且只有一个异号零点,对实数a 的取值进行分类讨论,结合题意可得出关于实数a 的不等式,综合可得出实数a 的取值范围.【小问1详解】解:当0a =时,()e xf x x =,则()()2e 1x x f x x-'=,所以,()1e f =,()10f '=,故当0a =时,曲线()y f x =在点()()1,1f 处的切线方程为e 0y -=,即e y =.【小问2详解】解:当1a =时,()()1e 11e x x x f x x x +⎛⎫=+= ⎪⎝⎭,该函数的定义域为{}0x x ≠,()()()()2221e 2e 1e x x x x x x x x f x x x +-+-+'==,由()0f x ¢>,即210x x +->,解得152x +<-或512x ->,因此,当1a =时,函数()f x的单调递增区间为1,2⎛+-∞- ⎪⎝⎭、⎫+∞⎪⎪⎝⎭.【小问3详解】解:因为()1e x f x a x ⎛⎫=+⋅ ⎪⎝⎭,则()()2221e 11e x x ax x f x a xx x +-⎛⎫'=+-= ⎪⎝⎭,令()21g x ax x =+-,因为函数()f x 在()0,1上有且只有一个极值点,则函数()g x 在()0,1上有一个异号零点,当0a =时,对任意的()0,1x ∈,()10g x x =-<,不合乎题意;当0a >时,函数()21g x ax x =+-在()0,1上单调递增,因为()010g =-<,只需()10g a =>,合乎题意;当a<0时,函数()g x 的图象开口向下,对称轴为直线102x a=->,因为()010g =-<,只需()10g a =>,不合乎题意,舍去.综上所述,实数a 的取值范围是()0,∞+.21.若无穷数列{}n a 满足:*m ∃∈N ,对于()*00n n n ∀≥∈N ,都有n m na q a +=(其中q 为常数),则称{}n a 具有性质“()0,,Q m n q ”.(1)若{}n a 具有性质“(4,2,3)Q ”,且31a =,52a =,691120a a a ++=,求2a ;(2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为2的等比数列,234b c ==,112b c c +=,n n n a b c =+,判断{}n a 是否具有性质“(2,1,3)Q ”,并说明理由;(3)设{}n a 既具有性质“()1,1,Q i q ”,又具有性质“()2,1,Q j q ”,其中i ,*j ∈N ,i j <,求证:{}n a 具有性质“2,1,j i j Q j i i q -⎛⎫-+ ⎪ ⎪⎝⎭”.【答案】(1)53(2){}n a 不具有性质“(2,1,3)Q ”,理由见解析(3)证明见解析【解析】【分析】(1)由{}n a 具有性质“(4,2,3)Q ”,可得当2n ≥时,43n n a a +=,结合题意计算即可得;(2)由题意计算出n a 通项公式后,检验2n na a +是否恒等于3即可得;(3)借助{}n a 既具有性质“()1,1,Q i q ”,又具有性质“()2,1,Q j q ”,则当1n ≥时,有1n i n a q a +=,2n j n a q a +=,则有12112j i j i i j a a a q a a a +++⨯⨯⨯= ,12212j j i j i ia a a q a a a +++⨯⨯⨯= ,通过运算得到12j i q q =,从而可验证对任意的1n i ≥+时,是否有2j i n j ij n a q a -+-=即可得.【小问1详解】由{}n a 具有性质“(4,2,3)Q ”,则当2n ≥时,43n na a +=,故623a a =,953a a =,117339a a a ==,又31a =,52a =,故691125323393329120a a a a a a a ++=++=+⨯+⨯=,即253a =;【小问2详解】{}n a 不具有性质“(2,1,3)Q ”,理由如下:设()11n b b n d =+-,112n n c c -=⋅,由234b c ==,112b c c +=,即有11111442b d c b c c +==⎧⎨+=⎩,解得1113b c d ==⎧⎨=⎩,故32n b n =-,12n n c -=,则1232n n n n a b c n -=+=+-,有()21122322234n n n a n n +-++=++-=++,则121234232n n n n a n a n ++-++=+-,不恒等于3,故{}n a 不具有性质“(2,1,3)Q ”;【小问3详解】由{}n a 既具有性质“()1,1,Q i q ”,又具有性质“()2,1,Q j q ”,即当1n ≥时,有1n i n a q a +=,2n j na q a +=,则有12112j i j i i j a a a q a a a +++⨯⨯⨯= ,12212j j i j i ia a a q a a a +++⨯⨯⨯= ,由i j <,故121212112212121j ii i j j i i j i j j i j i i j ia a a a a a a a a q a a a q a a a a a a ++++++++++⨯⨯⨯===⨯⨯⨯ ,故12j i q q =,即12i j q q =,由1n i n a q a +=,2n j n a q a +=,则21n j n i a q a q ++=,当1n i ≥+,即1n i -≥时,有22212j i n i j n j i j i n i in j a a q q q a a q q --++--+====,即对任意的1n i ≥+时,有2j i n j ij n a q a -+-=,即{}n a 具有性质“2,1,j i j Q j i i q -⎛⎫-+ ⎪ ⎪⎝⎭”.【点睛】关键点睛:本题关键点在于通过对数列新定义的分析,从而得到1n i n a q a +=,2n j na q a +=,并由此得到12112j i j i i j a a a q a a a +++⨯⨯⨯= ,12212j j i j i i a a a q a a a +++⨯⨯⨯= ,从而得出12j i q q =.。
天津市部分区2023-2024学年高三上学期期末练习数学试题
天津市部分区2023~2024学年度第一学期期末练习高三数学本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
祝各位考生考试顺利!第I 卷(共45分)注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共9小题,每小题5分,共45分。
参考公式:·如果事件A ,B 互斥,那么()()()P A B P A P B =+ .·如果事件A ,B 相互独立,那么()()()P AB P A P B =.·棱锥的体积公式13V Sh =h ,其中S 表示棱锥的底面面积,h 表示棱锥的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}0,1,2,3,4,5U =,集合{}1,2,4A =,{}2,5B =,则()U A B = ð()A.{}1,2,4,5 B.{}2 C.{}0,3 D.{}0,2,3,52.设x ∈R ,则“0x >”是“20x x +>”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知0.14a =,0.312b -⎛⎫= ⎪⎝⎭,4log 3c =,则a ,b ,c 的大小关系为()A.c b a << B.a c b << C.c a b << D.b c a<<4.已知函数()f x 在[]4,4-上的大致图象如图所示,则()f x 的解析式可能为()A.()cos2x f x x π=⋅ B.()cos 2x f x x π=⋅C.()sin 2x f x x π=⋅ D.()sin 2xf x x π=⋅5.已知等比数列{}n a 的前n 项和是n S ,且12a =,32618a a =-,则5S =()A.30B.80C.240D.2426.从4名女生、6名男生中,按性别采用分层抽样的方法抽取5名学生组成课外小组,则不同的抽取方法种数为()A.1440 B.120 C.60 D.247.将函数()sin 2f x x =的图象向左平移6π个单位长度,得到函数()g x 的图象,则()g x 所具有的性质是()A.图象关于直线6x π=对称B.图象关于点5,012π⎛⎫ ⎪⎝⎭成中心对称C.()g x 的一个单调递增区间为,123ππ⎡⎤⎢⎥⎣⎦D.曲线()y g x =与直线2y =的所有交点中,相邻交点距离的最小值为6π8.已知三棱锥S ABC -中,2SAB ABC π∠=∠=,2SB =,SC =,1AB =,3BC =,则三棱锥S ABC -的体积是()A.2 C.2 D.9.双曲线C :()222210,0x y a b a b-=>>的离心率为52,实轴长为4,C 的两个焦点为1F ,2F .设O 为坐标原点,若点P 在C 上,且123cos 4F PF ∠=-,则OP =()A.2 C. D.第Ⅱ卷注意事项:1、用黑色墨水的钢笔或签字笔将答案写在答题卡上。
山东省菏泽市2023-2024学年高三上学期期末考试数学试题(B)期末答案
228BC m −, .........6分22AC , .........7分 , 0,上的两个三等分点,, ...........3分⊥,PB PA)0,3,解:(1)因为()35P A B =,()23P B A =, 所以对杭州亚运会项目了解的女生为350305×=,...........1分了解亚运会项目的学生为304523=,...........2分结合男生和女生各50名,填写2×2列联表为:了解 不了解 合计 男生 15 35 50 女生 30 20 50 合计4555100...........4分零假设H 0:该校学生对杭州亚运会项目的了解情况与性别无关,根据列联表中的数据()220.001100152030351009.09110.8285050455511x χ××−×==≈<=×××, 依据α=0.001的独立性检验,可以推断H 0成立,即该校学生对杭州亚运会项目的了解情况与性别无关............6分 (2)由(1)知,采用分层随机抽样的方法随机抽取9名学生,其中男生人数为15931530×=+(人);...........7分女生人数为30961530×=+(人),...........8分由题意可得,随机变量X 的所有可能取值为0,1,2,3..........9分()043649C C 50C 42P X ===,()133649C C 10121C P X ===, ()223649C C 5214C P X ===,()313649C C 1321C P X ===.随机变量X 的分布列如下:则()5105140123422114213E X =×+×+×+×=............12分 ,0∆>, 211143x x −+, 221y x =+, )())()2121123423x x x x −+++。
第1套:浙江宁波市镇海中学2023-2024学年高三上学期期末考试数学试卷与答案
镇海中学2023学年第一学期期末考试高三数学试题说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟,本次考试不得使用计算器,请考生将所有题目都做在答题卷上.一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.2{560},{13},A x x x B x x =-+≤=-≤<则A B = ()A.{13}x x -≤<B.{13}x x -≤≤C.{23}x x ≤<D.{23}x x ≤≤2.函数3()29x f x x =+-的零点所在区间为()A.()0,1 B.()1,2 C.(2,3)D.()3,45.已知直线a ,m ,n ,l ,且m ,n 为异面直线,m ⊥平面α,n ⊥平面β.若l 满足l m ⊥,l n ⊥,则下列说法中正确的是()A.//l αB.l β⊥ C.若a αβ⋂=,则//a lD.αβ⊥e ..C .D .8.设实数,x y 满足3,32x y >>,不等式3322(23)(3)8123k x y x y x y --≤+--恒成立,则实数k 的最大值为()A.12B.24C. D.二、选择题:本题共3小题,每小题6分,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,部分选对的得部分分,有选错的得0分。
9.已知复数12,z z ,则下列结论正确的有()A.2211z z = B.1212z z z z ⋅=⋅ C.1212z z z z =⋅ D.1212z z z z +=+10.已知()f x ,()g x 的定义域为R ,且()()1f x g x a +-=(0a ≠),()()11g x g x +=-,若()2f x +为奇函数,则()A.()g x 关于x =1对称B.()g x 为奇函数C.()02f = D.()f x 为偶函数11.已知O 为坐标原点,曲线()()22222:3x y ay x y Γ+=-,0a >,()00,P x y 为曲线Γ上动点,则()A.曲线Γ关于y 轴对称B.曲线Γ的图象具有3条对称轴C.09,16y a a ⎡⎤∈-⎢⎥⎣⎦D.OP 三、填空题:本题共3小题,每小题5分,共15分。
安徽省六安市2024届高三上学期期末教学质量检测数学试题含答案
六安市2024年高三教学质量检测数学试题(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上.2、回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2log 1,A x x x =≤∈Z,{}220B x xx =+-<,则A B = ()A.{}0,1 B.{}2,1-- C.{}1,0- D.{}1-【答案】D 【解析】【分析】解出对数不等式和一元二次不等式,再根据交集含义即可.【详解】2log ||1x ≤,即22log ||log 2x ≤,则22x -≤≤且0x ≠,则{}2,1,1,2A =--,{}21B x x =-<<,所以{}1A B ⋂=-.故选:D .2.已知复数z 的共轭复数在复平面内对应的点为()2,2-,则复数1z的虚部为()A.1-B.i- C.14-D.1i 4-【答案】C 【解析】【分析】得到22i z =+,利用复数除法法则得到111i 44z =-,求出虚部.【详解】由已知得22i z =+,()()122i 1i 11i 22i 22i 444z --===-+-,则复数1z 的虚部为14-.故选:C3.已知向量a =,向量(1,b =- ,则a 与b 的夹角大小为()A.30︒B.60︒C.120︒D.150︒【答案】D 【解析】【分析】根据给定条件,利用向量夹角的坐标表示求解即得.【详解】向量a =,(1,b =-,则cos ,222a b 〈〉==-⨯ ,而0,180a b ︒≤〈〉≤︒ ,所以a,b的夹角为150︒.故选:D4.等差数列{}n a 的公差不为0,其前n 项和为n S ,若()83124m S a a a =++,则m =()A.11B.12C.13D.14【答案】C 【解析】【分析】由等差数列的前n 项和公式与通项公式转化为基本量计算即可.【详解】设等差数列{}n a 的公差为d ,所以81828S a d =+,则有()11118282214a d a d a m d a +=+++-+⎡⎤⎣⎦,即()141d m d =+,又0d ≠,所以114m +=,所以13m =.故选:C.5.函数()e 4,1ln ,1x x x f x x x ⎧+-<=⎨≥⎩,若()()()21105f a f a f +≤--,则实数a 的取值范围是()A.{}1- B.(],1-∞-C.[)1,-+∞ D.11,e⎡⎫--⎪⎢⎣⎭【答案】A 【解析】【分析】原不等式变形为()()25110f a f a ⎡⎤+≤-⎣⎦,再利用分段函数的单调性即可得到不等式,解出即可.【详解】当1x <时,()e 4xf x x =+-,因为e ,4x y y x ==-在(),1∞-上单调递增,此时()f x 单调递增,当1x ≥时,易知()ln f x x =单调递增,且当1x =时,1e 14e 30ln1+-=-<=,则()f x 在R 上单调递增,因为211a +≥,则()()()()()222215ln 1ln5ln5151f a f a a f a ⎡⎤++=++=+=+⎣⎦,所以由()()()21105f a f a f +≤--得()()25110f a f a ⎡⎤+≤-⎣⎦,所以()25110a a +≤-,解得1a =-.故选:A .6.已知ππcos 2cos 63αα⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭,则2πsin 23α⎛⎫+= ⎪⎝⎭()A.35 B.45C.45-D.35-【答案】B 【解析】【分析】根据诱导公式结合二倍角公式,利用齐次式计算可得.【详解】因为πππ632αα⎛⎫⎛⎫-++=⎪ ⎪⎝⎭⎝⎭,所以ππcos sin 63αα⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,则ππsin 2cos 33αα⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,即πtan 23α⎛⎫+= ⎪⎝⎭,所以222πππ2sin cos 2tan 2πππ4333sin 22sin cos πππ3335sin cos tan 1333ααααααααα⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎛⎫⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭+=++=== ⎪ ⎪ ⎪⎛⎫⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:B.7.圆()222:0O x y r r +=>上一点1,22A r r ⎛⎫⎪⎝⎭关于x 轴的对称点为B ,点E ,F 为圆O 上的两点,且满足EAB FAB ∠=∠,则直线EF 的斜率为()A.B.3C.3D.13【答案】B 【解析】【分析】根据圆的性质以及斜率乘积与直线垂直的关系即可.【详解】由EAB FAB ∠=∠知BOE BOF ∠=∠,所以OB EF ⊥,而212OB OArk k r =-=-=,∴3EF k =.故选:B.8.某种生命体M 在生长一天后会分裂成2个生命体M 和1个生命体N ,1个生命体N 生长一天后可以分裂成2个生命体N 和1个生命体M ,每个新生命体都可以持续生长并发生分裂.假设从某个生命体M 的生长开始计算,记n a 表示第n 天生命体M 的个数,n b 表示第n 天生命体N 的个数,则11a =,10b =,则下列结论中正确的是()A.413a = B.数列{}nnb a 为递增数列C.5163ni b==∑ D.若{}n n a b λ+为等比数列,则1λ=【答案】B 【解析】【分析】根据给定条件,求出递推公式,进而求出数列{},{}n n a b 的通项公式,再逐项分析判断即得.【详解】依题意,12n n n a a b +=+,12n n n b b a +=+,则113()n n n n a b a b +++=+,而111a b +=,因此数列{}n n a b +是首项为1,公比为3的等比数列,13n n n a b -+=,又11n n n n a b a b ++=--,因此111n n a a b b -=-=,于是1312n n a -+=,1312n n b --=,对于A ,3431142a +==,A 错误;对于B ,11131213131n n n n n b a ----==-++,显然数列12{}31n -+是递减数列,因此{}n n b a 为递增数列,B 正确;对于C ,51014134058ni b==++++=∑,C 错误;对于D ,1122331,2,54a b a b a b λλλλλ==+=++++,由{}n n a b λ+为等比数列,得2(2)54λλ+=+,解得1λ=或1λ=-,当1λ=时,13n n n b a λ-+=,显然数列{}n n a b λ+是等比数列,当1λ=-时,1n n a b λ+=,显然数列{}n n a b λ+是等比数列,因此当数列{}n n a b λ+是等比数列时,1λ=或1λ=-,D 错误.故选:B【点睛】思路点睛:涉及求数列单调性问题,可以借助作差或作商的方法判断单调性作答,也可以借助函数单调性进行判断.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列函数中,既是偶函数,又在区间()0,∞+上单调递增的是()A.ln y x =B.ln y x= C.2y x -= D.e e x xy -=+【答案】AD 【解析】【分析】A 选项,根据函数奇偶性得到()ln f x x =为偶函数,且在()0,∞+单调递增,A 正确;B 不满足奇偶性,C 不满足单调性;D 选项,满足为偶函数,且求导得到函数在()0,x ∈+∞上单调递增,得到答案.【详解】A 选项,()ln f x x =定义域为()(),00,x ∈-∞⋃+∞,且()()ln ln f x x x f x -=-==,故()ln f x x =为偶函数,且()0,x ∈+∞时,ln y x =单调递增,故A 正确;B 选项,ln y x =的定义域为()0,∞+,故不是偶函数,故B 项错误;C 选项,()0,x ∈+∞时,2y x -=单调递减,故C 项错误;D 选项,()e exxg x -=+的定义域为R ,且()()e e x xg x g x --=+=,故()e exxg x -=+是偶函数,且()0,x ∈+∞时,()e e0xxg x -'=->,函数单调递增,故D 项正确.故选:AD10.地震释放的能量E 与地震震级M 之间的关系式为lg 4.8 1.5E M =+,2022年9月18日我国台湾地区发生的6.9级地震释放的能量为1E ,2023年1月28日伊朗西北发生的5.9级地震释放的能量为2E ,2023年2月6日土耳其卡赫拉曼马拉什省发生的7.7级地震释放的能量为3E ,下列说法正确的是()A.1E 约为2E 的10倍B.3E 超过2E 的100倍C.3E 超过1E 的10倍D.3E 低于1E 的10倍【答案】BC 【解析】【分析】根据题意,结合对数运算公式,即可判断.【详解】A.()12lg lg 1.5 6.9 5.9E E -=⨯-,所以 1.51210E E =,故A 错误;B.()32lg lg 1.57.7 5.9E E -=⨯-, 2.73210100E E =>,故B 正确;C.()31lg lg 1.57.7 6.9E E -=⨯-, 1.2311010E E =>,故C 项正确,D 项错误.故选:BC11.已知函数()f x 的导函数为()f x ',对任意的正数x ,都满足()()()22f x xf x f x x <<-',则下列结论正确的是()A.()1122f f ⎛⎫< ⎪⎝⎭B.()()1122f f <C.()11422f f ⎛⎫<- ⎪⎝⎭D.()()11214f f <+【答案】BC 【解析】【分析】设()()()0f x g x x x=>,利用导数求出()g x 的单调性,据此即可判断A 和B 选项,设()()()220f x x h x x x-=>,根据导数求出()h x 的单调性,据此即可求解C 和D 选项.【详解】设()()()0f x g x x x=>,则()()()20xf x f x g x x'-='>,所以()g x 在()0,∞+上单调递增,由()112g g ⎛⎫>⎪⎝⎭得()1122f f ⎛⎫> ⎪⎝⎭,故A 项错误;由()()12g g <得()()1122f f <,故B 项正确;设()()()220f x x h x x x-=>,则()()()()()()()()243222220f x x f x x x xf x f x x h x x x ---⋅--=''=<',所以()h x 在()0,∞+上单调递减,由()112h h ⎛⎫<⎪⎝⎭得()11422f f ⎛⎫<- ⎪⎝⎭,故C 项正确:由()()12h h >得()()11214f f >+,故D 项错误.故选:BC.12.在棱长为1的正方体1111ABCD A B C D -中,P 为棱上一点,满足1PA PC d +=(d 为定值),记P 点的个数为n ,则下列说法正确的是()A.当d =2n =B.1d <<+时,6n =C.当d =时,15n =D.n 的最大值为18【答案】AD 【解析】【分析】由点P 的位置进行分类讨论判断求解即可.【详解】当点P 位于A 或1C 处时,d当P 在AB 棱上由A 到B 移动时,d 1,当P 在AD ,1AA ,1C C ,11C B ,11C D 等棱上移动时,d 1+当P 在1BB 棱上由B 到1B 移动时,d 由11+;当P 在BC ,DC ,1D D ,11A B ,11A D 等棱上移动时,d 也是由1+再由增大到1+.故选:AD.三、填空题:本题共4小题,每小题5分,共20分.13.抛物线24y x =的焦点F 与x 轴上一点A 的连线的中点P 恰在抛物线上,则线段AF 的长为______.【答案】316##0.1875【解析】【分析】根据题意求线段AF 的中点坐标,结合抛物线的定义分析求解.【详解】因为24y x =,即214x y =,可知抛物线的焦点10,16F ⎛⎫⎪⎝⎭,准线为116y =-,设(),0A a ,则线段AF的中点为1,232a ⎛⎫⎪⎝⎭,则113321632PF =+=,所以3216AF PF ==.故答案为:316.14.如图,在四边形ABCD 中,AD AB ⊥,120ADC ∠=︒,AB =,1AD =,2CD =,求四边形ABCD 绕直线AD 旋转一周所成几何体的表面积为______.【答案】(12π+【解析】【分析】作出辅助线,求出各边长度,求出以AB 为半径的圆的面积,以CD 为母线和CE 为半径的圆锥的侧面积,以BC 为母线的圆台的面积,相加后得到答案.【详解】作CE AD ⊥,CFAB ⊥,E ,F 为垂足,因为120ADC ∠=︒,所以60EDC ∠=︒,因为2CD =,所以1DE =,CE =,故==AF CE ,又AB =1AD =,故2CF AE AD DE ==+=,BF AB AF =-=,由勾股定理得CB ==,四边形ABCD 绕直线AD 旋转一周所成几何体的表面积分为三部分,以AB 为半径的圆的面积(2π12π=,以CD 为母线和CE 为半径的圆锥的侧面积πrl =,以BC 为母线的圆台的侧面积+=所以该几何体的表面积为(12π+.故答案为:(12π+15.已知函数()()()22cos0f x x ωω=>的最小正周期为π,将函数()y f x =的图象上的所有点向右平移π6个单位长度,再将所得的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到()y g x =的图象,则()y g x =在ππ,124⎡⎤⎢⎥⎣⎦上的值域为______.【答案】1,22⎡⎤⎢⎥⎣⎦【解析】【分析】化简()f x 的解析式,根据()f x 的最小正周期求得ω,根据三角函数图象变换的知识求得()g x ,进而求得()g x 在ππ,124⎡⎤⎢⎣⎦上的值域.【详解】()cos21f x x ω=+,2ππ2ω=,22ω=,()cos21f x x =+,将函数()y f x =的图象上的所有点向右平移π6个单位长度,得到ππcos 21cos 2163y x x ⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦,再将所得的图象上各点的横坐标缩短为原来的12,得到()πcos 413g x x ⎛⎫=-+ ⎪⎝⎭,因为ππ,124x ⎡⎤∈⎢⎥⎣⎦,所以π2π40,33x ⎡⎤-∈⎢⎥⎣⎦,所以π1cos 4,132x ⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,所以()y g x =在ππ,124⎡⎤⎢⎣⎦上的值域为1,22⎡⎤⎢⎥⎣⎦.故答案为:1,22⎡⎤⎢⎥⎣⎦16.已知2F 是双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,圆222:O x y a +=与双曲线C 的渐近线在第一象限交于点A ,点B 在双曲线C 上,222BF F A =-,则双曲线C 的渐近线方程为______.【答案】2y x =±【解析】【分析】求出点A 的坐标及2AF 长,由222BF F A =-可得点A 为2BF 的中点,再结合双曲线定义求解即得.【详解】由222BF F A =-,得点A 为2BF 的中点,记1F 为C 的左焦点,连接1BF ,令半焦距为c ,则122BF OA a ==,由222b y x ax y a ⎧=⎪⎨⎪+=⎩,解得2a x cab y c ⎧=⎪⎪⎨⎪=⎪⎩,即2(,)a ab A c c ,而2(,0)F c ,因此2222()()a ab AF c b c c=-+=,由双曲线定义得222b a a -=,即2b a =,所以双曲线C 的渐近线方程为2y x =±.故答案为:2y x=±四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知数列{}n a 的前n 项和为n S ,()()140n n S a λλλ-=->.(1)求证:数列{}n a 为等比数列;(2)当2λ=时,设1221log log n n n a n a n b a a ++++=+,求数列{}n b 的前n 项和n T .【答案】(1)证明见解析(2)261939n n nT n +=+【解析】【分析】(1)根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩作差得到1n n a a λ+=,即可得证;(2)由(1)可得12n n a +=,则321122323n n n b n n n n ++=+=+-++++,再利用裂项相消法计算可得.【小问1详解】证明:因为()()140n n S a λλλ-=->,当1n =时,()1114S a λλ-=-,解得14a =,由()14n n S a λλ-=-得()1114n n S a λλ++-=-,两式作差得()()()111144n n n n S S a a λλλλ++---=---,即()111n n n a a a λλλ++-=-,则1n n a a λ+=,又0λ>,所以数列{}n a 是首项为4,公比为λ的等比数列.【小问2详解】当2λ=时,由(1)得11422n n n a -+=⨯=,又223121322232log log log log 2322n n n n n n n a n a n n n b a a n n ++++++++++=+=+=+++,所以322131112232323n n n n n b n n n n n n +++++-=+=+=+-++++++,所以1111112344523n T n n n ⎛⎫⎛⎫⎛⎫=+-+-+⋅⋅⋅+-⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭1111112344523n n n ⎛⎫=+-+-+⋅⋅⋅+- ⎪++⎝⎭21161923339n n n n n +⎛⎫=+-=⎪++⎝⎭.18.在ABC 中,内角A ,B ,C 所对应的边分别为a ,b ,c .(1)若12b a =,6sin sin B A -=,求角A 的值;(2)若π3A =,且b 是a 和3c 的等差中项,求cos B 的值.【答案】(1)π3A =或2π3(2)1cos 7B =-【解析】【分析】(1)根据题意利用正弦定理边化角即可得结果;(2)由等差中项可得23a b c =-,结合余弦定理解得83b c =,73a c =,代入余弦定理即可得结果.【小问1详解】因为12b a =,由正弦定理sin sin b a B A=得1sin sin 2B A =,又因为6sin sin B A -=sin 2A =,且()0,πA ∈,所以π3A =或2π3.【小问2详解】显然0,0,0a b c >>>,由b 是a 和3c 的等差中项得23b a c =+,即230a b c =->,可得32b c >,因为π3A =,由余弦定理2222cos a b c bc A =+-可得()22223b c b c bc -=+-,化简得2231180b bc c -+=,即()()380b c b c --=,解得83b c =或b c =(舍去),由23a b c =-,可得73a c =,由余弦定理222cos 2a c b B ac +-=,得22278133cos 7723c c c B c c ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭==-⎛⎫⨯ ⎪⎝⎭.19.已知函数()()36R f x x ax a =+-∈.(1)若函数()f x 的图象在2x =处的切线与x 轴平行,求函数()f x 的图象在3x =-处的切线方程;(2)讨论函数()f x 的单调性.【答案】19.15480x y -+=20.答案见解析【解析】【分析】(1)先求导函数再求斜率最后写出切线方程;(2)分类讨论列表根据导函数求单调性.【小问1详解】()23f x x a ='+.由题意()2120f a ='+=,解得12a =-,所以()3126f x x x =--,()33f -=,()315f '-=()f x 在3x =-处的切线方程为15480x y -+=【小问2详解】()23f x x a ='+.①当0a ≥时,()0f x '≥,()f x 在R 上单调递增.②当0a <时,由()0f x '=得x =,()f x 在R 上的变化情况如下表:由上表可得()f x 在,∞⎛- ⎝上单调递增,在⎛ ⎝上单调递减,在∞⎫+⎪⎪⎭上单调递增.综上,当0a ≥时,增区间为(),∞∞-+,无减区间;当0a <时,增区间为,∞⎛- ⎝和∞⎫+⎪⎪⎭,减区间为⎛ ⎝.20.如图,在三棱锥A BCD -中,CE BD ⊥,垂足为点E ,AH ⊥平面BCD ,垂足H 在CE 上,点F 在AC 上,且CEF CAH ∠=∠.(1)证明:AC ⊥平面BDF ;(2)若22BE DE ==,22CH EH ==,三棱锥A BCD -的体积为BF 与平面ABD 所成角的正弦值.【答案】(1)证明见解析(2)5.【解析】【分析】(1)利用线面垂直得到线线垂直,由CEF CAH ∠=∠,可得出AC EF ⊥,利用线面垂直的判定定理可以证得AC ⊥平面BDF ;(2)通过三棱锥A BCD -的体积,可以求出AH ,进一步求AC ,由两个三角形AHC ,EFC 相似,得出F 为AC 的中点,然后建立空间直角坐标系,求平面ABD 的法向量,进而可以求得直线与平面所成角的正弦值.【小问1详解】由AH ⊥平面BCD ,BD ⊂平面BCD ,得AH BD ⊥,又CE BD ⊥,而AH ⊂平面ACE ,CE ⊂平面ACE ,AH CE H = ,所以BD ⊥平面ACE ,又AC ⊂平面ACE ,所以BD AC ⊥.再由AH ⊥平面BCD ,EC ⊂平面BCD ,得AH EC ⊥,得90AHC ∠=︒,又CEF CAH ∠=∠,ACH ECF ∠=∠,得90EFC AHC ︒∠=∠=,即AC EF ⊥.又EF ⊂平面BDF ,BD ⊂平面BDF ,EF BD E = ,所以AC ⊥平面BDF .【小问2详解】由条件知11133322A BCD BCD V S AH BD CE AH AH -=⋅=⨯⨯⨯⨯==所以AH =,在Rt AHC 中,2228412AC AH CH =+=+=,所以AC =由(1)知Rt Rt AHC EFC ~△△,所以FC ECHC AC =,即2FC =,得FC =,可知F 为AC 的中点,过点H 作HG BD ∥交BC 于点G由(1)易得HG ,HC ,HA 两两垂直,以{HG 、HC 、}HA正交基底,建立空间直角坐标系H xyz -,如图所示由题意可知,(0,0,A ,()2,1,0B -,()0,1,0E -,()0,2,0C,(F .则(0,1,EA = ,()2,0,0EB =,(2,BF =- ,设平面ABD 的一个法向量为(),,n x y z =,则020EA n y EB n x ⎧⋅=+=⎪⎨⋅==⎪⎩,令1z =-,则y =,所以平面ABD的一个法向量()0,1n =-,设直线BF 与平面ABD 所成角θ,则sin =cos<,5n BF n BF n BFθ⋅>===⋅.故直线BF 与平面ABD所成角的正弦值为5.21.平面内一动点P 到直线:4l y =的距离,是它到定点()0,1F 的距离的2倍.(1)求动点P 的轨迹Γ的方程;(2)经过点F 的直线(不与y 轴重合)与轨迹Γ相交于M ,N 两点,过点M 作y 轴平行线交直线l 于点T ,求证:直线NT 过定点.【答案】(1)22143y x +=(2)证明见解析【解析】【分析】(1)由题意得4y -=,化简即可得解;(2)设直线MN 的方程以及,,M N T 的坐标,联立若椭圆方程,由韦达定理得()121232kx x x x =+,表示出NT 的方程,令0x =,证明此时y 为定值即可得证.【小问1详解】由题意,设动点P 的坐标为(),x y,则4y -=,平方整理得22143y x +=,所以点P 的轨迹Γ方程为22143y x+=.【小问2详解】由题意,设直线MN 的方程为1y kx =+,()11,M x y ,()22,N x y ,则()1,4T x .将1y kx =+代入22143y x +=得()2234690k x kx ++-=,所以122634k x x k -+=+,122934x x k -=+,显然0∆>,所以()121232kx x x x =+.因为直线NT 的方程为()212144y y x x x x --=--,令0x =,则()21221221122121214144x x kx x x y x x kx x y x x x x x x -+---===---()()21122121213545222x x x x x x x x x x --+-===--,因此,直线NT 过定点50,2⎛⎫ ⎪⎝⎭.【点睛】关键点点睛:本题第二问的关键是采用设线法,设直线MN 的方程为1y kx =+,再将其椭圆方程联立得到韦达定理式,再化积为和得到()121232kx x x x =+,再得到直线NT 的方程,令0x =计算即可.22.已知函数()()()22ln 211R 2m f x x x m x m =+-++∈.(1)求函数()f x 的极值;(2)设函数()f x 有两个极值点12,x x ,求证:()()122f x f x f m ⎛⎫+< ⎪⎝⎭.【答案】(1)答案见解析(2)证明见解析【解析】【分析】(1)求定义域,求导,对导函数因式分解,分0m ≤,12m =,12m >,102m <<,得到函数的单调性,进而得到函数的极值情况;(2)由(1)得110,,22m ∞⎛⎫⎛⎫∈⋃+ ⎪ ⎪⎝⎭⎝⎭,并得到()()12212ln 222f x f x m m m +=---,2222ln 44f m m ⎛⎫=-+ ⎪ ⎪⎝⎭,作差法得到()()21222f x f x f m ⎛⎫⎫+-=-- ⎪⎪ ⎪⎭⎝⎭,结合m 的范围得到结论.【小问1详解】()()22ln 2112m f x x x m x =+-++的定义域为()0,∞+,()()()()()()2212212210mx m x x mx f x mx m x x x x-++--'=+-+==>①若0m ≤,则()20f '=,()0,2x ∈时()0f x '>,()2,x ∞∈+时()0f x '<,故()f x 在()0,2x ∈上单调递增,在()2,x ∞∈+上单调递减,所以函数的极大值为()22ln221f m =--,无极小值,②若12m =,则()()2202x f x x'-=≥,()f x 在()0,∞+上单调递增,无极值.③若12m >,由()()()210x mx f x x--'==得2x =或1x m =,10,x m ⎛⎫∈ ⎪⎝⎭时()0f x '>,1,2x m ⎛⎫∈ ⎪⎝⎭时()0f x '<,()2,x ∞∈+时()0f x '>,故()f x 在10,m ⎛⎫ ⎪⎝⎭,()2,∞+上单调递增,在1,2m ⎛⎫⎪⎝⎭上单调递减,所以极大值为112ln 12f m m m ⎛⎫=---⎪⎝⎭,极小值为()22ln221f m =--.④若102m <<,由()()()210x mx f x x--'==得2x =或1x m =,()0,2x ∈时()0f x '>,12,x m ⎛⎫∈ ⎪⎝⎭时()0f x '<,1,x m ∞⎛⎫∈+ ⎪⎝⎭时()0f x '>,故()f x 在()0,2,1,m ∞⎛⎫+⎪⎝⎭上单调递增,在12,m ⎛⎫⎪⎝⎭上单调递减,所以极大值为()22ln221f m =--,极小值为112ln 12f m m m ⎛⎫=---⎪⎝⎭.综上,当0m ≤时,极大值为()22ln221f m =--,无极小值;当102m <<时,极大值为()22ln221f m =--,极小值为112ln 12f m m m ⎛⎫=--- ⎪⎝⎭;当12m =时,()f x 无极值;当12m >时,极大值为112ln 12f m m m ⎛⎫=--- ⎪⎝⎭,极小值为()22ln221f m =--.【小问2详解】由(1)知函数()f x 有两个极值点时,110,,22m ∞⎛⎫⎛⎫∈⋃+ ⎪ ⎪⎝⎭⎝⎭.()()()121122ln2212ln 12f x f x f f m m m m ⎛⎫+=+=----- ⎪⎝⎭212ln222m m m=---,()222224ln 222122ln 44f m m m m m ⎛⎫=+-++=-++ ⎪ ⎪⎝⎭,所以()()122122462f x f x f m m m ⎛⎫+-=--++- ⎪⎪⎝⎭22442⎫=-+-=-⎪⎭,因为110,,22m ∞⎛⎫⎛⎫∈⋃+ ⎪ ⎪⎝⎭⎝⎭2≠,所以()()212220f x f x f m ⎛⎫⎫+-=-+< ⎪⎪ ⎪⎭⎝⎭,即()()1222f x f x f m ⎛⎫+<- ⎪ ⎪⎝⎭.【点睛】方法点睛:在导数解答题中,单调性问题是绕不开的一个问题,因为单调性是解决后续问题的关键,利用导函数求解函数单调性步骤,先求定义域,再求导,导函数能因式分解的要进行因式分解,根据导函数的正负号,确定函数的单调区间,若不能直接求出,可能需要多次求导.。
河北省唐山市2023-2024学年高三上学期期末考试数学试题含答案
唐山市2023-2024学年度高三年级第一学期期末考试数学本试卷共4页,22小题,满分150分.考试时间120分钟.注意事项:1.答卷前,考生务必用黑色钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写在答题卡上,将条形码横贴在答题卡上“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔在笞题卡上将对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再涂其他答案.答案不能答在试卷上.3.非选择题必须用0.5毫米黑色字迹签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,()()12i 2i -+对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合M ,N 满足M N N ⋂=,则()A.M N = B.M =∅ C.M N ⊇ D.M N⊆3.已知直线:2l y x b =+与圆()()22:235C x y ++-=有公共点,则b 的取值范围为()A.[]2,12 B.(][),212,-∞⋃+∞C.[]4,6- D.(][),46,-∞-⋃+∞4.已知函数()sin ,0π,02x x f x m f x x ≤⎧⎪=⎨⎛⎫-+> ⎪⎪⎝⎭⎩.满足()π1f =,则实数m 的值为()A.14 B.12 C.1 D.25.在正方体1111ABCD A B C D -的8个顶点中任取4个点,能构成正三棱锥的个数为()A.16个 B.12个 C.10个 D.8个6.已知函数()lg3x x f x m x +=-是偶函数,则m =()A.3 B.0 C.-1 D.27.已知函数()()()sin π0,2f x x x =∈的图象与直线()1y a x =-有3个交点,则实数a 的取值范围为()A.(),0-∞B.()1,0-C.(),π-∞-D.()π,0-8.已知双曲线:()222210,0x y a b a b-=>>的左、右焦点为1F ,2F ,1222F F a =+,P 为双曲线右支上一点,212PF F F ⊥,12PF F 的内切圆圆心为M ,1MF P 与2MF P 的面积的差为1,则双曲线的离心率e =()A.2B.3二、多选题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.如图,正三棱柱111ABC A B C -的各条棱长都为2,M ,N 分别是AB ,11A C 的中点,则()A.MN AC⊥ B.1MN BC ∥C.MN =D.MN ∥平面11BCC B 10.已知m ,n 都是正整数,且m n <,下列有关组合数的计算,正确的是()A.m n m n n C C -= B.1111m m m n n nC C C -+--+=C.11m m n n mC nC --= D.()()()222012n n n n n nC C C C ++⋅⋅⋅+=11.已知函数()f x 的定义域为R ,则以下选项正确的是()A.若()()1f x f x +=-,则()()2f x f x +=B.若()()2f x f x +=,则()()1f x x f +=-C.若()()2f x f x +=-,且()f x 为奇函数,则()()4f x f x +=D.若()()2f x f x +=-,且()()4f x f x +=,则()f x 为奇函数12.数列{}n a 的通项公式为11n n a n ⎛⎫=+ ⎪⎝⎭,下列命题正确的为()A.{}n a 先递增后递减B.{}n a 为递增数列C.*n ∃∈N ,n a e >D.*n ∀∈N ,n a e<三、填空题:本题共4小题,每小题5分,共20分.13.已知向量(),3a x = ,()2,6b = ,若a 与b 共线,则实数x =______.14.已知圆锥的侧面展开图是半径为8的直角扇形,则此圆锥的表面积为______.15.已知抛物线2:4E y x =,圆()22:11M x y -+=,过点M 的直线l 与E 交于A ,B 两点,与圆M 交于C ,D 两点(A ,C 都在x 轴上方),若AC BD -=l 的斜率为______.16.已知函数()()()cos 0f x x ωϕω=+>,A ,B 是直线12y =与曲线()f x 的两个交点,若AB 的最小值为π6,2π03f ⎛⎫= ⎪⎝⎭,()00f <,则π3f ⎛⎫= ⎪⎝⎭______.四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c sin cos B a B b c+=+(1)求A ;(2)设AC 边的中线BD =,且2228a c +=,求ABC 的面积S .18.(12分)目前,国际上常用身体质量指数(Body Mass Index ,缩写BMI )来测量人体胖瘦程度以及是否健康,其计算公式是()()22:kg BMI :m =体重单位身高单位.中国成人的BMI 数值标如下表所示:BMI <18.5[)18.5,24[)24,28≥28体重情况过轻正常超重肥胖为了解某单位职工的身体情况,研究人员从单位职工体检数据中,采用分层随机抽样方法抽取了90名男职工、50名女职工的身高和体重数据,计算得到他们的BMI 值,并进行分类统计,如下表所示:性别BMI 合计过轻正常超重肥胖男106011990女15255550合计25851614140(1)参照附表,对小概率值α逐一进行独立性检验,依据检验,指出能认为职工体重是否正常与性别有关联的α的一个值;(2)在该单位随机抽取一位职工的BMI 值,发现其BMI 值不低于28.由上表可知男女职工的肥胖率都为0.1,视频率为概率,能否认为该职工的性别是男还是女的可能性相同?若认为相同则说明理由,若认为不相同,则需要比较可能性的大小.α0.10.050.010.0050.001x α 2.706 3.841 6.6357.87910.828附:()()()()()22d n ad bc a b c a c b d χ++-=++19.(12分)记n S 为数列{}n a 的前n 项和,当2n ≥时111,,2,.n n n a n a a n --+⎧=⎨⎩为奇数为偶数.且31S =.(1)求1a ,2a ;(2)(i )当n 为偶数时,求{}n a 的通项公式;(ii )求2024S .20.(12分)如图,在四棱锥P ABCD -中,PC ⊥底面ABCD ,AB AD ⊥,BC AD ∥,222AD AB BC ===,3PC =,()01PE PD λλ=<< .(1)求证:CD PA ⊥;(2)若平面PAC 与平面EAC 夹角的余弦值为31717,求三棱锥P ACE -的体积.21.(12分)已知椭圆()2222:10x y C a b a b+=>>的右焦点为()2,0F ,点)M 在椭圆上.(1)求椭圆C 的方程;(2)直线:l y kx m =+与C 相交于A ,B 两点,若直线AF ,BF 的倾斜角互补,求ABF 面积的最大值.22.(12分)已知函数()()()ln xf x e x m m m R =-+-∈.(1)若1m =,求函数()f x 的极值;f x有两个零点,求m的取值范围.(2)若()唐山市2023—2024学年度第一学期高三年级期末考试数学参考答案一、选择题(单选):1-4DCAB5-8CADA 二、选择题(多选):9.CD 10.ACD 11.AC 12.BD 三、填空题:13.114.20π16.2四、解答题:17.解:(1sin cos B a B b c +=+,sin sin cos sin sin A B A B B C +=+,()sin sin cos sin sin A B A B B A B +=++,sin sin cos sin A B B A B =+,因为sin 0B ≠cos 1A A -=,即π1sin 62A ⎛⎫-= ⎪⎝⎭,所以ππ66A -=或5π6(舍),所以π3A =.(2)在ABD 中,由余弦定理得:222cos 2BD AD AB ADB BD AD∠+-=⨯⨯,即2224cos 22b c ADB b ∠+-=,在BDC中,同理可得:2224cos 22b a BDC b ∠+-=,由cos cos 0ADB BDC ∠∠+=,得222b =,解得2b =.在ABD 中,2222cos BD AB AD AB AD A =+-⨯⨯⨯,即221132422b b c c =+-⨯⨯⨯,整理得:2120c c --=,解得:4c =.所以ABC的面积1sin 2S bc A ==.18.解:(1)零假设为0H :职工体重是否正常与性别相互独立,即二者没有关联.性别BMI合计不正常正常男306090女252550合计5585140将分类统计表简化整理成22⨯列联表,如下表所示.根据列联表中的数据,经计算得到22140(30256025)700 3.74390505585187χ⨯-⨯==≈⨯⨯⨯.0.13.743 2.706;x >=0.050.010.0050.0013.743 3.841x x x x <=<<<.经过对附表所给的小概率值α逐一进行独立性检验,发现0.1α=时,拒绝了零假设0H ,而附表α的其余取值都不能拒绝零假设0H .因此,能认为职工体重是否正常与性别有关联,则α的一个值可以为0.1.(2)可能性不相同.设事件A :职工为男职工,事件:B 职工为女职工,事件:C 职工体重情况为肥胖.()()()()()()9595140140,14141414140140P AC P BC P A C P B C P C P C ======∣∣,()()P A C P B C >∣∣.因此,该职工为男职工的可能性要大.19.解:(1)由31S =得1231a a a ++=,又213212,121a a a a a ==+=+,则120,0a a ==.(2)(i )当n 为偶数时,1n -为奇数,则12n n a a -=,且121n n a a --=+,则()221n n a a -=+故()2222n n a a -+=+,则当n 为偶数时,{}2n a +是一个等比数列,公比为2,首项为22a +,特别要注意,2n a +是第2n 项,则()122222n n a a -+=+,则222nn a =-.(ii )设S 奇132023242024,a a a S a a a =+++=+++偶,则202413,22S S S S S S ==+=奇奇偶偶偶.S 偶21012101324202422221012221013a a a =+++=+++-⨯=-⨯,则()1012202433210132S S ==-偶.20.解:(1)因为PC ⊥平面,ABCD CD ⊂平面ABCD ,所以PC CD ⊥.取AD 中点M ,连接CM ,因为1,AM BC AM ==∥BC ,所以ABCM 是平行四边形,从而112CM AB AD ===,于是CD AC ⊥.又PC AC C ⋂=,所以CD ⊥平面PAC ,因为PA ⊂平面PAC ,所以CD PA ⊥.(2)如图,以C 为原点,,,CM CB CP分别为x 轴,y 轴,z 轴正向,建立空间直角坐标系,则(0,0,0),(1,1,0),(1,1,0),(0,0,3),(1,1,0),(0,0,3)C A D P CA CP -== ,(),,3PE PD λλλλ==-- ,(),,33CE CP PE λλλ=+=-- ,由(1)可知,()1,1,0CD =- 为面PAC 的一个法向量.设(),,n x y z = 为面EAC 的法向量,则0n CA n CE ⋅=⋅=,即()0,330,x y x y z λλλ+=⎧⎨-+-=⎩取33,33,2x y z λλλ=-=-=,则()33,33,2n λλλ=--,依题意,317cos ,17CD n CD n CD n ⋅== ,得23λ=或2λ=(舍去).因为23PE PD = ,所以2233P ACE P ACD V V --==.所以三棱锥P ACE -的体积为23.21.解:(1)由已知可得2222611,4a b a b+==+,解得228,4a b ==,所以椭圆C 的方程为22184x y +=.(2)将y kx m =+代入22184x y +=,整理得()()222124280,*k x kmx m +++-=设()()1122,,,A x y B x y ,则2121222428,1212km m x x x x k k--+==++,因为直线,AF BF 的倾斜角互补,所以1212022AF BF y y k k x x +=+=--,即()()12122240kx x m k x x m +-+-=,()22228422401412m km k m k m k k--⨯+-⨯-=++,整理得4m k =-,(*)式可化简为()222212163280k x k x k +-+-=,2212122216328,1212k k x x x x k k -+==++,由()2Δ32120k =->,得212k <,点F 到直线:4l y kx k =-的距离d =,则ABF的面积12121122S AB d x k x x ==-=⋅-=当且仅当22412k k =-,即21,66k k==±时等号成立.所以ABF 面积的最大值为.22.解:(1)因为1m =,所以()()e ln 11(1)x f x x x =-+->-.()()1e ,1x f x f x x -+'='在()1,∞-+上单调递增,且()00f '=.当()1,0x ∈-时,()()0,f x f x '<单调递减;当()0,x ∞∈+时,()()0,f x f x '>单调递增.所以当0x =时,()f x 有极小值为()()00,f f x =无极大值.(2)由(1)知若1m =,则()f x 有最小值()()00,f f x =有唯一零点0x =.若1m <,则1x m x +<+,()()()e ln e ln 110x x f x x m m x =-+->-+- ,此时,()f x 没有零点.若1m >,则()1e ()x f x x m x m=->-+',令()()g x f x =',则()g x 在(),m ∞-+上单调递增,由e 0m m m --<-+<,得()e ee e 0m m m m g m ---+-+=-<,又()1010g m=->,所以()0,0x m ∃∈-,使得()00g x =,当()0,x m x ∈-时,()0g x <,即()()0,f x f x '<单调递减;当()0,x x ∞∈+时,()0g x >,即()()0,f x f x '>单调递增,所以()()001ln 0f x f m m <=--<.取()e 11e 0,e 0m m m x m f x ---+=-+=<>,取()e e ln 222e 0,e 2e e mm m m m m x m f x m -+-+=-+>=-=-.设()e ln2(1)x t x x x x =-+->,()1e 1x t x x=--',在()1,∞+上单调递增,所以()()1e 20t x t '>=->',所以()()1e 1ln20t x t >=-->,所以()20f x >.所以()0e ,m m x α-∃∈-+,使()0f α=,()0,e m x m β∃∈-+,使()0f β=,所以()f x 有两个零点时,m 的取值范围为1m >.。
北京市海淀区2023-2024学年高三上学期期末考试 数学含答案
海淀区2023—2024学年第一学期期末练习高三数学(答案在最后)2024.01本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题纸上,在试卷上作答无效.考试结束后,将本试卷和答题纸一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}1,2,3,4,5,6U =,{}1,3,5A =,{}1,2,3B =,则()U A B = ð()A .{}2,4,5,6B .{}4,6C .{}2,4,6D .{}2,5,62.如图,在复平面内,复数1z ,2z 对应的点分别为1Z ,2Z ,则复数12z z ⋅的虚部为()A .i-B .1-C .3i -D .3-3.已知直线1:12yl x +=,直线2:220l x ay -+=,且12l l ∥,则a =()A .1B .1-C .4D .4-4.已知抛物线2:8C y x =的焦点为F ,点M 在C 上,4MF =,O 为坐标原点,则MO =()A .B .4C .5D .5.在正四棱锥P ABCD -中,2AB =,二面角P CD A --的大小为4π,则该四棱锥的体积为()A .4B .2C .43D .236.已知22:210C x x y ++-= ,直线()10mx n y +-=与C 交于A ,B 两点.若ABC △为直角三角形,则()A .0mn =B .0m n -=C .0m n +=D .2230m n -=7.若关于x 的方程log 0xa x a -=(0a >且1a ≠)有实数解,则a 的值可以为()A .10B .eC .2D .548.已知直线1l ,2l 的斜率分别为1k ,2k ,倾斜角分别为1α,2α,则“()12cos 0->αα”是“120k k >”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9.已知{}n a 是公比为q (1q ≠)的等比数列,n S 为其前n 项和.若对任意的*N n ∈,11n a S q<-恒成立,则()A .{}n a 是递增数列B .{}n a 是递减数列C .{}n S 是递增数列D .{}n S 是递减数列10.蜜蜂被誉为“天才的建筑师”.蜂巢结构是一种在一定条件下建筑用材面积最小的结构.下图是一个蜂房的立体模型,底面ABCDEF 是正六边形,棱AG ,BH ,CI ,DJ ,EK ,FL 均垂直于底面ABCDEF ,上顶由三个全等的菱形PGHI ,PIJK ,PKLG 构成.设1BC =,GPI IPK ∠=∠KPG =∠=θ10928'≈︒,则上顶的面积为()(参考数据:1cos 3=-θ,tan2=θ)A .B .2C .2D .4第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.在51x ⎫-⎪⎭的展开式中,x 的系数为______.12.已知双曲线221x my -=0y -=,则该双曲线的离心率为______.13.已知点A ,B ,C 在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则AB BC ⋅=______;点C 到直线AB 的距离为______.14.已知无穷等差数列{}n a 的各项均为正数,公差为d ,则能使得1n n a a +为某一个等差数列{}n b 的前n 项和(1n =,2,…)的一组1a ,d 的值为1a =______,d =______.15.已知函数()cos f x x a =+.给出下列四个结论:①任意a ∈R ,函数()f x 的最大值与最小值的差为2;②存在a ∈R ,使得对任意x ∈R ,()()π2f x f x a +-=;③当0a ≠时,对任意非零实数x ,ππ22f x f x ⎛⎫⎛⎫ ⎪ ⎪-⎝⎭⎝+⎭≠;④当0a =时,存在()0,πT ∈,0x ∈R ,使得对任意n ∈Z ,都有()()00f x f x nT =+.其中所有正确结论的序号是______.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.(本小题13分)如图,在四棱柱1111ABCD A B C D -中,侧面11ABB A 是正方形,平面11ABB A ⊥平面ABCD ,AB CD ∥,12AD DC AB ==,M 为线段AB 的中点,1AD B M ⊥.(Ⅰ)求证:1C M ∥平面11ADD A ;(Ⅱ)求直线1AC 与平面11MB C 所成角的正弦值.17.(本小题14分)在ABC △中,2cos 2c A b a =-.(Ⅰ)求C ∠的大小;(Ⅱ)若c =ABC △存在,求AC 边上中线的长.条件①:ABC △的面积为条件②:1sin sin 2B A -=;条件③:2222b a -=.注:如果选择的条件不符合要求,得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.18.(本小题13分)甲、乙、丙三人进行投篮比赛,共比赛10场,规定每场比赛分数最高者获胜,三人得分(单位:分)情况统计如下:场次12345678910甲8101071288101013乙9138121411791210丙121191111998911(Ⅰ)从上述10场比赛中随机选择一场,求甲获胜的概率;(Ⅱ)在上述10场比赛中,从甲得分不低于10分的场次中随机选择两场,设X 表示乙得分大于丙得分的场数,求X 的分布列和数学期望()E X ;(Ⅲ)假设每场比赛获胜者唯一,且各场相互独立,用上述10场比赛中每人获胜的频率估计其获胜的概率.甲、乙、丙三人接下来又将进行6场投篮比赛,设1Y 为甲获胜的场数,2Y 为乙获胜的场数,3Y 为丙获胜的场数,写出方差()1D Y ,()2D Y ,()3D Y 的大小关系.19.(本小题15分)已知椭圆2222:1x y E a b+=(0a b >>)过点()3,0A ,焦距为(Ⅰ)求椭圆E 的方程,并求其短轴长;(Ⅱ)过点()1,0P 且不与x 轴重合的直线l 交椭圆E 于两点C ,D ,连接CO 并延长交椭圆E 于点M ,直线AM 与l 交于点N ,Q 为OD 的中点,其中O 为原点.设直线NQ 的斜率为k ,求k 的最大值.20.(本小题15分)已知函数()2sin f x ax x x b =-+.(Ⅰ)当1a =时,求证:①当0x >时,()f x b >;②函数()f x 有唯一极值点;(Ⅱ)若曲线1C 与曲线2C 在某公共点处的切线重合,则称该切线为1C 和2C 的“优切线”.若曲线()y f x =与曲线cos y x =-存在两条互相垂直的“优切线”,求a ,b 的值.21.(本小题15分)对于给定的奇数m (3m ≥),设A 是由m m ⨯个实数组成的m 行m 列的数表,且A 中所有数不全相同,A 中第i 行第j 列的数{}1,1ij a ∈-,记()r i 为A 的第i 行各数之和,()c j 为A 的第j 列各数之和,其中{},1,2,,i j m ∈⋅⋅⋅.记()()()()2212m r r m f r A -++⋅⋅⋅+=.设集合()()(){}{},00,,1,2,,ij ij H i j a r a c j i m i j =⋅<⋅<∈⋅⋅⋅或,记()H A 为集合H 所含元素的个数.(Ⅰ)对以下两个数表1A ,2A ,写出()1f A ,()1H A ,()2f A ,()2H A 的值;1A 2A (Ⅱ)若()1r ,()2r ,…,()r m 中恰有s 个正数,()1c ,()2c ,…,()c m 中恰有t 个正数.求证:()2H A mt ms ts ≥+-;(Ⅲ)当5m =时,求()()H A f A 的最小值.海淀区2023—2024学年第一学期期末练习高三数学参考答案一、选择题(共10小题,每小题4分,共40分)1.A 2.D 3.B 4.D 5.C 6.A7.D8.B9.B10.D二、填空题(共5小题,每小题5分,共25分)11.5-12.213.1-514.11(答案不唯一)15.②④三、解答题(共6小题,共85分)16.(共13分)解:(Ⅰ)连接1AD .在四棱柱1111ABCD A B C D -中,侧面11CDD C 为平行四边形,所以11C D CD ∥,11C D CD =.因为AB CD ∥,12CD AB =,M 为AB 中点,所以CD AM ∥,CD AM =.所以11C D AM ∥,11C D AM =.所以四边形11MAD C 为平行四边形.所以11MC AD ∥.因为1C M ⊄平面11ADD A ,所以1C M ∥平面11ADD A .(Ⅱ)在正方形11ABB A 中,1AA AB ⊥.因为平面11ABB A ⊥平面ABCD ,所以1AA ⊥平面ABCD .所以1AA AD ⊥.因为1AD B M ⊥,1B M ⊂平面11ABB A ,1B M 与1AA 相交,所以AD ⊥平面11ABB A .所以AD AB ⊥.如图建立空间直角坐标系A xyz -.不妨设1AD =,则()0,0,0A ,()11,2,1C ,()10,2,2B ,()0,0,1M .所以()11,2,1AC = ,()111,0,1C B =- ,()11,2,0MC =.设平面11MB C 的法向量为(),,n x y z = ,则1110,0,n C B n MC ⎧⋅=⎪⎨⋅=⎪⎩ 即0,20.x z x y -+=⎧⎨+=⎩令2x =,则1y =-,2z =.于是()2,1,2n =-.因为1116cos ,9AC n AC n AC n⋅==⋅,所以直线1AC 与平面11MB C 所成角的正弦值为69.17.(共14分)解:(Ⅰ)由正弦定理sin sin sin a b cA B C==及2cos 2c A b a =-,得2sin cos 2sin sin C A B A =-.①因为πA B C ++=,所以()sin sin sin cos cos sin B A C A C A C =+=+.②由①②得2sin sin sin 0A C A -=.因为()0,πA ∈,所以sin 0A ≠.所以1cos 2C =.因为()0,πC ∈,所以π3C =.(Ⅱ)选条件②:1sin sin 2B A -=.由(Ⅰ)知,π2ππ33B A A ∠=--∠=-∠.所以2πsin sin sin sin 3B A A A -=--⎛⎫⎪⎝⎭31cos sin sin 22A A A =+-31cos sin 22A A =-πsin 3A ⎛⎫=- ⎪⎝⎭.所以π1sin 32A ⎛⎫-=⎪⎝⎭.因为2π0,3A ⎛⎫∈ ⎪⎝⎭,所以πππ,333A ⎛⎫-∈- ⎪⎝⎭.所以ππ36A -=,即π6A =.所以ABC △是以AC 为斜边的直角三角形.因为c =2πsin sin 3AB AC C ===.所以AC 边上的中线的长为1.选条件③:2222b a -=.由余弦定理得223a b ab +-=.设AC 边上的中线长为d ,由余弦定理得2222cos 42b ab d a C =+-⋅2242b ab a =+-2222342b a b a +-=+-1=.所以AC 边上的中线的长为1.18.(共13分)解:(Ⅰ)根据三人投篮得分统计数据,在10场比赛中,甲共获胜3场,分别是第3场,第8场,第10场.设A 表示“从10场比赛中随机选择一场,甲获胜”,则()310P A =.(Ⅱ)根据三人投篮得分统计数据,在10场比赛中,甲得分不低于10分的场次有6场,分别是第2场,第3场,第5场,第8场,第9场,第10场,其中乙得分大于丙得分的场次有4场,分别是第2场、第5场、第8场、第9场.所以X 的所有可能取值为0,1,2.()202426C C 10C 15P X ===,()112426C C 81C 15P X ⋅===,()022426C C 22C 5P X ===.所以X 的分布列为X 012P11581525所以()1824012151553E X =⨯+⨯+⨯=.(Ⅲ)()()()213D Y DY D Y >>.19.(共15分)解:(Ⅰ)由题意知3a =,2c =.所以c =,2224b a c =-=.所以椭圆E 的方程为22194x y +=,其短轴长为4.(Ⅱ)设直线CD 的方程为1x my =+,()11,C x y ,()22,D x y ,则()11,M x y --.由221941x y x my ⎧+=⎪⎨⎪=+⎩,得()22498320m y my ++-=.所以122849m y y m -+=+.由()3,0A 得直线AM 的方程为()1133y y x x =-+.由()11331y y x x x my ⎧=-⎪+⎨⎪=+⎩,得11123y y x my -=+-.因为111x my =+,所以12y y =-,112122y my x m ⎛⎫⎭-=⎪⎝- =+.所以112,22my y N --⎛⎫ ⎪⎝⎭.因为Q 为OD 的中点,所以221x my =+,所以221,22my y Q +⎛⎫⎪⎝⎭.所以直线NQ 的斜率()212212221212884922128112912249m y y y y m m k my my m m y y m m -+++====+--+-+--+.当0m ≤时,0k ≤.当0m >时,因为912m m+≥=,当且仅当2m =时,等号成立.所以281299m k m =≤+.所以当2m =时,k取得最大值9.20.(共15分)解:(Ⅰ)①当1a =时,()()2sin sin f x x x x b x x x b =-+=-+.记()sin g x x x =-(0x ≥),则()1cos 0g x x '=-≥.所以()g x 在[)0,+∞上是增函数.所以当0x >时,()()00g x g >=.所以当0x >时,()()sin f x x x x b b =-+>.②由()2sin f x x x x b =-+得()2sin cos f x x x x x '=--,且()00f '=.当0x >时,()()1cos sin f x x x x x '=-+-.因为1cos 0x -≥,sin 0x x ->,所以()0f x '>.因为()()f x f x ''-=-对任意x ∈R 恒成立,所以当0x <时,()0f x '<.所以0是()f x 的唯一极值点.(Ⅱ)设曲线()y f x =与曲线cos y x =-的两条互相垂直的“优切线”的切点的横坐标分别为1x ,2x ,其斜率分别为1k ,2k ,则121k k =-.因为()cos sin x x '-=,所以1212sin sin 1x x k k ⋅==-.所以{}{}12sin ,sin 1,1x x =-.不妨设1sin 1x =,则1π2π2x k =+,k ∈Z .因为()1111112sin cos k f x ax x x x '==--,由“优切线”的定义可知111112sin cos sin ax x x x x --=.所以1124ππa x k ==+,k ∈Z .由“优切线”的定义可知2111111sin cos x x x b x x ⋅-+=-,所以0b =.当24ππa k =+,k ∈Z ,0b =时,取1π2π2x k =+,2π2π2x k =--,则()11cos 0f x x =-=,()22cos 0f x x =-=,()11sin 1f x x ='=,()22sin 1f x x ='=-,符合题意.所以24ππa k =+,k ∈Z ,0b =.21.(共15分)解:(Ⅰ)()110f A =,()112H A =;()212f A ,()215H A =.由定义可知:将数表A 中的每个数变为其相反数,或交换两行(列),()H A ,()f A 的值不变.因为m 为奇数,{}1,1ij a ∈-,所以()1r ,()2r ,…,()r m ,()1c ,()2c ,…,()c m 均不为0.(Ⅱ)当{}0,s m ∈或{}0,t m ∈时,不妨设0s =,即()0r i <,1,2,,i m =⋅⋅⋅.若0t =,结论显然成立;若0t ≠,不妨设()0c j >,1,2,,j t =⋅⋅⋅,则(),i j H ∈,1,2,,i m =⋅⋅⋅,1,2,,j t =⋅⋅⋅.所以()H A mt ≥,结论成立.当{}0,s m ∉且{}0,t m ∉时,不妨设()0r i >,1,2,,i s =⋅⋅⋅,()0c j >,1,2,,j t =⋅⋅⋅,则当1s i m +≤≤时,()0r i <;当1t j m +≤≤时,()0c j <.因为当1,2,,i s =⋅⋅⋅,1,2,,j t t m =++⋅⋅⋅时,()0r i >,()0c j <,所以()()()()()()20ij ij ij a r i a c j a r i c j ⋅=⋅⋅⋅<⋅.所以(),i j H ∈.同理可得:(),i j H ∈,1,2,,m i s s =++⋅⋅⋅,1,2,,j t =⋅⋅⋅.所以()()()2H A s m t m s t mt ms st ≥-+-=+-.(Ⅲ)当5m =时,()()H A f A 的最小值为89.对于如下的数表A ,()()89H A f A =.下面证明:()()89H A f A ≥.设()1r ,()2r ,…,()r m 中恰有s 个正数,()1c ,()2c ,…,()c m 中恰有t 个正数,{},0,1,2,3,4,5s t ∈.①若{}0,5s ∈或{}0,5t ∈,不妨设0s =,即()0r i <,1,2,,5i =⋅⋅⋅.所以当1ij a =时,(),i j H ∈.由A 中所有数不全相同,记数表A 中1的个数为a ,则1a ≥,且()()()()251252r r r f A +++⋅⋅⋅+=()252252a a a +--==,()H A a ≥.所以()()819H A f A ≥>.②由①设{}0,5s ∉且{}0,5t ∉.若{}2,3s ∈或{}2,3t ∈,不妨设2s =,则由(Ⅱ)中结论知:()51041011H A t t t ≥+-=+≥.因为()()()()251250122r r r f A -++⋅⋅⋅+<=≤,所以()()118129H A f A ≥>.③由①②设{}0,2,3,5s ∉且{}0,2,3,5t ∉.若{}{},1,4s t =,则由(Ⅱ)中结论知:()25817H A ≥-=.因为()012f A <≤,所以()()178129H A f A ≥>.若s t =,{}1,4s ∈,不妨设1s t ==,()10r >,()10c >,且()()1H A f A<,由(Ⅱ)中结论知:()8H A ≥.所以()()8f A H A >≥.若数表A 中存在ij a ({},2,3,4,5i j ∈)为1,将其替换为1-后得到数表A '.因为()()1H A H A '=-,()()1f A f A '≥-,所以()()()()()()11H A H A H A f A f A f A '-≤<'-.所以将数表A 中第i 行第j 列(,2,3,4,5i j =)为1的数替换为1-后()()H A f A 值变小.所以不妨设1ij a =-(,2,3,4,5i j =).因为()5528H A ≥+-=,()9f A ≤,。
江西省吉安县第三中学、安福二中2024年高三数学第一学期期末经典试题含解析
江西省吉安县第三中学、安福二中2024年高三数学第一学期期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合2{|23}A x y x x ==-++,{}2|log 1B x x =>则全集U =R 则下列结论正确的是( ) A .AB A =B .A B B ⋃=C .()UA B =∅ D .UB A ⊆2.某三棱锥的三视图如图所示,网格纸上小正方形的边长为1,则该三棱锥外接球的表面积为( )A .27πB .28πC .29πD .30π3.已知复数z 满足202020191z i i ⋅=+(其中i 为虚数单位),则复数z 的虚部是( ) A .1-B .1C .i -D .i4.在复平面内,复数z a bi =+(a ,b R ∈)对应向量OZ (O 为坐标原点),设OZ r =,以射线Ox 为始边,OZ 为终边旋转的角为θ,则()cos sin z r i θθ=+,法国数学家棣莫弗发现了棣莫弗定理:()1111cos sin z r i θθ=+,()2222cos sin z r i θθ=+,则()()12121212cos sin z z rr i θθθθ=+++⎡⎤⎣⎦,由棣莫弗定理可以导出复数乘方公式:()()cos sin cos sin nnr i r n i n θθθθ+=+⎡⎤⎣⎦,已知)43z i =,则z =( )A .23B .4C .83D .165.已知2cos(2019)3πα+=-,则sin(2)2πα-=( )A .79B .59C .59-D .79-6.某网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是( )A .月收入的极差为60B .7月份的利润最大C .这12个月利润的中位数与众数均为30D .这一年的总利润超过400万元7.记()[]f x x x =-其中[]x 表示不大于x 的最大整数,0()1,0kx x g x x x≥⎧⎪=⎨-<⎪⎩,若方程在()()f x g x =在[5,5]-有7个不同的实数根,则实数k 的取值范围( ) A .11,65⎡⎤⎢⎥⎣⎦B .11,65⎛⎤⎥⎝⎦C .11,54⎛⎫⎪⎝⎭D .11,54⎡⎫⎪⎢⎣⎭8.已知函数()22cos sin 4f x x x π⎛⎫=++⎪⎝⎭,则()f x 的最小值为( ) A .212+B .12C .212-D .214-9.若复数z 满足2(13)(1)i z i +=+,则||z =( )A 5B 5C .102D .10510.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有 A .72种B .36种C .24种D .18种11.已知函数()sin 3f x a x x =-的图像的一条对称轴为直线56x π=,且12()()4f x f x ⋅=-,则12x x +的最小值为( ) A .3π-B .0C .3π D .23π 12.对于函数()f x ,定义满足()00f x x =的实数0x 为()f x 的不动点,设()log a f x x =,其中0a >且1a ≠,若()f x 有且仅有一个不动点,则a 的取值范围是( )A .01a <<或a =B .1a <<C .01a <<或1e a e =D .01a <<二、填空题:本题共4小题,每小题5分,共20分。
高三数学上册期末考试试卷
高三数学上册期末考试试卷一、选择题(每题5分,共60分)1. 设集合A = {x|x² - 3x + 2 = 0},B = {x|x² - ax + a - 1 = 0},若A∪B = A,则实数a的值为()A. 2B. 3C. 2或3D. 1或2或32. 已知复数z = (1 + i)/(1 - i),则z的共轭复数z̅为()A. iB. -iC. 1D. -13. 函数y = log₂(x² - 3x + 2)的定义域为()A. {x|x > 2或x < 1}B. {x|x > 2}C. {x|x < 1}D. {x|1 < x < 2}4. 若向量a = (1,2),b = (2,m),且a⊥b,则m的值为()A. -1B. -4C. 1D. 45. 已知等差数列{an}的前n项和为Sn,若a3 + a7 = 10,则S9等于()A. 45B. 50C. 90D. 1006. 在△ABC中,角A、B、C所对的边分别为a、b、c,若a = 2,b = 3,C = 60°,则c的值为()A. 7B. 19C. 7D. 197. 若函数f(x) = sin(ωx + φ)(ω>0, -π/2 < φ < π/2)的最小正周期为π,且图象过点(0, -1/2),则ω和φ的值分别为()A. ω = 2,φ = -π/6B. ω = 2,φ = -π/3C. ω = 1,φ = -π/6D. ω = 1,φ = -π/38. 已知双曲线x²/a² - y²/b² = 1(a > 0,b > 0)的一条渐近线方程为y = 3x,则双曲线的离心率为()A. 10B. 10/3C. 2D. 229. 一个几何体的三视图如图所示,则该几何体的体积为()(此处应给出三视图的描述以便计算体积,这里假设一个简单情况)假设主视图是一个边长为2的正方形,左视图是一个宽为1高为2的矩形,俯视图是一个边长为2的正方形,则该几何体是一个长方体,长、宽、高分别为2、2、1。
广东省深圳市宝安区2023-2024学年高三上学期期末考试 数学含答案
深圳市宝安区高三期末考试数学(答案在最后)注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:高考全部内容.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.复数3(2i)+的实部与虚部之和是()A.7B.13C.21D.272.已知集合(){}(){}2,21,,31A x y y x x B x y y x ==--==+∣∣,则A B ⋂的元素个数是()A.0B.1C.2D.无数3.某单位有职工500人,其中男性职工有320人,为了解所有职工的身体健康情况,按性别采用分层抽样的方法抽取100人进行调查,则抽取到的男性职工的人数比女性职工的人数多()A.28B.36C.52D.644.“01x ≤≤”是“11x≥”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知函数()54f x x x a =++在()1,1-内有零点,则a 的取值范围是()A.()5,5- B.()(),55,-∞-⋃+∞ C.[]5,5- D.][(),55,∞∞--⋃+6.如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点,,A B C ,其中点,A B 在该抛物线上,点C 在y 轴上,若57,2FA FB ==,则AB BC=()A.83B.72C.73D.37.若函数()()2cos cos f x x x ϕ=-+7,则常数ϕ的值可能是()A.π6B.π3C.2π3 D.5π68.已知H 是球O 的直径AB 上一点,:1:2AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,M 为α上的一点,且24MH =,过点M 作球O 的截面,则所得的截面面积最小的圆的半径为()A.142B.114C.144D.112二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知数列{}n a 的前n 项和为n S ,则下列结论正确的是()A.若2537a a a =,则{}n a 是等比数列B.若{}n a 是等比数列,则2537a a a =C.若31nn S =-,则{}n a 是等比数列D.若{}n a 是等比数列,且3nn S a =+,则1a =-10.直线():2310l m x y m +--+=与圆22:244C x y x y +-+=,则()A.圆C 的半径为2B.直线l 过定点()1,1C.直线l 与圆C 一定有公共点D.圆C 的圆心到直线l 的距离的最大值是311.若直线y ax b =+与曲线2ln y x =+相切,则a b +的取值可能为()A.1B.2C.3D.612.正三棱柱111ABC A B C -中,12AB AA ==,D ,E ,F 分别为1AA ,1BB ,1CC 的中点,P 为棱1CC 上的动点,则()A .平面1AB F ⊥平面11ABB AB.点1B 到平面BCD 的距离为C.1DB 与DP 所成角的余弦值的取值范围为13,55⎡⎤⎢⎥⎣⎦D.以F 为球心,3为半径的球面与侧面11ABB A 的交线长为9三、填空题:本题共4小题,每小题5分,共20分.13.已知单位向量,a b满足2a b += a b -= __________.14.函数()(()3log R f x x a a =+-∈是奇函数,则()4f a =__________.15.为了检查学生的身体素质情况,从田径类3项,球类2项,武术类2项共7项项目中随机抽取3项进行测试,则恰好抽到两类项目的概率是__________.16.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为(),0F c -,直线:30l x y c -+=与C 交于A ,B 两点,若3AB AF =,则C 的离心率是__________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.在ABC 中,角,,A B C 的对边分别是,,a b c ,且cos213cos B B =-.(1)求角B 的值;(2)若b ABC = 的面积为,求ABC 的周长.18.在等差数列{}n a 中,375818,24a a a a +=+=.(1)求{}n a 的通项公式;(2)若1(1)nn n n b a a +=-,求数列{}n b 的前2n 项和2n S .19.已知某地中学生的男生和女生的人数比例是3:2,为了解该地中学生对羽毛球和乒乓球的喜欢情况,现随机抽取部分中学生进行调查,了解到该地中学生喜欢羽毛球和乒乓球的概率如下表:男生女生只喜欢羽毛球0.30.3只喜欢乒乓球0.250.2既喜欢羽毛球,又喜欢乒乓球0.30.15(1)从该地中学生中随机抽取1人,已知抽取的这名中学生喜欢羽毛球,求该中学生也喜欢乒乓球的概率;(2)从该地中学生中随机抽取100人,记抽取到的中学生既喜欢羽毛球,又喜欢乒乓球的人数为X ,求X 的分布列和期望.20.如图,在圆锥SO 中,AB 是圆O 的直径,且SAB △是边长为4的等边三角形,,C D 为圆弧AB 的两个三等分点,E 是SB 的中点.(1)证明:DE //平面SAC ;(2)求平面SAC 与平面SBD 所成锐二面角的余弦值.21.已知双曲线2222:1(0,0)y x C a b a b-=>>的离心率是3,点(P 在C 上.(1)求C 的标准方程;(2)已知直线l 与C 相切,且与C 的两条渐近线分别交于,A B 两点,O 为坐标原点,试问OA OB ⋅是否为定值?若是,求出该定值;若不是,请说明理由.22.已知函数()3f x x x =-.(1)求()f x 的极值;(2)已知()()ππ0,,sin cos tan 26mf nf ααα⎛⎫∈+= ⎪⎝⎭,证明:32m n +>.深圳市宝安区高三期末考试数学注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:高考全部内容.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.复数3(2i)+的实部与虚部之和是()A.7B.13C.21D.27【答案】B 【解析】【分析】根据复数的运算求解即可.【详解】因为()()()()322(2i)44i i2i 34i 2i 63i 8i 4i211i +=+++=++=+++=+,所以复数3(2i)+的实部与虚部之和是21113+=,故选:B.2.已知集合(){}(){}2,21,,31A x y y x x B x y y x ==--==+∣∣,则A B ⋂的元素个数是()A.0B.1C.2D.无数【答案】C 【解析】【分析】依题意,A B ⋂转换为两个图象交点问题,两函数联立,转为一元二次方程解得个数问题,从而得到答案.【详解】联立221,31,y x x y x ⎧=--⎨=+⎩整理得2520x x --=.由()2(5)412330∆=--⨯⨯-=>,得原方程组有两组解,即A B ⋂中有2个元素,故选:C.3.某单位有职工500人,其中男性职工有320人,为了解所有职工的身体健康情况,按性别采用分层抽样的方法抽取100人进行调查,则抽取到的男性职工的人数比女性职工的人数多()A.28B.36C.52D.64【答案】A 【解析】【分析】根据已知条件,结合分层抽样的定义,即可得解.【详解】由题意可知抽取到的男性职工人数为10032064500⨯=,女性职工人数为1006436-=,则抽取到的男性职工的人数比女性职工的人数多643628-=.故选:A .4.“01x ≤≤”是“11x≥”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】对11x≥可得01x <≤,然后根据充分条件和必要条件的定义判断即可.【详解】由11x ≥,则110x -≥,即10xx -≥,即()100x x x ⎧-≥⎨≠⎩,解得得01x <≤,则01x ≤≤不能推出11x ≥,11x≥能推出01x ≤≤,则“01x ≤≤”是“11x≥”的必要不充分条件.故选:B.5.已知函数()54f x x x a =++在()1,1-内有零点,则a 的取值范围是()A.()5,5- B.()(),55,-∞-⋃+∞ C.[]5,5- D.][(),55,∞∞--⋃+【答案】A 【解析】【分析】首先判断函数的单调性,再根据零点存在性定理,即可列式求解.【详解】5y x =是增函数,4y x a =+也是增函数,所以()f x 是R 上的增函数.因为()f x 在()1,1-内有零点,所以()()11401140f a f a ⎧-=--+<⎪⎨=++>⎪⎩,解得55a -<<.故选:A6.如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点,,A B C ,其中点,A B 在该抛物线上,点C 在y 轴上,若57,2FA FB ==,则AB BC=()A.83B.72C.73D.3【答案】D 【解析】【分析】根据抛物线定义可求出,A B x x ,根据三角形相似即可求出AB BC.【详解】设(),A A A x y ,(),B B B x y ,由57,2FA FB ==,根据抛物线定义可得517,12A B x x +=+=,故36,2A B x x ==,,过A ,B 分别作y 轴的垂线,过B 作x 轴的垂线,垂足为E ,明显ABE BCM ,所以362332A BB CAB x x BCx x --===-.故选:D7.若函数()()2cos cos f x x x ϕ=-+,则常数ϕ的值可能是()A.π6B.π3C.2π3 D.5π6【答案】B 【解析】【分析】根据两角差的余弦以及辅助角公式对()()2cos cos f x x x ϕ=-+化简,表示出最大值,进而得到答案.【详解】因为()()2cos cos 2sin sin cos 2sin sin 2cos 1cos f x x x x x xϕϕϕϕ=++=++()sin x α=+,其中s t 2co 12i an s n ϕαϕ+=,=所以1cos 2ϕ=,对于A 选项,当π6ϕ=,πcos co s 62ϕ==,故A 错误;对于B 选项,当π3ϕ=,πcos co 1s 32ϕ==,故B 正确;对于C 选项,当2π3ϕ=,2πcos cos213ϕ==-,故C 错误;对于D 选项,当5π6ϕ=,5πcos cos 26ϕ==-,故D 错误,故选:B.8.已知H 是球O 的直径AB 上一点,:1:2AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,M 为α上的一点,且4MH =,过点M 作球O 的截面,则所得的截面面积最小的圆的半径为()A.142B.114C.144D.112【答案】C 【解析】【分析】设截得的截面圆的半径为r ,球的半径为R ,由平面几何知识得截面与球心的距离为13R ,利用勾股定理求得2R 的值,由题意可知球心O 到所求截面的距离d 最大时截面面积最小,利用面积公式,即可得答案.【详解】如图,设截得的截面圆的半径为r ,球O 的半径为R ,因为:1:2AH HB =,所以13OH R =.由勾股定理,得222R r OH =+,由题意得2ππ,1r r ==,所以22113R R ⎛⎫=+ ⎪⎝⎭,解得298R =,此时过点M 作球O 的截面,若要所得的截面面积最小,只需所求截面圆的半径最小.设球心O 到所求截面的距离为d ,所求截面的半径为r ',则r '=所以只需球心O 到所求截面的距离d 最大即可,而当且仅当OM 与所求截面垂直时,球心O 到所求截面的距离d 最大,即max12d OM ===,所以min 4r =='.故选:C二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知数列{}n a 的前n 项和为n S ,则下列结论正确的是()A.若2537a a a =,则{}n a 是等比数列B.若{}n a 是等比数列,则2537a a a =C.若31nn S =-,则{}n a 是等比数列D.若{}n a 是等比数列,且3nn S a =+,则1a =-【答案】BCD 【解析】【分析】举特列可判断A ;由等比数列的性质可判断B ;由31nn S =-,得1131n n S --=-,两式相减可得123n n a -=⨯可判断C ;由等比中项的性质可判断D .【详解】当0n a =时,满足2537a a a =,但{}n a 不是等比数列,则A 错误由等比数列的性质可知2537a a a =,则B 正确.由31nn S =-,得1131n n S --=-,则()11232n n n n a S S n --=-=⨯≥,当n 1=时,112a S ==,则123n n a -=⨯,从而可知{}n a 是等比数列,则C 正确.由3nn S a =+,得1233,9,27a a S a S a =+=+=+.由等比数列的性质可知2213a a a =,22113326,3,18a S S a a a S S =-==+=-=,即()26183a =+,解得1a =-,再代入结合C 选项可知此时{}n a 为等比数列,则D 正确.故选:BCD .10.直线():2310l m x y m +--+=与圆22:244C x y x y +-+=,则()A.圆C 的半径为2B.直线l 过定点()1,1C.直线l 与圆C 一定有公共点D.圆C 的圆心到直线l 的距离的最大值是3【答案】BCD 【解析】【分析】将圆的方程化为标准方程,即可得出圆心、半径,判断A 项;整理直线方程,解102310x x y -=⎧⎨-+=⎩,即可得出定点坐标;直线l 恒过圆上点()1,1,即可判断C ;设()1,1A ,当AC l ⊥时,距离最大,根据点到直线的距离,求出,即可判断D .【详解】对于A 项,将圆22:244C x y x y +-+=化为标准方程可得,()()22129x y -++=,所以圆C 的圆心坐标为()1,2-,半径为3.故A 项错误;对于B 项,直线():2310l m x y m +--+=可化为()()12310m x x y -+-+=,由102310x x y -=⎧⎨-+=⎩可得,11x y =⎧⎨=⎩,所以直线l 过定点()1,1,故B 项正确;对于C 项,因为点()1,1在圆C 上,直线l 过定点()1,1,所以,直线l 与圆C 一定有公共点.故C 项正确;对于D 项,设()1,1A ,当AC l ⊥时,点C 到直线l 的距离最大,所以,圆C 的圆心到直线l3=,故D 项正确.故选:BCD .11.若直线y ax b =+与曲线2ln y x =+相切,则a b +的取值可能为()A.1B.2C.3D.6【答案】BCD 【解析】【分析】设出切点,利用导数几何意义得出01a x =,由切点既在直线上又在曲线上得出012lnb x +=+,由此将a b +转化为函数0()g x 求值域可得.【详解】设切点为()00,2ln x x +,因为1(2ln )x x'+=,所以01a x =.又因为切点()00,2ln x x +在直线y ax b =+上,所以002ln 1x ax b b +=+=+,解得01ln b x =+,所以000)11l ,(0n a x x b x +=+>+,令()11ln g x x x =++,则()22111x g x x x x-=-+=',令()0g x '=,得1x =,当()0,1x ∈时,()0g x '<,()g x 单调递减,当()1,x ∈+∞时,()0g x '>,()g x 单调递增,所以()min ()12g x g ==,又当,()→+∞→+∞x g x .故a b +的取值范围为[)2,+∞.故选:BCD.12.正三棱柱111ABC A B C -中,12AB AA ==,D ,E ,F 分别为1AA ,1BB ,1CC 的中点,P 为棱1CC 上的动点,则()A.平面1AB F ⊥平面11ABB AB.点1B 到平面BCD 的距离为C.1DB 与DP 所成角的余弦值的取值范围为13,55⎡⎤⎢⎥⎣⎦D.以F 为球心,3为半径的球面与侧面11ABB A 的交线长为9【答案】ACD 【解析】【分析】对A ,利用面面垂直的判定即可证明,对B 利用等体积法即可求出距离,对C 建立空间直角坐标系,利用线线角的向量求法即可求出其范围,对D ,作出交线,将立体平面化求解即可.【详解】对于A ,取1AB 的中点G ,连接FG ,DE ,易知G 也是DE 的中点,在1AB F △中,因为1FA FB =,G 为1AB 的中点,所以1FG AB ⊥,在DEF 中,因为FD FE =,G 为DE 的中点,所以FG DE ⊥,又因为1AB ,DE ⊂平面11ABB A ,1AB DE G = ,所以FG ⊥平面11ABB A .又因为FG ⊂平面1AB F ,所以平面1AB F ⊥平面11ABB A ,A 正确.对于B ,设点1B 到平面BCD 的距离为h ,易知1222BCD S =⨯= ,112222BB D S =⨯⨯=△,取AB 中点为M ,连接CM ,因为CA CB =,则CM AB ⊥,因为1BB ⊥底面ABC ,且CM ⊂面ABC ,则1BB CM ⊥,又因为1,AB BB ⊂平面1ABB ,且1AB BB B Ç=,所以CM ⊥平面1ABB ,且CM =,因为11B BCD C BB D V V --=,所以112233h ⨯=⨯,解得h =,B 错误.对于C ,取BC 的中点Q ,连接AQ ,易知AQ BC ⊥.以A 为坐标原点,向量CB ,AQ ,1AA的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,则()0,0,1D.()12B,设()P t -,02t ≤≤,()1DB =,()1DP t =--,设1DB 与DP 所成的角为θ,则cos θ==.令1u t =-(11u -≤≤),则cos θ=,当0u =即1t =时,5cos 5θ=;当01u <≤,即12t <≤时,cos θ=根据对勾函数1y u u =+在(]0,1上单调递减可知3cos 55θ<≤;当10u -≤<,即01t ≤<时,同理根据对勾函数1y u u =+在[)1,0-上单调递减可知15cos 55θ≤<.综上,1DB 与DP 所成角的余弦值的取值范围为13,55⎡⎤⎢⎥⎣⎦,C 正确.对于D ,由A 选项中的结论知FG ⊥平面11ABB A,FG =.又因为球面的半径为3,所以以F 3为半径的球面与侧面11ABB A 的交线(圆的一部分)的3=.如图,3GM =,1GE =,所以cos 2MGE ∠=,解得π6MGE ∠=,由圆与正方形的对称性知π6MGN ∠=,所以球面与侧面11ABB A 的交线长为π4369⨯⨯=,D 正确.故选:ACD.【点睛】关键点睛:本题B 选项关键是利用等体积法求出点到平面距离,C 选项关键是建立空间直角坐标系,设()P t -,得到线线角表达式,再结合对勾函数单调性即可得到其范围.三、填空题:本题共4小题,每小题5分,共20分.13.已知单位向量,a b满足2a b += a b -= __________.【解析】【分析】利用向量数量积的运算律及已知可得12a b ⋅=- ,再由运算律求a b - 即可.【详解】因为2a b += 22443a a b b +⋅+= ,所以12a b ⋅=- ,则222()23a b a a b b -=-⋅+= ,故a b -=r r .14.函数()(()3log R f x x a a =+-∈是奇函数,则()4f a =__________.【答案】1【解析】【分析】根据奇函数的性质,结合对数运算,即可求解a ,再代入函数解析式求值.【详解】因为()(3log f x x a =+-,所以()(3log f x x a -=-+-,因为()f x 是奇函数,所以()()0f x f x +-=,即((33log log 0x a x a +-+-+-=,所以32log 92a ==,解得1a =,则()(34log 411f a =-=.故答案为:115.为了检查学生的身体素质情况,从田径类3项,球类2项,武术类2项共7项项目中随机抽取3项进行测试,则恰好抽到两类项目的概率是__________.【答案】2235【解析】【分析】利用组合应用问题,结合排除法求出试验及所求概率的事件的基本事件数,再利用古典概率公式计算即得.【详解】从这7项项目中随机抽取3项的情况有37C 35=种,抽取的3项属同一类的情况有33C 1=种,抽取的3项包含三类的情况有111322C C C 12=种,则符合条件的情况有3511222--=种,所以所求概率为2235.故答案为:223516.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为(),0F c -,直线:30l x y c -+=与C 交于A ,B 两点,若3AB AF =,则C 的离心率是__________.【答案】9【解析】【分析】依题意,设()()1122,,,A x y B x y ,因为3AB AF =,则有212y y =-,直线方程与椭圆方程联立,借助韦达定理得到228110c a =,从而得到离心率.【详解】设()()1122,,,A x y B x y ,因为3AB AF =,所以1212y AF y BF==,所以212y y =-.联立222230,1,x y c x y ab -+=⎧⎪⎨+=⎪⎩整理得()22224960a b y b cy b +--=,则21212269b c y y y a b +=-=+,412229b y y a b =-+,从而22422226299b c b a b a b ⎛⎫-⋅-=- ⎪++⎝⎭,整理得228110c a =,故9c e a ==,故答案为:109.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.在ABC 中,角,,A B C 的对边分别是,,a b c ,且cos213cos B B =-.(1)求角B 的值;(2)若b ABC =的面积为,求ABC 的周长.【答案】(1)π3B =(2)10+【解析】【分析】(1)根据已知条件利用二倍角余弦公式化简求得cos B ,求得结果;(2)由三角形面积公式求得ac ,再利用余弦定理可求得a c +,从而得三角形周长.【小问1详解】因为cos213cos B B =-,所以22cos 113cos B B -=-,所以22cos 3cos 20B B +-=,所以()()2cos 1cos 20B B -+=,则1cos 2B =或cos 2B =-(舍去).因为0πB <<,所以π3B =.【小问2详解】因为ABC的面积为,所以1sin 24ac B ac ==24ac =.由余弦定理可得22222cos ()3b a c ac B a c ac =+-=+-,则22()324a c =+-⨯,即2()100a c +=,解得10a c +=.故ABC的周长为10a b c ++=+.18.在等差数列{}n a 中,375818,24a a a a +=+=.(1)求{}n a 的通项公式;(2)若1(1)nn n n b a a +=-,求数列{}n b 的前2n 项和2n S .【答案】(1)21n a n =-(2)284n n +【解析】【分析】(1)设数列{}n a 的公差为d ,由题意可得11281821124a d a d +=⎧⎨+=⎩,解方程即可求出1a 1,d 2==,再由等差数列的通项公式求出{}n a ;(2)由(1)可得()2(1)41nn b n=--,再由分组求和法和等差数列的前n 项和公式求解即可.【小问1详解】设数列{}n a 的公差为d ,则371581281821124a a a d a a a d +=+=⎧⎨+=+=⎩,解得1a 1,d 2==,.故()1121n a a n d n =+-=-.【小问2详解】由(1)可得()()()2(1)2121(1)41nn n b n n n =--+=--,则222124(21)14(2)1164n n b b n n n -⎡⎤⎡⎤+=---+-=-⎣⎦⎣⎦,故()()()()212342*********n n n S b b b b b b n -=++++++=+++- ()212164842n nn n +-==+.19.已知某地中学生的男生和女生的人数比例是3:2,为了解该地中学生对羽毛球和乒乓球的喜欢情况,现随机抽取部分中学生进行调查,了解到该地中学生喜欢羽毛球和乒乓球的概率如下表:男生女生只喜欢羽毛球0.30.3只喜欢乒乓球0.250.2既喜欢羽毛球,又喜欢乒乓球0.30.15(1)从该地中学生中随机抽取1人,已知抽取的这名中学生喜欢羽毛球,求该中学生也喜欢乒乓球的概率;(2)从该地中学生中随机抽取100人,记抽取到的中学生既喜欢羽毛球,又喜欢乒乓球的人数为X ,求X 的分布列和期望.【答案】(1)49;(2)分布列见解析,24.【解析】【分析】(1)根据给定条件,结合条件概率公式求解即得.(2)利用(1)的信息,结合二项分布求出分布列的期望.【小问1详解】记事件A 表示从该地中学生中随机抽取1人,被抽取的这名中学生喜欢羽毛球,事件B 表示从该地中学生中随机抽取1人,被抽取的这名中学生喜欢乒乓球,则()()()0.30.30.60.30.150.40.54P A =+⨯++⨯=,()0.30.60.150.40.24P AB =⨯+⨯=,所以所求的概率()()()0.244|0.549P AB P B A P A ===.【小问2详解】由(1)知从该地中学生中随机抽取1人,被抽取的这名中学生既喜欢羽毛球,又喜欢乒乓球的概率0.24p =,因此()100,0.24X B ~,所以X 的分布列为()()100100C 0.240.760,1,2,3,,100kkkP X k k -==⨯⨯= ,期望为()1000.2424E X =⨯=.20.如图,在圆锥SO 中,AB 是圆O 的直径,且SAB △是边长为4的等边三角形,,C D 为圆弧AB 的两个三等分点,E 是SB 的中点.(1)证明:DE //平面SAC ;(2)求平面SAC 与平面SBD 所成锐二面角的余弦值.【答案】(1)证明见解析(2)15【解析】【分析】(1)证明:取SA 的中点F ,连接,,CF EF CD ,由题意可证得DE //CF ,再由线面平行的判定定理证明即可;(2)以O 为坐标原点,,OB OS的方向分别为,y z 轴的正方向,建立如图所示的空间直角坐标系.求出平面SAC 与平面SBD 的法向量,由二面角的向量公式求解即可.【小问1详解】证明:取SA 的中点F ,连接,,CF EF CD .因为,C D 为圆弧AB 的两个三等分点,所以CD //1,2AB CD AB =.因为,E F 分别为,SB SA 的中点,所以EF //1,2AB EF AB =,则CD //,EF EF CD =,从而四边形CDEF 为平行四边形,故DE //CF .因为DE ⊄平面,SAC CF ⊂平面SAC ,所以DE //平面SAC .【小问2详解】解:以O 为坐标原点,,OB OS的方向分别为,y z 轴的正方向,建立如图所示的空间直角坐标系.因为4AB SA ==,所以()())0,2,0,0,2,0,3,1,0A B C--,)(3,1,0,0,0,3DS ,则)()3,1,0,0,2,3,3,1,0,AC AS BD BS ===-=(0,2,3-.设平面SAC 的法向量为()111,,m x y z =,则111130,230,m AC x y m AS y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩ 令11x =,得()1,3,1m = .设平面SBD 的法向量为()222,,n x y z =,则222230,230,n BD x y n BS y z ⎧⋅=-=⎪⎨⋅=-+=⎪⎩ 令21x =,得()3,1n = .设平面SAC 与平面SBD 所成锐二面角为θ,则||1cos |cos ,|||||5m n m n m n θ⋅=〈〉==.故平面SAC 与平面SBD 所成锐二面角的余弦值为15.21.已知双曲线2222:1(0,0)y x C a b a b-=>>的离心率是3,点(3P 在C 上.(1)求C 的标准方程;(2)已知直线l 与C 相切,且与C 的两条渐近线分别交于,A B 两点,O 为坐标原点,试问OA OB ⋅是否为定值?若是,求出该定值;若不是,请说明理由.【答案】(1)2218x y -=(2)是,7-【解析】【分析】(1)将点P 代入方程,结合离心率计算即可得;(2)设出切线方程,联立曲线可得切线中参数的关系,联立切线与渐近线,可得两交点坐标,即可得OA OB ⋅ ,结合所得切线中参数的关系即可得该定值.【小问1详解】由题可得2222231613a b c a c a b ⎧-=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得13a b c =⎧⎪=⎨⎪=⎩,故C 的标准方程为2218x y -=;【小问2详解】由题意可知直线l 的斜率存在,设直线()()1122:,,,,l y kx m A x y B x y =+,联立2218y kx m x y =+⎧⎪⎨-=⎪⎩,整理得()2228116880k x kmx m -++-=,则()()222Δ(16)481880km k m =---=,即2281k m +=.由(1)可知C的渐近线方程为4y x =和4y x =-,不妨设直线l 与直线24y x =的交点为A ,与直线24y x =-的交点为B ,联立24y x y kx m ⎧=⎪⎨⎪=+⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩,即A ⎛⎫,联立24y x y kx m ⎧=-⎪⎨⎪=+⎩解得x y ⎧=⎪⎪⎨⎪=⎪⎩,即B ⎛⎫ ⎝,则OA ⎛⎫=,OB ⎛⎫= ⎝ ,得22781m OA OB k ⎛⋅== -⎝ ,因为2281k m +=,所以2218m k =-,所以227781m k =--,即7OA OB ⋅=- ,故OA OB ⋅是定值,且该定值为7-.【点睛】关键点睛:本题的关键是利用直线与双曲线相切得到2281k m +=,再求出,A B 的坐标,最后计算OA OB ⋅ 即可.22.已知函数()3f x x x =-.(1)求()f x 的极值;(2)已知()()ππ0,,sin cos tan 26mf nf ααα⎛⎫∈+= ⎪⎝⎭,证明:32m n +>.【答案】(1239-(2)证明见解析【解析】【分析】(1)先求得()f x 的单调性,进而求得()f x 的极值;(2)先利用题给条件构造出m n +的不等式,再利用(1)的结论即可证得32m n +>.【小问1详解】()3f x x x =-,()213f x x '=-,令()0f x '=,可得33x =±.令()0f x ¢>,可得33x -<<,令()0f x '<,可得3x >,或3x <-所以()f x 在,33⎛⎫- ⎪ ⎪⎝⎭上单调递增,在,3⎛-∞- ⎝⎭和3⎛⎫∞ ⎪ ⎪⎝⎭,+上单调递减.所以()f x 的极大值为(),39f f x ⎛⎫= ⎪ ⎪⎝⎭的极小值为39f ⎛⎫-=- ⎪ ⎪⎝⎭.【小问2详解】由()()πsin cos tan 6mf nf αα+=,可得22cos sin sin cos 3m n αααα+=,所以cos sin 3sin cos m n αααα+=.由对称性,不妨设π0,4α⎛⎤∈ ⎥⎝⎦,则()cos sin cos 3sin cos m n m n ααααα+=≤+,当且仅当sin cos 2αα==时,等号成立,所以()233sin cos 3sin sin m n αααα+≥=-.由(1)可知()f x 在0,2⎛ ⎝⎦上的最大值为39⎛= ⎝⎭f ,所以()3330sin sin 923sin sin αααα<-≤≥-,当且仅当sin 3α=时,等号成立,因为等号不能同时取到,所以32m n +>.【点睛】方法点睛:利用导数证明不等式常见类型及解题策略:(1)构造差函数()()()h x f x g x =-,根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式;(2)根据条件,寻找目标函数,一般思路为利用条件将所求问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.。
2024届山东省济南市高三上学期期末考试数学(文)试题(解析版)
2024届山东省济南市高三上学期期末考试数学(文)试题一、单选题1.已知集合,,则( )A.B.C.D.【答案】C【解析】利用交集概念与运算干脆求解即可.【详解】∵集合,,∴故选:C【点睛】本题考查交集的概念及运算,属于基础题.2.已知复数满足(其中为虚数单位),则的虚部为( )A.-1 B.1 C.D.【答案】A【解析】利用复数的乘除运算化简复数z,结合虚部概念得到答案.【详解】由z(1+i)=2,得,∴复数z的虚部是﹣1.故选:A.【点睛】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.3.已知等差数列的前项和为,若,,则该数列的公差为( ) A.-2 B.2 C.-3 D.3【答案】B【解析】利用等差数列的通项公式与求和公式即可得出.【详解】由题意可得:5d=25,解得d=2.故选:B.【点睛】本题考查了等差数列的通项公式与求和公式,考查了推理实力与计算实力,属于基础题.4.已知实数,满足约束条件则的最大值是( )A.0 B.1 C.5 D.6【答案】D【解析】由约束条件作出可行域,化目标函数为直线方程的斜截式,由直线方程可知,要使z最大,则直线在y轴上的截距最大,结合可行域可知当直线z=x+2y过点A时z 最大,求出A的坐标,代入z=x+2y得答案.【详解】解:画出约束条件表示的平面区域,如图所示;由解得A(0,3),此时直线y x z在y轴上的截距最大,所以目标函数z=x+2y的最大值为z max=0+2×3=6.故选:D.【点睛】本题考查了简洁的线性规划,考查数形结合的思想,解答的关键是正确作出可行域,是中档题.5.已知命题关于的不等式的解集为;命题函数在区间内有零点,下列命题为真命题的是( )A.B.C.D.【答案】C【解析】先推断命题p,q的真假,结合真值表可得结果.【详解】关于的不等式的解集为,故命题p为假命题,由函数可得:即,结合零点存在定理可知在区间内有零点,故命题求为真命题.∴p∧q为假,为假,为真,为假,故选:C.【点睛】本题考查的学问点是复合命题的真假,其中推断出命题p与q的真假是解答本题的关键.6.如图,在中,,,三角形内的空白部分由三个半径均为1的扇形构成,向内随机投掷一点,则该点落在阴影部分的概率为( )A.B.C.D.【答案】D【解析】由题意,概率符合几何概型,所以只要求出阴影部分的面积,依据三角形的内角和得到空白部分的面积是以1为半径的半圆的面积,由几何概型的概率公式可求.【详解】由题意,题目符合几何概型,中,,,,所以三角形为直角三角形,面积为,阴影部分的面积为:三角形面积圆面积=2,所以点落在阴影部分的概率为;故选:D.【点睛】本题考查了几何概型的概率求法;关键明确概率模型,然后求出满足条件的事务的集合,由概率公式解答.7.已知双曲线,其焦点到渐近线的距离为2,则该双曲线的离心率为( ) A.B.C.2 D.【答案】D【解析】由焦点到条渐近线的距离,可得b=1,求出c,即可求出双曲线的离心率.【详解】解:双曲线的焦点到条渐近线的距离等于b.∵双曲线的焦点到条渐近线的距离为2,∴b=2,又a∴c=,∴e.故选:D.【点睛】本题考查双曲线的性质,考查学生的计算实力,求出双曲线的焦点到条渐近线的距离等于b是关键.8.函数的图象大致为( )A.B.C.D.【答案】D【解析】利用函数的奇偶性,极限,特值点逐一推断即可.【详解】由函数为偶函数,解除B选项,当x时,,解除A选项,当x=时,,解除C选项,故选:D【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,推断图象的左右位置;从函数的值域,推断图象的上下位置;(2)从函数的单调性,推断图象的改变趋势;(3)从函数的奇偶性,推断图象的对称性;(4)从函数的特征点,解除不合要求的图象. 9.为了得到函数的图象,可以将函数的图象( )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】B【解析】利用函数y=A cos(ωx+φ)的图象变换规律,得出结论.【详解】解:为了得到函数的图象,可以将函数向右平移个单位长度,故选:B.【点睛】本题主要考查函数y=A cos(ωx+φ)的图象变换规律,属于基础题.10.如图,网络纸上小正方形的边长为1,粗实线画出的某几何体的三视图,则该几何体的体积是( )A.B.C.D.【答案】A【解析】依据三视图知几何体是组合体:下面是圆锥、上面是四分之一球,依据图中数据,代入体积公式求值即可.【详解】解:依据三视图知几何体是组合体,下面是圆锥、上面是四分之一球,圆锥的底面半径为3,高为3;球的半径为3,∴该几何体的体积V,故选:A.【点睛】本题考查由三视图求几何体的体积,以及几何体的体积公式,考查空间想象实力,三视图正确复原几何体是解题的关键.11.执行如图所示的程序框图,若输入的,,依次为,,,其中,则输出的为( )A.B.C.D.【答案】C【解析】由框图可知程序的功能是输出三者中的最大者,比较大小即可.【详解】由程序框图可知a、b、c中的最大数用变量x表示并输出,∵∴,又在R上为减函数,在上为增函数,∴<,<故最大值为,输出的为故选:C【点睛】本题主要考查了选择结构.算法是新课程中的新增加的内容,也必定是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.12.我国南宋数学杨家辉所著的《详解九章算法》一书中记录了一个由正整数构成的三角形数表,我们通常称之为杨辉三角.以下数表的构造思路就来源于杨辉三角.从其次行起,每一行中的数字均等于其“肩上”两数之和,表中最终一行仅有一个数,则的值为( )A.B.C.D.【答案】C【解析】依据每一行的第一个数的改变规律即可得到结果.【详解】解:第一行第一个数为:;其次行第一个数为:;第三行第一个数为:;第四行第一个数为:;,第n行第一个数为:;一共有1010行,∴第1010行仅有一个数:;故选:C.【点睛】本题考查了由数表探究数列规律的问题,考查学生分析解决问题的实力,属于中档题.二、填空题13.已知向量,为单位向量,若与的夹角为,则__________.【答案】1【解析】依据条件可以得到,这样便可求出的值,从而得出的值.【详解】解:依据条件,,;∴1-1+1=1;∴.故答案为:.【点睛】本考查单位向量的概念,向量数量积的运算及其计算公式,求向量的长度的方法:求.14.过圆内一点作直线,则直线被圆所截得的最短弦长为__________.【答案】【解析】化已知圆为标准方程,得到圆心C(1,0),半径r=2,利用垂径定理结合题意,即可求出最短弦长.【详解】圆方程可化为(x﹣1)2+y2=4,∴圆心C(1,0),半径r=2,,当截得的弦长最短时,CP⊥l,即P为弦的中点,∴最短弦长为故答案为:.【点睛】本题主要考查直线和圆的位置关系,最短弦长问题,考查数形结合思想,属于基础题.15.在正方形中,点,分别为,的中点,将四边形沿翻折,使得平面平面,则异面直线与所成角的余弦值为__________.【答案】【解析】连接FC,与DE交于O点,取BE中点为N,连接ON,CN,易得ON∥BD,故∠CON就是异面直线与所成角,在等腰三角形CON中,求底角的余弦值即可.【详解】连接FC,与DE交于O点,取BE中点为N,连接ON,CN,易得ON∥BD∴∠CON就是异面直线与所成角设正方形的边长为2,OC=,ON=,CN=∴cos∠CON==故答案为:【点睛】本题主要考查异面直线所成的角问题,难度一般.求异面直线所成角的步骤:1平移,将两条异面直线平移成相交直线.2定角,依据异面直线所成角的定义找出所成角.3求角,在三角形中用余弦定理或正弦定理或三角函数求角.4结论.16.若函数与的图象交点的横坐标之和为2,则的值为__________.【答案】1【解析】依据函数的对称性得出直线过曲线的对称中心,从而得出m的值.【详解】解:∵y=的图象均关于点(1,0)对称,∴函数的图象关于点(1,0)对称,且在上单调递增,∵函数与的图象交点的横坐标之和为2,∴直线y=经过点(1,0),∴m=1.故选:1.【点睛】本题考查了函数对称性的推断与应用,属于中档题.三、解答题17.已知的内角,,的对边分别为,,,且.(1)求角的大小;(2)若,,边的中点为,求的长.【答案】(1)(2)【解析】(1)由及正弦定理得,从而得到角的大小;(2)利用可得,进而利用余弦定理可得,再利用余弦定理可得BD.【详解】(1)由及正弦定理得:,又,所以,因为所以,因为,所以.(2)由余弦定理得,所以,所以,因为,所以,所以.【点睛】本题主要考查了正弦定理,余弦定理的综合应用,解题时留意分析角的范围.对于余弦定理肯定要熟记两种形式:(1);(2).另外,在解与三角形、三角函数有关的问题时,还要记住,,等特殊角的三角函数值,以便在解题中干脆应用.18.如图,在三棱锥中,是边长为2的等边三角形,.(1)求证:;(2)若,,为线段上一点,且,求三棱锥的体积.【答案】(1)详见解析(2)【解析】(1)取中点,连接,,先证明,,可得平面,即可得证;(2)利用等积法即可得到结果.【详解】(1)证明:取中点,连接,,因为,所以,因为为等边三角形,所以,又因为,所以平面,因为平面,所以.(2)因为,所以,又因为,,所以平面,因为为边长为2的等边三角形,所以,因为,所以.【点睛】等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特殊是在求三角形的高和三棱锥的高时,这一方法回避了通过详细作图得到三角形(或三棱锥)的高,而通过干脆计算得到高的数值.19.某企业生产了一种新产品,在推广期邀请了100位客户试用该产品,每人一台.试用一个月之后进行回访,由客户先对产品性能作出“满足”或“不满足”的评价,再让客户确定是否购买该试用产品(不购买则可以免费退货,购买则仅需付成本价).经统计,确定退货的客户人数是总人数的一半,“对性能满足”的客户比“对性能不满足”的客户多10人,“对性能不满足”的客户中恰有选择了退货.(1)请完成下面的列联表,并推断是否有的把握认为“客户购买产品与对产品性能满足之间有关”.对性能满足对性能不满足合计购买产品不购买产品合计(2)企业为了改进产品性能,现从“对性能不满足”的客户中按是否购买产品进行分层抽样,随机抽取6位客户进行座谈.座谈后支配了抽奖环节,共有4张奖券,奖券上分别印有200元、400元、600元和800元字样,抽到奖券可获得相应奖金.6位客户有放回的进行抽取,每人随机抽取一张奖券,求6位客户中购买产品的客户人均所得奖金不少于500元的概率.附:,其中0.1500.1000.0500.0250.0102.072 2.7063.841 5.024 6.635【答案】(1)详见解析(2)详见解析【解析】(1)依据题意填写列联表,由表中数据计算观测值,比照临界值得出结论;(2)利用古典概型概率公式即可得到结果.【详解】(1)设“对性能不满足”的客户中购买产品的人数为,则退货的人数为,由此可列出下表对性能满足对性能不满足合计购买产品50不购买产品50合计100因为,所以;填写列联表如下:对性能满足对性能不满足合计购买产品351550不购买产品203050合计5545100所以.所以,有的把握认为“客户购买产品与对产品性能满足之间有关”.(2)由题意知:参与座谈的购买产品的人数为2,退货的人数为4.“购买产品的客户抽取奖券”的基本领件有:,,,,,,,,,,,,,,,,共有16个基本领件:设事务“购买产品的客户人均所得奖金不少于500元”,则事务包含的基本领件有:,,,,,,,,,,共有10个基本领件:则.所以,购买产品的客户人均所得奖金不少于500元的概率是.【点睛】本题考查了独立性检验和列举法求古典概型的概率问题,是基础题.20.已知椭圆过点,左焦点为.(1)求椭圆的方程;(2)已知直线与椭圆有两个不同的交点,,点,记直线,的斜率分别为,,求的取值范围.【答案】(1)(2)【解析】(1)由题意布列a,b的方程组,解之即可得到椭圆的方程;(2)联立直线与椭圆方程可得,利用韦达定理表示,利用二次函数的性质即可得到结果.【详解】(1)因为左焦点为,所以,因为过点,所以,解之得,,所以椭圆方程为.(2)设,,联立方程,得,由,,,,,所以,因为,所以,所以取值范围为.【点睛】圆锥曲线中最值与范围问题的常见求法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法,若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;③利用基本不等式求出参数的取值范围;④利用函数的值域的求法,确定参数的取值范围.21.已知函数.(1)若曲线在点处切线的斜率为1,求实数的值;(2)当时,恒成立,求实数的取值范围.【答案】(1)(2)【解析】(1)求出,令x=1,即可解出实数的值;(2)时,恒成立转化为求函数最小值大于零即可.【详解】(1),因为,所以;(2),设,设,设,留意到,,(ⅰ)当时,在上恒成立,所以在上恒成立,所以在上是增函数,所以,所以在上恒成立,所以在上是增函数,所以在上恒成立,符合题意;(ⅱ)当时,,,所以,使得,当时,,所以,所以在上是减函数,所以在上是减函数,所以,所以在上是减函数,所以,不符合题意;综上所述:.【点睛】利用导数探讨不等式恒成立或存在型问题,首先要构造函数,利用导数探讨函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分别变量,构造函数,干脆把问题转化为函数的最值问题.22.在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线的参数方程为(为参数),其中,直线与曲线相交于,两点.(1)求曲线的直角坐标方程;(2)若点满足,求的值.【答案】(1)(2)【解析】(1)利用,把极坐标方程化为直角坐标方程;(2)将直线的参数方程(为参数)代入,得:,利用韦达定理表示条件,解方程即可得到结果.【详解】(1)由题意,曲线的极坐标方程可化为:,由得曲线的直角坐标方程为:.(2)将直线的参数方程(为参数)代入,得:,设,对应的参数分别为,,则,,所以,解得或(舍),所以.【点睛】利用直线参数方程中参数的几何意义求解问题经过点P(x0,y0),倾斜角为α的直线l的参数方程为(t为参数).若A,B 为直线l上两点,其对应的参数分别为,线段AB的中点为M,点M所对应的参数为,则以下结论在解题中常常用到:(1) ;(2) ;(3) ;(4) .23.已知函数.(1)当时,求不等式的解集;(2)若对随意的恒成立,求的取值范围.【答案】(1)(2)【解析】(1)当a=2时,分类探讨求得不等式的解集;(2)对随意的恒成马上,数形结合即可得到结果.【详解】(1)当时,,即当时,不等式等价于:,解得,所以;当时,不等式等价于:,解得,所以;当时,不等式等价于:,解得,所以;所以,不等式的解集为.(2)由题意知,当时,,即恒成立,依据函数的图像易知,解得,的取值范围为.【点睛】含肯定值不等式的解法有两个基本方法,一是运用零点分区间探讨,二是利用肯定值的几何意义求解.法一是运用分类探讨思想,法二是运用数形结合思想,将肯定值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的敏捷应用.第 21 页共 21 页。
北京市西城区2023-2024学年高三上学期期末考试 数学含答案
北京市西城区2023—2024学年度第一学期期末试卷高三数学(答案在最后)本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}13A x x =-<<,{}24B x x =≥,则A B = ()A.()1,-+∞B.(]1,2-C.(](),21,-∞--+∞D.(](),21,3-∞-- 2.在复平面内,复数2i i-对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.设a ,b ∈R ,且a b >,则()A.11a b< B.tan tan a b> C.32a b-<- D.a a b b>4.已知双曲线C 的一个焦点是()10,2F ,渐近线为y =,则C 的方程是()A.2213y x -= B.2213x y -= C.2213x y -= D.2213y x -=5.已知点()0,0O ,点P 满足1PO =.若点(),4A t ,其中t ∈R ,则PA 的最小值为()A.5B.4C.3D.26.在ABC △中,60B ∠=︒,b =,2a c -=,则ABC △的面积为()A.2B.4 C.32D.347.已知函数()1ln1xf x x+=-,则()A.()f x 在()1,1-上是减函数,且曲线()y f x =存在对称轴B.()f x 在()1,1-上是减函数,且曲线()y f x =存在对称中心C.()f x 在()1,1-上是增函数,且曲线()y f x =存在对称轴D.()f x 在()1,1-上是增函数,且曲线()y f x =存在对称中心8.设a ,b 是非零向量,则“a b <”是“2a b b ⋅< ”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.设{}n a 是首项为正数,公比为q 的无穷等比数列,其前n 项和为n S .若存在无穷多个正整数k ,使0k S ≤,则q 的取值范围是()A.(),0-∞ B.(],1-∞- C.[)1,0- D.()0,110.如图,水平地面上有一正六边形地块ABCDEF ,设计师规划在正六边形的顶点处矗立六根与地面垂直的柱子,用以固定一块平板式太阳能电池板111111A B C D E F .若其中三根柱子1AA ,1BB ,1CC 的高度依次为12m ,9m ,10m ,则另外三根柱子的高度之和为()A.47mB.48mC.49mD.50m第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.在(4x -的展开式中,2x 的系数为______.(用数字作答)12.设0ω>,函数()sin f x x ω=.若曲线()y f x =关于直线6x π=对称,则ω的一个取值为______.13.已知函数()()222log log 4f x x x =--,则()f x 的定义域是______;()f x 的最小值是______.14.已知抛物线C :28y x =.①则C 的准线方程为______.②设C 的顶点为O ,焦点为F .点P 在C 上,点Q 与点P 关于y 轴对称若OF 平分PFO ∠,则点P 的横坐标为______.15.设a ∈R ,函数()322,,,.x x a f x x a x a ⎧->⎪=⎨-+≤⎪⎩给出下列四个结论:①()f x 在区间()0,+∞上单调递减;②当0a ≥时,()f x 存在最大值;③当0a <时,直线y ax =与曲线()y f x =恰有3个交点;④存在正数a 及点()()11,M x f x (1x a >)和()()22,N x f x (2x a ≤),使1100MN ≤.其中所有正确结论的序号是______.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.(本小题13分)已知函数()22sin cos 2cos f x a x x x =-的一个零点为6π.(Ⅰ)求a 的值及()f x 的最小正周期;(Ⅱ)若()m f x M ≤≤对0,2x π⎡⎤∈⎢⎥⎣⎦恒成立,求m 的最大值和M 的最小值.17.(本小题13分)生活中人们喜爱用跑步软件记录分享自己的运动轨迹.为了解某地中学生和大学生对跑步软件的使用情况,从该地随机抽取了200名中学生和80名大学生,统计他们最喜爱使用的一款跑步软件,结果如下:跑步软件一跑步软件二跑步软件三跑步软件四中学生80604020大学生30202010假设大学生和中学生对跑步软件的喜爱互不影响.(Ⅰ)从该地区的中学生和大学生中各随机抽取1人,用频率估计概率,试估计这2人都最喜爱使用跑步软件一的概率;(Ⅱ)采用分层抽样的方式先从样本中的大学生中随机抽取8人,再从这8人中随机抽取3人.记X 为这3人中最喜爱使用跑步软件二的人数,求X 的分布列和数学期望;(Ⅲ)记样本中的中学生最喜爱使用这四款跑步软件的频率依次为1x ,2x ,3x ,4x ,其方差为21s ;样本中的大学生最喜爱使用这四款跑步软件的频率依次为1y ,2y ,3y ,4y ,其方差为22s ;1x ,2x ,3x ,4x ,1y ,2y ,3y ,4y 的方差为23s .写出21s ,22s ,23s 的大小关系.(结论不要求证明)18.(本小题14分)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,PD ⊥平面ABCD ,平面PAB ⊥平面PAD ,E 为PA 中点,2PD AD ==.(Ⅰ)求证:AB ⊥平面PAD ;(Ⅱ)求直线DE 与平面PBC 所成角的大小;(Ⅲ)求四面体PEBC 的体积.19.(本小题15分)已知椭圆E :22221x y a b+=(0a b >>)的离心率为2,且经过点()2,1C .(Ⅰ)求E 的方程:(Ⅱ)过点()0,1N 的直线交E 于点A ,B (点A ,B 与点C 不重合).设AB 的中点为M ,连接CM 并延长交E 于点D .若M 恰为CD 的中点,求直线AB 的方程.20.(本小题15分)已知函数()e axf x x=,其中0a >.(Ⅰ)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(Ⅱ)求()f x 的单调区间;(Ⅲ)当12x x <且120x x ⋅>时,判断()()12f x f x -与1211x x -的大小,并说明理由.21.(本小题15分)给定正整数3N ≥,已知项数为m 且无重复项的数对序列A :()11,x y ,()22,x y ,…,(),m m x y 满足如下三个性质:①{},1,2,,i i x y N ∈⋅⋅⋅,且i i x y ≠(1,2,,i m =⋅⋅⋅);②1i i x y +=(1,2,,1i m =⋅⋅⋅-);③(),p q 与(),q p 不同时在数对序列A 中.(Ⅰ)当3N =,3m =时,写出所有满足11x =的数对序列A ;(Ⅱ)当6N =时,证明:13m ≤;(Ⅲ)当N 为奇数时,记m 的最大值为()T N ,求()T N .北京市西城区2023—2024学年度第一学期期末试卷高三数学答案及评分参考一、选择题(共10小题,每小题4分,共40分)1.C2.A3.D4.D5.C6.B7.D8.A9.B10.A二、填空题(共5小题,每小题5分,共25分)11.1213.3(答案不唯一)13.()4,+∞14.2x =-215.①②④三、解答题(共6小题,共85分)16.(共13分)解:(Ⅰ)由题设22sincos 2cos 0666a πππ-=,解得a =所以()2cos 2cos f x x x x=-2cos 212sin 216x x x π⎛⎫=--=-- ⎪⎝⎭.所以()f x 的最小正周期为π.(Ⅱ)因为02x π≤≤,所以52666x πππ-≤-≤.所以1sin 2126x π⎛⎫-≤-≤ ⎪⎝⎭,即22sin 2116x π⎛⎫-≤--≤ ⎪⎝⎭.当262x ππ-=,即3x π=时,()f x 取得最大值1,当266x ππ-=-,即0x =时,()f x 取得最小值2-.由题设2m ≤-,且1M ≥.所以m 的最大值是2-;M 的最小值是1.17.(共13分)解:(Ⅰ)记“这2人都最喜爱使用跑步软件一”为事件A ,则()803032008020P A =⨯=.(Ⅱ)因为抽取的8人中最喜爱跑步软件二的人数为208280⨯=,所以X 的所有可能取值为0,1,2.()3638C 50C 14P X ===,()122638C C 151C 28P X ===,()212638C C 32C 28P X ===.所以X 的分布列为X012P5141528328故X 的数学期望515330121428284EX =⨯+⨯+⨯=.(Ⅲ)222231s s s <<.18.(共14分)解:(Ⅰ)因为PD AD =,E 为PA 中点,所以DE PA ⊥.又因为平面PAB ⊥平面PAD ,平面PAB 平面PAD PA =,且DE ⊂平面PAB .所以DE ⊥平面PAB .所以DE AB ⊥.因为PD ⊥平面ABCD ,所以PD AB ⊥.所以AB ⊥平面PAD .(Ⅱ)因为AB ⊥平面PAD ,//AB CD ,所以CD ⊥平面PAD .又PD⊥平面ABCD ,所以DA ,DC ,DP 两两相互垂直.如图建立空间直角坐标系D xyz -,则()0,0,0D ,()2,0,0A ,()2,2,0B ,()0,2,0C ,()0,0,2P ,()1,0,1E .所以()2,0,0CB = ,()0,2,2CP =- ,()1,0,1DE =.设平面PBC 的法向量为(),,m x y z = ,则0,0.m CB m CP ⎧⋅=⎪⎨⋅=⎪⎩即20,220.x y z =⎧⎨-+=⎩令1y =,则1z =.于是()0,1,1m =.设直线DE 与平面PBC 所成角为α,则1sin cos ,2m DE m DE m DE α⋅===⋅ .所以直线DE 与平面PBC 所成角的大小为30°.(Ⅲ)因为()1,0,1EP =-,所以点E 到平面PBC 的距离为22m EP d m⋅==.因为CB CP ⊥,所以四面体PEBC 的体积为11123323PBC V S d CB CP d =⋅=⋅⋅⋅⋅=△.19.(共15分)解:(Ⅰ)由题设,222223,2,411,c a a b c a b ⎧=⎪⎪⎪+=⎨⎪⎪+=⎪⎩解得28a =,22b =.所以椭圆E 的方程为22182x y +=.(Ⅱ)若直线AB 与y 轴重合,则点M 与原点重合,符合题意,此时直线AB 的方程为0x =.若直线AB 与y 轴不重合,设其方程为1y kx =+.由221,48y kx x y =+⎧⎨+=⎩得()2241840k x kx ++-=.设()11,A x y ,()22,B x y ,则122841kx x k -+=+.所以1224241M x x k x k +-==+,21141M M y kx k =+=+.因为M 是CD 的中点,所以282241D M C k x x x k -=-=-+,222141D M C y y y k =-=-+.因为2248D D x y +=,所以222282241804141k k k -⎛⎫⎛⎫-+--= ⎪ ⎪++⎝⎭⎝⎭.整理得340k k +=.解得0k =.但此时直线AB 经过点C ,不符合题意,舍去.综上,直线AB 的方程为0x =.20.(共15分)解:(Ⅰ)当1a =时,()e x f x x =,所以()()21e xx f x x -='.所以()1e f =,()10f '=.所以曲线()y f x =在点()()1,1f 处的切线方程为e 0y -=.(Ⅱ)()f x 的定义域为()(),00,-∞+∞ ,且()()21e ax ax f x x -='.令()0f x '=,得1x a=.()f x '与()f x 的情况如下:x (),0-∞10,a ⎛⎫ ⎪⎝⎭1a1,a ⎛⎫+∞ ⎪⎝⎭()f x '--+()f x所以()f x 的单调递增区间为1,a ⎛⎫+∞⎪⎝⎭;单调递减区间为(),0-∞和10,a ⎛⎫⎪⎝⎭.(Ⅲ)当12x x <且120x x ⋅>时,()()121211f x f x x x -<-,证明如下:令()()1g x f x x=-,则()()211ax ax e g x x -+='.设()()1e 1axh x ax =-+,则()2e axh x a x ='.所以当(),0x ∈-∞时,()0h x '<;当()0,x ∈+∞时,()0h x '>.所以()h x 在(),0-∞上单调递减,在()0,+∞上单调递增.从而()()00h x h >=,即()0g x '>.所以()g x 的单调递增区间为(),0-∞和()0,+∞.当120x x <<时,()()12g x g x <,即()()121211f x f x x x -<-;当120x x <<时,()()12g x g x <,即()()121211f x f x x x -<-.综上,当12x x <且120x x ⋅>时,()()121211f x f x x x -<-.21.(共15分)解:(Ⅰ)A :()1,2,()2,3,()3,1,或A :()1,3,()3,2,()2,1.(Ⅱ)因为(),p q 和(),q p 不同时出现在A 中,故2615m C ≤=,所以1,2,3,4,5,6每个数至多出现5次.又因为1i i x y +=(1,2,,1i m =⋅⋅⋅-),所以只有1x ,m y 对应的数可以出现5次,故()14425132m ≤⨯⨯+⨯=.(Ⅲ)当N 为奇数时,先证明()()221T N T N N +=++.因为(),p q 和(),q p 不同时出现在A 中,所以()()21C 12N T N N N ≤=-.当3N =时,构造A :()1,2,()2,3,()3,1恰有23C 项,且首项的第1个分量与末项的第2个分量都为1.对奇数N ,如果可以构造一个恰有2C N 项的序列A ,且首项的第1个分量与末项的第2个分量都为1,那么对奇数2N +而言,可按如下方式构造满足条件的序列A ':首先,对于如下21N +个数对集合:()(){}1,1,1,1N N ++,()(){}1,2,2,1N N ++,()(){}2,1,1,2N N ++,()(){}2,2,2,2N N ++,……,()(){},1,1,N N N N ++,()(){},2,2,N N N N ++,()(){}1,2,2,1N N N N ++++每个集合中都至多有一个数对出现在序列A '中,所以()()221T N T N N +≤++.其次,对每个不大于N 的偶数{}2,4,,1i N ∈⋅⋅⋅-,将如下4个数对并为一组:()1,N i +,(),2i N +,()2,1N i ++,()1,1i N ++,共得到12N -组,将这12N -组数对以及()1,1N +,()1,2N N ++,()2,1N +按如下方式补充到A 的后面,即:A ,()1,1N +,()1,2N +,()2,2N +,()2,3N +,()3,1N +,…,()1,1N N +-,()1,2N N -+,()2,N N +,(),1N N +,()1,2N N ++,()2,1N +.此时恰有()21T N N ++项,所以()()221T N T N N +=++.综上,当N 为奇数时,()()()()()()()()()()()224533T N T N T N T N T N T T T =--+---+⋅⋅⋅+-+。
安徽省合肥市2023-2024学年高三上学期期末考试 数学含解析
合肥2024届高三上学期期末质量检测卷数学(答案在最后)考生注意:1.本试卷分选择题和非选择题两部分。
满分150分,考试时间120分钟。
2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚。
3.考生作答时,请将答案答在答题卡上。
选择题每小题选出答案后﹐用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。
4.本卷命题范围:高考范围。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若复数3i2ia +-的实部与虚部相等,则实数a 的值为A .1B .3C .1-D .3-2.已知集合{}1,2,3A =,{}2B x a x a=<<,若A B ⊆,则实数a 的取值范围是A .(,-∞B .(,-∞C .()D .(),-∞+∞3.如图为2021~2022年中国十大行业人工智能应用渗透率,则下列说法错误的是A .2021年与2022年人工智能应用渗透率最低的行业都是教育B .与2021年相比,2022年人工智能应用渗透率增长最快的是金融行业C .2021年十大行业人工智能应用渗透率的极差为56%D .2022年十大行业人工智能应用渗透率的中位数是42.5%4.求值:sin 202sin80cos202sin10︒︒︒-=︒A .3B .2C .1D .25.已知抛物线1C :24y x =与抛物线2C :24x y =,则A .过1C 与2C 焦点的直线方程为4x y +=B .1C 与2C 只有1个公共点C .与x 轴平行的直线与1C 及2C 最多有3个交点D .不存在直线与1C 和2C 都相切6.若将()ln ln ln y x y x =+-确定的两个变量y 与x 之间的关系看成()y f x =,则函数()y f x =的图象大致为A .B .C .D .7.中国古建筑的屋檐下常系挂风铃,风吹铃动,悦耳清脆,亦称惊鸟铃.若一个惊鸟铃由铜铸造而成,且可近似看作由一个较大的圆锥挖去一个较小的圆锥,两圆锥的轴在同一条直线上,截面图如下,其中1320cm O O =,122cm O O =,16cm AB =,若不考虑铃舌,则下列数据比较接近该惊鸟铃质量的是(参考数据:3π≈,铜的密度为8.963g /cm )A .1kgB .2kgC .3kgD .0.5kg8.若数列{}n a 满足:当222222k k k k n -++≤≤时,221k n a k ⎛⎫=+ ⎪⎝⎭(*k N ∈),则数列{}n a 的前28项和为A .2048B .2046C .4608D .4606二、选择题:本题共3小题,每小题6分,共18分。
最新高三数学上学期期末考试试卷含答案
一、选择题:(每小题5分,共60分) 1.已知条件p :2|1|>+x ,条件q :131>-x,则p 是q 的( ) A .充分不必要条件B .必要不充分条件 C .充要条件D . 既不充分也不必要条件2.下列函数图象,经过平移或翻折后不能与函数x y 2log =的图象重合的函数是( )A.xy 2= B.x y 5.0log = C.24xy =D.11log 2+=xy3.若把函数)(x f 的图像按)2,3(--=π平移后得到x y cos =的图像,则)(x f 解析式为( )A.2)3cos(--=πx y B.2)3cos(+-=πx yC.2)3cos(-+=πx y D.2)3cos(++=πx y4.已知{n a }是等差数列,115a =,555S =,则过点2(3,)p a ,4(4,)Q a 的直线的斜率为( )A .4B .14 C .-4D .-145.若2,2,22,x y x y x y ≤⎧⎪≤+⎨⎪+≥⎩则的取值范围是( )A .[2,5]B .[2,6]C .[3,6]D .[3,5]6.已知向量)sin 2,cos 2(θθ=a ,)1,0(),,2(-=∈b ππθ,则向量与的夹角为( )A .θπ-23B .θπ+2C .2πθ- D .θ7.在△ABC 中,,,a b c 分别为,,A B C ∠∠∠的对边。
如果,,a b c 成等差数列30,B ∠=且△ABC 的面积为23,那么b =( )A .231+B .31+C .232+ D .32+8.51cos sin ,0=+<<ααπα,则ααtan 1tan 1+-的值为( )A.71B.7C.71- D.-79.已知等比数列}{n a 中,12=a ,则其前3项的和3S 的取值范围是( )A.]1,(--∞B.)0,(-∞∪),1(∞+C.),3[∞+D.]1,(--∞∪),3[∞+ 10.双曲线9322=-x y 的渐近线方程是( )A .y =±3xB .y =±31x C .y =±3x D .y =±33x11.已知互不相等的正数a 、b 、c 满足222a c bc +=,则下列不等式中可能..成立的是( ) A .a>b>c B .b>a>c C .b>c>aD .c>a>b12.已知函数x x f x 2log )31()(-=,正实数a 、b 、c 成公差为正数的等差数列,且满足f (a ) f (b )f (c)<0, 若实数d 是方程f (x )=0的一个解,那么下列四个判断:① d<a ;②d>b ; ③d<c ; ④d>c 中有可能...成立的为( ) A .①③④ B .②③ C .①④ D .①②③二、填空题:(每小题5分,共20分) 13.奇函数)(x f 的反函数是)(1x f-,若aa f -=)(,则)()(1a fa f -+-=___________.14.已知⎩⎨⎧≤<+-<≤---=10 ,101 ,1)(x x x x x f ,则使1)()(->--x f x f 成立的x 的取值范围是.15.椭圆221x my +=的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为____________.16.已知ABC ∆的顶点B )0,3(-、C ()3,0,E 、F 分别为AB 、AC 的中点,AB 和AC 边上的中线交于G ,且5|GF |+|GE |=,则点G 的轨迹方程为三、解答题:(共70分)17.(本小题满分10分)求函数)62sin(sin 22π++=x x y 的最小正周期和最小值,并求出该函数在],0[π上的单调递减区间。
2023-2024学年上海市宝山区上海交大附中高三上学期期末考试数学试卷含详解
上海交通大学附属中学2023-2024学年度第一学期高三数学期末测试卷一、填空题(本大题共12题,满分54分)只要求直接填写结果,第1~6题每个空格填对得4分,第7~12题每个空格填对得5分,否则一律得零分.1.抛物线24y x =的焦点坐标是______.2.设集合{}02A x x =≤≤,集合{}2430B x x x =-+≥,则A B = __________.3.方程()()233log 45log 1x x x --=+的解是x =________.4.设i 是虚数单位,则复数()2i 1i z =-的虚部是________.5.函数tan 4⎛⎫=- ⎪⎝⎭y x πω的最小正周期为4,则ω=____________.6.已知随机变量X 的分布为2130.160.440.40-⎛⎫ ⎪⎝⎭,则()25E X +=__________.7.已知空间向量()()()1,2,4,5,1,3,,,1PA PB PC m n ==-=-.若,,,P A B C四点共面,则1017m n +=__________.8.已知直线:1l y x =-与x 轴的交点为F ,直线l 上的动点P 满足:点P 到直线=1x -的距离d PF≥恒成立,则动点P 所对应轨迹的长度为__________.9.在某次比赛中运动员五轮的成绩互不相等,记为()12345i x i =,,,,,平均数为x ,若随机删去其中一轮的成绩,得到一组新数据,记为()1234i y i =,,,,平均数为y ,下面说法正确的是__________.(写出所有正确选项)①新数据的极差可能等于原数据的极差.②新数据的中位数可能等于原数据的中位数.③若x y =,则新数据的方差一定大于原数据方差.④若x y =,则新数据的第40百分位数一定大于原数据的第40百分位数.10.已知正项数列{}n a 的前n 项和n S 满足()210n n n S S n ++-=(n 为正整数).记()1()||nn i i f x a x i ==⋅-∑,若函数()2024y f x kx=+的值域为R ,则实数k 的取值范围是__________.11.函数()e xf x ax b =++在区间[]1,3上存在零点,则22a b +的最小值为_________.12.若对于任意自然数n ,函数πcos 3y x ω⎛⎫=+ ⎪⎝⎭在每个闭区间[]21,21n n -+上均有两个零点,则正实数ω的最小值是__________.二、选择题(本大题共有4题,第13-14题每题4分,第15-16题每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.ABC 中,“A B >”是“sin sin A B >”的()A.充分不必要条件B.必要不充分条件C .充要条件D.既不充分也不必要条件14.如图,三棱柱111 ABC A B C -中,底面三角形111A B C 是正三角形,E 是BC 的中点,则下列叙述正确的是()A.直线1CC 与直线1B E 是异面直线B.直线1CC 与直线AE 是共面直线C.直线AE 与直线11B C 是异面直线D.直线AE 与直线1BB 是共面直线15.甲箱中有5个红球,2个白球和3个黑球;乙箱中有4个红球,3个白球和3个黑球.先从甲箱中随机取出一球放入乙箱中,分别以1A 、2A 、3A 表示由甲箱中取出的是红球、白球和黑球的事件;再从乙箱中随机取出一球,以B 表示由乙箱中取出的球是红球的事件,则下列结论错误的是()A.()25P B =B.()1511P B A =C.事件B 与事件1A 不相互独立D.1A 、2A 、3A 两两互斥16.考虑这样的等腰三角形:它的三个顶点都在椭圆222:1(1)x C y a a+=>上,且其中恰有两个顶点为椭圆C 的顶点.关于这样的等腰三角形有多少个,有两个命题:命题①:满足条件的三角形至少有12个.命题②:满足条件的三角形最多有20个.关于这两个命题的真假有如下判断,正确的是()A.命题①正确;命题②错误.B.命题①错误;命题②正确.C.命题①,②均正确.D.命题①,②均错误.三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.已知等差数列{}n a 的前n 项和为n S ,公差0d ≠,2a 是15,a a 的等比中项,525S =.(1)求{}n a 的通项公式;(2)若数列{}n b 满足1n n n b b S ++=,求220b b -.18.有一矩形硬纸板材料(厚度忽略不计),一边AB 长为6分米,另一边足够长.现从中截取矩形ABCD (如图甲所示),其中OEMF 是以O 为圆心,120EOF ∠= 的扇形,且弧 EF GH,分别与边BC AD ,相切于点M N ,.剪去图中的阴影部分,剩下的部分恰好能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计).(1)当BE 长为1分米时,求折卷成的包装盒的容积;(2)当BE 的长是多少分米时,折卷成的包装盒的容积最大?19.已知椭圆()2222:10x y a b a b Γ+=>>,右焦点为F ,动直线l 与圆222:O x y b +=相切于点Q ,与椭圆交于()11,A x y 、()22,B x y 两点,其中点Q 在y 轴右侧.(1)若直线:20l x y --=过点F ,求椭圆方程;(2)求证:AF AQ +为定值.20.如图,正四棱柱1111ABCD A B C D -的底面边长为1,高为2,点M 是棱1CC 上一个动点(点M 与C ,1C 均不重合).(1)当点M 是棱1CC 的中点时,求证:直线AM ⊥平面11B MD ;(2)当11D M AB ⊥时,求点1D 到平面1AMB 的距离;(3)当平面1AB M 将正四棱柱1111ABCD A B C D -分割成体积之比为1:2的两个部分时,求线段MC 的长度.21.已知数列{}n a 满足111,()n n a a f a +==.(1)若π()sin()2f x x A x =+,求最小正数A 的值,使数列{}n a 为等差数列;(2)若()ln 2f x x x =++,求证:21nn a ≤-;(3)对于(2)中的数列{}n a ,求证:22223444[1][1][1]e (1)(1)(1)n a a a +⋅+⋅⋅+<+++上海交通大学附属中学2023-2024学年度第一学期高三数学期末测试卷一、填空题(本大题共12题,满分54分)只要求直接填写结果,第1~6题每个空格填对得4分,第7~12题每个空格填对得5分,否则一律得零分.1.抛物线24y x =的焦点坐标是______.【答案】()1,0【分析】根据抛物线的标准方程直接求出焦点坐标即可.【详解】因为抛物线标准方程为24y x =,所以焦点坐标为()1,0,故答案为:()1,0.2.设集合{}02A x x =≤≤,集合{}2430B x x x =-+≥,则A B = __________.【答案】{}01x x ≤≤【分析】先求出集合B ,再根据交集的定义即可得解.【详解】{}{24303B x x x x x =-+≥=≥或}1x ≤,所以{}01A B x x ⋂=≤≤.故答案为:{}01x x ≤≤.3.方程()()233log 45log 1x x x --=+的解是x =________.【答案】6【分析】根据对数真数大于零和对数函数的单调性可直接构造不等式组求得结果.【详解】由()()233log 45log 1x x x --=+得:2245010451x x x x x x ⎧-->⎪+>⎨⎪--=+⎩,即()()()()2150156160x x x x x x x ⎧+->⎪>-⎨⎪--=+-=⎩,解得:6x =.故答案为:6.4.设i 是虚数单位,则复数()2i 1i z =-的虚部是________.【答案】2【分析】根据复数的乘法运算即可得复数z ,即可得z 的虚部.【详解】解:复数()22i 1i 2i 2i 22i z =-=-=+,所以复数z 的虚部为2.故答案为:2.5.函数tan 4⎛⎫=- ⎪⎝⎭y x πω的最小正周期为4,则ω=____________.【答案】4π±【分析】直接根据三角函数周期公式计算得到答案.【详解】tan 4⎛⎫=- ⎪⎝⎭y x πω,故4T πω==,故4πω=±.故答案为:4π±.【点睛】本题考查了正切函数周期,属于简单题.6.已知随机变量X 的分布为2130.160.440.40-⎛⎫ ⎪⎝⎭,则()25E X +=__________.【答案】7.64【分析】根据期望的计算公式以及性质即可求解.【详解】由题意可得()20.160.4430.4 1.32E X =-⨯++⨯=,所以()()25257.64E X E X +=+=,故答案为:7.647.已知空间向量()()()1,2,4,5,1,3,,,1PA PB PC m n ==-=-.若,,,P A B C 四点共面,则1017m n +=__________.【答案】11-【分析】根基空间向量共面定理结合空间向量坐标表示的线性运算即可得解.【详解】因为,,,P A B C 四点共面,所以,,PA PB PC共面,所以存在唯一实数对(),x y ,使得PC xPA yPB =+,即52143m x yn x y x y=+⎧⎪=-⎨⎪-=+⎩,所以1251417n y m y +=-⎧⎨+=⎩,所以()()17125140n m +++=,所以101711m n +=-.故答案为:11-.8.已知直线:1l y x =-与x 轴的交点为F ,直线l 上的动点P 满足:点P 到直线=1x -的距离d PF ≥恒成立,则动点P 所对应轨迹的长度为__________.【答案】8【分析】设(),1P x x -,根据d PF ≥,求出x 的范围,再根据两点间的距离公式即可得解.【详解】因为直线:1l y x =-与x 轴的交点为F ,所以()1,0F 由题意,设(),1P x x -,由d PF ≥,得1x +≥,即2610x x -+≤,解得33x -≤≤+,所以动点P 所对应轨迹为1,3y x x ⎡=-∈-+⎣,8=.故答案为:8.9.在某次比赛中运动员五轮的成绩互不相等,记为()12345i x i =,,,,,平均数为x ,若随机删去其中一轮的成绩,得到一组新数据,记为()1234i y i =,,,,平均数为y ,下面说法正确的是__________.(写出所有正确选项)①新数据的极差可能等于原数据的极差.②新数据的中位数可能等于原数据的中位数.③若x y =,则新数据的方差一定大于原数据方差.④若x y =,则新数据的第40百分位数一定大于原数据的第40百分位数.【答案】①②③【分析】根据极差、中位数、平均数和方差的概念,以及百分位数的概念及计算方法,逐项判定,即可求解.【详解】对于①,若随机删去任一轮的成绩,恰好不是最高成绩和最低成绩,此时新数据的极差可能等于原数据的极差,所以①正确;对于②,不妨假设12345x x x x x <<<<,当()24312x x x +=时,若随机删去的成绩是3x ,此时新数据的中位数等于原数据的中位数,所以②正确;对于③,若x y =,即删去的数据恰为平均数,根据方差的计算公式,分子不变,分母变小,所以方差会变大,所以③正确;对于④,若x y =,即删去的数据恰为平均数,在按从小到大的顺序排列的5个数据中,因为540%2⨯=,此时原数据的40%分位数为第二数和第三个数的平均数;删去一个数据后的4个数据,从小到大的顺序排列,可得440% 1.6⨯=,此时新数据的40%分位数为第二个数,显然新数据的40%分位数小于原数据的40%分位数,所以④错误.故答案为:①②③.10.已知正项数列{}n a 的前n 项和n S 满足()210nn n S S n ++-=(n 为正整数).记()1()||nn ii f x a x i ==⋅-∑,若函数()2024y f x kx =+的值域为R ,则实数k 的取值范围是__________.【答案】20242024,,20252025⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭【分析】利用1n n n a S S -=-求出数列的通项公式111n a n n =-+,由裂项相消求和法计算可得2024120242025i i a ==∑.设函数()()202420241()i i g x f x kx a x i kx ==+=⋅-+∑,将函数()g x 写出分段函数,根据函数的值域为R 和极限的思想可得当0k >时202410i i k a =±>∑、当0k<时202410i i k a =±<∑,解不等式即可求解.【详解】因为()210n n n S S n ++-=,所以()()1+10n n n S n S ⎡⎤+-=⎣⎦,又因为{}n a 是正项数列,所以()10n n S n +-=,即1n nS n =+,当1n =得1111112a S ==+=,当2n ≥得1111(1)n n n n n a S S n n n n --=-=-=++,经检验1n =符合上式,所以111(1)1n a n n n n ==-++.所以202411111120241223202420252025i i a ==-+-++-=∑ .设函数()()202420241()ii g x f x kx a x i kx ==+=⋅-+∑,当(,1]x ∈-∞时,1232024()1232024g x a x a x a x a x kx=-+-+-++-+ 20242024123202412202411(232024)()()()ii i ia a a a a a a k x k a x ia ===++++-+++-=-+∑∑ ;同理可得,当(1,2]x ∈时,1()1g x k x =+,当(2,3]x ∈时,2()2g x k x =+,当(2023,2024]x ∈时,2023()2023g x k x =+,当(2024,)x ∈+∞时,2024202411()()()i i i i g x k a x ia ===+-∑∑,即20242024111220232024202411()(),(,1]1,(1,2]2,(2,3]()2023,(2023,2024]()(),(2024,)i i i i i i i i k a x ia x k x x k x x g x k x x k a x ia x ∞∞====⎧-+∈-⎪⎪⎪+∈⎪+∈⎪=⎨⎪⎪+∈⎪⎪+-∈+⎪⎩∑∑∑∑ ,其中()1,2,,2023j k j ∈=R ,由函数()g x 的值域为R 知,当0k >时,lim (),lim ()x x g x g x →-∞→+∞=-∞=+∞,所以202410i i k a =±>∑,即020242025k ±>,解得20242025k >;当0k <时,lim (),lim ()x x g x g x →-∞→+∞=+∞=-∞,所以202410i i k a =±<∑,即020242025k ±<,解得20242025k <-,综上,实数k 的取值范围为20242024(,)(,)20252025-∞-+∞ .故答案为:20242024(,)()20252025-∞-+∞ 【点睛】关键点睛:本题的难点是将函数()()202420241()ii g x f x kx a x i kx ==+=⋅-+∑转化为分段函数,利用函数的值域确定关于k 的不等式即可求解,其中涉及到极限思想以及数列的求通项公式和求和知识点,平时练习都要熟练应用.11.函数()e x f x ax b =++在区间[]1,3上存在零点,则22a b +的最小值为_________.【答案】2e 2##21e2【分析】设t 为()f x 在[]1,3上的零点,可得e 0t at b ++=,转化为点(),a b 在直线()1e 0tt x y -++=上,根据22a b +的几何意义,可得()2222e 11ta b t +≥-+有解,利用导数求得函数的单调性和最值,即可得答案.【详解】设t 为()f x 在[]1,3上的零点,可得e 0t at b ++=,所以e 0t ta b ++=,即点(),a b 在直线e 0t tx y ++=,又22a b +表示点(),a b 到原点距离的平方,≥2222e1ta bt+≥+有解,令()22e1tg tt=+,可得()()()()()2222222222e12e2e111t t tt t t tg tt t+-=-+'==++,因为2e0t>,210t t-+>,所以()0g t'>恒成立,可得()g t在[]1,3上为单调递增函数,所以当1t=时,()()2mine12g t g==,所以222e2a b+≥,即22a b+的最小值为2e2.故答案为:2e2.12.若对于任意自然数n,函数πcos3y xω⎛⎫=+⎪⎝⎭在每个闭区间[]21,21n n-+上均有两个零点,则正实数ω的最小值是__________.【答案】5π6【分析】根据整体法可得零点满足()16π,Z6kx kω+=∈,即可利用0n=时,[][]21,211,1n n-+=-,求解符合条件的,ω结合周期性验证所求,ω满足其他区间即可.【详解】令πππ,Z32x k kω+=+∈,则ππ,Z6x k kω=+∈,函数的零点()16π,Z6kx kω+=∈ω>,当0n=时,[][]21,211,1n n-+=-,此时符合条件的两个零点为故5ππ,66x xωω=-=,故5π16ω-≥-,解得5π6ω≤,当5π6ω=时,5ππcos63y x⎛⎫=+⎪⎝⎭的零点为()16,Z5kx k+=∈,因此零点为11171319,,1,,,,,5,55555--,结合三角函数的周期性可知:满足每个闭区间[][][]1,1,1,3,3,5,- 上恰好有两个零点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.选择题:每题5分,共60分
1.已知集合{}2,1,0,1,2--=A ,()(){}021|<+-=x x x B ,则=B A ( )
A .{}0,1-
B .{}1,0
C .{}1,0,1-
D .{}2,1,0 2.若a 为实数,且()()i i a ai 422-=-+,则=a ( ) A .1-B .0C .1D .2
3.已知命题p :对任意R x ∈,总有02>x ;q :“1>x ”是“2>x ”的充分不必要条件.则下列命题为真命题的是( )
A .q p ∧
B .q p ⌝∧⌝
C .q p ∧⌝
D .q p ⌝∧
4.等比数列{}n a 满足31=a ,21531=++a a a ,则=++753a a a ( )
A .21
B .42
C .63
D .84
5.设函数()()⎩⎨⎧≥<-+=-1
,21,2log 112x x x x f x ,则()()=
+-12log 22f f ( )
A .3
B .6
C .9
D .12
6.某几何体的三视图(单位:cm )若图所示,则该几何体的体积是( )
A .372cm
B .390cm
C .3108cm
D .3138cm 7.若圆1C :122=+y x 与圆2C :08622=+--+m y x y x 外切,则=m ( )
A .21
B .19
C .9
D .11-
8.执行如图所示的程序框图,如果输入3=n ,则输出的=S ( )
A .76
B .
73C .98 D .9
4
9.已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A .
332πB .π4C .π2D .3
4π
10.在同一直角坐标系中,函数()()0≥=x x x f a ,()x x g a log =的图像可能是( )
11.已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,ABM ∆为等腰三角形,且顶角为 120,则E 的离心率为( )A .5B .2 C .3D .2
12.设函数()x f '是奇函数()x f ()R x ∈的导函数,()01=-f ,当0>x 时,()()0<-'x f x f x ,则使得()0>x f 成立的x 的取值范围是( )
A .
()()1,01, -∞-B .()()+∞-,10,1 C .()()0,11,--∞- D .()()+∞,11,0 第II 卷
本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选做题,考生根据要求做答.
二.填空题:每题5分,共20分
13.设向量a
,b 不平行,向量b a +λ与b a 2+平行,则实数=λ.
14.若x ,y 满足约束条件⎪⎩
⎪
⎨⎧≤-+≤-≥+-022020
1y x y x y x ,则y x z +=的最大值为.
15.(理)在6
212⎪⎭⎫
⎝
⎛+x x 的展开式中,常数项等于.
(结果用数值表示)
(文)已知函数()x ax x f 23-=的图象过点()4,1-,则=a . 16.设n S 是数列{}n a 的前n 项和,且11-=a ,11++=n n n S S a ,则=n S . 三.解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)在ABC ∆中,已知2=AB ,3=AC , 60=A . (1)求BC 的长;(2)求C 2sin 的值.
18.(本小题满分12分)(理)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.
(1)从盒中一次随机抽出2个球,求取出的2个球的颜色相同的概率;
(2)从盒中一次随机抽出4个球,其中红球、黄球、绿球的个数分别为1x ,2x ,3x ,随机变量X 表示1x ,2x ,3x 的最大数,求X 的概率分布和数学期望EX .
(文)海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示,工作人员用分层抽样的方法从这些商品中共抽取6件进行检测.
(1)求这6件样品中来自A ,B ,C 各地区商品的数量; (2)若在这6件样品中随机抽取2件送往甲机构进一步检测,求这2件商品来自相同地区的概率.
19.(本小题满分12分)(理)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,4==PC PD ,6=AB ,3=BC .点E 是
CD 的中点,点F ,G 分别在线段AB ,BC 上,且FB AF 2=,GB CG 2=.
(1)证明:FG PE ⊥;
(2)求二面角C AD P --的正切值; (3)求直线PA 与直线FG 所成角的余弦值.
(文)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,4==PC PD ,6=AB ,3=BC .
(1)证明:BC ∥平面PDA ; (2)证明:PD BC ⊥;
(3)求点C 到平面PDA 的距离.
20.(本小题满分12分)设1F ,2F 分别是椭圆E :
122
22=+b
y a x ()0>>b a 的左、右焦点,过点1F 的直线交椭圆E 于A ,B 两点,113BF AF =.
(1)若4=AB ,2ABF ∆的周长为16,求2AF ; (2)若5
3
cos 2=∠B AF ,求椭圆E 的离心率.
21.(本小题满分12分)已知函数()()x a x x f -+=1ln . (1)讨论()x f 的单调性;
(2)若()x f 有最大值,且最大值大于22-a 时,求a 的取值范围.
四.选考题:请考生在22,23,24题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号
22.(本小题满分10分)选修4—1:几何证明选讲 如图,O 为等腰三角形ABC 内一点,
圆O 与ABC ∆的底边BC 交
于M ,N 两点,与底边上的高AD 交于点G ,且与AB ,AC 分别相切于E ,F 两点.
(1)证明:EF ∥BC ;
(2)若AG 等于圆O 的半径,且32==MN AE ,求四边形EBCF 的面积.
23.(本小题满分10分)选修4—4:坐标系与参数方程 在直角坐标系xOy 中,曲线1C :⎩⎨
⎧==α
α
sin cos t y t x (t 为参数,0≠t ),其
中πα<≤0.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2C :
θρsin 2=,3C :θρcos 32=.
(1)求2C 与3C 交点的直角坐标;
(2)若1C 与2C 相交于点A ,1C 与3C 相交于点B ,求AB 的最大值.
24.(本小题满分10分)选修4—5:不等式选讲 设函数()a x x x f ++-=212,()3+=x x g . (1)当2-=a 时,求不等式()()x g x f <的解集;
(2)设1->a ,且当⎪⎭
⎫⎢
⎣⎡-∈21,2a x 时,()()x g x f ≤,求a 的取值范围.
高三数学综合测试一
参考答案
13.
2;14.
2
;15.240(2-);16.
n
-;
17.(1)7;(2)
73
4;
(2)22==DC BD ,利用余弦定理求得1=AC ;
18.(理)(1)
18
5;(2)X 的可能取值为2,3,4,相应概率为,1411,6313,126
1,920=EX ; (文)(1)1,3,2;(2)15
4
;
19.(理)(1)略;(2)3
7
;(3)2559;(文)(1)略;(2)略;
(3)
2
7
3; 20.(1)5;(2)
2
2
; 21.(1)0≤a 时,()x f 在()+∞,0上单调递增,当0>a 时,增区间:
⎪⎭⎫ ⎝⎛a 1,0,减区间:⎪⎭
⎫
⎝⎛+∞,1a ;
(2)()1,0; 22.(1)AF AE =,AC AB =,
EF AC
AF
AB AE ⇒=∥BC ; (2)连OE ,R OA 2=,R OE = 30=∠⇒BAD ,从而2=R ,2=EM ,
33
16331032221=⎪⎪⎭
⎫ ⎝⎛+⨯=EBCF
S 梯形; 23.(1)()0,0,⎪
⎪⎭
⎫
⎝⎛23,23;(2)4max =AB ; 24.(1)()2,0;(2)⎥⎦
⎤ ⎝
⎛-∈34,1a ;。