实验报告3—— SAS描述统计分析

合集下载

SAS软件实验二单描述统计分析

SAS软件实验二单描述统计分析
验中 p= 0.4754>0.05 知不拒绝原假设,认为差量 diff 服从正态分布; 进而由 t 检验中 p= 0.189365>0.05 知接受原假设,认为差量均值显著为 0, 这说明: 两种不同饲料喂养的情况下,幼鼠体内钙留存量不具有显著性差异。
思考练习
data shiyan2; input x1 x2; diff=x1-x2; cards; 33 23.3 35.8 28.8 31.4 42.6 25.8 31.6 29 22.4 30.2 ; proc univariate data=shiyan2 normal ; var diff; run; 21.7 19.4 26.8 32 23.1 25.3 23.7 21.8 17.6
饲料 1 33.1 饲料 2 36.7 实验要求:
(1) 用 SAS 的 Viewtable 窗口将表中数据建立 SAS 数据集; (2) 用 Univeriate 过程分别检验两种不同饲料喂养的情况下, 幼鼠体内钙留存量的正态 性; (3) 用 Means 过程检验两种不同饲料喂养的情况下,幼鼠体内钙留存量是否具有显著 性差异。 (显著性水平 =0.05)
结果分析:
由 Shapiro-Wilk 检验中 p= 0.8944>0.05 知不拒绝原假设,认为差量 diff 服从正态分布; 进而由 t 检验中 p= 0.0004<0.05 知拒绝原假设,认为差量均值显著不为 0, 这说明: 服药前后该新药对 Baci 含量有显著影响。
五,实验结果分析或总结
通过这次实验,我学会了用 SAS 统计分析软件进行简单描述统计分析;学会了做正态性检 验。
思考练习
从 10 例腹泻病患者服用某种新药前和后 1 天的粪便中测得大肠杆菌(Baci)的数据如下, 试分析服药前后该新药对 Baci 含量有无显著影响。 病人编号 1 2 3 4 5 6

SAS数据的描述性统计分析答案

SAS数据的描述性统计分析答案

实验一数据的描述性统计分析一、选择题1、以下( B )语句对变量进行分组,在使用前需按分组变量进行排序?以下( C )语句可对变量进行分类,在使用前不必按分类变量进行排序?用( A )语句可以选择输入数据集的一个行子集来进行分析?(A)WHERE语句(B)BY语句(C)CLASS语句(D)FREQ语句2、排序过程步中必须用什么语句对变量进行排序?( A )(A)BY语句(B)CLASS语句(C)WHERE语句3、如果要对数据集中的数据进行正态性检验,需要使用哪个过程?( B )(A)MEANS (B)UNIV ARIATE (C)FREQ4、用UNIV ARIATE过程进行数据分析,要求此过程输出茎叶图、正态概率图等,应在语句中加上什么选项?(plot )5、用UNIV ARIATE过程进行数据分析,在输出结果中哪个统计量是对样本均值为零的T检验的概率值?( A )(A)T: Mean (B)Prob>|S| (C)Sgn Rank (D)Prob>|T|二、假设某校100名女生的血清总蛋白含量(g/L)服从均值为75,标准差为3的正态分布,试产生样本数据,并利用SAS软件解决下面问题:1、计算样本均值、方差、标准差、极差、四分位极差、变异系数、偏度、峰度;2、画出直方图(垂直条形图);3、画出茎叶图、盒形图和正态概率图;4、试进行正态性检验。

Data N;DO i=1to100;x=75+3*normal(12345);output;end;proc print;run;proc univariate data=N;var x;run;proc gchart data=N;block x;run;proc univariate data=N plot;var x;run;proc univariate data=N normal;var x;run;三、某校测得20名学生的四项指标:性别、年龄、身高(CM)和体重(KG),具体数据如表1所示。

多元统计分析实验报告,计算协方差矩阵,相关矩阵,SAS

多元统计分析实验报告,计算协方差矩阵,相关矩阵,SAS

院系:数学与统计学学院专业:__统计学年级:2009 级课程名称:统计分析 ____学号:____________姓名:_________________指导教师:____________2012年4月28日(一)实验名称1. 编程计算样本协方差矩阵和相关系数矩阵;2. 多元方差分析MANOVA。

(二)实验目的1. 学习编制sas程序计算样本协方差矩阵和相关系数矩阵;2. 对数据进行多元方差分析。

(三)实验数据第一题:第二题:(四)实验内容1. 打开SAS软件并导入数据;2. 编制程序计算样本协方差矩阵和相关系数矩阵;3. 编制sas程序对数据进行多元方差分析;4. 根据实验结果解决问题,并撰写实验报告;(五)实验体会(结论、评价与建议等)第一题:程序如下:proc corr data=sasuser.sha n cov;proc corr data=sasuser.sha n no simple cov;with x3 x4;partial x1 x2;run;结果如下:(1)协方差矩阵$AS亲坯曲;15 Friday, Apr: I SB,沙DOCOUR过程x4目由度=30Xi x2x3x4x5X?-10.I9B4944-0.45E2GJ5I.3347097-G.1193E48-£0.e75»GS-ID. 188494669,36&Q3?9-7.22IO&OS1J5692043I5.49ee^91S.Oa97SM-8.45S2645■7,221050829.S78&S46-6.372E47I-15.3084183-21.7352376-11.56747851.3841097 1.G5S2M7t.3726171IJ24«17B 4.e093011 4.4C124732.B747CM-G. I1S3S49 1.GS92043-is.soul aa 4.B09B01I68.7978495劣』S670971S.57ai1B3-IH.05l6l?a15.43S6569-J1.73S2376孔耶124TB27.0387097105.103225&S7.3505S7E:-2D K5752??319-11337204-1L55M7S52r9747?3i19,573118337.3S0&87E33.3SQ6452 (2) 相关系数矩阵Pearson相关系数” N =引当HO: Rho=0 时.Prob > |r|Xi Xixl1.QQ000x2-C.239540.2061x3-0,304590.0957x40.18975Q.3092x5'0.141570.4475x6-0.837870.0630-0.492920.0150x2-0.23354 1.00000-0.162750.143510.022700.181520.24438 x20.20C10.31:1?0.441?0.90350.32640.1761x3-0.30459-0.16275 1.00000-0.06219-0.34641-0.^797-0.23674 x30.095?0.381?<.00010.0563o.oses0 JS97x40.1S8760.14351-0.86219L000000.400540,313650.22610 x40.30920.4412<.0001 D.02EG Q.085S0.2213x5-0J 41570.02270-0.946410.40054 1.000000.317370.26750 x50.4J750.90350.0G68Q.025&0.08130+1620x6-0.33?e?0.1S162-0.397970.813650.31787LOOOOO0.82976 x60.0S300.32840.02660.08580.0813C0001辺-0.432920.24938-0.288740.22810 D.267600.92976 1.00000 x70,01500J7610.19970.22130JG20<.0001第二题:程序如下:proc anova data=sasuser.hua ng;class kind;model x1-x4=k ind;manova h=k ind;run;结果如下:(1)分组水平信息The ANNA ProcedureCla^s Level Informat ionClass Level®Valueskind 3 123Number of observatIons CO(2) x1、x2、x3、x4的方差分析Dependent Variable : xl xlSource DFSum of SquaresMea n Square F Value Pr > F Model 25221.30000 2610.650003.380.0411Error57 44069.55000773.15000Corrected Total 5949290.85000R-Square Coeff Var Rcot MSE xl Mean 0.10592832.3508727.8055785.95000Source DF Anova SS Mean Square F ValuePr > F kind25221.300000 2610.6500003.380.0411The ANOVA ProcsdureDependent Variable : x2 x2S UB ofSource DFSquares Mean Square F ValuePr > F Model 2 518.533333 259.26666?1.620.2078Error57 9148.050000160.492105Corrected Total 599666.583333R-Square Coeff Var Root MSE 0.05364222.9988812.6685555.08333Source DF Anova SS Mean Square F ValuePr > Fkind2518.5333333259.26666671.620.2078The ANOVA Procedure)epende 「t Variable : x:3 x3S UM ofSource DF Squares Mean SquareF Value Pr > FModel2 2480.8333 1240.41670.170.8478Error57 427028.50007491.7281Corrected Total 59429509.3333R-Square Coeff Var Root MSE x3 Mean0.00577621.1798088.55477408.66672480.8333331240.4166670.17 0.8478The ANOVA Procedurex2 Mean SourceAnova SS Mean Square F Value Pr > Fkind(3) 多元方差分析The ProcedureMulti var I ate Ana lysis of Vari sinceCharacteri st ic Roots and Vectors of :: E Inverse 水 H, whereH =舫ow SSCP Matrix for kindE = Error SSCP MatrixChareucteri st icRoot Percent Characteristic Vector V F EV=1x1 x2 x30.33804686 73J7 -0.00045795 -0.00379096 0.00090988 0.00279339 0.12323983 26,C3 0.00424111 0.00236878 0.00D01B42 0.00002832 0.00000000 0.00 0.00121062 -0.00032401 0.00157046 -0.00006539 0.000000000,00-0.003177880.010435260.000070140.00078872MANOVA Test Criteria and F ApproxI nat Ions for the Hypothesis of No Overall kind EffectH 二 Anova SSCP Matr ix for kindE = Error SSCP MatrixS=2M=0*5 N=26 Stat ist icVa 1 ueF Value Num DFDsn DF Pr > F Wilks' Lambda0*660359533.04 8 IDS 0.0040 Pi 1lai f s Trace0.36123585 3,03 e 110 0.0041 Hote11 ing-Law 1ey Trace Q.45927921 3.07 e 74.85G0.0048 Roy s Greatest Root 0.336045804.624550.0027NOTE : F Statistic for Roy's Greatest Root iis an upper boundsNOTE: F Statist ic f or Wilks' Lambdei is exact.根据多元分析结果,p 指小于0.05,表明在0.05的显著水平下,四个变量有 显著差异SourceDF Sum of Squares Mean iSouare F ValuePr > F Model239529,3000 192B4.8E0D 8.010.0009Error57 197115.10002405.5281Corrected Totiii59175644.4000R-SqusreGreff Vir Root M SE x4 Mean0.21936018.96604 49.04610 250.6000SourceDFA JWVI SSMean ^4j&re F V&luePr > F kind2 38529.3000019264.650008.010.0009The ANOVA ProcedureDependent Var iabls : x4 x4。

sas测量实验报告

sas测量实验报告

sas测量实验报告SAS测量实验报告引言:SAS(Statistical Analysis System)是一种广泛应用于统计分析和数据管理的软件系统。

它提供了一系列强大的工具和功能,可以帮助研究人员进行数据处理、数据分析和数据可视化。

本文将介绍一项关于SAS测量的实验,旨在探索其在数据处理和分析方面的应用。

实验目的:本次实验的目的是通过使用SAS软件,对一组数据进行处理和分析,以验证其在实际应用中的效果和可行性。

同时,通过实验的过程,我们也可以进一步了解SAS在数据处理和分析中的优势和局限性。

实验步骤:1. 数据收集:首先,我们需要收集一组与实验目的相关的数据。

这些数据可以来自于实验观察、问卷调查或其他方式。

在本次实验中,我们选择了一个关于消费者购买行为的数据集。

2. 数据清洗:在数据收集后,我们需要对数据进行清洗,以去除无效或错误的数据。

SAS提供了一系列强大的数据处理功能,可以帮助我们进行数据清洗和转换。

例如,我们可以使用SAS的数据步骤(DATA Step)来删除重复的数据、填补缺失值或调整数据格式。

3. 数据分析:一旦数据清洗完成,我们可以开始进行数据分析。

SAS提供了多种统计分析方法,包括描述性统计、假设检验、回归分析等。

根据实验的具体目的,我们可以选择合适的分析方法,并使用SAS进行计算和结果展示。

4. 结果解释:在完成数据分析后,我们需要对分析结果进行解释和讨论。

通过SAS生成的统计报告和图表,我们可以直观地了解数据的分布、相关性和趋势等。

同时,我们还可以使用SAS的图形功能,绘制各种图表和图形,以更好地展示和解释数据分析结果。

实验结果:在本次实验中,我们使用SAS对一组消费者购买行为数据进行了处理和分析。

通过对数据的清洗和转换,我们得到了一个干净、完整的数据集。

然后,我们使用SAS的统计分析功能,对数据进行了描述性统计和相关性分析。

最后,我们使用SAS的回归分析功能,建立了一个购买行为预测模型,并对模型进行了评估。

多元统计分析实验报告计算协方差矩阵相关矩阵SAS

多元统计分析实验报告计算协方差矩阵相关矩阵SAS

多元统计分析实验报告计算协方差矩阵相关矩阵SAS实验目的:通过对多元统计分析中的协方差矩阵和相关矩阵的计算,探究变量之间的相关性,并使用SAS进行实际操作。

实验步骤:1.数据准备:选择一个数据集,例如学生的成绩数据,包括数学成绩、语文成绩和英语成绩。

2.数据整理:将数据转化为矩阵形式,每一行代表一个学生,每一列代表一个变量(即成绩),记为X。

3. 计算协方差矩阵:根据公式计算协方差矩阵C,其中元素Cij表示变量Xi和Xj之间的协方差。

计算公式为Cij = cov(Xi, Xj) = E((Xi - u_i)(Xj - u_j)),其中E为期望值,u_i和u_j分别是变量Xi和Xj的均值。

4. 计算相关矩阵:根据协方差矩阵计算相关矩阵R,其中元素Rij表示变量Xi和Xj之间的相关性。

计算公式为Rij = cov(Xi, Xj) / (sigma_i * sigma_j),其中sigma_i和sigma_j分别是变量Xi和Xj的标准差。

5.使用SAS进行实际操作:使用SAS软件导入数据集,并使用PROCCORR和PROCPRINT命令进行协方差矩阵和相关矩阵的计算和输出。

实验结果:通过计算协方差矩阵和相关矩阵,可以得到变量之间的相关性信息。

协方差矩阵的对角线上的元素表示每个变量的方差,非对角线上的元素表示不同变量之间的协方差。

相关矩阵的对角线上的元素都是1,表示每个变量与自身的相关性为1,非对角线上的元素表示不同变量之间的相关性。

使用SAS进行实际操作后,我们可以得到一个包含协方差矩阵和相关矩阵的输出表格。

该表格可以帮助我们更直观地理解变量之间的相关性情况,从而为后续的统计分析提供参考。

实验总结:通过本次多元统计分析实验,我们了解了协方差矩阵和相关矩阵的计算方法,并使用SAS软件进行实际操作。

这些矩阵可以帮助我们评估变量之间的相关性,为后续的统计分析提供重要的基础信息。

在实际应用中,我们可以根据协方差矩阵和相关矩阵的结果,选择合适的统计方法和模型,并做出恰当的推断和决策。

SAS数据分析实验报告

SAS数据分析实验报告

SAS数据分析实验报告摘要:本文使用SAS软件对一组数据集进行了分析。

通过数据清洗、数据变换、数据建模和数据评估等步骤,得出了相关的结论。

实验结果表明,使用SAS软件进行数据分析可以有效地处理和分析大型数据集,得出可靠的结论。

1.引言数据分析在各个领域中都扮演着重要的角色,可以帮助人们从大量的数据中提取有用信息。

SAS是一种常用的数据分析软件,被广泛应用于统计分析、商业决策、运营管理等领域。

本实验旨在探究如何使用SAS软件进行数据分析。

2.数据集描述本实验使用了一个包含1000个样本的数据集。

数据集包括了各个样本的性别、年龄、身高、体重等多种变量。

3.数据清洗在进行数据分析之前,首先需要对数据进行清洗。

数据清洗包括缺失值处理、异常值处理和重复值处理等步骤。

通过使用SAS软件中的相应函数和命令,我们对数据集进行了清洗,确保数据的质量和准确性。

4.数据变换在进行数据分析之前,还需要对数据进行变换。

数据变换包括数据标准化、数据离散化和数据归一化等操作。

通过使用SAS软件中的变换函数和操作符,我们对数据集进行了变换,使其符合分析的需要。

5.数据建模数据建模是数据分析的核心过程,包括回归分析、聚类分析和分类分析等。

在本实验中,我们使用SAS软件的回归、聚类和分类函数,对数据集进行了建模分析。

首先,我们进行了回归分析,通过拟合回归模型,找到了自变量对因变量的影响。

通过回归模型,我们可以预测因变量的值,并分析自变量的影响因素。

其次,我们进行了聚类分析,根据样本的特征将其分类到不同的群组中。

通过聚类分析,我们可以发现样本之间的相似性和差异性,从而做出针对性的决策。

最后,我们进行了分类分析,根据样本的特征判断其所属的类别。

通过分类分析,我们可以根据样本的特征预测其所属的类别,并进行相关的决策。

6.数据评估在进行数据分析之后,还需要对结果进行评估。

评估包括模型的拟合程度、变量的显著性和模型的稳定性等。

通过使用SAS软件的评估函数和指标,我们对数据分析的结果进行了评估。

SAS数据分析实验报告

SAS数据分析实验报告

数理与土木工程学院实验报告课程名称:《统计软件SPSS、SAS及实践》实验结果(包括程序代码、程序结果分析)第一题:②基于数据集transaction,将变量“Revenue”中的缺失数据用其均值代替;data a;set a;array s(*) aa1-aa2;n=n(of s(*));mean=mean(of s(*));sum=sum( of s(*));do i=1to dim(s);if s(i)=.then s(i)=mean;end;run;proc print;run;③基于②,将取值全部缺失的变量删除。

data a;set a;array aa aa1-aa2;do over aa;if col=.then delete;end;run;proc transpose data=a out=transaction(drop=_name_);var aa1-aa2;run;proc print;run;第二题:a) 建立一个数据集合读入数据,变量为length,width和 height;data b;input length width height;cards;32 18 1216 15 2448 12 3215 30 4520 30 36;run;proc print data=b;run;b) 使用 set 语句,利用a)的数据集建立一个新数据集,它包括a)的所有数据,并建立三个新变量:每个c) 使用b)建立的数据集建立一个新数据集,只包括其中的volume 和 cost 变量。

data d;set c(keep=volume cost);run;proc print data=d;run;第三题:a)对车的标志(brand)的频数画竖直条形图。

libname mydata 'D:\data';proc print data=edcar;run;data e;set edcar; run;proc gchart;vbar brand;run;b)c)data g;set f;proc means data=g ;run;第四题:试分析:该地区单身人士的收入与住房面积之间是否相关?如果线性相关,确定一元线性回归方程,并做显著性检验。

sas描述性统计分析

sas描述性统计分析

28
27
26
散点图
25
24
23
22
21 女 20 1900 1920 1940 1960 1980 2000 男
定性变量的图表示:饼图 定性变量(或属性变量,分类变量 )不能点出直方图、散点图或茎 叶图,但可以描绘出它们各类的 比例。
饼图
定性变量的图表示:条形图
从每一条可以看出讲各种语言的 实际人数,而且分别给出了每 个语种中母语和日常使用的人 数(在图中并排放置)。条形 图显示比例不如饼图直观。
数据的“尺度”
另一个常用的尺度统计量为(样本)标 准差 (standard deviation) 。度量样 本中各数值到均值距离的一种平均。 标准差实际上是方差 (variance) 的平方 根。如果记样本中的观测值为 x1,…,xn,则样本方差为
数据的“尺度”
两个均值一样,但右边的要 “胖”些,方差为左边的一 倍
描述性统计分析
East China JiaoTong University
如 同 给 人 画 像 一 样
数 据 的 描 述
在对数据进行深入加工之前,总 应该对数据有所印象。 可以借助于图形和简单的运算, 来了解数据的一些特征。 由于数据是从总体中产生的,其 特征也反映了总体的特征。对 数据的描述也是对其总体的一 个近似的描述。
其中茎叶图中茎的单位为10cm,而叶子单位为1cm。比如,由于 第一行茎为150cm,因此叶子中的九个数字001223344代表九个数 目150、150、151、152、152、153、153、154、154cm等。每 行左边有一个频数(比如第一行有9个数目,第二行有17个等等); 可以看出最长的一行为从165cm到169cm的一段(有35个数)。

数据分析(SAS描述性统计分析过程)

数据分析(SAS描述性统计分析过程)

var
变量列表 ;
by
变量列表 ;
freq
变量 ;
weight 变量 ;
id
变量列表 ;
output <out=输出数据集名> <统计量关键字=变量名列表> <pctlpts= 百分位数 pctlpre=变量前缀名 pctlname=变量后缀名>;
run;
proc uiate过程旳主要控制语句如下:
proc means(5)
SAS程序 data examp1; input x @@; cards; 70.4 72.0 76.5 74.3 76.5 77.6 67.3 72.0 75.0 74.3 73.5 79.5 73.5 74.7 65.0 76.5 81.6 75.4 72.7 72.7 67.2 76.5 72.7 70.4 77.2 68.8 67.3 67.3 67.3 72.7 75.8 73.5 75.0 72.7 73.5 73.5 72.7 81.6 70.3 74.3 73.5 79.5 70.4 76.5 72.7 77.2 84.3 75.0 76.5 70.4 ; proc means data=examp1 n mean cv skewness kurtosis range median ; var x; run;
mode sumwgt max min range median t prt clm lclm uclm
众数,出现频数最高旳数 权数和 最大值 最小值 极差,max—min 中间值 总体均值等于0旳t统计量 t分布旳双尾p值 置信度上限和下限
置信度下限
置信度上限
kurtosis
对尾部陡平旳度量——峰度
------Quantile-----Percent Observed Estimated

sas数据分析报告

sas数据分析报告

SAS数据分析报告1. 引言SAS(统计分析系统)是一款广泛应用于数据分析和统计建模的软件工具。

本报告将介绍如何使用SAS进行数据分析,并提供一系列步骤,以帮助读者快速上手。

2. 数据准备在开始数据分析之前,我们首先需要准备好待分析的数据集。

数据集应包含所需的变量和观测值,并且应该经过清洗和预处理,以确保数据的准确性和一致性。

3. SAS环境设置在使用SAS进行数据分析之前,我们需要设置SAS环境。

这包括设置工作目录、导入数据和加载所需的SAS库。

markdown sas ** 设置工作目录** libname mydata ‘/path/to/data/’;** 导入数据** data mydata.mydataset; infile ‘/path/to/dataset.csv’ delimiter = ‘,’ firstobs = 2; input var1 var2 var3; run;** 加载SAS库 ** proc sql; create table mydata.mytable as select * from mydata.mydataset; quit; ```4. 数据探索一旦准备好数据并设置好SAS环境,我们可以开始进行数据探索。

这包括计算描述性统计量、绘制图表和查找数据间的相关性等操作。

markdown sas ** 计算描述性统计量 ** proc means data = mydata.mytable; var var1 var2 var3; output out = mydata.summary_stats mean = mean std = std min = min max = max; run;** 绘制直方图 ** proc univariate data = mydata.mytable; histogram var1; run;** 计算相关性 ** proc corr data = mydata.mytable; var var1 var2 var3; run; ```5. 数据分析有了对数据的初步了解后,我们可以开始进行更深入的数据分析。

sas实验报告

sas实验报告

sas实验报告SAS实验报告一、实验目的:1.了解SAS软件的使用方法和基本操作2.熟悉SAS数据处理和分析的流程3.掌握SAS数据导入和导出的方法二、实验原理:SAS(Statistical Analysis System)是一个用于统计分析的软件系统,包括数据管理、数据挖掘、报告和图形展示等功能。

SAS语言是一种功能强大的编程语言,通过SAS语言,可以对数据进行处理、分析和建模。

三、实验内容和步骤:1.打开SAS软件,创建一个新的SAS工作空间。

2.使用DATA和SET语句导入外部数据文件,并观察数据的结构和变量。

3.使用PROC PRINT和PROC FREQ等语句对数据进行描述性统计和频数分析。

4.使用PROC MEANS和PROC UNIVARIATE等语句对数据进行均值分析和单变量分析。

5.使用PROC CORR和PROC REG等语句进行相关分析和回归分析。

6.使用PROC GRAPH和PROC PLOT等语句绘制图形。

四、实验结果分析:通过使用SAS软件进行数据处理和分析,我们得到了以下结果:1.数据结构和变量分析:数据包含了10个变量,其中包括年龄、性别、教育水平、职业等信息。

2.描述性统计和频数分析:我们对数据进行了描述性统计,包括计算了平均值、中位数、标准差等统计量,并使用频数分析对变量进行了分组统计。

3.均值分析和单变量分析:我们使用PROC MEANS和PROC UNIVARIATE进行了变量的均值分析和单变量分析,得到了各变量的均值、标准差、四分位数等统计量。

4.相关分析和回归分析:我们使用PROC CORR和PROC REG 对变量之间的相关性进行了分析,并使用回归分析模型进行了拟合。

5.图形绘制:我们使用PROC GRAPH和PROC PLOT对数据进行了可视化展示,绘制了直方图、散点图等图形。

通过对实验结果的分析,我们可以对数据进行进一步的理解和解读,得到了对变量之间关系和趋势的更深入的认识。

如何用SAS进行统计分析

如何用SAS进行统计分析

如何用SAS进行统计分析SAS(统计分析系统)是一种用于数据分析和统计建模的软件工具。

它提供了一系列功能和程序,用于数据处理、统计分析、预测建模、图形展示和报告生成等。

本文将介绍如何使用SAS进行统计分析,涵盖数据导入、数据清洗、描述性统计分析、假设检验、回归分析和聚类分析等内容。

1. 数据导入和数据清洗在使用SAS进行统计分析之前,你需要将待分析的数据导入到SAS软件中。

SAS支持多种数据格式,包括CSV、Excel、Access等。

你可以使用SAS提供的PROC IMPORT过程将数据导入到SAS的数据集中。

导入数据后,你需要对数据进行清洗。

数据清洗的目的是去除数据中的错误、缺失或异常值,以确保数据的质量。

你可以使用SAS的数据步骤(DATA STEP)来处理数据,例如删除缺失值、填补缺失值、去除异常值等。

2. 描述性统计分析描述性统计分析是对数据进行总结和描述的过程。

它包括计算数据的中心趋势(均值、中位数、众数)、数据的离散程度(标准差、方差、极差)、数据的分布形态(偏度、峰度)等。

在SAS中,你可以使用PROC MEANS过程进行描述性统计分析。

该过程可以计算多个变量的均值、标准差、最小值、最大值、中位数等统计指标。

此外,你还可以使用PROC UNIVARIATE过程计算数据的偏度、峰度等统计值,并绘制直方图和箱线图来展示数据的分布情况。

3. 假设检验假设检验是对样本数据进行推断性统计分析的一种方法。

它用于判断观察到的样本差异是否显著,从而对总体参数进行推断。

在SAS中,你可以使用PROC TTEST过程进行双样本t检验、单样本t检验和相关样本t检验等。

此外,PROC ANOVA过程可以用于方差分析,PROC FREQ过程可以用于卡方检验。

4. 回归分析回归分析是研究因变量与自变量之间关系的一种统计分析方法。

它用于预测和解释因变量的变化,并评估自变量对因变量的影响程度。

在SAS中,你可以使用PROC REG过程进行简单线性回归分析和多元线性回归分析。

sas分析报告

sas分析报告

sas分析报告:分析报告sas sas结果分析如何用sas显著性分析sas结果读取篇一:sas统计分析报告《统计软件》报告聚类分析和方差分析在统计学成绩分析中的应用班级:精算0801班姓名:张倪学号:2008111500 报告2011年11月指导老师:郝际贵成绩:目录一、背景及数据来源.................................................... 1 二、描述性统计分析.................................................... 2 三、聚类分析................................................................ 4 四、方差分析................................................................ 6 五、结果分析与结论. (8)聚类分析和方差分析在统计学成绩分析中的应用一、背景及数据来源SAS 系统全称为Statistics Analysis System,最早由北卡罗来纳大学的两位生物统计学研究生编制,并于1976年成立了SAS软件研究所,正式推出了SAS软件。

SAS是用于决策支持的大型集成信息系统,但该软件系统最早的功能限于统计分析,至今,统计分析功能也仍是它的重要组成部分和核心功能。

SAS 系统是一个组合软件系统,它由多个功能模块组合而成,其基本部分是BASE SAS模块。

BASE SAS模块是SAS系统的核心,承担着主要的数据管理任务,并管理用户使用环境,进行用户语言的处理,调用其他SAS模块和产品。

也就是说,SAS系统的运行,首先必须启动BASE SAS模块,它除了本身所具有数据管理、程序设计及描述统计计算功能以外,还是SAS系统的中央调度室。

它除可单独存在外,也可与其他产品或模块共同构成一个完整的系统。

sas实验报告

sas实验报告

sas实验报告1. 实验目的本次实验的目的是通过使用SAS软件,对给定数据集进行分析并绘制出相关的图表,从而深入理解数据中的信息,为后续的数据分析和业务决策提供支持。

2. 实验过程2.1 数据清洗在进行数据分析之前,需要对给定的数据集进行清洗。

首先,我们查看了数据是否存在缺失值和异常值。

通过观察发现该数据集中没有缺失值,并且异常值也很少。

我们选择对一些偏离正常范围较大的值进行平滑处理,以减小对后续分析的影响。

2.2 数据分析接下来,我们使用SAS软件对数据进行分析,并绘制相关的图表。

通过对数据的统计学分析和可视化,我们得到了以下结论:2.2.1 数据的概览我们首先对数据中的各个变量进行了基本的统计学描述,包括均值、中位数、标准差、最大值和最小值。

同时,我们绘制了数据直方图、密度图等图表,以更好地理解各个变量的分布规律。

2.2.2 变量的相关性分析我们使用了相关系数等分析方法,研究了各个变量之间的相关性。

通过相关系数矩阵和相关性图表,我们发现有些变量之间存在显著的相关关系,对于后续的数据分析和业务决策有重要的参考价值。

2.2.3 因素分析我们对整个数据集进行了因素分析,找出了影响数据各个变量的主要因素。

通过因子载荷矩阵和成分图表,我们更深入地理解了变量之间的内在联系和因果关系。

3. 实验结果通过本次SAS实验,我们对各种数据分析方法的使用方法和优缺点有了更深入的了解。

同时,我们成功地完成了对给定数据集的分析和可视化,并得出了一些有价值的结论,为后续的数据分析和业务决策提供了有效的支持。

4. 结论本次SAS实验不仅增强了我们对数据分析的理论知识和实践能力,还将对我们未来的学习和工作产生积极的影响。

我们将继续学习和掌握各种数据分析工具和方法,为公司的发展提供更好的支持和帮助。

实验报告3—— SAS描述统计分析

实验报告3—— SAS描述统计分析

实验报告实验项目名称SAS描述统计分析所属课程名称现代统计软件实验类型验证性实验实验日期2014-10-28班级学号姓名成绩实验报告说明1.实验项目名称:要用最简练的语言反映实验的内容。

要求与实验指导书中相一致。

2.实验类型:一般需说明是验证型实验还是设计型实验,是创新型实验还是综合型实验。

3.实验目的与要求:目的要明确,要抓住重点,符合实验指导书中的要求。

4.实验原理:简要说明本实验项目所涉及的理论知识。

5.实验环境:实验用的软硬件环境(配置)。

6.实验方案设计(思路、步骤和方法等):这是实验报告极其重要的内容。

概括整个实验过程。

对于操作型实验,要写明依据何种原理、操作方法进行实验,要写明需要经过哪几个步骤来实现其操作。

对于设计型和综合型实验,在上述内容基础上还应该画出流程图、设计思路和设计方法,再配以相应的文字说明。

对于创新型实验,还应注明其创新点、特色。

7.实验过程(实验中涉及的记录、数据、分析):写明上述实验方案的具体实施,包括实验过程中的记录、数据和相应的分析(原程序、程序运行结果、结果分析解释)。

8.结论(结果):即根据实验过程中所见到的现象和测得的数据,做出结论。

9.小结:对本次实验的心得体会、思考和建议。

10.指导教师评语及成绩:指导教师依据学生的实际报告内容,用简练语言给出本次实验报告的评价和价值。

注意:∙每次实验开始时,交上一次的实验报告。

∙实验报告文档命名规则:“实验序号”+“_”+ “班级”+“_”+“学号”+“姓名”+“_”+ “.doc”例如:管信11班的张军同学学号为:2011312299 本次实验为第2次实验即:实验二、SAS编程基础;则实验报告文件名应为:实验二_管信11 _2011312299_张军.doc 。

SAS中的描述性统计过程

SAS中的描述性统计过程

SAS中的描述性统计过程SAS是一种强大的统计分析软件,提供了丰富的描述性统计分析过程。

这些过程可以帮助统计分析师对数据进行总体的描述和了解。

下面将详细介绍SAS中的描述性统计过程及其应用。

一、数据准备在进行描述性统计之前,需要准备数据。

SAS可以导入各种格式的数据集,如SAS数据集、CSV文件、Excel文件等。

导入数据后,可以使用SAS的数据步骤对数据进行预处理,包括数据清洗、缺失值处理、变量转换等。

这样可以确保数据的质量和完整性。

二、数据探索1.频数统计SAS提供了PROCFREQ过程来计算变量的频数、百分比和交叉表。

可以使用该过程来了解变量的分布情况、缺失值情况和数据异常情况。

通过频数统计,可以发现数据集中的异常值或需要进一步处理的特殊情况。

2.描述性统计SAS中的PROCMEANS和PROCSUMMARY过程可计算变量的均值、标准差、最大值、最小值、中位数等描述性统计量。

这些统计量可以帮助我们了解数据的中心趋势、离散程度和分布情况。

此外,我们还可以使用PROCUNIVARIATE过程来绘制直方图、箱线图和正态概率图,以更直观地了解数据的分布情况。

3.相关分析SAS提供了PROCCORR过程来计算变量之间的相关系数。

通过相关分析,可以了解变量之间的线性关系强度和方向。

PROCCORR还可以生成相关矩阵和散点图,帮助我们观察变量之间的关系。

4.排序和排名SAS提供了PROCRANK过程来对变量进行排序和排名。

排序可以帮助我们找出变量中的异常值或极端值。

排名可以用于对变量进行等级分类,如将考试成绩按照从高到低进行排名。

5.缺失值处理SAS提供了多种方法来处理缺失值,如删除带有缺失值的观测、使用均值或中位数代替缺失值、使用插补方法进行缺失值估计等。

可以使用PROCMEANS、PROCUNIVARIATE和PROCMI过程对缺失值进行处理。

三、数据汇总和报告1.数据表汇总SAS中的PROCTABULATE和PROCREPORT过程可以生成数据表和报告。

sas实验报告

sas实验报告

sas实验报告SAS实验报告。

一、引言。

SAS(Statistical Analysis System)是一个全面的统计分析软件,被广泛应用于各个领域的数据分析和统计研究中。

本实验旨在利用SAS软件对一组数据进行分析,以验证SAS在实际数据处理中的有效性和可靠性。

二、实验目的。

本实验旨在通过对一组实际数据的分析,验证SAS软件在数据处理和统计分析中的可行性和有效性,同时掌握SAS软件的基本操作和数据分析方法。

三、实验内容。

1. 数据导入,将实验所需数据导入SAS软件中,确保数据的准确性和完整性。

2. 数据清洗,对数据进行清洗和预处理,包括缺失值处理、异常值处理等。

3. 描述性统计分析,对数据进行描述性统计分析,包括均值、标准差、频数分布等。

4. 统计推断分析,进行t检验、方差分析、相关分析等统计推断分析。

5. 结果展示,将分析结果以表格、图表等形式展示出来,便于结果的直观理解和比较。

四、实验步骤。

1. 数据导入,利用SAS软件将实验所需的数据导入到数据集中。

2. 数据清洗,对导入的数据进行缺失值处理和异常值处理,确保数据的准确性和完整性。

3. 描述性统计分析,利用SAS软件进行数据的描述性统计分析,包括均值、标准差、频数分布等。

4. 统计推断分析,利用SAS软件进行t检验、方差分析、相关分析等统计推断分析。

5. 结果展示,将分析结果以表格、图表等形式展示出来,便于结果的直观理解和比较。

五、实验结果与分析。

通过对实验数据的分析,得到了以下结论:1. 描述性统计分析显示,样本数据的平均值为X,标准差为X,频数分布呈现X趋势。

2. t检验结果表明,在置信水平为95%下,两组数据之间存在显著差异(P<0.05)。

3. 方差分析结果显示,不同组别之间的均值存在显著性差异(P<0.05)。

4. 相关分析结果表明,变量X与变量Y之间存在显著的正相关关系(r=0.8,P<0.01)。

六、实验总结。

实验三 SAS描述统计分析

实验三  SAS描述统计分析

实验三SAS描述统计分析对数据进行频数统计、计算特征统计量和将数据图形化的过程称为描述统计。

其目的是为了揭示数据的集中趋势、分散程度和数据分布形态,展示极端数据,最后做出说明现象本质的初步结论。

用图形对数据进行描述性统计分析具有直观、鲜明、形象、便捷等特点,在表达统计数据时可以给人留下深刻的印象。

统计图形的种类很多,利用SAS可以方便的绘制常用的统计图形。

3.1 实验目的掌握使用SAS对数据作描述性统计分析的方法。

掌握SAS/GRAPH所提供的常用图形功能,能用SAS的统计图形对数据进行描述性统计分析。

3.2 实验内容一、用INSIGHT计算统计量、绘制统计图形二、用“分析家”计算统计量、绘制统计图形三、编程实现描述性统计(MEANS、UNIVARIATE、FREQ过程)、编程绘制统计图(GPLOT 和GCHART过程)3.3 实验指导一、用INSIGHT计算统计量【实验3-1】按性别分别计算SASHELP.CLASS中身高的均值、标准差、中位数和其它四分位数,简单分析学生身高的状况。

1. 在INSIGHT中打开数据集在菜单中选择“Solution(解决方案)”→“Analysis(分析)”→“Interactive Data Analysis (交互式数据分析)”,打开“SAS/INSIGHT Open”对话框,在对话框中选择数据集:SASHELP.CLASS,单击“Open(打开)”按钮,即可在INSIGHT中打开数据窗口,如图3-1左所示。

2. 用Distribution菜单项计算统计量(1) 选择菜单“Analyze(分析)”→“Distribution (Y)(分布)”,打开“Distribution (Y)”对话框。

在数据集CLASS的变量列表中,选择height,然后单击“Y”按钮,height被选为分析变量,选择sex,然后单击“Group”按钮,sex被选为分组变量,如图3-1右所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
实验项目名称SAS描述统计分析所属课程名称现代统计软件实验类型验证性实验实验日期2014-10-28
班级
学号
姓名
成绩
实验报告说明
1.实验项目名称:要用最简练的语言反映实验的内容。

要求与实验指导书中相一致。

2.实验类型:一般需说明是验证型实验还是设计型实验,是创新型实验还是综合型实验。

3.实验目的与要求:目的要明确,要抓住重点,符合实验指导书中的要求。

4.实验原理:简要说明本实验项目所涉及的理论知识。

5.实验环境:实验用的软硬件环境(配置)。

6.实验方案设计(思路、步骤和方法等):这是实验报告极其重要的内容。

概括整个实验过程。

对于操作型实验,要写明依据何种原理、操作方法进行实验,要写明需要经过哪几个步骤来实现其操作。

对于设计型和综合型实验,在上述内容基础上还应该画出流程图、设计思路和设计方法,再配以相应的文字说明。

对于创新型实验,还应注明其创新点、特色。

7.实验过程(实验中涉及的记录、数据、分析):写明上述实验方案的具体实施,包括实验过程中的记录、数据和相应的分析(原程序、程序运行结果、结果分析解释)。

8.结论(结果):即根据实验过程中所见到的现象和测得的数据,做出结论。

9.小结:对本次实验的心得体会、思考和建议。

10.指导教师评语及成绩:指导教师依据学生的实际报告内容,用简练语言给出本次实验报告的评价和价值。

注意:
∙每次实验开始时,交上一次的实验报告。

∙实验报告文档命名规则:“实验序号”+“_”+ “班级”+“_”+“学号”+“姓名”+“_”+ “.doc”例如:管信11班的张军同学学号为:2011312299 本次实验为第2次实验即:实验二、SAS编程基础;则实验报告文件名应为:实验二_管信11 _2011312299_张军.doc 。

相关文档
最新文档