随机变量的期望与方差复习

合集下载

2-2随机变量的期望与方差(2)

2-2随机变量的期望与方差(2)
i
i

1

2
xi E

( xi E ) pi
2
1

2
(x
i
i
E ) pi
2
D
2
P E
D
2
切比雪夫不等式的另两种常用形式:
P E 1 D
2
E 1 P 2 D



xp ( x ) d x
书P52 例2.3.5
-函数: ( ) 0 x 1 e x d x
性质: ( 1) ( ) ( 0);
1 (1) 1 ; 2


【例】
5 5 5 3 3 3 1 1 1 2 2 2 2 2 2 2 1 3 4 2
甲日走时误差 概率 乙日走时误差 概率

1 0 1 0 .1 0 .8 0 .1

2 1 0 1 2 0.1 0.2 0.4 0.2 0.1
E E 0
D E 2 ( E ) 2 0.2
D E 2 ( E ) 2 1.2
二、方差(Variance)
1、定义
r .v 的方差 D E ( E ) 2

说明: (1) D 0
E
2
0

(2)称 D 为 的标准差或均方差,常记为 .
2、计算
(1) 从定义出发 对d . r . v , D E E xi E P xi
3 P 40 60 P 50 10 4

38 随机变量及其分布、期望与方差(高2019届理科数学总复习讲义)

38 随机变量及其分布、期望与方差(高2019届理科数学总复习讲义)

高2019届理科数学总复习讲义第三十八讲 随机变量及其分布、期望与方差知识提要1、 随机变量的概念:如果随机试验的结果可以用一个变量表示,那么这样的变量叫做随机变量,随机变量常用希腊字母,ξη等表示。

(1) 离散型随机变量。

如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。

(2) 连续型随机变量。

如果随机变量可以取某一区间内的一切值,这样的随机变量叫做连续型随机变量。

(3) 若ξ是随机变量,a b ηξ=+,其中a 、b 是常数,则η也是随机变量。

2、 离散性随机变量的分布列(1) 概率分布(分布列)。

设离散性随机变量ξ可能取的值为12,,x x ···,,i x ···,ξ取每一个值(1,2,i x =···)的概率()i i P x p ξ==,则表称为随机变量ξ的概率分布,简称ξ的分布列。

(2)二项分布。

如果在一次试验中某事件发生的概率是p ,那么在n次独立重复试验中这个事件恰好发生k次的概率是:()k k n k n P k c p q ξ-==(其中k=0,1,···,n ,q=1-p ),于是得到随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作ξ~B(n,p),其中n,p 为参数。

3、期望(1)若离散型随机变量ξ的概率分布为则称1122n n E x P x P x p ξ=++⋅⋅⋅++⋅⋅⋅为ξ的数学期望,简称期望。

(2)离散型随机变量的期望反映了离散型随机变量值的平均水平。

(3 ) 数学期望的性质:(),()E c C E a b aE b ξξ=+=+(,,a b c 为常数)。

3、 方差:(1)221122()()D x E P x E P ξξξ=-+-+···2()n n x E P ξ+-+···为ξ的方差。

随机变量的期望与方差知识点

随机变量的期望与方差知识点

随机变量的期望与方差知识点在概率论与数理统计中,随机变量的期望和方差是两个非常重要的概念。

它们帮助我们理解随机现象的平均水平和波动程度,在许多领域都有着广泛的应用,比如统计学、经济学、物理学、工程学等等。

接下来,咱们就来详细聊聊这两个重要的知识点。

首先,咱们来谈谈什么是随机变量。

简单说,随机变量就是对随机试验结果的数值描述。

比如说抛硬币,正面记为 1,反面记为 0,那这个结果就是一个随机变量。

那期望是什么呢?期望可以理解为随机变量的平均取值。

想象一下,你多次进行同一个随机试验,然后把每次的结果都加起来再除以试验的次数,当试验次数趋近于无穷大时,得到的这个平均值就是期望。

举个例子,假如一个离散型随机变量 X 取值为 x1, x2, x3,, xn,对应的概率分别为 p1, p2, p3,, pn,那么它的期望 E(X) 就等于 x1 p1 +x2 p2 + x3 p3 ++ xn pn 。

比如说,掷一个骰子,出现 1 点的概率是 1/6,出现 2 点的概率也是 1/6,以此类推。

那么这个骰子掷出的点数的期望就是 1×(1/6) +2×(1/6) + 3×(1/6) + 4×(1/6) + 5×(1/6) + 6×(1/6) = 35 。

期望有很多重要的性质。

比如,对于任意常数 c ,E(c) = c ;对于两个随机变量 X 和 Y ,E(X + Y) = E(X) + E(Y) 。

再来说说方差。

方差反映的是随机变量取值相对于期望的分散程度,也就是波动的大小。

如果方差小,说明随机变量的取值比较集中在期望附近;如果方差大,说明取值比较分散。

对于离散型随机变量 X ,它的方差 Var(X) = E(X E(X))²。

这看起来有点复杂,其实就是先算出每个取值与期望的差的平方,再乘以对应的概率,最后加起来。

还是拿掷骰子的例子来说,骰子点数的期望是 35 。

高三数学人教版A版数学(理)高考一轮复习教案离散型随机变量的期望与方差、正态分布1

高三数学人教版A版数学(理)高考一轮复习教案离散型随机变量的期望与方差、正态分布1

第九节 离散型随机变量的期望与方差、正态分布1.均值与方差理解取有限个值的离散型随机变量均值、方差的概念,能计算简单 离散型随机变量的均值、方差,并能解决一些实际问题. 2.正态分布利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的 意义. 知识点一 均值1.一般地,若离散型随机变量X 的分布列为:X x 1 x 2 … x i … x n Pp 1p 2…p i…p n则称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平.2.若Y =aX +b ,其中a ,b 为常数,则Y 也是随机变量,且E (aX +b )=aE (X )+b . 3.(1)若X 服从两点分布,则E (X )=p . (2)若X ~B (n ,p ),则E (X )=np .易误提醒 理解均值E (X )易失误,均值E (X )是一个实数,由X 的分布列唯一确定,即X 作为随机变量是可变的,而E (X )是不变的,它描述X 值的取值平均状态.[自测练习]1.已知X 的分布列为X -1 0 1 P121316设Y =2X +3,则E (Y )A.73 B .4 C .-1D .1 解析:E (X )=-12+16=-13,E (Y )=E (2X +3)=2E (X )+3=-23+3=73.答案:A知识点二 方差1.设离散型随机变量X 的分布列为:X x 1 x 2 … x i … x n Pp 1p 2…p i…p n则(x i -E (X ))2描述了x i (i =1,2,…,n )相对于均值E (X )的偏离程度,而D (X )=∑ni =1(x i -E (X ))2p i 为这些偏离程度的加权平均,刻画了随机变量X 与其均值E (X )的平均偏离程度.称D (X )为随机变量X 的方差,其算术平方根D (X )为随机变量X 的标准差.2.D (aX +b )=a 2D (X ).3.若X 服从两点分布,则D (X )=p (1-p ). 4.若X ~B (n ,p ),则D (X )=np (1-p ).易误提醒 (1)D (ξ)表示随机变量ξ对E (ξ)的平均偏离程度.D (ξ)越大,表明平均偏离程度越大,说明ξ的取值越分散.反之D (ξ)越小,ξ的取值越集中在E (ξ)附近.统计中常用标准差D (ξ) 来描述ξ的分散程度.(2)D (ξ)与E (ξ)一样也是一个实数,由ξ的分布列唯一确定.(3)D (ξ)的单位与随机变量ξ的单位不同,而E (ξ)、D (ξ) 与ξ的单位相同. (4)注意E (aX +b )=aE (X )+b ,D (aX +b )=a 2D (X ).[自测练习]2.已知随机变量ξ的分布列为P (ξ=k )=13,k =1,2,3,则D (3ξ+5)=( )A .6B .9C .3D .4解析:由E (ξ)=13(1+2+3)=2,得D (ξ)=23,D (3ξ+5)=32×D (ξ)=6. 答案:A3.有一批产品,其中有12件正品和4件次品,从中有放回地任取3件,若X 表示取到次品的次数,则D (X )=________.解析:∵X ~B ⎝⎛⎭⎫3,14,∴D (X )=3×14×34=916. 答案:916知识点三 正态分布 1.正态曲线的特点(1)曲线位于x 轴上方,与x 轴不相交. (2)曲线是单峰的,它关于直线x =μ对称. (3)曲线在x =μ处达到峰值1σ2π.(4)曲线与x 轴之间的面积为1.(5)当σ一定时,曲线随着μ的变化而沿x 轴平移.(6)当μ一定时,曲线的形状由σ确定.σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.2.正态分布的三个常用数据 (1)P (μ-σ<X ≤μ+σ)=0.682_6. (2)P (μ-2σ<X ≤μ+2σ)=0.954_4. (3)P (μ-3σ<X ≤μ+3σ)=0.997_4.易误提醒 一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.[自测练习]4.若随机变量ξ~N (2,1),且P (ξ>3)=0.158 7,则P (ξ>1)=________.解析:由ξ~N (2,1),得μ=2,因为P (ξ>3)=0.158 7,所以P (ξ<1)=0.158 7,所以P (ξ>1)=1-0.158 7=0.841 3.答案:0.841 3考点一 离散型随机变量的均值|(2015·高考安徽卷)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列和均值(数学期望).[解] (1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A ,P (A )=A 12A 13A 25=310.(2)X 的可能取值为200,300,400. P (X =200)=A 22A 25=110,P (X =300)=A 33+C 12C 13A 22A 35=310,P (X =400)=1-P (X =200)-P (X =300)=1-110-310=610.故X 的分布列为X 200 300 400 P110310610E (X )=200×110+300×310+400×610=350.求离散型随机变量均值的步骤(1)理解随机变量X 的意义,写出X 可能取得的全部值. (2)求X 的每个值的概率. (3)写出X 的分布列. (4)由均值定义求出E (X ).1.(2016·合肥模拟)某校在全校学生中开展物理和化学实验操作大比拼活动,活动要求:参加者物理、化学实验操作都必须参加,有50名学生参加这次活动,评委老师对这50名学生实验操作进行评分,每项操作评分均按等级采用5分制(只打整数分),评分结果统计如表:学生数物理得分y化学得分x1分2分3分4分5分1分 1 3 1 0 1 2分 1 0 7 5 1 3分 2 1 0 9 3 4分 1 2 6 0 1 5分1133分”的学生被抽取的概率;(2)从这50名参赛学生中任取1名,其物理实验与化学实验得分之和为ξ,求ξ的数学期望.解:(1)从表中可以看出,“化学实验得分为4分且物理实验得分为3分”的学生有6名,所以“化学实验得分为4分且物理实验得分为3分”的学生被抽取的概率为650=325.(2)ξ所有可能的取值为2、3、4、5、6、7、8、9、10,则ξ的分布列为:ξ 2 3 4 5 6 7 8 9 10 P1504503509508501650450250350∴E (ξ)=2×150+3×450+4×350+5×950+6×850+7×1650+8×450+9×250+10×350=31150.考点二 方差问题|设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量X 为取出此2球所得分数之和,求X 的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量Y 为取出此球所得分数.若E (Y )=53,D (Y )=59,求a ∶b ∶c .[解] (1)由题意得X =2,3,4,5,6. 故P (X =2)=3×36×6=14,P (X =3)=2×3×26×6=13,P (X =4)=2×3×1+2×26×6=518,P (X =5)=2×2×16×6=19,P (X =6)=1×16×6=136.所以X 的分布列为X 2 3 4 5 6 P141351819136(2)由题意知Y 的分布列为Y 1 2 3 Paa +b +cba +b +cca +b +c所以E (Y )=a a +b +c +2b a +b +c +3c a +b +c =53,D (Y )=⎝⎛⎭⎫1-532·a a +b +c +⎝⎛⎭⎫2-532·b a +b +c +⎝⎛⎭⎫3-532·c a +b +c =59. 化简得⎩⎪⎨⎪⎧ 2a -b -4c =0,a +4b -11c =0.解得⎩⎪⎨⎪⎧a =3c ,b =2c .故a ∶b ∶c =3∶2∶1.利用均值、方差进行决策的两个方略(1)当均值不同时,两个随机变量取值的水平可见分晓,可对问题作出判断.(2)若两随机变量均值相同或相差不大,则可通过分析两变量的方差来研究随机变量的离散程度或者稳定程度,进而进行决策.2.有甲、乙两种棉花,从中各抽取等量的样品进行质量检验,结果如下:X 甲 28 29 30 31 32 P 0.1 0.15 0.5 0.15 0.1 X 乙 28 29 30 31 32 P0.130.170.40.170.13其中X 表示纤维长度(单位:mm),根据纤维长度的均值和方差比较两种棉花的质量. 解:由题意,得E (X 甲)=28×0.1+29×0.15+30×0.5+31×0.15+32×0.1=30, E (X 乙)=28×0.13+29×0.17+30×0.4+31×0.17+32×0.13=30.又D (X 甲)=(28-30)2×0.1+(29-30)2×0.15+(30-30)2×0.5+(31-30)2×0.15+(32-30)2×0.1=1.1,D (X 乙)=(28-30)2×0.13+(29-30)2×0.17+(30-30)2×0.4+(31-30)2×0.17+(32-30)2×0.13=1.38,所以E (X 甲)=E (X 乙),D (X 甲)<D (X 乙),故甲种棉花的质量较好.考点三 正态分布|1.(2015·高考湖北卷)设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是( )A .P (Y ≥μ2)≥P (Y ≥μ1)B .P (X ≤σ2)≤P (X ≤σ1)C .对任意正数t ,P (X ≥t )≥P (Y ≥t )D .对任意正数t ,P (X ≤t )≥P (Y ≤t )解析:由正态分布密度曲线的性质可知,X ~N (μ1,σ21),Y ~N (μ2,σ22)的密度曲线分别关于直线x =μ1,x =μ2对称,因此结合题中所给图象可得,μ1<μ2,所以P (Y ≥μ2)<P (Y ≥μ1),故A 错误.又X ~N (μ1,σ21)的密度曲线较Y ~N (μ2,σ22)的密度曲线“瘦高”,所以σ1<σ2,所以P (X ≤σ2)>P (X ≤σ1),B 错误.对任意正数t ,P (X ≤t )≥P (Y ≤t ),P (X ≥t )<P (Y ≥t ),C 错误,D 正确.答案:D2.(2015·高考山东卷)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%.)A .4.56%B .13.59%C .27.18%D .31.74%解析:由已知μ=0,σ=3.所以P (3<ξ<6)=12[P (-6<ξ<6)-P (-3<ξ<3)]=12(95.44%-68.26%)=12×27.18%=13.59%.故选B.答案:B正态总体在某个区间内取值的概率求法(1)熟记P (μ-σ<X ≤μ+σ),P (μ-2σ<X ≤μ+2σ),P (μ-3σ<X ≤μ+3σ)的值; (2)充分利用正态曲线的对称性和曲线与x 轴之间面积为1.①正态曲线关于直线x =μ对称,从而在关于x =μ对称的区间上概率相等. ②P (X <a )=1-P (X ≥a ),P (X <μ-a )=P (X ≥μ+a ).10.离散型随机变量的均值的综合问题的答题模板【典例】 (12分)(2015·高考山东卷)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.(1)写出所有个位数字是5的“三位递增数”; (2)若甲参加活动,求甲得分X 的分布列和数学期望EX .[思路点拨] (1)根据题意明确“三位递增数”的定义,从而得到个位数字是5的“三位递增数”.(2)首先根据题意确定随机变量X 的所有可能取值,然后求出每个取值对应事件的概率,列出分布列,从而求得数学期望.[规范解答] (1)个位数是5的“三位递增数”有 125,135,145,235,245,345.(4分)(2)由题意知,全部“三位递增数”的个数为C 39=84, 随机变量X 的取值为:0,-1,1,因此 P (X =0)=C 38C 39=23,P (X =-1)=C 24C 39=114,P (X =1)=1-114-23=1142.(8分)所以X 的分布列为则EX =0×23+(-1)×114+1×1142=421.(12分)[模板形成]理解题意求相应事件的概率↓由条件写出随机变量的取值↓求出每个取值对应事件的概率↓列出分布列并求均值↓反思解题过程注意规范化[跟踪练习] 据《中国新闻网》报道,全国很多省、市将英语考试作为高考改革的重点,一时间“英语考试该如何改”引起广泛关注.为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了 3 600人就是否应该“取消英语听力”的问题进行调查,调查统计的结果如下表:(1)现用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,则应在持“无所谓”态度的人中抽取多少人?(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人平均分成两组进行深入交流,求第一组中在校学生人数ξ的分布列和数学期望E (ξ).解:(1)∵抽到持“应该保留”态度的人的概率为0.05, ∴120+x3 600=0.05,解得x =60. ∴持“无所谓”态度的人数为3 600-2 100-120-600-60=720. ∴应在持“无所谓”态度的人中抽取720×3603 600=72(人).(2)由(1)知持“应该保留”态度的一共有180人,∴在所抽取的6人中,在校学生有120180×6=4(人),社会人士有60180×6=2(人),于是第一组的在校学生人数ξ的所有可能取值为1,2,3.P (ξ=1)=C 14C 22C 36=15,P (ξ=2)=C 24C 12C 36=35,P (ξ=3)=C 34C 02C 36=15,即ξ的分布列为∴E (ξ)=1×15+2×35+3×15=2.A 组 考点能力演练1.若离散型随机变量X 的分布列为则X 的数学期望E (X )=( ) A .2 B .2或12C.12D .1 解析:因为分布列中概率和为1,所以a 2+a 22=1,即a 2+a -2=0,解得a =-2(舍去)或a =1,所以E (X )=12.故选C.答案:C2.(2016·长春质量监测)已知随机变量ξ服从正态分布N (1,σ2),若P (ξ>2)=0.15,则P (0≤ξ≤1)=( )A .0.85B .0.70C .0.35D .0.15解析:P (0≤ξ≤1)=P (1≤ξ≤2)=0.5-P (ξ>2)=0.35.故选C. 答案:C3.(2016·九江一模)已知随机变量X 服从正态分布N (5,4),且P (X >k )=P (X <k -4),则k 的值为( )A .6B .7C .8D .9解析:∵(k -4)+k 2=5,∴k =7,故选B.答案:B4.在某次数学测试中,学生成绩ξ服从正态分布N (100,σ2)(σ>0),若ξ在(80,120)内的概率为0.8,则ξ在(0,80)内的概率为( )A .0.05B .0.1C .0.15D .0.2解析:根据正态曲线的对称性可知,ξ在(80,100)内的概率为0.4,因为ξ在(0,100)内的概率为0.5,所以ξ在(0,80)内的概率为0.1,故选B.答案:B5.设随机变量X ~B (8,p ),且D (X )=1.28,则概率p 的值是( ) A .0.2 B .0.8 C .0.2或0.8D .0.16解析:由D (X )=8p (1-p )=1.28,∴p =0.2或p =0.8. 答案:C6.一枚质地均匀的正六面体骰子,六个面上分别刻着1点到6点,一次游戏中,甲、乙二人各掷骰子一次,若甲掷得的向上的点数比乙大,则甲掷得的向上的点数的数学期望是________.解析:共有36种可能,其中,甲、乙掷得的向上的点数相等的有6种,甲掷得的向上的点数比乙大的有15种,所以所求期望为6×5+5×4+4×3+3×2+215=143.答案:1437.(2016·贵州七校联考)在我校2015届高三11月月考中理科数学成绩ξ~N (90,σ2)(σ>0),统计结果显示P (60≤ξ≤120)=0.8,假设我校参加此次考试有780人,那么试估计此次考试中,我校成绩高于120分的有________人.解析:因为成绩ξ~N (90,σ2),所以其正态曲线关于直线x =90对称.又P (60≤ξ≤120)=0.8,由对称性知成绩在120分以上的人数约为总人数的12(1-0.8)=0.1,所以估计成绩高于120分的有0.1×780=78(人).答案:788.设随机变量ξ服从正态分布N (3,4),若P (ξ<2a -3)=P (ξ>a +2),则a 的值为________. 解析:因为随机变量ξ服从正态分布N (3,4),P (ξ<2a -3)=P (ξ>a +2),所以2a -3+a +2=6,解得a =73.答案:739.市一中随机抽取部分高一学生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中上学路上所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].(1)求直方图中x 的值;(2)如果上学路上所需时间不少于1小时的学生可申请在学校住宿,若招生1 200名,请估计新生中有多少名学生可以申请住宿;(3)从学校的高一学生中任选4名学生,这4名学生中上学路上所需时间少于20分钟的人数记为X ,求X 的分布列和数学期望.(以直方图中的频率作为概率)解:(1)由直方图可得20x +0.025×20+0.006 5×20+0.003×2×20=1,所以x =0.012 5.(2)新生上学所需时间不少于1小时的频率为0.003×2×20=0.12,因为1 200×0.12=144,所以估计1 200名新生中有144名学生可以申请住宿. (3)X 的可能取值为0,1,2,3,4.由直方图可知,每位学生上学所需时间少于20分钟的概率为14,P (X =0)=⎝⎛⎭⎫344=81256,P (X =1)=C 14×14×⎝⎛⎭⎫343=2764,P (X =2)=C 24×⎝⎛⎭⎫142×⎝⎛⎭⎫342=27128,P (X =3)=C 34×⎝⎛⎭⎫143×34=364,P (X =4)=⎝⎛⎭⎫144=1256.所以X 的分布列为E (X )=0×81256+1×2764+2×27128+3×364+4×1256=1(或E (X )=4×14=1).所以X 的数学期望为1.10.(2016·郑州模拟)某商场每天(开始营业时)以每件150元的价格购入A 商品若干件(A 商品在商场的保鲜时间为10小时,该商场的营业时间也恰好为10小时),并开始以每件300元的价格出售,若前6小时内所购进的商品没有售完,则商场对没卖出的A 商品将以每件100元的价格低价处理完毕(根据经验,4小时内完全能够把A 商品低价处理完毕,且处理完毕后,当天不再购进A 商品).该商场统计了100天A 商品在每天的前6小时内的销售量,制成如下表格(注:视频率为概率).(其中x +y =70)前6小时内的销售量t (单位:件)4 5 6 频数30xy(1)若某天该商场共购入6件该商品,在前6个小时中售出4件.若这些商品被6名不同的顾客购买,现从这6名顾客中随机选2人进行服务回访,则恰好一个是以300元价格购买的顾客,另一个是以100元价格购买的顾客的概率是多少?(2)若商场每天在购进5件A 商品时所获得的平均利润最大,求x 的取值范围. 解:(1)设“恰好一个是以300元价格购买的顾客,另一个是以100元价格购买的顾客”为事件A ,则P (A )=C 14C 12C 26=815.(2)设销售A 商品获得的利润为ξ(单位:元),依题意,视频率为概率,为追求更多的利润,则商场每天购进的A 商品的件数取值可能为4件,5件,6件. 当购进A 商品4件时,E (ξ)=150×4=600,当购进A 商品5件时,E (ξ)=(150×4-50)×0.3+150×5×0.7=690, 当购进A 商品6件时,E (ξ)=(150×4-2×50)×0.3+(150×5-50)×x100+150×6×70-x100=780-2x ,由题意780-2x ≤690,解得x ≥45,又知x ≤100-30=70,所以x 的取值范围为[45,70],x ∈N *.B 组 高考题型专练1.(2015·高考湖南卷)在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (0,1)的密度曲线)的点的个数的估计值为( ) A .2 386 B .2 718 C .3 413D.4 772附:若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.682 6,P(μ-2σ<X≤μ+2σ)=0.954 4.解析:由题意可得,P(0<x≤1)=12P(-1<x≤1)=0.341 3,设落入阴影部分的点的个数为n,则P=S阴影S正方形=0.341 31=n10 000,则n=3 413,选C.答案:C2.(2015·高考福建卷)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定.小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码的次数为X,求X的分布列和数学期望.解:(1)设“当天小王的该银行卡被锁定”的事件为A,则P(A)=56×45×34=12.(2)依题意得,X所有可能的取值是1,2,3.又P(X=1)=16,P(X=2)=56×15=16,P(X=3)=56×45×1=23.所以X的分布列为所以E(X)=1×16+2×16+3×23=52.3.(2015·高考陕西卷)设某校新、老校区之间开车单程所需时间为T,T只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:(1)求T(2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.解:(1)由统计结果可得T的频率分布为以频率估计概率得从而ET=25×0.2+30(2)设T1,T2分别表示往、返所需时间,T1,T2的取值相互独立.且与T的分布列相同.设事件A表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A对应于“刘教授在路途中的时间不超过70分钟”.法一:P(A)=P(T1+T2≤70)=P(T1=25,T2≤45)+P(T1=30,T2≤40)+P(T1=35,T2≤35)+P(T1=40,T2≤30)=0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.法二:P(A)=P(T1+T2>70)=P(T1=35,T2=40)+P(T1=40,T2=35)+P(T1=40,T2=40)=0.4×0.1+0.1×0.4+0.1×0.1=0.09.故P(A)=1-P(A)=0.91.。

天津市高三数学总复习 综合专题 离散型随机变量的期望与方差(学生版)

天津市高三数学总复习 综合专题 离散型随机变量的期望与方差(学生版)

1、开锁次数的数学期望和方差例:有n 把看上去样子相同的钥匙,其中只有一把能把大门上的锁打开。

用它们去试开门上的锁。

设抽取钥匙是相互独立且等可能的。

每把钥匙试开后不能放回。

求试开次数ξ的数学期望和方差。

2、次品个数的期望例:某批数量较大的商品的次品率是%5,从中任意地连续取出10件,ξ为所含次品的个数,求ξE 。

3、根据分布列求期望和方差例:设ξ 是一个离散型随机变量,其分布列如下表,求q 值,并求ξ ξ D E 、。

4、产品中次品数分布列与期望值例:一批产品共100件,其中有10件是次品,为了检验其质量,从中以随机的方式选取5件,求在抽取的这5件产品中次品数分布列与期望值,并说明5件中有3件以上(包括3件)为次品的概率。

(精确到0.001)5、评定两保护区的管理水平例:甲、乙两个野生动物保护区有相同的自然环境,且野生动物的种类和数量也大致相等。

而两个保护区内每个季度发现违反保护条例的事件次数的分布列分别为:甲保护区: 乙保护区:试评定这两个保护区的管理水平。

6、射击练习中耗用子弹数的分布列、期望及方差 例:某射手进行射击练习,每射击5发子弹算一组,一旦命中就停止射击,并进入下一组的练习,否则一直打完5发子弹后才能进入下一组练习,若该射手在某组练习中射击命中一次,并且已知他射击一次的命中率为0.8,求在这一组练习中耗用子弹数ξ 的分布列,并求出ξ 的期望ξ E 与方差ξ D 。

(保留两位小数)7、准备礼品的个数例:某寻呼台共有客户3000人,若寻呼台准备了100份小礼品,邀请客户在指定时间来领取。

假设任一客户去领奖的概率为%4。

问:寻呼台能否向每一位顾客都发出奖邀请?若能使每一位领奖人都得到礼品,寻呼台至少应准备多少礼品?。

年高考第一轮复习数学离散型随机变量的期望值和方差

年高考第一轮复习数学离散型随机变量的期望值和方差

年高考第一轮复习数学离散型随机变量的期望值和方差Last revised by LE LE in 2021离散型随机变量的期望值和方差●知识梳理1.期望:若离散型随机变量ξ,当ξ=x i 的概率为P (ξ=x i )=P i (i =1,2,…,n ,…),则称E ξ=∑x i p i 为ξ的数学期望,反映了ξ的平均值.2.方差:称D ξ=∑(x i -E ξ)2p i 为随机变量ξ的均方差,简称方差. D 叫标准差,反映了ξ的离散程度.3.性质:(1)E (a ξ+b )=aE ξ+b ,D (a ξ+b )=a 2D ξ(a 、b 为常数). (2)若ξ~B (n ,p ),则E ξ=np ,D ξ=npq (q =1-p ). ●点击双基1.设投掷1颗骰子的点数为ξ,则ξ=,D ξ=ξ=,D ξ=1235 ξ=,D ξ=ξ=,D ξ=1635 解析:ξ可以取1,2,3,4,5,6.P (ξ=1)=P (ξ=2)=P (ξ=3)=P (ξ=4)=P (ξ=5)=P (ξ=6)=61, ∴E ξ=1×61+2×61+3×61+4×61+5×61+6×61=,D ξ=[(1-)2+(2-)2+(3-)2+(4-)2+(5-)2+(6-)2]×61=65.17=1235. 答案:B2.设导弹发射的事故率为,若发射10次,其出事故的次数为ξ,则下列结论正确的是ξ= ξ=(ξ=k )=·-k(ξ=k )=C k10··-k解析:ξ~B (n ,p ),E ξ=10×=.答案:A3.已知ξ~B (n ,p ),且E ξ=7,D ξ=6,则p 等于 A.71 B.61C.51D.41解析:E ξ=np =7,D ξ=np (1-p )=6,所以p =71.答案:A4.一牧场有10头牛,因误食含有病毒的饲料而被感染,已知该病的发病率为.设发病的牛的头数为ξ,则D ξ等于解析:D ξ=10××=. 答案:C5.有两台自动包装机甲与乙,包装重量分别为随机变量ξ1、ξ2,已知E ξ1=E ξ2,D ξ1>D ξ2,则自动包装机________的质量较好.解析:E ξ1=E ξ2说明甲、乙两机包装的重量的平均水平一样.D ξ1>D ξ2说明甲机包装重量的差别大,不稳定.∴乙机质量好.答案:乙 ●典例剖析【例1】 设ξ是一个离散型随机变量,其分布列如下表,试求E ξ、D ξ.ξ -10 1P21 1-2qq 2剖析:应先按分布列的性质,求出q 的值后,再计算出E ξ、D ξ.解:因为随机变量的概率非负且随机变量取遍所有可能值时相应的概率之和等于1,所以⎪⎪⎩⎪⎪⎨⎧≤≤-≤=+-+,1,1210,1212122q p q q 解得q =1-22.于是,ξ的分布列为ξ -11P21 2-123-2 所以E ξ=(-1)×21+0×(2-1)+1×(23-2)=1-2,D ξ=[-1-(1-2)]2×21+(1-2)2×(2-1)+[1-(1-2)]2×(23-2)=2-1. 评述:解答本题时,应防止机械地套用期望和方差的计算公式,出现以下误解:E ξ=(-1)×21+0×(1-2q )+1×q 2=q 2-21.拓展提高既要会由分布列求E ξ、D ξ,也要会由E ξ、D ξ求分布列,进行逆向思维.如:若ξ是离散型随机变量,P (ξ=x 1)=53,P (ξ=x 2)=52,且x 1<x 2,又知E ξ=57,D ξ=256.求ξ的分布列. 解:依题意ξ只取2个值x 1与x 2,于是有E ξ=53x 1+52x 2=57, D ξ=53x 12+52x 22-E ξ2=256.从而得方程组⎪⎩⎪⎨⎧=+=+.1123,723222121x x x x解之得⎩⎨⎧==2,121x x 或⎪⎪⎩⎪⎪⎨⎧==.54,5921x x而x 1<x 2,∴x 1=1,x 2=2.ξ 12P53 52 需交纳保费a 元,被保险人意外死亡则保险公司赔付3万元,出现非意外死亡则赔付1万元.经统计此年龄段一年内意外死亡的概率是p 1,非意外死亡的概率为p 2,则a 需满足什么条件,保险公司才可能盈利剖析:要使保险公司能盈利,需盈利数ξ的期望值大于0,故需求E ξ. ξ a a -30000a -10000P1-p 1-p 2p 1p 21212110000p 2.要盈利,至少需使ξ的数学期望大于零,故a >30000p 1+10000p 2. 评述:离散型随机变量的期望表征了随机变量取值的平均值. 思考讨论本题中D ξ有什么实际意义【例3】 把4个球随机地投入4个盒子中去,设ξ表示空盒子的个数,求E ξ、D ξ.剖析:每个球投入到每个盒子的可能性是相等的.总的投球方法数为44,空盒子的个数可能为0个,此时投球方法数为A 44=4!,∴P (ξ=0)=44!4=646;空盒子的个数为1时,此时投球方法数为C 14C 24A 33,∴P (ξ=1)=6436. 同样可分析P (ξ=2),P (ξ=3). 解:ξ的所有可能取值为0,1,2,3.P (ξ=0)=4444A =646,P (ξ=1)=43324144A C C =6436,P (ξ=2)=422242424244A C C C C +=6421,P (ξ=3)=4144C =641. ξ123P6466436 6421 641 ∴E ξ=6481,D ξ=2641695. 评述:本题的关键是正确理解ξ的意义,写出ξ的分布列. 特别提示求投球的方法数时,要把每个球看成不一样的.ξ=2时,此时有两种情况:①有2个空盒子,每个盒子投2个球;②1个盒子投3个球,另1个盒子投1个球.●闯关训练 夯实基础1.设服从二项分布B (n ,p )的随机变量ξ的期望和方差分别是与,则二项分布的参数n 、p 的值为=4,p = =6,p = =8,p = =24,p = 解析:由E ξ==np ,D ξ==np (1-p ),可得1-p =4.244.1=,p =,n =4.04.2=6. 答案:B2.一射手对靶射击,直到第一次命中为止每次命中的概率为,现有4颗子弹,命中后的剩余子弹数目ξ的期望为解析:ξ=0,1,2,3,此时P (ξ=0)=,P (ξ=1)=×,P (ξ=2)=×,P (ξ=3)=,E ξ=.答案:C3.设一次试验成功的概率为p ,进行100次独立重复试验,当p =________时,成功次数的标准差的值最大,其最大值为________.解析:D ξ=npq ≤n (2q p )2=4n ,等号在p =q =21时成立,此时,D ξ=25,σξ=5.答案: 21 54.甲从学校乘车回家,途中有3个交通岗,假设在各交通岗遇红灯的事件是相互独立的,并且概率都是52,则甲回家途中遇红灯次数的期望为________.解析:设甲在途中遇红灯次数为ξ, 则ξ~B (3,52), 所以E ξ=3×52=.答案:5.一次单元测试由50个选择题构成,每个选择题有4个选项,其中恰有1个是正确答案.每题选择正确得2分,不选或错选得0分,满分是100分.学生甲选对任一题的概率为,求他在这次测试中成绩的期望和标准差.解:设学生甲答对题数为ξ,成绩为η,则ξ~B (50,),η=2ξ,故成绩的期望为E η=E (2ξ)=2E ξ=2×50×=80(分);成绩的标准差为ση=ηD =)2(ξD =ξD 4=22.08.050⨯⨯=42≈(分). 6.袋中有4只红球,3只黑球,今从袋中随机取出4只球.设取到一只红球得2分,取到一只黑球得1分,试求得分ξ的概率分布和数学期望.解:直接考虑得分的话,情况较复杂,可以考虑取出的4只球颜色的分布情况:4红得8分,3红1黑得7分,2红2黑得6分,1红3黑得5分,故P (ξ=5)=473314C C C =354, P (ξ=6)=472324C C C =3518,P (ξ=7)=471334C C C =3512, P (ξ=8)=470344C C C =351,E ξ=5×354+6×3518+7×3512+8×351=35220=744. 培养能力7.一台设备由三大部件组成,在设备运转中,各部件需要调整的概率相应为,和.假设各部件的状态相互独立,以ξ表示同时需要调整的部件数,试求ξ的数学期望E ξ和方差D ξ.解:设A i ={部件i 需要调整}(i =1,2,3),则P (A 1)=,P (A 2)=,P (A 3)=.由题意,ξ有四个可能值0,1,2,3.由于A 1,A 2,A 3相互独立,可见P (ξ=0)=P (1A 2A 3A )=××=;P (ξ=1)=P (A 12A 3A )+P (1A A 23A )+P (1A 2A A 3)=××+××+××=; P (ξ=2)=P (A 1A 23A )+P (A 12A A 3)+P (1A A 2A 3)=××+××+××=; P (ξ=3)=P (A 1A 2A 3)=××=. ∴E ξ=1×+2×+3×=,D ξ=E ξ2-(E ξ)2=1×+4×+9×-=-=.8.证明:事件在一次实验中发生的次数的方差不超过41.证明:设事件在一次试验中发生的次数为ξ,ξ的可能取值为0或1,又设事件在一次试验中发生的概率为p ,则P (ξ=0)=1-p ,P (ξ=1)=p ,E ξ=0×(1-p )+1×p =p ,D ξ=(1-p )·(0-p )2+p (1-p )2=p (1-p )≤(21p p -+)2=41. 所以事件在一次试验中发生的次数的方差不超过41. 探究创新9.将数字1,2,3,4任意排成一列,如果数字k 恰好出现在第k 个位置上,则称之为一个巧合,求巧合数的数学期望.解:设ξ为巧合数,则P (ξ=0)=44A 9=249,P (ξ=1)=4414A 2C ⨯=31,P (ξ=2)=4424A C =41,P (ξ=3)=0,P (ξ=4)=4444A C =241,所以E ξ=0×249+1×31+2×41+3×0+4×241=1. 所以巧合数的期望为1.●思悟小结1.离散型随机变量的期望和方差都是随机变量的重要的特征数,期望反映了随机变量的平均值,方差反映了随机变量取值的稳定与波动、集中与离散的程度.2.求离散型随机变量的期望与方差,首先应明确随机变量的分布列,若分布列中的概率值是待定常数,应先求出这些待定常数后,再求其期望与方差.3.离散型随机变量的期望和方差的计算公式与运算性质:E ξ=∑∞=1i x i p i ,D ξ=∑∞=1i (x i -E ξ)2p i ,E (a ξ+b )=aE ξ+b ,D (a ξ+b )=a 2Dξ.4.二项分布的期望与方差:若ξ~B (n ,p ),则E ξ=np ,D ξ=np (1-p ).5.对求离散型随机变量的期望和方差的应用问题,首先应仔细地分析题意,当概率分布不是一些熟知的类型时,应全面地剖析各个随机变量所包含的各种事件,并准确判断各事件的相互关系,从而求出各随机变量相应的概率.●教师下载中心 教学点睛1.期望是算术平均值概念的推广,是概率意义下的平均.E ξ由ξ的分布列唯一确定.ξ表示ξ对E ξ的平均偏离程度,D ξ越大表示平均偏离程度越大,说明ξ的取值越分散.3.要培养学生运用期望与方差的意义解决实际问题的能力. 拓展题例【例1】 若随机变量A 在一次试验中发生的概率为p (0<p <1),用随机变量ξ表示A 在1次试验中发生的次数.(1)求方差D ξ的最大值;(2)求ξξE D 12-的最大值. 剖析:要求D ξ、ξξE D 12-的最大值,需求D ξ、E ξ关于p 的函数式,故需先求ξ的分布列.解:随机变量ξ的所有可能取值为0,1,并且有P (ξ=1)=p ,P (ξ=0)=1-p ,从而E ξ=0×(1-p )+1×p =p ,D ξ=(0-p )2×(1-p )+(1-p )2×p =p -p 2.(1)D ξ=p -p 2=-(p -21)2+41, ∵0<p <1,∴当p =21时,D ξ取得最大值为41.(2)ξξE D 12-=p p p 1)(22--=2-(2p +p1),∵0<p <1,∴2p +p1≥22. 当且仅当2p =p1,即p =22时,ξξE D 12-取得最大值2-22.评述:在知识的交汇点处出题是高考的发展趋势,应引起重视.【例2】 袋中装有一些大小相同的球,其中有号数为1的球1个,号数为2的球2个,号数为3的球3个,…,号数为n 的球n 个.从袋中任取一球,其号数作为随机变量ξ,求ξ的概率分布和期望.E ξ=1×)1(n n ++2×)1(n n ++3×)1(+n n +…+n ×)1(+n n =)1(2n n +(12+22+32+…+n 2)=312+n .。

随机变量的期望与方差知识点

随机变量的期望与方差知识点

随机变量的期望与方差知识点在概率论和统计学中,随机变量的期望和方差是两个非常重要的概念,它们帮助我们理解和描述随机现象的特征。

让我们一起来深入了解一下这两个关键的知识点。

首先,什么是随机变量?简单来说,随机变量就是对随机试验结果的数值描述。

比如抛硬币,正面记为 1,反面记为 0,那么抛硬币的结果就是一个随机变量。

期望,也被称为均值,是随机变量取值的平均水平。

它反映了随机变量在大量重复试验中的平均结果。

计算期望的公式会根据随机变量的类型有所不同。

对于离散型随机变量,假设其可能取值为\(x_1, x_2, \cdots,x_n\),对应的概率分别为\(p_1, p_2, \cdots, p_n\),那么期望\(E(X)\)就等于\(x_1p_1 + x_2p_2 +\cdots + x_np_n\)。

举个例子,一个骰子,掷出1 点的概率是\(\frac{1}{6}\),掷出 2 点的概率也是\(\frac{1}{6}\),以此类推。

那么这个骰子掷出点数的期望就是:\\begin{align}E(X)&=1\times\frac{1}{6}+2\times\frac{1}{6}+3\times\frac{1}{6}+4\times\frac{1}{6}+5\times\frac{1}{6}+6\times\frac{1}{6}\\&=\frac{1+2+3+4+5+6}{6}\\&=\frac{21}{6}\\&=35\end{align}\这意味着,如果我们多次掷这个骰子,平均每次得到的点数大约是35 。

对于连续型随机变量,假设其概率密度函数为\(f(x)\),那么期望\(E(X)\)就是\(\int_{\infty}^{\infty} x f(x) dx\)。

期望有很多重要的性质。

比如,常数\(c\)的期望就是\(c\)本身;如果有两个随机变量\(X\)和\(Y\),那么\(E(X +Y) = E(X) + E(Y)\)。

2013届高考一轮复习(理数,浙江)-第67讲 随机变量的期望与方差

2013届高考一轮复习(理数,浙江)-第67讲 随机变量的期望与方差

Dη=0.1×(100-125)2 +0.2×(115-125)2 +0.4×(125 -125)2+0.1×(130-125)2+0.2×(145-125)2=165. 由于 Eξ=Eη,而 Dξ<Dη, 故甲建材厂的材料稳定性较好.
备选例题
如图, 一个小球从 M 处投入, 通过管道自上而下落到 A 或 B 或 C.已知小球从每个叉口落入左右两个管道的可能性是相等 的. 某商家按上述投球方式进行促销活动, 若投入的小球落到 A, B,C,则分别设为 1,2,3 等奖.
【解析】依题设 X 的可能取值为 0,1,2,且 X 服从超几何 分布,其分布列如下表:
C2 1 2 其中 P(X=0)=C2=6, 4 C1C1 4 2 2 P(X=1)= C2 =6, 4 C2 1 2 P(X=2)=C2=6. 4 1 4 1 因此 EX=0×6+1×6+2×6=1. 1 4 1 1 2 2 DX=(0-1) ×6+(1-1) ×6+(2-1) ×6=3.
【解析】(1)由题意得 ξ 的分布列为:
3 3 7 3 则 Eξ=16×50%+8×70%+16×90%=4.
3 3 9 (2)由(1)可知,获得 1 等奖或 2 等奖的概率为16+8=16. 9 由题意得 η~(3,16), 则 P(η=2)=C2( 3 9 2 9 1701 16) (1-16)=4096.
【解析】X 的可能取值为 0,1,其分布列为
所以 EX=0×0.2+1×0.8=0.8,故选 B.
2.已知随机变量 X~B(n,p),若 EX=8,DX=1.6,则 n 与 p 的值分别为( A.100 和 0.08 C.10 和 0.2 ) B.20 和 0.4 D.10 和 0.8
【解析】因为 X~B(n,p),

随机变量的期望与方差知识点

随机变量的期望与方差知识点

随机变量的期望与方差知识点统计学中的随机变量是指在一次试验中可以取得不同数值的变量。

对于随机变量,我们常常关注它的期望与方差,这些是描述随机变量性质的重要指标。

本文将介绍随机变量的期望与方差的概念、计算方法以及它们的实际含义。

一、随机变量的期望随机变量的期望是一个数学期望值,用来衡量随机变量的平均取值水平。

对于离散型随机变量X,其期望的计算公式为:E(X) = Σ[x * P(X=x)]其中Σ 表示求和,x 表示随机变量X可以取到的值,P(X=x) 表示随机变量X取到值x的概率。

对于连续型随机变量X,其期望的计算公式为:E(X) = ∫ [x * f(x)]dx其中∫ 表示积分,x 表示随机变量X可以取到的值,f(x) 表示X的密度函数。

期望的计算方法可以帮助我们了解随机变量的平均取值水平。

例如,在某个游戏中,随机变量X表示一次投掷骰子的结果。

假设骰子是均匀的,那么它的每个面出现的概率都是1/6。

我们可以通过计算期望来了解投掷骰子的平均结果是多少。

二、随机变量的方差随机变量的方差是衡量随机变量取值的离散程度,它描述了随机变量偏离期望的程度。

方差的定义如下:Var(X) = E[(X-E(X))^2]其中 E(X) 表示随机变量X的期望。

方差的计算方法可以帮助我们了解随机变量取值的离散程度。

对于同样表示投掷骰子结果的随机变量X,假设我们想知道投掷10次骰子的结果的离散程度。

我们可以通过计算方差来了解。

三、随机变量期望与方差的实际含义随机变量的期望和方差都是对随机变量的性质进行描述的重要指标。

它们不仅有着严格的数学定义,也有着实际的含义。

期望是描述随机变量的平均取值水平,它可以用来预测随机变量的未来表现。

例如,在股票市场中,可以用过去的股价数据计算股票未来收益的期望,帮助投资者做出投资决策。

方差是描述随机变量取值离散程度的指标,它可以用来评估随机变量的风险。

例如,在金融领域中,可以利用方差来衡量投资组合的风险。

概率论中的期望与方差公式整理方法

概率论中的期望与方差公式整理方法

概率论中的期望与方差公式整理方法在概率论中,期望和方差是两个重要的概念。

它们可以帮助我们描述一个随机变量的分布特征。

在本文中,我们将着重介绍期望和方差的公式整理方法。

一、期望的公式整理方法期望是对随机变量取值的加权平均,它用来表示一个随机变量的平均取值大小。

在概率论中,我们通常用E(X)来表示随机变量X的期望。

对于离散型随机变量,其期望的计算公式为:E(X) = Σ(x * P(X = x))其中,x代表随机变量X的取值,P(X = x)表示X取值为x的概率。

对于连续型随机变量,其期望的计算公式为:E(X) = ∫(x * f(x)) dx其中,f(x)表示X的概率密度函数。

在实际计算中,如果随机变量X服从某种分布,我们可以利用该分布的概率密度函数或者概率质量函数来计算期望。

二、方差的公式整理方法方差用来度量随机变量的取值偏离其期望值的程度。

方差越大,随机变量的取值越分散;方差越小,随机变量的取值越集中。

在概率论中,我们通常用Var(X)或σ^2来表示随机变量X的方差。

对于离散型随机变量,其方差的计算公式为:Var(X) = Σ((x-E(X))^2 * P(X = x))对于连续型随机变量,其方差的计算公式为:Var(X) = ∫((x-E(X))^2 * f(x)) dx方差的计算需要先求出随机变量的期望值,然后再对随机变量取值与期望值之差的平方进行加权平均。

方差的单位为随机变量的单位的平方。

三、应用举例为了更好地理解期望和方差的公式整理方法,我们可以通过一个简单的例子来说明。

假设有一个骰子,我们想要计算这个骰子的期望和方差。

首先,我们知道这个骰子是均匀的,即每个面出现的概率相等。

对于骰子的期望,我们可以计算每个面出现的概率乘以对应的点数,然后将所有结果相加,即:E(X) = 1/6 * 1 + 1/6 * 2 + 1/6 * 3 + 1/6 * 4 + 1/6 * 5 + 1/6 * 6 = 3.5对于骰子的方差,我们首先需要计算每个点数与期望之差的平方,然后再乘以每个面出现的概率,最后将所有结果相加,即:Var(X) = 1/6 * (1-3.5)^2 + 1/6 * (2-3.5)^2 + 1/6 * (3-3.5)^2 + 1/6 * (4-3.5)^2 + 1/6 * (5-3.5)^2 + 1/6 * (6-3.5)^2 ≈ 2.92通过这个例子,我们可以看出,期望和方差通过加权平均的方法给出了随机变量的平均取值和取值的离散程度。

连续型随机变量的数学期望与方差

连续型随机变量的数学期望与方差

η
b0
P p(b0 )x0
b1
p (b1 )x1
bn1
p(bn 1 )xn 1
n
E 与E 很接近,E = bi p(bi )xi
i 1
n
nn ,maxxi0 lim 如果 bi p(bi )xi的极限存在 n
i 1
bi p(bi )xi
xp(x)dx
E
i1
8
1、连续型随机变量的数学期望的定义
2、标准差的定义
D( )
11
3、方差的常用的计算公式
(1)D(
)
E[
E(
)]2
[x
E(
)]2
p( x)dx
根据数学期望(6)E( f ( ))
f (x)p(x)dx
(2)方差的简便计算公式
D( )=E( 2) E(2 )
x2 p(x)dx
x p( x)dx
12
3、方差的常用的计算公式
(2)方差的简便计算公式
D( )=E( 2) E(2 )
5
4、方差的性质
(1)D(c) 0
(3)D( b) D( )
(2)D(k ) k 2D( ) (4)D(k b) k 2D( )
6
二、新课
(一)连续型随机变量ξ取值的数学期望
设连续型的概率密度函数y p(x)
在x轴上取很密的分点: y
19
4、方差的性质 设 k ,b,c均为常数,则有
(1)D(c) 0
(2)D(k ) k 2D( ) (3)D( b) D( )
(4)D(k b) k 2D( )
20
下页
五、作业
• 课本第90页 第5题

高考数学复习考点知识与结论专题讲解61 随机变量分布列、期望与方差

高考数学复习考点知识与结论专题讲解61 随机变量分布列、期望与方差

高考数学复习考点知识与结论专题讲解 第61讲 随机变量分布列随机变量分布列、、期望与方差【知识通关】通关一、离散型随机变量分布离散型随机变量分布列列1. 离散型随机变量的分布列的表示一般地,若离散型随机变量X 可能取的不同值为12,,,n x x x ,X 取每一个值()12,,,i x n 的概率12,i i P X x p i n === (),,,则下表称为随机变量X 的概率分布列,简称为x 的分布列.X 1x 2x i x n x P1p2pi pn p为了简单起见,也可以用等式12,i i P X x p i n === (),,,表示X 的分布列. 2. 离散型随机变量的分布列的性质根据概率的性质,离散型随机变量的分布列具有如下性质: (1)012,,,i P i n ≥= ,; (2)121i n p p p p +++++= ;(3)1i j i i j Px x x P P P +≤≤=+++ ()(*,i j i j N <∈且). 通关二通关二、、离散型随机变量的均值与方差1. 期望与方差的表示一般地,若离散型随水变量X 的概率分布列为:则称1122i i n n E X x P x P x p x p =+++++ ()为随机变量X 的均值或数学期望,它反映了高散型随机变量取值的平均水平;称()21ni i i D x x E X p = =− ∑()为随机变量X 的方差,它刻画了随机变量X与其均值E (Xx 的标准差. 2. 均值的性质若y aX b =+,其中a b ,是常数,X 是随机变量,则均值的性质:(1)Ek k =()(k 为常效); (2)EaX b aB X b +=+()(); (3)1212E X X E X E X +=+()()(); (4)若12,X X 相互独立,则1212·E X X E X E X ⋅=()()(). 3. 方差的性质(1)0Dk =()(k 为常数); (2)2D aX b a D X +=()();(3)22[]D X E X E X =−()()().X 1x 2x i x n x P1p2pi pn p通关三通关三、、正态分布曲缆及特点我们把画数224()(),(,)k n nn x x ϕ−−−==−∞+∞(其中u 是样本均值,σ是样本标准差)的图像称为正态分布密度曲线,简称正态曲线.(1)曲线位手x 轴上方,与x 轴不相交; (2)曲线是单峰的,它关于直线x µ=对称;(3)曲线在x µ=(4)曲线与x 轴之间的面积为1;(5)当σ一定时,曲线的位置由u 确定,曲线随着u 的变化而沿x 轴平移;(6)当u 一定时,曲线的形状由σ确定;σ越小,曲线越“瘦”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散. 【结论第讲】结论一结论一、、求解离散型随机变量X 的分布到的步的分布到的步骤骤1. 理解X 的意义,写出X 可能取的全部值;2. 求X 取每个值的概率;3. 写出X 的分布列;4. 根据分布列的性质对结果进行检验.【例1】甲、乙两人轮流投篮,每人每次投一球,约定甲先投且先投中者获胜,一直到有人获胜或每人都投球3次时投篮结束. 设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响,(1)求甲获胜的概率;(2)求投篮结束时甲的投球次数ξ的分布列.【解析】设,k k A B 分别表示“甲、乙在第k 次投篮投中”,则()()()1112233,,,,k k P A P B k ===.(1)记“甲获胜”为事件C ,由互斥事件与相互独立事件的概率计算公式知1112112231122111()()()()()()()()()()()P C P A P A B A P A B A B A P A P A P B P A P A P B P A =++=++32221211211111133323323392727()()()().P B P A +×+=++==××× (2)ξ的所有可能取值为1,2,3且111121213323()()()P P A P A B ξ×==+=+=;1222221112921121232332()()()(( =)P P A B A P A B A B ξ+==+=×××11223()()P P A B A B ξ==22211329()(×==, 综上ξ的分布列为:【变式】在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰. 已知某选手能正确回答第一、二、三、四轮问题的概率分别为2,4,2,且各轮问题能否正确回答互不影响.(1)求该选手进人第三轮才被淘汰的概率; (2)求该选手至多进人第三轮考核的概率;(3)该选手在选拔过程中回答过的问题的个数记为X ,求随机变量X 的分布列.【解析】设事件i A (1234i =,,,)表示“该选手能正确回答第i 轮问题”,由已知234154316543(),(),(),()P A P A P A P A ==== (1)设事件B 表示“该选手进入第三轮被淘汰”,则123123543116546()()()()()()P B P A A A P A P A P A ===××−= (2)设事件C 表示“该选手至多进入第三轮考核”,则112123112123P ( C ) = P ( ++ )=P ( )+P ()+P ( )A A A A A A A A A A A A 1515431665654()××=++×−12=(3)x 的可能取值为1,2,3,4.1231211541541213665665()();()()();()(P X P A P X P A A P X A P A A =======×−===×12331553114466442(;()()P X P A A A −===×=××=所以,x 的分布列为:结论二结论二、、期望与方差的一般计算步骤1. 理解X 的意义,写出X 的所有可能取的值;2. 求X 取各个值的概率,写出分布列;3. 根据分布列,正确运用期望与方差的定义或公式进行计算.【例2】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完. 根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关. 如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得到下面的频数分布表:最高气温 [10,15)[15,20)[20,25)[25,30)[30, 35) [35,40)天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率,(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?【解析】(1)由题意知X 的可能取值为200,300,500,P (X=200)=2160290.+=36257430004500049090().,().P X P X ++====== 所以X 的分布列为:X 200 300 500 P0. 20. 40. 4(2)由题意知这种酸奶一天的需求量至多为500瓶,至少为200瓶,所以只需考虑200≤n ≤500. 当300≤n ≤500时,若最高气温不低于25,则Y=6n -4n =2n ;若最高气温位于区间[20,25),则Y=6×300+2(n -300)-4n =1200-2n ; 若最高气温低于20,则Y=6×200+2(n -200)-4n =800-2n ; 所以F(Y )=2n ×0. 4+(1200-2n )×0. 4+(800-2n )×0. 2=640-0. 4n . 当200≤n ≤300时,若最高气温不低于20,则Y=6n-4n=2n ; 若最高气温低于20,则Y=6×200+2(m -200)-4n =800-2n ;所以E(Y )=2n×(0. 4+0. 4)+(800-2m )×0. 2=160+1. 2n .综上,当n=300时,Y 的数学期望达到最大值,最大值为520元【变式】为加强大学生实践、创新能力和团队精神的培养,促进高等教育教学改革,教育部门主办了全国大学生智能汽车竞赛,竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签的方式决定出场顺序,通过预赛,选拔出甲、乙等五支队伍参加决赛.(1)求决赛中甲乙两支队伍恰好排在前两位的概率;(2)若决赛中甲队和乙队之间间隔的队伍数记为X ,求X 的分布列和数学期望.【解析】(1)设事件A 为“甲乙排在前两位”,则232355110()()A A n A P A n Q A ⋅===(). (2)X 的可能取值为0,1,2,3,则232323235555432301510();(),A A A A P X P X A A ⋅⋅⋅⋅======23332323555211123510();()A A A B P X P X A A ⋅⋅⋅⋅======. 所以x 的分布列为:结论三结论三、、二项分布一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,则事件A 恰好发生次的概率为1k k n k n P X k C p p −==−()()",k=0,1,2…,n ,则称随机变量X 服从二项分布,记作x ~B (n ,p ).X1nP001nn C p p −() 1111n n C p p −−()1n n n C p p −()要点诠释:1E X np D X np p ==−(),()(). 【例】3为保护水资源,宣传节约用水,某校4. 名志愿者准备去附近的甲、乙、两三个公园进行宣传活动,每名志愿者都可以从三个公园中随机选择一个,且每人的选择相互独立.(1)求4人恰好选择了同一个公园的概率;(2)设选择甲公园的志愿者的人数为X ,试求X 的分布列及期望.【解析】(1)设“4人恰好选择了同一个公园”为事件A. 每名志愿者都有3种选择,4名志愿者的选择共有3’种等可能的情况,事件A 所包含的等可能事件的个数为3,所以431273P A ==(),故4人恰好选择了同一个公园的概率为127(2)设“一名志愿者选择甲公园”为事件C ,则13P C =(). 4人中选择甲公园的人数X 可看作4次独立重复试验中事件C 发生的次数. 因此,随机变量X 服从二项分布X 可取的值为0,1,2,3,4.4141233()()()i i P X i C −==,i=0,1,2,3,4.X 的分布列为:X 的期望为14433()E X np ==×=【变式】一家面包房根据以往某种将日销售量落入各组的频率视为概(1)求在未来连续3天里,有的概率;(2)用X 表示在未来3天里日方差D(X ).【解析】(1)设1A 表示事件“日销件“在未来连续3天里,有连续2天的1000600040002...P A =++()()2000350015..P A P =×==(),((2)X 的可能取值为0,1131061.P X C ==−()()(3333060216..P X C ===()(). 随机变量X 的分布列为:X P往某种面包的销售记录,绘制了日销售量的频率分布直视为概率,并假设每天的销售量相互独立.里,有连续2天的日销售量都不低于100个且另1天的日天里日销售量不低于100个的天数,求随机变量x 的分布日销售量不低于100个”,2A 表示事件“日销售量低于天的日销售量都不低于100个且另1天的日销售量低5006.×=,060601520108....B ×××=).1,2,3,相应的概率为:03010P X C ==−()(222130602882061060432.....P X C ===−=);()()()0 1 2 30064. 0288. 0432. 0216.分布直方图,如图所示. 天的日销售量低于50个的分布列、期望E(X )及量低于50个”,B 表示事售量低于50个”,因此360064..=); ;因为X~B (3,0. 6),所以期望30618..E X np ==×=(),方1306106072...D X p p =−=××−=()()().结论四结论四、、超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有x 件次品,则012,,,,,,k n kN NMM nC P X k k m C C −−==== ()其中min{,},m M n =且*,,,,n N M N n M N N ≤≤∈. 要点诠释:21()()(),()()nM nM N M N n E X D X N N N −−==− 【例】4某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4. 现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率;(2)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.【解析】(1)由已知得11234321013C C C P C ⋅+==,所以事件A 发生的概率为13. (2)随机变量X 的所有可能取值为0,1,2.222111111334333434222101010474012151515 ();();()C C C C C C C C C P X P X P X C C C +++========= 所以,随机变量x 的分布列为:随机变量X 的数学期望4740121151515()E X =×+×+×=.【变式】为了提高我市的教育教学水平,市教育局打算从红塔区某学校推荐的10名教师中任选3人去参加支教活动. 这10名教师中,语文教师3人,数学教师4人,英语教师3人.(1)求选出的语文教师人数多于数学教师人数的概率; (2)求选出的3人中,语文教师人数X 的分布列和数学期望.【解析】设事件i A 为“3人中有i 名语文教师”,j B 为“3人中有j 名数学教师”,事件A 为“语文教师人数多于数学教师人数”,所以3213412213333310021333331010101099121120C C C C C C C P A P A B P A B P A B P A C C C C ++++++==+++=()()(₂)()()31120=. (2)语文教师人数X 可取的值为0,1,2,3,依题意可得x~H (10,3,3),所以2217713331301310031211356301212020120,(),(),C C C P C C C C X P X P X C =========()3331031201()C P X C ===. 所以X 的分布列为:所以356321*********12012012010()E X =×+×+×+×=.结论五结论五、、利用期望与方差进行决策若我们希望实际的平均水平较理想时,一般先求随机变量12,ξξ的期望,若12()()E E ξξ=时,则用12(),()D D ξξ来比较这两个随机变量的偏离程度. 若1()E ξ与2()E ξ比较接近,且期望较大者的方差校小,显然该变量更好;若1()E ξ与2()E ξ比较接近且方差相差不大时,应根据不同选择给出不同的结论,是选择较理想的平均水平还是选择较稳定.【例5】改革开放以来,人们的支付方式发生了巨大转变. 近年来,移动支付已成为主要支付方式之一为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中,A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下;支付方式支付金额(元)(0,1000](1000,2000]大于2000 仅使用A |18人 9人 3人 仅使用B10人14人1人(1)从全校学生中随机抽取1人,估计该学生上个月A ,B 两种支付方式都使用的概率; (2)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化. 现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元. 根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.【解析】(1)由题意得:从全校所有学生中随机抽取的100人中,A ,B 两种支付方式都不使用的有5人,仅使用A 的有30人,仅使用B 的有25人,所以A ,B 两种支付方式都使用的人数有:100-5-30-25=40. 从全校学生中随机抽取1人,估计该学生上个月A ,B 两种支付方式都使用的概率4004100.p ==.(2)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,则X 的可能取值为0,1,2. 样本仅使用A 的学生有30人,其中支付金额在(0,1000]的有l8人,超过1000元的有12人,样本仅使用B 的学生有25人,其中支付金额在(0. 1000]的有10人,超过1000元的有15人.所以1810180618151239013013025750253025307525;();P X P X ××+========()121518023025750256()P X ====×. 所以x 的分布列为:数学期望61360121252525()E X =×+×+×=.(3)不能认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化,理由如下:样本中仅使用A 的学生有30人,其中27人月支付金额不大于2000元,有3人月支付金额大于2000元,随机抽查3人,发现他们本月的支付金额都大于2000元的概率为3333014060C p C ==,虽然概率较小,但发生的可能性为14060,故不能认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化.。

概率论笔记(四)概率分布的下期望和方差的公式总结

概率论笔记(四)概率分布的下期望和方差的公式总结

概率论笔记(四)概率分布的下期望和方差的公式总结一:期望引入:1.1离散型随机变量的期望注:其实是在等概率的基础上引申来的,等概率下的权重都是1/N。

1.2连续型随机变量的期望注意:因为连续随机变量的一个点的概率是没有意义的,所以我们需要借用密度函数,如所示,这实际上是一个期望积累的过程。

1.3期望的性质注:其中第三个性质,可以把所有的X+Y的各种情况展开,最后得出的结果就是这样的。

二:随机变量函数(复合随机)的数学期望1.理解注:其实就是复合随机变量的期望,对于离散型,其主要是每个值增加了多少倍/减少了多少倍,但是概率不变,所以公式见上面;对于连续性随机变量,其实是一样的,每个点的概率没有变,所以就是变量本身的值发货所能了改变。

三:方差引入的意义:求每次相对于均值的波动:求波动的平方和:定义:注:其实就是对X-E(X)方,求均值其实就是方差,注意这里的均值也是加权平均,所以方差其实就是一种特殊的期望。

3.1离散型随机变量的方差3.2连续性随机变量的方差3.3方差的性质注:3)4)5)等性质可以套入定义中就可以得到,这里不多说;对于独立以及协方差见后;8)的证明如下四:协方差4.1定义注:与上一个变量相比,之前是一个变量移位平方,但这里是两个变量移位相乘。

4.2离散型二维随机变量的协方差4.3连续型二维随机变量的协方差4.4二维随机变量的协方差性质注:了解即可…4.5协方差矩阵五:相关系数所以:独立必不相关,但不相关不一定独立,因为这里的不相关指的是线性不相关,可能会有其他非线性关系,具体例子找到再补充-------。

参考链接:。

高三数学随机变量的期望与方差试题

高三数学随机变量的期望与方差试题

高三数学随机变量的期望与方差试题1.某保险公司新开设了一项保险业务,若在一年内事件E发生,该公司要赔偿a元.设在一年内E发生的概率为p,为使公司收益的期望值等于a的百分之十,公司应要求顾客交保险金为________元.【答案】(0.1+p)a【解析】设保险公司要求顾客交x元保险金,若以ξ表示公司每年的收益额,则ξ是一个随机变量,其分布列为:因此,公司每年收益的期望值为E(ξ)=x(1-p)+(x-a)p=x-ap.为使公司收益的期望值等于a 的百分之十,只需E(ξ)=0.1a,即x-ap=0.1a,解得x=(0.1+p)a.即顾客交的保险金为(0.1+p)a时,可使公司期望获益10%a.2.某游戏的得分为1,2,3,4,5,随机变量表示小白玩游戏的得分.若=4.2,则小白得5分的概率至少为 .【答案】【解析】设=1,2,3,4,5的概率分别为,则由题意有,,对于,当越大时,其值越大,又,因此,所以,解得.【考点】随机变量的均值(数学期望),排序不等式.3.甲、乙两射手在同一条件下进行射击,分布列如下:射手甲击中环数8,9,10的概率分别为0.2,0.6,0.2;射手乙击中环数8,9,10的概率分别为0.4,0.2,0.4.用击中环数的期望与方差比较两名射手的射击水平.【答案】在射击之前,可以预测甲、乙两名射手所得的平均环数很接近,均在9环左右,但甲所得环数较集中,以9环居多,而乙得环数较分散,得8、10环的次数多些.【解析】Eξ1=8×0.2+9×0.6+10×0.2=9,V(ξ1)=(8-9)2×0.2+(9-9)2×0.6+(10-9)2×0.2=0.4;同理有E(ξ2)=9,V(ξ2)=0.8.由上可知,E(ξ1)=E(ξ2),V(ξ1)<V(ξ2).所以,在射击之前,可以预测甲、乙两名射手所得的平均环数很接近,均在9环左右,但甲所得环数较集中,以9环居多,而乙得环数较分散,得8、10环的次数多些.4.某工艺厂开发一种新工艺品,头两天试制中,该厂要求每位师傅每天制作10件,该厂质检部每天从每位师傅制作的10件产品中随机抽取4件进行检查,若发现有次品,则当天该师傅的产品不能通过.已知李师傅第一天、第二天制作的工艺品中分别有2件、1件次品.(1)求两天中李师傅的产品全部通过检查的概率;(2)若厂内对师傅们制作的工艺品采用记分制,两天全不通过检查得0分,通过1天、2天分别得1分、2分,求李师傅在这两天内得分的数学期望.【答案】(1)(2)【解析】(1)设李师傅产品第一天通过检查为事件A;第二天产品通过检查为事件B.则有P(A)==,P(B)==,由事件A、B独立,∴P(AB)=P(A)P(B)=.答:李师傅这两天产品全部通过检查的概率为.(2)记得分为ξ,则ξ的可能值为0,1,2.∵P(ξ=0)=×=;P(ξ=1)=×+×=;P(ξ=2)=×=.∴E(ξ)=0×+1×+2×=.答:李师傅在这两天内得分的数学期望为.5.甲、乙两名射手在一次射击中的得分为两个相互独立的随机变量ξ和η,且ξ、η分布列为ξ123(2)计算ξ、η的期望和方差,并以此分析甲、乙的技术状况.【答案】(1)a=0.3,b=0.4.(2)甲、乙两人技术都不够全面【解析】(1)由离散型随机变量的分布列性质可知a+0.1+0.6=1,即a=0.3,同理0.3+b+0.3=1,b=0.4.(2)E(ξ)=1×0.3+2×0.1+3×0.6=2.3,E(η)=1×0.3+2×0.4+3×0.3=2.V(ξ)=0.81,V(η)=0.6.由计算结果E(ξ)>E(η),说明在一次射击中甲的平均得分比乙高,但V(ξ)>V(η),说明甲得分的稳定性不如乙,因此甲、乙两人技术都不够全面.6.某校举行中学生“日常生活小常识”知识比赛,比赛分为初赛和复赛两部分,初赛采用选手从备选题中选一题答一题的方式进行;每位选手最多有5次答题机会,选手累计答对3题或答错3题即终止比赛,答对3题者直接进入复赛,答错3题者则被淘汰.已知选手甲答对每个题的概率均为,且相互间没有影响.(1)求选手甲进入复赛的概率;(2)设选手甲在初赛中答题的个数为,试求的分布列和数学期望.【答案】(1);(2)【解析】(1)选手甲进入复赛分为三类:①回答了三个题且都对,概率为;②回答了四个题答对三个,概率为;③回答了五个题答对三个,概率为,故选手进入复赛的概率为;(2)依题意,的可能取值为3,4,5,每个取值都分为两种情况,即因淘汰而离开初赛,或者进入复赛.试题解析:(1)设选手甲答对每个题的概率为,则,设“选手甲进入复赛”为事件,则选手甲答了3题都对进入复赛概率为:;或选手甲答了4个题,前3个2对1错,第4次对进入复赛, 4分或选手甲答了5个题,前4个2对2错,第5次对进入复赛6分选手甲进入复赛的概率 7分(2)的可能取值为3,4,5,对应的每个取值,选手甲被淘汰或进入复赛的概率的分布列为:13分【考点】1、n次独立重复试验中事件A发生K次的概率;2、离散型随机变量的分布列和期望.7.某高校在2012年自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示.(1)分别求第3,4,5组的频率;(2)若该校决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,(ⅰ)已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙恰有一人进入第二轮面试的概率;(ⅱ)学校决定在这已抽取到的6名学生中随机抽取2名学生接受考官L的面试,设第4组中有名学生被考官L面试,求的分布列和数学期望.【答案】(1)0.3 0.2 0.1 (2)(ⅰ) (ⅱ)【解析】(1)由频率分布直方图的横坐标得到组距,纵坐标得到每组的频率/组距,故而每组的频率即为纵坐标与组距的乘积.(2)分层抽样就是在保持每个个体入样的可能性相等的条件下把样本容量分摊到每一层,即样本容量与总体数量之比与某层抽样个数与该层总数之比相等,进而得到每层抽样的人数(i)第三组要抽样3人,在30人中抽样三人,无序即为组合数,即中抽样情况,根据题目要求“学生甲和学生乙恰有一人进入第二轮面试”的事件分为两种情况①甲乙中只有甲入选,即还需要在28人中无序抽样2人,即,②甲乙中只有乙入选,即还需要在28人中无序抽样2人,即.在利用古典概型概率计算公式即可得到相应的概率(ii)由分层抽样的结果可知6人中有两人是第四组的,即,再利用组合数算得从6人中无序抽样两人的情况数和分别有0,1,2人是第四组的情况数,即可得到相应的概率,进而得到分布列,在把三种情况的概率与其分别相乘再相加即可得到期望.试题解析:(1) 第三组的频率为0.065="0.3;" 第四组的频率为0.045=0.2;第五组的频率为0.025=0.1. 3分(2)(ⅰ)设“学生甲和学生乙恰有一人进入第二轮面试”为事件A,第三组应有3人进入面试则: P(A)== 6分(ⅱ)第四组应有2人进入面试,则随机变量可能的取值为0,1,2. 7分且,则随机变量的分布列为:012P12分【考点】分布列期望排列组合频率分布直方图8.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为,得到乙、丙两公司面试的概率均为p,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若P(X=0)=,则随机变量X的数学期望E(X)=.【答案】【解析】1-=.∵P(X=0)==(1-p)2×,∴p=.1-=.随机变量X的可能取值为0,1,2,3,因此P(X=0)=,P(X=1)=×()2+×()2×2=,P(X=2)=×()2×2+×()2=,P(X=3)=×()2=,因此E(X)=0×+1×+2×+3×=.9.甲、乙、丙三人参加某次招聘会,假设甲能被聘用的概率是,甲、丙两人同时不能被聘用的概率是,乙、丙两人同时能被聘用的概率为,且三人各自能否被聘用相互独立.(1)求乙、丙两人各自被聘用的概率;(2)设为甲、乙、丙三人中能被聘用的人数与不能被聘用的人数之差的绝对值,求的分布列与均值(数学期望).【答案】(1)乙、丙两人各自被聘用的概率分别为、;(2)详见解析.【解析】(1)分别设乙、丙两人各自被聘用的概率为、,利用事件的独立性列出相应的方程进行求解,从而得出乙、丙两人各自被聘用的概率;(2)先列举出随机变量的可能取值,并根据事件的独立性求出在相应条件的概率,列出分布列并求出随机变量的均值(即数学期望). 试题解析:(1)设乙、丙两人各自被聘用的概率分别为、,则甲、丙两人同时不能被聘用的概率是,解得,乙、丙两人同时能被聘用的概率为,因此乙、丙两人各自被聘用的概率分别为、;(2)的可能取值有、,则,,因此随机变量的分布列如下表所示所以随机变量的均值(即数学期望).【考点】1.独立事件概率的计算;2.离散型随机变量的概率分布列与数学期望10.生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:81240328(Ⅰ)试分别估计元件A、元件B为正品的概率;(Ⅱ)生产一件元件A,若是正品可盈利50元,若是次品则亏损10元;生产一件元件B,若是正品可盈利100元,若是次品则亏损20元,在(Ⅰ)的前提下;(i)求生产5件元件B所获得的利润不少于300元的概率;(ii)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望.【答案】(Ⅰ)元件A为正品的概率为,元件B为正品的概率为(Ⅱ)(i)(ii)所以的分布列为:【解析】(Ⅰ)用频率估计概率值;(Ⅱ)设出随机变量,确定随机变量的所有可能取值,求出各个取值的概率,列出概率分布表,从而得出答案.试题解析:(Ⅰ)由题可知元件A为正品的概率为,元件B为正品的概率为。

离散型随机变量的期望与方差_图文

离散型随机变量的期望与方差_图文

因为P(η=axi+b)=P(ξ=xi),i=1,2,3,… 所以,η的分布列为
ξ
x1
x2

xn

η


P
p1
p2

pn

于是
Eη=(ax1+b)p1+(ax2+b)p2+…+(axn+b)pn+… =a(x1p1+x2p2+…+xnpn+…)+b(p1+p2+…+pn+…) =aEξ+b.
即 E(aξ+b)=aEξ+b.
超几何分布的期望: 证明如下:
引入 一组数据的方差:
在一组数:x1, x2 ,… x n 中,各数据 的平均数为 x,则这组数据的方差为:
S2=
( x1 – x )2 + ( x2 – x )2 +…+ ( x n – x )2 n
方差反映了这组 数据的波动情况
二、新课 1、离散型随机变量的方差
3…
k

P
p
pq
pq2 …
pqk-1 …
Dη=(1 –1/p)2·p+ (2 - 1/p)]2·pq+ …+ (k - 1/p)]2·pqk-1 + … ……(要利用函数f(q)=kqk的导数)
三、应用
例1:已知离散型随机变量ξ1的概率分布
ξ1 1
234567
P 1/7 1/7 1/7 1/7 1/7 1/7 1/7
一般地,若离散型随机变量ξ的概率分布为
ξ
x1
x2

xi

P
p1
p2

pi

则称 Eξ=x1p1+x2p2+…+xnpn+… 为ξ的数学期望 或平均数、均值,数学期望又简称为期望.

数学随机变量的期望与方差试题

数学随机变量的期望与方差试题

数学随机变量的期望与方差试题1.抽样统计甲,乙两个城市连续5天的空气质量指数(AQI),数据如下:则空气质量指数(AQI)较为稳定(方差较小)的城市为(填甲或乙).【答案】乙【解析】根据题意和平均数公式可得:,,由方差公式可得:,,由,得乙的方差更小.2.(本小题满分12分)有一种密码,明文是由三个字符组成,密码是由明文对应的五个数字组成,编码规则如下表:明文由表中每一排取一个字符组成且第一排取的字符放在第一位,第二排取的字符放在第二位,第三排取的字符放在第三位,对应的密码由明文对应的数字按相同的次序排列组成.明文字符A B C D设随机变量ξ表示密码中不同数字的个数.(Ⅰ)求P(ξ=2);(Ⅱ)求随机变量ξ的分布列和数学期望.【答案】(Ⅰ)(Ⅱ)ξ234【解析】解:(Ⅰ)密码中不同数字的个数为2的事件为密码中只有两个数字,注意到密码的第1,2列分别总是1,2,即只能取表格第1,2列中的数字作为密码.∴P(ξ=2)==.(Ⅱ)由题意可知ξ的取值为2,3,4三种情形.若ξ=3,注意表格的第一排总含有数字1,第二排总含有数字2,则密码中只可能取数字1,2,3或1,2,4.∴P(ξ=3)==.若ξ=4,则P(ξ=4)==或P(ξ=4)=1--=,∴ξ的分布列为:ξ234∴E(ξ)=2×+3×+4×=【考点】本题考查随机变量的分布列及其期望的求法等统计与概率方面基本概念、基本原理,意在考查考生的阅读理解、提取信息及运算求解的能力.3.(本小题满分12分)为了解高一年级学生的基本数学素养,某中学特地组织了一次数学基础知识竞赛,随机抽取统测成绩得到一样本.其分组区间和频数是:,;,;,;,; [90,100],. 其频率分布直方图受到破坏,可见部分如下图所示,据此解答如下问题.(1)求样本的人数及x的值;(2)估计样本的众数,并计算频率分布直方图中的矩形的高;(3)从成绩不低于分的样本中随机选取人,该人中成绩在分以上(含分)的人数记为,求的分布列及其数学期望.【答案】(1)4(2)样本众数的估计值为矩形的高为(3)见解析【解析】(1)由题意得,分数在之间的频数为,频率为,(1分)所以样本人数为(人)(2分)的值为(人). (4分)(2)从分组区间和频数可知,样本众数的估计值为. (6分)由(1)知分数在之间的频数为,频率为(7分)所以频率分布直方图中的矩形的高为(8分)(3)成绩不低于分的样本人数为(人),成绩在分以上(含分)的人数为人,所以的取值为(9分),,,(10分)所以的分布列为:012(11分)所以的数学期望为(12分)【考点】本题主要考查频率分布表、频率分布直方图、组合数、概率计算、离散型随机变量的分布列以及数学期望等基础知识,意在考查考生读图视图的能力、数据处理能力、运算求解能力以及运用概率统计知识解决简单实际问题的能力.4.某高校在2012年自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示.(1)分别求第3,4,5组的频率;(2)若该校决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,(ⅰ)已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙恰有一人进入第二轮面试的概率;(ⅱ)学校决定在这已抽取到的6名学生中随机抽取2名学生接受考官L的面试,设第4组中有名学生被考官L面试,求的分布列和数学期望.【答案】(1)0.3 0.2 0.1 (2) (ⅰ) (ⅱ)【解析】(1)由频率分布直方图的横坐标得到组距,纵坐标得到每组的频率/组距,故而每组的频率即为纵坐标与组距的乘积.(2)分层抽样就是在保持每个个体入样的可能性相等的条件下把样本容量分摊到每一层,即样本容量与总体数量之比与某层抽样个数与该层总数之比相等,进而得到每层抽样的人数(i)第三组要抽样3人,在30人中抽样三人,无序即为组合数,即中抽样情况,根据题目要求“学生甲和学生乙恰有一人进入第二轮面试”的事件分为两种情况①甲乙中只有甲入选,即还需要在28人中无序抽样2人,即,②甲乙中只有乙入选,即还需要在28人中无序抽样2人,即.在利用古典概型概率计算公式即可得到相应的概率(ii)由分层抽样的结果可知6人中有两人是第四组的,即,再利用组合数算得从6人中无序抽样两人的情况数和分别有0,1,2人是第四组的情况数,即可得到相应的概率,进而得到分布列,在把三种情况的概率与其分别相乘再相加即可得到期望.试题解析:(1) 第三组的频率为0.065="0.3;" 第四组的频率为0.045=0.2;第五组的频率为0.025=0.1. 3分(2)(ⅰ)设“学生甲和学生乙恰有一人进入第二轮面试”为事件A,第三组应有3人进入面试则: P(A)== 6分(ⅱ)第四组应有2人进入面试,则随机变量可能的取值为0,1,2. 7分且,则随机变量的分布列为:P5.已知离散型随机变量的分布列为则的数学期望 ( )A. B. C. D.【答案】A【解析】,故选A.点评:离散型随机变量的期望6.在一场娱乐晚会上, 有5位民间歌手(1至5号)登台演唱, 由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名选手, 其中观众甲是1号歌手的歌迷, 他必选1号,不选2号, 另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱, 因此在1至5号中随机选3名歌手.(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(2)X表示3号歌手得到观众甲、乙、丙的票数之和, 求X的分布列和数学期望.【答案】(1)(2)X0123【解析】本题考查涉及排列组合、概率、随机变量分布列和期望问题,(1)问中考查了“观众甲选中3号歌手且观众乙未选中3号歌手”互斥事件同时发生的概率,也可以利用树形图解决。

期望与方差的计算方法知识点整理

期望与方差的计算方法知识点整理

期望与方差的计算方法知识点整理本文旨在介绍期望与方差的计算方法知识点,以便读者更好地理解和应用这两个重要的统计概念。

期望的计算方法期望是随机变量取值的加权平均值,代表了随机变量的平均水平。

以下是计算期望的几种常用方法:1. 离散型随机变量的期望计算:- 如果随机变量X的取值为x1, x2, ..., xn,并且对应的概率分别为p1, p2, ..., pn,则X的期望E(X)计算公式为:E(X) = x1p1 + x2p2 + ... + xnpn。

- 也可以用累积概率的方法计算,即E(X) = Σ(xi * P(xi)),其中Σ表示对所有取值求和。

2. 连续型随机变量的期望计算:- 如果随机变量X的概率密度函数为f(x),则X的期望E(X)计算公式为:E(X) = ∫(xf(x)dx),其中∫表示对所有取值求积分。

方差的计算方法方差是随机变量取值与其期望之差的平方的加权平均,代表了数据的波动程度。

以下是计算方差的几种常用方法:1. 离散型随机变量的方差计算:- 设随机变量X的期望为μ,取值为x1, x2, ..., xn,并且对应的概率分别为p1, p2, ..., pn,则X的方差Var(X)计算公式为:Var(X) = Σ((xi - μ)^2 * P(xi))。

- 如果已知随机变量X的标准差为σ,则方差可用标准差的平方表示,即Var(X) = σ^2。

2. 连续型随机变量的方差计算:- 如果随机变量X的概率密度函数为f(x),期望为μ,则X的方差Var(X)计算公式为:Var(X) = ∫((x - μ)^2 * f(x)dx)。

总结期望和方差是统计学中常用的概念,用于描述数据的平均水平和波动程度。

通过本文所介绍的计算方法,读者可以更准确地计算期望和方差,从而更好地理解和分析数据。

以上是对期望与方差的计算方法知识点的整理,希望对读者有所帮助。

离散型随机变量的期望和方差

离散型随机变量的期望和方差

岚山一中导学学案学习改写人生,反思启迪智慧离散型随机变量的期望和方差【复习指导】均值与方差是离散型随机变量的两个重要数字特征,是高考在考查概率时考查的重点,复习时,要掌握期望与方差的计算公式,并能运用其性质解题. 【知识梳理】1、离散型随机变量的均值与方差 若离散型随机变量X 的分布列为(1)均值称E (X )= 为随机变量X 的均值或 ,它反映了离散型随机变量取值的 . (2)方差称D (X )= i =1n[x i -E (X )]2p i 为随机变量X 的方差,它刻画了随机变量X 的 ,其 为随机变量X 的标准差. 2、三种分布(1)若X 服从两点分布,则E (X )=p ,D (X )=p (1-p );(2)X ~B (n ,p ),则E (X )=np ,D (X )=np (1-p );(3)若X 服从超几何分布,则E (X )=n MN.(不用记忆) 3、六条性质(1)E (C )=C (C 为常数) (2)E (aX +b )=aE (X )+b (a 、b 为常数)(3)E (X 1+X 2)=EX 1+EX 2 (4)D (aX +b )=a 2·D (X)【基础自测】 1.(2010·山东)样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为( ). A.65 B.65C. 2 D .22、已知X 的分布列(如图)设Y =2X +3,则E (Y )的值为( ). A.73 B .4 C .-1 D .1 3、(2010·湖北)某射手射击所得环数ξ的分布列如下: 已知ξ的期望E (ξ)=8.9,则y 的值为________. A .0.4 B .0.6 C .0.7 D .0.94.设随机变量X ~B (n ,p ),且E (X )=1.6,D (X )=1.28,则( ). A .n =8,p =0.2 B .n =4,p =0.4 C .n =5,p =0.32 D .n =7,p =0.45【考向透析】 【例1】(2012济南一模)将编号为1,2,3,4的四张同样材质的卡片,随机放入编码分别为1,2,3,4的四个小盒中,每盒仅放一张卡片,若第k 号卡片恰好落入第k 号小盒中,则称其为一个匹对,用ξ表示匹对的个数. (1)求第2号卡片恰好落入第2号小盒内的概率; (2)求匹对数ξ的分布列和数学期望ξE .【例2】(2013山东)甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束,除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23,假设各局比赛结果相互独立.(Ⅰ)分别求甲队以3:0,3:1,3:2胜利的概率;(Ⅱ)若比赛结果为3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分、对方得1分.求乙队得分X的分布列及数学期望.【例3】某工厂生产甲,乙两种芯片,其质量按测试指标划分为:指标大于或等于82为合格品,小于82为次品.现随机抽取这两种芯片各100件进行检测,检测结果统计如下:(I)试分别估计芯片甲,芯片乙为合格品的概率;(II)生产一件芯片甲,若是合格品可盈利40元,若是次品则亏损5元;生产一件芯片乙,若是合格品可盈利50元,若是次品则亏损10元.在(I)的前提下,(i)记X为生产1件芯片甲和1件芯片乙所得的总利润,求随机变量X的分布列和数学期望;(ii)求生产5件芯片乙所获得的利润不少于140元的概率.巩固练习1、某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:(II )已知用B 配方生产的一种产品利润y (单位:元)与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩从用B 配方生产的产品中任取一件,其利润记为X (单位:元).求X 的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率). 2、某学生参加某高校的自主招生考试,须依次参加A 、B 、C 、D 、E 五项考试,如果前四项中有两项不合格或第五项不合格,则该考生就被淘汰,考试即结束;考生未被淘汰时,一定继续参加后面的考试。

概率论与数理统计第四章期末复习

概率论与数理统计第四章期末复习

概率论与数理统计第四章期末复习(一)随机变量的数学期望1.数学期望的定义定义1设离散随机变量X 的分布律为)()(i i i x X P x p p ===, ,2,1=i .若+∞<∑+∞=1i i i p x ,则称∑+∞==1)(i i i p x X E 为随机变量X 的数学期望,或称为该分布的数学期望,简称期望或均值.定义2设连续随机变量X 的密度函数为)(x f .若+∞<⎰∞+∞-x x f x d )(,则称xx xf X E d )()(⎰∞+∞-=为随机变量X 的数学期望,或称为该分布的数学期望,简称期望或均值.2.随机变量函数的数学期望定理1设随机变量Y 是随机变量X 的连续函数:)(X g Y =.设X 是离散型随机变量,其分布律为)(i i x X P p ==, ,2,1=i ,若∑+∞=1)(i i i p x g 绝对收敛,则有∑+∞===1)()]([)(i i i p x g X g E Y E .设X 是连续型随机变量,其概率密度为)(x f ,若⎰∞+∞-x x f x g d )()(绝对收敛,则有x x f x g X g E Y E d )()()]([)(⎰∞+∞-==.【例1】设随机变量X 的分布律为X 2-1-0123P1.02.025.02.015.01.0求随机变量X 的函数2X Y =的数学期望.【解】1.0315.022.0125.002.0)1(1.0)2()(222222⨯+⨯+⨯+⨯+⨯-+⨯-=Y E 3.2=.【例2】设随机变量X 具有概率密度⎪⎩⎪⎨⎧≤≤=,其他.;,001)(ππx x f X ,求X Y sin =的数学期望.【解】x x f x g X g E Y E d )()()]([)(⎰∞+∞-==πππ2d 1sin 0=⋅=⎰x x .【例3】某公司经销某种原料,根据历史资料表明:这种原料的市场需求量X (单位:吨)服从)500,300(上的均匀分布.每售出1吨该原料,公司可获利1.5(千元);若积压1吨,则公司损失0.5(千元).问公司应该组织多少货源,可使平均收益最大?【解】设该公司应该组织a 吨货源,则显然应该有500300≤≤a .又记Y 为在a 吨货源条件下的收益额(单位:千元),则收益额Y 为需求量X 的函数,即)(X g Y =.由题设条件知:当a X ≥时,此a 吨货源全部售出,共获利a 5.1.当a X <时,则售出X 吨(获利X 5.1),且还有X a -吨积压(获利)(5.0X a --),所以共获利a X X a X 5.02)(5.05.1-=--.由此知⎩⎨⎧<-≥=.,;,a X a X a X a X g 5.025.1)(则x x g x x f x g Y E X 2001)(d )()()(500300⎰⎰==∞+∞-]d 5.1d )5.02([2001500300x a x a x a a ⎰⎰+-=)300900(200122-+-=a a .易知,当450=a 时,能使)(Y E 达到最大,即公司应该组织450吨货源.定理2设随机变量Z 是随机变量X ,Y 的连续函数:),(Y X g Z =.设),(Y X 是二维离散型随机变量,其联合分布律为),(j i ij y Y x X P p ===,,2,1,=j i ,若∑∑+∞=+∞=11),(i j ij j i p y x g 收敛,则有∑∑+∞=+∞===11),()],([)(i j ij j i p y x g Y X g E Z E .设),(Y X 是二维连续型随机变量,其联合概率密度函数为),(y x f ,若y x y x f y x g d d ),(),(⎰⎰∞+∞-∞+∞-收敛,则有y x y x f y x g Y X g E Z E d d ),(),()],([)(⎰⎰∞+∞-∞+∞-==.【例4】设随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<<--=其他.,,,,010102),(y x y x y x f 求)(X E ,)(XY E .【解】⎰⎰∞+∞-∞+∞-=y x y x f x X E d d ),()(125d d )2(1010=--=⎰⎰y x y x x ,⎰⎰∞+∞-∞+∞-=y x y x f xy XY E d d ),()(61d d )2(1010=--=⎰⎰y x y x xy .3.数学期望的性质性质1若a 是常数,则a a E =)(.性质2对任意常数a ,有)()(X aE aX E =.性质3对任意的两个函数)(1x g 和)(2x g ,有)]([)]([)]()([2121X g E X g E X g X g E +=+.性质4设),(Y X 是二维随机变量,则有)()()(Y E X E Y X E +=+.推广到n 维随机变量场合,即)()()()(2121n n X E X E X E X X X E +++=+++ .性质5若随机变量X 与Y 相互独立,则有)()()(Y E X E XY E =.推广到n 维随机变量场合,即若1X ,2X ,…,n X 相互独立,则有)()()()(2121n n X E X E X E X X X E =.【例5】设随机变量X 与Y 相互独立,X ~)4,1(-N ,Y ~)2,1(N ,则=-)2(Y X E .【解析】因为X ~)4,1(-N ,Y ~)2,1(N ,所以1)(-=X E ,1)(=Y E ,故3)(2)()2(-=-=-Y E X E Y X E .(二)随机变量的方差1.方差的定义定义1设X 是一个随机变量,若})]({[2X E X E -存在,则称})]({[2X E X E -为X 的方差,记为)(X D ,即})]({[)(2X E X E X D -=.称方差的平方根)(X D 为随机变量X 的标准差,记为)(X σ或X σ.定理1(方差的计算公式)【例1】设随机变量X 的概率密度为⎪⎩⎪⎨⎧<≤-<<-+=其他.,;,;,0101011)(x x x x x f ,求)(X D .【解】0d )1(d )1()(101=-++=⎰⎰-x x x x x x X E ,61d )1(d )1()(120122=-++=⎰⎰-x x x x x x X E ,所以61)]([)()(22=-=X E X E X D .2.方差的性质性质1常数的方差为0,即0)(=c D ,其中c 是常数.性质2若a ,b 是常数,则)()(2X D a b aX D =+.性质3若随机变量X 与Y 相互独立,则有)()()(Y D X D Y X D +=±.推广到n 维随机变量场合,即若1X ,2X ,…,n X 相互独立,则有)()()()(2121n n X D X D X D X X X D +++=±±± .【例2】已知2)(-=X E ,5)(2=X E ,求)31(X D -.【解】9})]([)({9)()3()31(222=-=-=-X E X E X D X D .(三)常见随机变量的数学期望、方差1.两点分布X ~),1(p b p X E =)(,)1()(p p X D -=.2.二项分布X ~),(p n b np X E =)(,)1()(p np X D -=.3.泊松分布X ~)(λP λ=)(X E ,λ=)(X D .4.均匀分布X ~),(b a U )(21)(b a X E +=,12)()(2a b X D -=.5.指数分布X ~)(λE λ1)(=X E ,21)(λ=X D .6.正态分布X ~),(2σμN μ=)(X E ,2)(σ=X D .【例1】设X ~),(p n b 且6)(=X E ,6.3)(=X D ,则下列结论正确的是()A .15=n ,4.0=pB .20=n ,3.0=pC .10=n ,6.0=p D .12=n ,5.0=p 【解析】6)(==np X E ,6.3)1()(=-=p np X D ,解之得15=n ,4.0=p .正确选项为A .【例2】若X ~)5,2(N ,Y ~)1,3(N ,且X 与Y 相互独立,则=)(XY E ()A .6B .2C .5D .15【解析】因为X ~)5,2(N ,所以2)(=X E ,因为Y ~)1,3(N ,3)(=Y E ,故6)()()(==Y E X E XY E ,正确选项为A .【例3】X 与Y 相互独立,X ~)2(P ,Y ~)1(E ,则=-)2(Y X D .【解析】因为X ~)2(P ,所以2)(=X D ,因为Y ~)1(E ,所以1)(=Y D ,又因为随机变量X 与Y 相互独立,所以9)()1()(2)2(22=-+=-Y D X D Y X D .(四)协方差、相关系数与矩1.协方差定义1设),(Y X 是一个二维随机变量,若)]}()][({[Y E Y X E X E --存在,则称其为X 与Y 的协方差,记为),(Cov Y X .即)]}()][({[),(Cov Y E Y X E X E Y X --=.定理1)()()(),(Cov Y E X E XY E Y X -=.【例1】设二维随机变量),(Y X 的联合分布律为:求协方差),(Cov Y X .【解】由题易得32)(=X E ,0)(=Y E ,0311131003111)(=⨯⨯+⨯⨯+⨯⨯-=XY E .于是0)()()(),(Cov =-=Y E X E XY E Y X .定理2若X 与Y 相互独立,则0),(Cov =Y X ,反之不然.定理3对任意二维随机变量),(Y X ,有),(Cov 2)()()(Y X Y D X D Y X D ±+=±.关于协方差的计算,还有下面四条有用的性质.性质1协方差),(Cov Y X 的计算与X ,Y 的次序无关,即),(Cov ),(Cov X Y Y X =.性质2任意随机变量X 与常数a 的协方差为零,即0),(Cov =a X .性质3对任意常数a ,b ,有),(Cov ),(Cov Y X ab bY X a =.性质4设X ,Y ,Z 是任意三个随机变量,则),(Cov ),(Cov ),(Cov Z Y Z X Z Y X +=+.2.相关系数定义2设),(Y X 是一个二维随机变量,且()0D X >,()0D Y >,则称Y X XY Y X Y D X D Y X σσρ),(Cov )()(),(Cov ==为X 与Y 的相关系数.性质11≤XY ρ.性质21=XY ρ的充要条件是X 与Y 间几乎处处有线性关系,即存在)0(≠a 与b ,使得1)(=+=b aX Y P .其中当1=XY ρ时,有0>a ;当1-=XY ρ时,有0<a .性质3设随机变量X 与Y 独立,则它们的相关系数等于零,即0=XY ρ.【例2】设1)()(==Y D X D ,21=XY ρ,则=+)(Y X D 3.【解析】因为21)()(),(Cov ==Y D X D Y X XY ρ,所以)()(21Y D X D XY =ρ21=,故),(Cov 2)()()(Y X Y D X D Y X D ++=+3=.【例3】已知1)(-=X E ,3)(=X D ,则=-)]2(3[2X E 6.【解析】)]2([3)]2(3[22-=-X E X E }2)]([)({32-+=X E X D 6=.【例5】设随机变量),(Y X 的概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤+=其他.,,,,02020)(81),(y x y x y x f 求),(Cov Y X ,)(Y X D +和XY ρ.【解】⎰⎰+∞∞-+∞∞-=y x y x f x X E d d ),()(67d d )(822=+=⎰⎰y x y x x ,⎰⎰+∞∞-+∞∞-=y x y x f x X E d d ),()(2235d d )(820202=+=⎰⎰y x y x x ,⎰⎰+∞∞-+∞∞-=y x y x f xy XY E d d ),()(34d d )(82020=+=⎰⎰y x y x xy ,由轮换对称性,有67)(=Y E ,35)(=Y E ,361)()()(),(Cov -=-=Y E X E XY E Y X ,3611)]([)()()(22=-==X E X E X D Y D ,95),(Cov 2)()()(=++=+Y X Y D X D Y X D ,111)()(),Cov(-==Y D X D Y X XY ρ.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、典型问题剖析
【变式1】.已知袋中有红色球3个,蓝色球2个,黄色球1个. 从中任取一球确定颜色后不再放回袋中,取到红色球 后就结束选取,最多可以取三次, 求取球次数ξ 的分布列及数学期望. 解:取球次数ξ=1,2,3 P(ξ=1)= P(ξ=2)= P(ξ=3)= A31 A61 A31A31 A62 A32 . 4 1 = 2 3 = 10 1 = 5
一次试验中某事件发生的概率
试验的次数
Eξ=np
Dξ=np(1-p)
一、基础知识回放:
⑥常见随机变量的分布列及其期望与方差。
(4)几何分布 独立重复试验中,某事件第一次发生时所做试验的次数 ξ所满足的概率分布。 ξ p 1 2 3

k

p

(1-p)1.p
(1-p)2.p …
k 1
(1-p)k-1.p
学习目标: ①熟练掌握离散型随机变量的期望与方差 的概念.性质. ②准确求解离散型随机变量的期望与方差.
一、基础知识回放:
①随机变量:如果随机试验的结果可以用一个变量来表示, 这样的变量叫做随机变量。常用ξ,η表示。 ②随机变量具有两种类型:
1.离散型随机变量: 随机变量所取的值是一些分散的值,可以按一定次序一一 列出,这样的随机变量称为离散型随机变量。 2.连续型随机变量: 随机变量所取的值是某范围内的所有的值,即随机变量 的取值无法一一列出,这样的随机变量称为连续型随机变量。
④.离散型随机变量期望与方差计算公式
则期望:Eξ= x1p1+ x2p2+ x3p3+……+ xipi+…
方差:Dζ= (x1-Eξ)2.p1+ (x2-Eξ)2.p2+….+ (xi-Eξ)2.pi+… 标准差: σξ=

一、基础知识回放:
【注意】:期望--反映了随机变量取值的平均水平; 方差--反映了随机变量取值的稳定性。 ⑤期望与方差的运算性质
(3)二项分布 在n次的独立重复试验中,某事件发生的次数k 满足的概率分布称为二项分布.
ξ 0 1 … k … n
p
1 n1 … k k n k cn0 p0 (1 P)n c1 p ( 1 P ) cn p (1 P) n

cnn pn (1 p)0

~ B(n, p) 期望和方差公式是:

~ g (k , p) q
Eξ=
1 p
p 期望与方差公式是:
q Dξ= p2
二、基础知识反馈:
1.设随机变量ξ ~B(n,p), Dξ =8,则P和n的分别为(
A
且Eξ =12, )
Eξ=- Eξ=
1 3 7 3
Dξ= Dξ=
5 9 20 9
三、典型问题剖析
1.已知袋中有红色球3个,蓝色球2个,黄色球1个. 从中任取一球确定颜色后再放回袋中,取到红色球 后就结束选取,最多可以取三次, (1).求取球次数ξ 的分布列及数学期望. (2).求在三次选取中恰好有两次取到蓝色球的概率.
1 2
1 22
1 23
……
1 2n
1 1 1 1 E 1 2 2 3 3 ... n n ..... 2 2 2 2
点评:概率问题中审题非常关键,要注意认真领会题意!
四、课堂小结
1.求期望,方差问题的解题步骤
①确定随机变量 ξ 所有取值,
②求 ξ 对相应的概率后再写出写出分布列,
一、基础知识回放:
③离散型随机变量的分布列
一般地:设离散型随机变量ξ可能的值为: x1 , x 2 , 称表: x3 , …… xi , …… ξ取每个值xi (i=1,2,3,……)的概率为Pi (i=1,2,3,……)
ξ p
x1 p1
x2 p2
x3 p3
…. ….
xi pi….. …..源自为离散型随机变量的分布列.
【点评】:放回抽样问题属于独立“事件同时发生”概型 不放回抽样问题属于“等可能事件”概型。
三、典型问题剖析
1.已知袋中有红色球3个,蓝色球2个,黄色球1个. 从中任取一球确定颜色后再放回袋中,取到红色球 后就结束选取,最多可以取三次, (1).求取球次数ξ 的分布列及数学期望. (2).求在三次选取中恰好有两次取到蓝色球的概率.
A63
Eξ=1.7
三、典型问题剖析
【变式2】.已知袋中有红色球3个,蓝色球2个,黄色球1个. 从中任取一球确定颜色后不再放回袋中,取到红色球 后就结束选取,最多可以取三次, 求取球次数ξ 的分布列及数学期望.
分析:由题意知:=1,2,3……n …… ξ的分布列为:
ξ P 1 2 3 …… n …… ……
③求期望与方差。
2.注意二项分布、几何分布的应用.
3.求概率时要注意仔细审题,提倡“咬文嚼字”。
① Ec= C ③ D(c)= 0
.Eξ +b a ② E(aξ +b)=
2. ④ D(aξ +b)= a Dξ
⑥常见随机变量的分布列及其期望与方差。
(1)单点分布 c ξ Eξ=c p 1 Dξ=0 (2)两点分布 0 1 ξ p 1-p p
Eξ=p Dξ=p(1-p)
一、基础知识回放:
⑥常见随机变量的分布列及其期望与方差。
相关文档
最新文档