物理光学与应用光学第二版课件及课后习题答案63页PPT

合集下载

应用光学第二版胡玉禧课件第二章

应用光学第二版胡玉禧课件第二章

−l
β =
y' y
y' nl ' = β = y n ' l (2.15) -------垂轴放大率仅取决于共轭面的位置。
l'
第二章
高斯光学
四、近轴光学公式的实际意义 1、作为衡量光学系统成像质量的标准; 2、近似确定光学系统的成像尺寸。 例1.(习题1)一根长500mm, n =1.5的玻璃棒,两端面为凸 球面,半径分别为50mm和100mm,高1mm的物体位于左端 球面顶点之前200mm处,
图2.11 过节点的光线
第二章
高斯光学
B A′ A F H H′ F′ B′
§2-5 由基面、基点求理想像
一、作图法求像 1、典型光线及性质 2、用作图法求光学系统的理想像 1) 轴外 点B或 一垂 轴线 段AB 的像 (图2.14-5)
B′ B A′ F A N H M M ′ N′ H′ F′
M 2 ' A2 ' // N 2 ' F2 '
图(d):为(a)、(b)、(c)的总结果图。
B′ A2 F2 H2 H F1′ 2′ A2′ F2′ A1′ A1 F1 M1′
M1 H1 F2
M2
M2′ A2′ F ′ 2
H1′ H2 F1′ 2′ H
图 (c)
图 (d )
第二章
二、解析法求像
高斯光学
3、作图注意几点(P.37)
图2. 16
作图法求轴上点的像
第二章
高斯光学
图(b):同2)中法一;
轴上点经两个光组的像 图(a):作A1M1 ;
M1
A F1 F2 H1 H1′H2 F ′H2′ 1 F2′ A1

应用光学ppt的答案应用光学-PPT精选文档

应用光学ppt的答案应用光学-PPT精选文档

透镜2 在透镜1的右边,要使它成像光线须自右向左,属于 反向光路。而牛顿公式和高斯公式皆由正光路导出,符号规 则也由正光路规定,不可随便用于反光路。 方法:认为透镜2是像,求物。
D1
F1,F2
D2
D3
d1
d2
2、因为 f1’= - f1 =100mm,l 2’ = 20mm,利用高 斯公式:
1 1 1 l ' l f ' 2 2 1
D1 F F’ D2 D3
20mm
100 mm
30mm
200 mm
求出系统每一个光阑被它前面光组在物空间所成的像(此 步骤在求孔径光阑时已经进行)
(孔径光阑)
; F2' D3 '
w1 w2
w3
33.33
25mm
150 mm
• D1′ 对入瞳中心的张角为 20 tg 0 .8 1 25 • D2′ 本身是入瞳,D3′对入瞳中心的张角为

一架幻灯机的投影镜头 f’=75mm,当屏由8m移至10m时, 镜头需要移动多少距离?方向如何?

一架相机的镜头焦距为35mm,底片框尺寸24mm×36mm,那 么,该相机的视场角为多大?

一组合系统由薄正透镜和薄负透镜组成,两者的焦距分别 为20mm和-20mm,间隔为10mm;当一物体位于正透镜前方 100mm处,求组合系统的垂轴放大率及像的位置。
l3 150 mm
y 33 .33 mm 3
D’1 D’2
D’3
25mm
200 mm
150 mm
物点A对光阑D1’ 的张角
D 20 1 tgu 0 . 1 1 200 200
• 对D2’ 的张角 • 对光阑D3’ 的张角

应用光学第二版胡玉禧课件第3章

应用光学第二版胡玉禧课件第3章

r = ∞
l ' = −l
即像与物相对于平面镜来说是对称的。(性质1)
第三章 平面零件成像
②放大率公式:
即物像大小一致,且成正像。但左右相反。(性质2)
第三章 平面零件成像
3、镜像与一致像 1)所谓镜像是指物体经平面反射镜成像时,像和物大小 相等形状不同,若物为右手坐标,像为左手坐标,这种 像称为镜像。见图3.10 特点:像与物上、下同向,但左右却颠倒,它可通过奇 数次反射得到。 2)一致像:物为右手坐标, y′
I1 I1′ o2 I2 I2′ o1
α
N M
α
图 3.12
β
第三章 平面零件成像
红旗渠最长的隧道——曙 光洞的施工,利用平面反 射镜将太阳光反射照明; 自行车尾灯——偶镜, 三对偶镜构成的角反射器。
第三章 平面零件成像
潜望镜
第三章 平面零件成像
例2.(补充题) 一光学系统由一透镜和平面镜组成,如图。平面镜MM与透 镜光轴交于D点,透镜前方离平面镜600mm处有一问题AB, 经过透镜和平面镜后,所成虚像A"B"至平面镜的距离为 150mm,且像高为物高的一 半,试分析透镜焦距的正 负,确定透镜的位置和焦 距,并画出光路图。
1、术语 ①偏向角:入射光线与出射光线的夹角。 ②折射棱:二个折射面的交线叫棱。 I ③折射角:二个折射面之间的夹角。 ④主截面:垂直于折射棱的平面。 B 2、最小偏向角δm 偏向角公式:
1
δ
C
图 3.2
(3.6)
第三章 平面零件成像
可见,偏向角δ的大小与折射角α、棱镜折射率n、入射角 I1有关,对于某一棱镜而言,其n, α是一定值,此时只有 一个变量就是I1 ,每给一个I1就有一个δ , I1不同, δ也不 同, 是个变量。称δ为最小值时的这个偏向角为最小偏向 当δ为最小偏向角时,它具有如下特点:即: I1 =- I2′, I1′=- I2, 当将I1 =- I2′, I1′=- I2 , 代入到偏向角公式时,可得到: (3.7) 角 δ m。

物理光学与应用光学第二版课件第六章PPT课件

物理光学与应用光学第二版课件第六章PPT课件

由此,朗伯定律可表示为
K 4
(6.2-3)
4 l
I I0e
(6.2-4)
各 种 介 质 的 吸 收 系 数 差 别 很 大 , 对 于 可 见 光 , 金 属 的 K≈106cm-1 , 玻 璃 的
K≈10-2cm-1,而一个大气压下空气的K≈10-5cm-1。这就表明,非常薄的金属片就
吸收元素
O O H Na Na He Fe
符号
E1 F G G
H K
波长/nm 吸收元素
518.362
Mg
486.133
H
430.791
Fe
430.774
Ca
466.273
Ca
396.849
Ca
393.368
Ca
第26页/共82页
6.3 光 的 色 散
介质中的光速(或折射率)随光波波长变化的现象叫光的色散现象。在理论上,光 的色散可以通过介质折射率的频率特性描述。
n~,则n有 i
n~2 (n i)2 (n2 2 ) i2n
将(6.1-13)式与(6.1-12)式进行比较,可得
(6.1-13)
n2
2n
2 1 Ne2 0m
Ne2
0m (02
02 2 (02 2 )2
2 )2 2 2
2
2
(6.1-14)
第6页/共82页
第27页/共82页
的分光作用,使得通过P1的每一条谱线都向下移动。若两个棱镜的材料相同,它 们对于任一给定的波长谱线产生相同的偏向。 因棱镜分光作用对长波长光的偏向 较小,使红光一端a1下移最小,紫光一端b1下移最大,结果整个光谱a1b1仍为一直 线,但已与ab成倾斜角。如果两个棱镜的材料不同,则连续光谱a1b1将构成一条 弯曲的彩色光带。

物理光学与应用光学第二版课件第二章

物理光学与应用光学第二版课件第二章

1) 干涉条纹可见度(对比度)
干涉条纹可见度定义为
V def IM Im IM Im
(2.1-11)
当干涉光强的极小值Im=0时,V=1,二光束完全相干,条纹最清
晰 ; 当 IM=Im 时 , V=0 , 二 光 束 完 全 不 相 干 , 无 干 涉 条 纹 ; 当
IM≠Im≠0时,0<V<1,二光束部分相干,条纹清晰度介于上面
第2章 光的干涉 图 2-4 菲涅耳双棱镜干涉装置
第2章 光的干涉 图 2-5 菲涅耳双面镜干涉装置
第2章 光的干涉 图 2-6 洛埃镜干涉装置
第2章 光的干涉
这些实验的共同点是:
① 在两束光的叠加区内,到处都可以观察到干涉条纹, 只 是不同地方条纹的间距、形状不同而已。这种在整个光波叠加 区内,随处可见干涉条纹的干涉, 称为非定域干涉。与非定域 干涉相对应的是定域干涉,有关干涉的定域问题,将在2.5节中 讨论。
(2.1-13)
第2章 光的干涉
①如果S1、S2到S的距离相等,ΔR=0,则对应=2mπ(m=0,
±1, ±2, …)的空间点,即
y m D
d
(2.1-14)
处为光强极大,呈现干涉亮条纹;对应φ=(2m+1)π的空间点 ,即
y m 1 D
2 d
处为光强极小,呈现干涉暗条纹。
AB BC h
cos2 AN AC sin1 2h tan2 sin1
再利用折射定律
n sin2 n0 sin1
可得到光程差为
2nh cos2 2h n2 n02 sin2 1
② 在这些干涉装置中,都有限制光束的狭缝或小孔,因而 干涉条纹的强度很弱,以致于在实际中难以应用。

物理光学与应用光学第二版课件第四章

物理光学与应用光学第二版课件第四章

因为
所以
E⊥=E cosα
(4.2 - 22)
E c E 1 o 0 s n 2 D co 0 s ( n c 1o )2D s co 0 s ( n c 1o )2D s
(4.2 - 23)
第 4 章 光在各向异性介质中的传播特性 图 4-3 E⊥和D⊥的定义
第 4 章 光在各向异性介质中的传播特性
可表示为
最后应指出,张量与矩阵是有区别的,张量代表一种物理量, 因此在坐标变换时,改变的只是表示方式,其物理量本身并不 变化,而矩阵则只有数学意义。因此,有时把张量写在方括号 内, 把矩阵写在圆括号内,以示区别。
第 4 章 光在各向异性介质中的传播特性
4.1.2
由电磁场理论已知,介电常数ε是表征介质电学特性的参 量。在各向同性介质中,电位移矢量D与电场矢量E满足如下 关系:
第 4 章 光在各向异性介质中的传播特性 图 4-1 平面光波的电磁结构
第 4 章 光在各向异性介质中的传播特性
w m 1 2 B H 2 n cH (E k ) 2 n c(E k )k(4.2-14)
于是, 总电磁能量密度为
n wwewmc|S|sk
对于各向同性介质,因s与k同方向,所以有
样一种光波,在进行公式运算时,可以以-iω
/t ,以
(iωn/c) k代换算符 。经过运算,(4.2-1)~(4.2-4)式变为
第 4 章 光在各向异性介质中的传播特性
H k c D n
E k 0c H n
k D 0 k H 0
(4.2 - 8)
(4.2 - 9) (4.2 - 10) (4.2 - 11)
角与E和D之间的夹角相同(图 4-1)。
由此,我们可以得到一个重要结论:在晶体中,光的能量

《物理光用与应用光学》第二版习题解答

《物理光用与应用光学》第二版习题解答

进行坐标变换:
ïìEx = Ex 'cosa - E y 'sina ïîíE y = Ex 'sina + E y 'cosa
代入上面的椭圆方程:
(Ex
'2
cos 2
a
+
E
y
'2
sin
2
a
-
2Ex
'
E
y
'sina
cos a
)E
2
y0
+
(Ex
'2
sin 2
a
+
Ey
'2
cos 2
a
+
2Ex
'
Ey
' sin a
解:(1)∵ k = w / v
d (kv)
dv
∴vg =
dk
=v+k dk
∵ k = 2p / l
∴ dk = -(2p / l2 )dl
∴ vg
=
v-l
dv dl
=v-l
b2l c2 + b2l2
= c2 + b2l2 - b2l2
=
c2
c2 =
c 2 + b2l2
c 2 + b2l2 v
(2)∵
2 cosq1 sinq 2
Ei0 p sin(q1 + q 2 ) cos(q1 - q2 )
①、②依据题意,介质平板处在同一种介质中,由 Fresnel's Fomula 的前两项,可以看
旺旺:yulingcici QQ:985673089 专业提供中科院中科大考研考博资料

物理光学与应用光学第二版课件第七章

物理光学与应用光学第二版课件第七章

a
6
第 7 章 几何光学基础
在各向同性介质中, 能流密度矢量和波矢量方向相同,光 线方向即代表了能量的流动方向, 也表示光波传播的波矢量 方向。 光源发出的光场在空间任一点的光线和相应的波面垂 直, 光波波面法线就是几何光学中的光线。
同一波面的光线束称为光束。 如果光束中光线能够直接 相交一点或各光线的反向延长线能够相交于一点, 这样的光 束称为同心光束。 球面波对应于会聚或发散的同心光束, 平 面波对应于平行光束, 有时和同一波面对应的光束沿两个相 互垂直的方向分别会聚成位于不同位置的两条线段, 称为像 散光束, 如图7-2所示。
第 7 章 几何光学基础
第 7 章 几何光学基础
7.1 几何光学的基本定律
7.2 单个折射球面的光路计算
7.3 单个折射球面的近轴区成像
7.4 球面反射镜成像
7.5 共轴球面光学系统
7.6 薄透镜成像
7.7 平面的折射成像
7.8 平面镜和棱镜系统
例题
a
1
第 7 章 几何光学基础
7.1 几何光学的基本定律
7.1.1 波面、 发射光能的物体称为光源。 实际光源都有一定的大小,
光源的大小影响着光源辐射光场的分布。 如果光源的大小与 其辐射光能的作用距离相比可略去不计时, 该光源称为点光 源。点光源是为了简化光波传播问题的研究而引入的一Biblioteka 物理 模型, 它被抽象为一个几何点。
a
2
第 7 章 几何光学基础
光源发出的光波是一种电磁波, 可以采用描述电磁波的基 本参数描述光波, 譬如频率、波长和相位等。 实际光源发射 的光波包含多种频率的成分, 称为复色光。 通常为了简化光 波传播问题的研究, 主要研究单一频率的光波, 即单色光(或 简谐电磁波)。 对于由同一光源发出的单色波, 在同一时刻由 相位相同的各点所形成的曲面称为该光波的波面。 波面可以是 平面、 球面或其它曲面, 单色点光源的波面为球面。 光波沿 波面的法线方向前进, 将该方向定义为光波的方向, 通常用 波矢量描述, 它与波面垂直。

物理光学与应用光学第二版课件第五章

物理光学与应用光学第二版课件第五章

由此得到感应折射率椭球的三个主折射率为
n
' 1
no
1 2
n
3 o
63
E3
n
' 2
no
1 2
n
3 o
63
E
3
n
' 3
ne
(5.1-28)
以上讨论了x3-切割晶片在外加电场E3后,光学特性(折射率) 的变化情况。下面,具体讨论两种通光方向上光传播的双折射 特性。
第 5 章 晶体的感应双折射
① 光沿x3′方向传播。在外加电场平行于x3轴(光轴), 而光 也沿x3(x3′)轴方向传播时,对于γ63贡献的电光效应来说,叫γ63的 纵向运用。
n3 ' n2 ' n1 ' no 3 6E 3
决定,表示式为
2 (n2 ' n1 ')d2 no 36E 3 d
(5.1-29) (5.1-30)
第 5 章 晶体的感应双折射
式中, Ed恰为晶片上的外加电压U, 故上式可表示为
2
no363U
(5.1-31)
通常把这种由外加电压引起的二偏振分量间的相位差叫做“电
0 0 0
0
0
0
0
ij
41
0 0
0
0
0
41
0
0 0 63
(5.1-16)
第 5 章 晶体的感应双折射
由(5.1-14)式, 其[ΔBi]为
B1
B
2
B
3
B 4
B
5
B 6
0
0
0
41
0
0 0
0 0 0 0

物理光学与应用光学第三章PPT课件

物理光学与应用光学第三章PPT课件

空气平板出射d n 面G的光线投射高度h2
B dF D
•再从G点以d后n 的光路全部加l上轴向平 移量 l(11)d ,即可得到实际光路。
n
AE
G
B dd n F
.
第三节 反射棱镜
反射镜可以改变光轴方向,减小长度,转像、倒像等。但
1、镀膜,不耐久 2、光能损失 3、装校不便。
一、反射棱镜的类型
反射棱镜:把多个反射面做在同一块光学材料(如玻璃) 上的光学零件。
.
第一节 平面镜成像
平面镜 —— 唯一能成完善像的光学元件
A
N
B
B1
A
P
Q
P
Q
O
O1
A
(a)实物—— 虚像
A
(b)虚物—— 实像
.
3
一、平面镜成像
球 面 镜 成 像 :112 l l r
r
l l
1
★ 性质分析: 物像相对于平面镜对称分布、虚实相反。
.
采 用
y
P


坐 标
z
x
O


Q
y'
x'
.
二、平行平板的“等效空气层” 1)近轴光线(I较小)
S
A EC
sA E
P
H
G
P G
B dF D
dn
l
B dd n F
A
平行平板玻璃的折射
l' d1 1 n
等效空气层
dd n
.
凡在光路中有平行平板玻璃(如反射棱镜)时
•首S先用厚A度为
dE n
的C等效空气平板
取代厚度为d的平板玻H璃,算出等效

物理光学与应用光学第二版课件及课后习题答案

物理光学与应用光学第二版课件及课后习题答案

公式(1-6)表示电位移矢量是由正电荷所在点向外 发散或向负电荷所在处汇聚. 公式(1-7)表示磁场是无源场. D H J (1-8) t 公式(1-8)说明环形磁场可由传导电流产生,也可由 位移电流产生.
3.物质方程
麦克斯韦方程组中涉及的函数有E,D,B,H,和J, 等除以上等式外,它们之间还有一些与电磁场所在媒 质的性质有关的联系,称为物质方程
很强时,光与介质的相互作用过程会表现出非 线性光学特性。
麦克斯韦(J.C.Maxwell)简介 (1831--1879)
一、生平
在法拉第发现电磁感应定律那一年,即1831年,麦 克斯韦在英国的爱丁堡出生了。他从小聪明好问。父亲 是个机械设计师,很赏识自己儿子的才华,常带他去听 爱丁堡皇家学会的科学讲座。十岁时送他到爱丁堡中学。 在中学阶段,他就显示出了在数学和物理方面的才能, 十五岁那年就写了一篇关于卵形线作图法的论文,被刊 登在《爱丁堡皇家学会学报》上。1847年,十六岁的麦 克斯韦考入爱丁堡大学。 1850年又转入剑桥大学。

旋度:
E
是“矢量积”
一个矢量场在某点的旋度描述了场在该点周围的 旋转情况。 旋度的计算: i j k Ez E y Ex Ez E y Ex E y z i z x j x y k x y z Ex E y Ez
D H j t
符号的意义:
哈密顿算符:
i j k x y z
具有矢量和求导的双重功能 Dx Dy Dz 散度: D D
x y z
是“标量积”
一个矢量在某点的散度表征了该点“产生”或 “吸收”这种场的能力(即矢量从该点发散或会聚与 该点的性质)若一个点的散度为零则该点不是场的起 止点. E 称为E 的散度,空间某点的散度描述了 E矢量 从该点发散或会聚与该点的性质.

物理光学与应用光学第二版课件及课后习题答案

物理光学与应用光学第二版课件及课后习题答案
干涉条件
相干光波、有相同的频率、有恒 定的相位差、有相同的振动方向 。
双缝干涉与多缝干涉
双缝干涉
两束相干光波分别通过两个平行狭缝 后,在屏幕上产生的明暗交替的干涉 条纹。
多缝干涉
多个狭缝产生的相干光波在屏幕上产 生的明暗交替的干涉条纹。
薄膜干涉与干涉滤光片
薄膜干涉
光波在薄膜表面反射和透射时产生的干涉现象,常用于增反 膜和增透膜的设计。
摄像机的原理
摄像机通过镜头将光线聚焦在电荷耦合器件(CCD)或互补金属氧化物半导体( CMOS)传感器上,记录下动态影像。
照相机与摄像机的比较
照相机和摄像机在结构和工作原理上存在差异,但它们都是用于记录影像的光学仪器。
光学信息处理系统
1 2
光学信息处理系统的原理
光学信息处理系统利用光的干涉、衍射、全息等 原理对信息进行处理。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
04
光学仪器及应用
透镜与成像原理
透镜的分类
01
根据透镜的形状和焦距,可以将透镜分为凸透镜、凹透镜和凹
凸透镜等。
成像原理
02
透镜通过改变光线的传播路径,使光线会聚或发散,从而形成
实像或虚像。
像距与物距
03
透镜成像时,像距与物距之间的关系遵循“1/f = 1/u + 1/v”
干涉滤光片
利用薄膜干涉原理设计的滤光片,具有特定波长范围的透过 或反射特性。
干涉系统的应用
光学干涉仪
干涉光谱技术
利用光的干涉原理测量长度、角度、表面 粗糙度等物理量。
通过干涉原理分析物质吸收、发射和散射 光谱,用于物质成分分析和光谱测量。

《物理光学与应用光学》课件第7章

《物理光学与应用光学》课件第7章

(7.1-10)
进一步,由于线元ds上的光程可以表示为n ds=c ds/v=c dt,因 而从A到B的光程L
L=cΔt
(7.1-11)
即光线在介质中从A到B的光程等于光在介质中从A到B的传播
时间与光速的乘积。由于在一个线元上相位的变化量为dj=k
ds=k0n ds,因而A和B两点的相位差为k0L,即光线上两点的相 位差等于这两点间的光程乘以真空中波矢量的大小。
ቤተ መጻሕፍቲ ባይዱ
2) 光线沿着一条光路传播时,碰到界面的法线方向可能沿空 间任意方向,这时,为确定光线经过界面反射或折射后出射光 线的传播方向,可以由光的反射和折射定律的矢量形式直接求 解。 现在定义三个矢量A、 A′和A″,它们的方向依次沿入射光 线、折射光线和反射光线的传播方向,它们的大小分别为各光 线所在空间的折射率。假如入射光波在真空中的波矢量大小为 k0,入射光线、 折射光线和反射光线代表的光电磁波的波矢量 依次为ki、kt和kr,则
n sinI=n′sinI′
(7.1-1)
I=-I″
(7.1-2)
图7-3 反射和折射定律
如果在(7.1-1)式中,令n′=-n,则得I=-I′,此即反射定律 的形式。这表明,反射定律可以看做是折射定律的特殊情况, 凡是基于折射定律推导得到的光线经过界面折射有关的公式, 只要令n′=-n,I′=I″,便可得到光线经过界面反射时有关的公 式。正是因为这样,可以用统一的方法和公式研究光线在折射 光学系统和包含有反射光学元件的光学系统中的传播。
光源发出的光波是一种电磁波, 可以采用描述电磁波的基 本参数描述光波, 譬如频率、波长和相位等。 实际光源发射 的光波包含多种频率的成分, 称为复色光。 通常为了简化光 波传播问题的研究, 主要研究单一频率的光波, 即单色光(或 简谐电磁波)。 对于由同一光源发出的单色波, 在同一时刻由 相位相同的各点所形成的曲面称为该光波的波面。 波面可以是 平面、 球面或其它曲面, 单色点光源的波面为球面。 光波沿 波面的法线方向前进, 将该方向定义为光波的方向, 通常用 波矢量描述, 它与波面垂直。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
物理光学与应用光学第 二版课件及课后习题答

6、纪律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯
10、一个人应该:活泼而守纪律,天 真而不 幼稚, 勇敢而 鲁莽, 倔强而 有原则 ,热情 而不冲 动,乐 观而不源自盲目。 ——马 克思谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
相关文档
最新文档