电磁场与微波实验十报告——非线性电路仿真实验

合集下载

仿真实验六 非线性电路

仿真实验六 非线性电路

六、非线性放大电路仿真实验一、电路课程设计目的1、掌握用非线性电路元件设计放大器的方法,掌握非线性三极管元件的伏安特性;2、学会用Multisim 仿真软件,对所设计的非线性放大电路进行仿真测试;3、了解并掌握电路中各个元件参数的改变,对输出波形的影响,熟练掌握非线性电路的图解分析法和小信号分析法。

二、仿真电路设计原理在以前的实验中研究的都是线性电路问题,即各元件的参数不随电压或电流变化,如果电路元件的参数随着电压或电流而变化,就称之为非线性元件含有非线性元件的电路称为非线性电路。

根据下面原理图,当给电路加上V U CC 12+=直流电压后,通过偏置电阻2,1Rb Rb ,可给三极管提供一个合适的工作状态,静态值由下式估算E EBE CC b b b C R R U U R R R I +'⎪⎪⎭⎫⎝⎛-⨯+=211式中,BE U 对硅管一般可取0.7V ,对锗管可取0.2V 。

静态工作点的设置,应考虑到在整个信号变化的范围内晶体管始终处于线性工作状态。

如果选择不合适,使静态工作电流C I 太小,工作点下移,就会出现截止失真;反之,则工作点上移,就会出现饱和失真。

而,为了得到最大的动态范围,应将静态工作点调在交流负载线的中点。

实际电路的元件的参数总是或多或少的随电压电流变化的。

在工程计算中,可以把非线性程度比较弱的电路元件当做线性元件来处理,从而简化电路分析。

但对许多本质因素具有非线性特性的元件,如果忽略其非线性特性就将导致计算结果和实际量值相差太大而无意义。

因此分析研究非线性电路具有重要的工程物理意义。

小信号分析法是分析非线性电路的主要方法之一,因为在模拟电子电路中遇到的非线性电路,同时有作为偏置电压的直流电源0U 和随时间变化的输入信号源()s u t 作用。

如果在任何时刻都有0U 远远大于()s u t ,则将输入的信号源做小信号处理。

具体来说,所谓小信号法是在直流偏置电源产生的静态工作点附近建立一个局部线性的模型,求解非线性电路中的交流小信号激励下的响应,就可以运用线性电路的分析方法来进行分析计算。

电磁场仿真实验报告

电磁场仿真实验报告




第一步:创建项目
保存项目,设置单位mm,设置求解类型:Driven Model
第二步:创建模型
第1步:创建长方体
Draw\Box,(-12,-5,0),(24,10,14);
Name:waveguide; Transparent:
第2步:创建空气腔
Draw\Box: (-20,-13,0),(40,26,22)
江西师范大学物理与通信电子学院
教学实验报告
专业 年 月 日
实验名称
波导腔体内场优化
姓名
年级
学号
成绩
一、预习部分
1、实验目的
2、实验基本原理
3、主要仪器设备




利用HFSS对T型波导的间隔位置进行优化,使得第三端口的输出功率是第二端口输出功率的2倍。测量个端口的输出功率,观察T型波导的场分布情况。
姓名
年级
学号
成绩
一、预习部分
1、实验目的
2、实验基本原理
3、主要仪器设备




建立、求解、分析一个右手圆极化贴片天线,工作频率,测量其S参数。通过调节贴片天线切角的大小,对天线轴比参数进行优化,记录最终优化结果。




第一步:创建项目
保存项目,设置单位mm,设置求解类型:Driven Model
第三步:设置边界条件和激励
选中空气盒,Assign Boundary\radiation;选中接地面,Assign Boundary\Finit con;
选中port,Assign Excitation\Lumped,选New Line: (0,,0)(0,-1,0)

电磁场与微波技术实验报告.

电磁场与微波技术实验报告.

电磁场与微波技术实验报告班级:学号:姓名:目录目录 (2)实验2 微带分支线匹配器 (3)一、实验目的: (3)二、实验原理 (3)三、实验内容 (3)四、实验步骤 (3)实验三四分之一波长阻抗变换器 (15)实验目的 (15)实验原理 (15)单节4λ阻抗变换器 (16)多节4λ阻抗变换器 (16)实验内容 (17)实验步骤 (18)实验4 低通滤波器 (31)实验目的 (31)实验原理 (31)低通原型滤波电路 (32)Richards变换 (32)Kuroda变换 (33)实验内容 (33)实验步骤 (33)总结 (41)完成任务 (41)问题及解决 (41)心得与体会 (41)实验2 微带分支线匹配器一、实验目的:1.熟悉支节匹配器的匹配原理2. 了解微带线的工作原理和实际应用3.掌握Smith图解法设计微带线匹配网络二、实验原理支节匹配器是在主传输线上并联适当的电纳(或者串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。

单支节匹配器,调谐时主要有两个可调参量:距离d和由并联开路或短路短截线提供的电纳。

匹配的基本思想是选择d,使其在距离负载d处向主线看去的导纳Y是Y0+jB 形式。

然后,此短截线的电纳选择为-jB,根据该电纳值确定分支短截线的长度,这样就达到匹配条件。

双支节匹配器,通过增加一支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配(但是双支节匹配不是对任意负载阻抗都能匹配的,即存在一个不能得到匹配的禁区)。

三、实验内容已知:输入阻抗Zin=75欧负载阻抗Zl=(64+j35)欧特性阻抗Z0=75欧介质基片εr=2.55,H=1mm假定负载在2G赫兹时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离d1=四分之一波长,两分支线之间的距离为d2=八分之一波长。

画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz至2.2GHz 的变化四、实验步骤(一):单支节匹配在史密斯圆图上找到等反射系数圆和g=1圆的交点,有两个点与其匹配。

微波实验报告

微波实验报告

实验题目:电磁场与微波实验仿真部分班级:姓名:学号:日期:目录实验一微带分支线匹配器 (1)一、实验目的 (1)二、实验原理 (1)1.支节匹配器 (1)2. 微带线 (1)三、实验内容 (2)四、实验步骤 (2)五、仿真过程 (2)1、单支节匹配 (2)2、双支节匹配 (5)3.思考题 (9)五、结论与思考 (10)实验二微带多节阻抗变换器 (12)一、实验目的 (12)二、实验原理 (12)三、实验内容 (13)四、实验步骤 (13)五、实验过程 (14)1、纯电阻负载 (14)五、结论与思考 (24)实验三微带功分器 (26)一、实验目的 (26)二、实验原理 (26)1、散射矩阵 (26)2、功分器 (27)三、实验内容 (28)四、实验步骤 (28)五、实验过程 (28)1、计算功分器参数 (28)2、确定微带线尺寸 (29)3、绘制原理图 (29)4、仿真输出 (30)五、结论与思考 (34)附录:心得体会 (35)实验一 微带分支线匹配器一、实验目的1. 熟悉支节匹配器的匹配原理;2. 了解微带线的基本概念和元件模型;3. 掌握Smith 图解法设计微带线匹配网络。

二、实验原理1.支节匹配器随着工作频率的提高及响应波长的减小,分立元件的寄生参数效应就变得更加明显,当波长变得明显小于典型的电路元件长度时,分布参数元件替代分立元件而得到广泛应用。

因此,在频率高达一定数值以上时,在负载和传输线之间并联或串联分支短截线,代替分立的电抗元件,实现阻抗匹配网络。

常用的匹配电路有:支节匹配器,四分之一波长阻抗变换器,指数线匹配器等。

支节匹配器分单支节、双支节和三支节匹配。

这类匹配器是在主传输线上并联适当的电纳(或串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的,此电纳(或)电抗元件常用一终端短路或开路段构成。

图1.1 支节匹配器原理单支节匹配的基本思想是选择支节到阻抗的距离d ,使其在距负载d 处向主线看去的导纳Y 是0Y jB +形式。

电磁场与微波仿真实验教程

电磁场与微波仿真实验教程

电磁场与微波仿真实验教程
电磁场仿真实验是电磁场理论课程中非常重要的一环,通过仿真实验可以加深学生对于电磁场及其应用的理解,并且从实际中提高了学生的动手实践能力。

本文将向大家介绍电磁场与微波仿真实验教程。

1. 实验目的
通过对电磁场仿真实验的学习,达到以下目的:
1)熟练掌握电场、磁场的分布特性;
2)掌握典型的电磁场问题的求解方法;
3)掌握微波传输理论及其在工程中的应用;
4)掌握电磁场仿真软件的使用方法。

2. 实验内容
本实验涉及到的内容主要有:
2)电容器、电感器、共振器、传输线等典型电磁场问题的求解;
3. 实验设备
本实验主要使用Ansys电磁场仿真软件。

4. 实验步骤
1)学生需要独立完成仿真实验和报告撰写工作;
2)学生需要根据课件资料学习仿真软件的基本操作,包括建立仿真模型,设定仿真参数,运行仿真程序等;
3)学生需要选择一个电磁场仿真实验题目进行仿真实验,理解仿真实验过程,并且掌握解决典型电磁场问题的方法;
4)学生需要根据学习成果,撰写实验报告,包括实验目的、实验原理、仿真结果分析等。

5. 实验注意事项
2)学生需要注意安全事项,遵守实验室规章制度;
3)学生需要独立思考和创新,加深对电磁场理论和应用的理解和掌握。

6. 实验总结
通过电磁场仿真实验的学习,使学生加深了对电磁场理论与应用的理解和掌握,并且掌握了电磁场仿真软件的使用方法。

学生通过自主选择模型,独立完成仿真实验和报告撰写工作,培养了学生的实践能力和创新思维。

微波仿真实验报告

微波仿真实验报告

北京邮电大学微波仿真实验报告姓名:学号:班级:院系:一、实验目的1、了解ADS微波仿真软件的使用2、用ADS软件,观察不同的传输线及微波器件的Sminth圆图和S参数。

二、实验要求FR4基片:介电常数为4.4,厚度为1.6mm,损耗角正切为0.021.Linecal的使用a)计算FR4基片的50欧姆微带线的宽度b)计算FR4基片的50欧姆共面波导(CPW)的横截面尺寸(中心信号线宽度与接地板之间的距离)2.分别用理想传输线和微带传输线在FR4基片上,仿真一段特性阻抗为50欧姆四分之波长开路线的性能参数,工作频率为1GHz。

观察Smith圆图变化。

理想传输线微带传输线分析:四分之一波长开路线具有“开路变短路”的作用。

3.分别用理想传输线和微带传输线在FR4基片上,仿真一段特性阻抗为50欧姆四分之波长短路线的性能参数,工作频率为1GHz。

观察Smith圆图变化。

理想传输线微带传输线分析:四分之一波长短路线具有“短路变开路”的作用。

综上可知:四分之一波长传输线具有“阻抗倒置”的作用。

4.分别用理想传输线和微带传输线在FR4基片上,仿真一段特性阻抗为50欧姆二分之波长开路线的性能参数,工作频率为1GHz。

观察Smith圆图变化。

短路传输线微带传输线分析:二分之一波长开路线阻抗不变,所以开路经阻抗变换后还是开路。

5.分别用理想传输线和微带传输线在FR4基片上,仿真一段特性阻抗为50欧姆二分之波长短路线的性能参数,工作频率为1GHz。

观察Smith圆图变化。

理想传输线微带传输线先计算分析:二分之一波长短路线阻抗不变,所以所以短路经阻抗变换后还是短路。

综上可知:二分之一波长传输线具有“阻抗还原”的作用。

6.用一段理想四分之一波长阻抗变换器匹配10欧姆到50欧姆,仿真S参数,给出-20dB带宽特性,工作频率为1GHz。

带宽B=m1-m2=200.0 MHz7.用一段FR4基片上四分之一波长阻抗变换器匹配10欧姆到50欧姆,仿真S 参数,给出-20dB带宽特性,工作频率为1GHz,分析7 和8结果。

微波仿真实验报告

微波仿真实验报告

目录实验2 微带分支线匹配器 (3)✧实验目的 (3)✧实验原理 (3)✧实验内容 (3)✧实验步骤 (3)实验3 微带多节阻抗变换器 (9)✧实验目的 (9)✧实验原理 (9)✧实验步骤 (10)✧实验内容 (10)✧实验设计及结果 (10)实验4 微带功分器 (11)✧实验目的 (11)✧实验原理 (11)✧实验内容 (13)✧实验步骤 (13)实验心得与总结 (16)实验2 微带分支线匹配器✧ 实验目的1) 熟悉枝节匹配器的匹配原理2) 了解微带线的工作原理和实际应用3) 掌握Smith 图解法设计微带线匹配网络✧ 实验原理随着工作频率的提高及响应波长的减小,分立元件的寄生参数效应就变得更加明显,当波长变得明显小于典型的电路元件长度时,分布参数元件替代分立元件而得到广泛应用。

因此,在频率高达一定数值以上时,在负载和传输线之间并联或串联分支短截线,代替分立的电抗元件,实现族抗匹配网络。

常用的匹配电路有:枝节匹配器,四分之一波长阻抗变换器,指数线匹配器等。

枝节匹配器分单枝节、双枝节和三支节匹配。

这类匹配器是在主传输线上并联适当的电纳(或串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的,此电纳(或)电抗元件常用一终端短路或开路段构成。

单枝节匹配的基本思想是选择枝节到阻抗的距离d ,使其在距负载d 处向主线看去的导纳Y 是Y0+jB 形式。

然后,此短截线的电纳选择为-jB ,根据该电纳值确定分支短截线的长度,这样就达到匹配条件。

双枝节匹配器,通过增加一枝节,改进了单枝节匹配器需要调节枝节位置的不足,只需调节两个分支线的长度就能达到匹配。

✧ 实验内容已知: 输入阻抗 Zin=75Ohm负载阻抗 Zl=(64+j35)Ohm特性阻抗 Z0=75 Ohm介质基片r ε=2.55,H=1mm假定负载在2GHz 时实现匹配,利用图解法设计微带线单枝节和双枝节匹配网络,假设双枝节网络分支线与负载的距离d1= 4/λ,两分支线之间的距离为d2= 8/λ。

电磁场与微波技术实验心得(优秀范文五篇)

电磁场与微波技术实验心得(优秀范文五篇)

电磁场与微波技术实验心得(优秀范文五篇)第一篇:电磁场与微波技术实验心得电磁场与微波技术实验报告我们班连续观摩了三个《电磁场与微波技术》课程的实验,通过观看视频,老师讲解和演示,以及自己的一些操作,使我们加深了对这三个实验的一些了解。

实验一、电磁波极化在这个实验我们主要了解电磁波极化、天线极化的概念;了解电磁波的分解与合成原理;了解圆极化波产生的基本原理。

这个实验主要用到的仪器是微波分光仪,里面包含支座、分度转台、喇叭天线、可变衰减器、晶体检波器、视频电缆及微安表、读书机构、栅网组件、三厘米信号源、分光介质板。

实验内容:首先连接好实验仪器,三厘米固态信号源工作在等幅状态,按下电压按键使三位半数字表显示电压的示数,信号源的输出端通过同轴线连接到微波分光仪,此时的电信号通过同轴转波导经过隔离器、可变衰减器到达辐射天线的辐射喇叭(Pr0),辐射喇叭辐射出的波经过栅网组件的反射和吸收到达接收喇叭(Pr3),经由晶体检波器,通过同轴线与微安表相连。

垂直栅网(Pr1)与辐射喇叭在同一条水平线上,通过长铝质支柱固定在基座上;水平栅网(Pr2)正对着辐射喇叭,并与垂直栅网成直角,通过读数机构和短铝质支柱固定在基座上。

接收喇叭与辐射喇叭成45º角。

然后开始实验,打开信号源开关,这时转动接收喇叭Pr3,当Pr3喇叭E面与垂直栅网平行时收到E⊥波,经几次调整辐射喇叭Pr0的转角使Pr3接收到的|E∥|=|E⊥|,实现圆极化的幅度相等要求。

然后接收喇叭Pr3在E∥和E⊥之间转动,将出现任意转角下的|Eα|≤|E∥|(或E⊥)。

这时改变Pr2水平栅网位置,使Pr3接收的波具有|Eα|=|E∥|=|E⊥|,从而实现了E∥和E⊥两个波的相位差为±90º,得到圆极化波。

实验心得:通过老师的细心讲解以及在老师的指导下,我们进行了一些简单的操作,熟悉了实验仪器的名称,以及一些仪器的作用以及工作原理,如三厘米信号源, 它是一种使用体效应管作振荡源的微波信号源,能输出等幅信号及方波调制信号。

电磁场与微波技术实验报告(全)

电磁场与微波技术实验报告(全)

信息与通信工程学院电磁场与微波技术实验报告班级:姓名:学号序号:日期:1实验二:分支线匹配器一、实验目的掌握支节匹配器的工作原理;掌握微带线的基本概念和元件模型;掌握微带线分支线匹配器的设计和仿真。

二、实验原理支节匹配器支节匹配器是在主传输线上并联适当的电纳(或者串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。

单支节匹配器:调谐时,主要有两个可调参量:距离d 和分支线的长度l。

匹配的基本思想是选择d,使其在距离负载d 处向主线看去的导纳Y 是Y0 + jB 形式,即Y = Y0 +jB ,其中Y0 = 1/Z0。

并联开路或短路分支线的作用是抵消Y 的电纳部分,使总电纳为Y0,实现匹配,因此,并联开路或短路分支线提供的电纳为−jB ,根据该电纳值确定并联开路或短路分支线的长度l,这样就达到匹配条件。

双支节匹配器:通过增加一支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配(注意双支节匹配不是对任意负载阻抗都能匹配的,即存在一个不能得到匹配的禁区)。

微带线微带线是有介质εr(εr > 1) 和空气混合填充,基片上方是空气,导体带条和接地板之间是介质εr,可以近似等效为均匀介质填充的传输线,等效介质电常数为εe ,介于1 和εr 之间,依赖于基片厚度H 和导体宽度W。

而微带线的特性阻抗与其等效介质电常数为εe 、基片厚度H 和导体宽度W 有关。

三、实验内容已知:输入阻抗Z in = 75 Ω 负载阻抗Z L = (64 + j35) Ω特性阻抗Z0 = 75 Ω介质基片εr = 2.55,H = 1mm,导体厚度T 远小于介质基片厚度H。

2假定负载在2GHz 时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离d1 = λ/4 ,两分支线之间的距离为d2 = λ/8。

画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz 至2.2GHz 的变化。

非线性电路实习报告

非线性电路实习报告

一、实习目的本次非线性电路实习旨在使学生通过实际操作,掌握非线性电路的基本原理、分析方法以及应用,提高学生的实际动手能力和创新意识。

通过实习,使学生能够:1. 理解非线性电路的基本概念、特性及分析方法。

2. 掌握非线性电路的电路分析方法,如相量法、运算法则等。

3. 学会使用非线性电路仿真软件,如Multisim、SPICE等。

4. 了解非线性电路在实际工程中的应用,提高学生的创新意识。

二、实习内容1. 非线性电路基本概念及特性(1)非线性元件:非线性元件的输入输出关系不满足线性关系,如二极管、晶体管、运放等。

(2)非线性电路:含有非线性元件的电路称为非线性电路。

(3)非线性电路的特性:非线性电路具有非单调性、非线性和非互易性等特性。

2. 非线性电路分析方法(1)相量法:利用相量表示交流电路中的电压、电流等物理量,分析非线性电路。

(2)运算法则:运用运算法则对非线性电路进行化简和分析。

3. 非线性电路仿真实验(1)搭建非线性电路实验平台,如二极管限幅电路、晶体管放大电路等。

(2)使用仿真软件,如Multisim、SPICE等,对非线性电路进行仿真实验。

(3)分析仿真结果,验证理论分析的正确性。

4. 非线性电路在实际工程中的应用(1)了解非线性电路在信号处理、通信、电子测量等领域的应用。

(2)分析非线性电路在实际工程中的应用案例,提高学生的创新意识。

三、实习过程及结果1. 实习过程(1)学生分组,每组负责一个非线性电路实验项目。

(2)学生查阅相关资料,了解非线性电路的基本原理、分析方法及应用。

(3)学生搭建实验平台,进行非线性电路实验。

(4)学生使用仿真软件,对非线性电路进行仿真实验。

(5)学生分析实验结果,撰写实习报告。

2. 实习结果(1)学生掌握了非线性电路的基本原理、分析方法及应用。

(2)学生学会了使用非线性电路仿真软件,如Multisim、SPICE等。

(3)学生提高了实际动手能力和创新意识。

电磁场与微波实验报告

电磁场与微波实验报告

电磁场与微波实验报告电磁场与微波实验报告引言:电磁场是物质世界中一种重要的物理现象,它在我们的日常生活中无处不在。

微波则是一种特殊波长的电磁波,广泛应用于通信、烹饪等领域。

本次实验旨在通过探究电磁场与微波的关系,加深对电磁场的理解,并验证微波的特性。

实验目的:1. 了解电磁场的基本概念和特性;2. 探究电磁场与微波的关系;3. 验证微波的特性。

实验材料:1. 微波炉;2. 金属网格;3. 纸片;4. 木棒;5. 电磁场探测器。

实验步骤:1. 将纸片放置在微波炉的底部,然后打开微波炉并设定一定的时间;2. 观察纸片在微波炉中的变化,并记录下来;3. 在微波炉中放置金属网格,然后再次打开微波炉并设定一定的时间;4. 观察金属网格在微波炉中的变化,并记录下来;5. 使用木棒在微波炉中进行搅拌,并观察木棒的变化;6. 使用电磁场探测器测量微波炉中的电磁场强度,并记录下来。

实验结果与分析:1. 纸片在微波炉中变热、变焦;通过观察纸片在微波炉中的变化,我们可以看到纸片在微波炉中变得热乎乎的,并且在一定时间后出现了焦黑的现象。

这说明微波炉中的微波能够加热物体,使其发生物理变化。

2. 金属网格在微波炉中产生火花;当我们将金属网格放置在微波炉中时,观察到金属网格上出现了明亮的火花。

这是因为金属具有良好的导电性,当微波炉中的微波与金属网格相互作用时,产生了电流,从而导致了火花的产生。

3. 木棒在微波炉中没有明显变化;与纸片和金属网格不同,木棒在微波炉中并没有出现明显的变化。

这是因为木材是绝缘体,无法导电,微波无法对其产生明显的作用。

4. 微波炉中的电磁场强度较高;通过使用电磁场探测器测量微波炉中的电磁场强度,我们可以发现微波炉中的电磁场强度相当高。

这也是微波炉能够迅速加热食物的原因之一。

结论:通过本次实验,我们深入了解了电磁场的基本概念和特性,并验证了微波的特性。

微波能够加热物体,使其发生物理变化;金属具有良好的导电性,当微波与金属相互作用时会产生火花;木材是绝缘体,无法导电,因此在微波炉中没有明显变化。

非线性电路实验报告

非线性电路实验报告

非线性电路实验报告非线性电路【摘要】本次实验测量了有源非线性电阻的I-U 特性曲线,了解了非线性电阻的性质。

再利用有源非线性电阻搭建蔡氏振荡电路,改变特征参数,观察到不同的混沌现象,计算费根鲍姆常数。

再将两个蔡氏振荡电路搭建电路,观察并研究混沌同步。

最后我们观察信号的的加密,在混沌同步电路的基础上继续搭建,观察信号的加密与解密。

关键词:非线性电路、混沌、信号加密一.引言非线性科学的萌芽期可以追溯到19世纪末20世纪初,法国数学家庞加莱在解决天体力学中的三体问题时提出了庞加莱猜想。

非线性科学的真正建立是在20世纪六七十年代。

1963年,美国气象学家洛伦茨在《确定论非周期流》一文中,给出了描述大气湍流的洛伦茨方程,并提出了著名的“蝴蝶效应”,从而揭开了对非线性科学深入研究的序幕。

非线性科学被誉为继相对论和量子力学之后,20世界物理学的“第三次重大革命”。

由非线性科学所引起的对确定论和随机论、有序和无序、偶然性与必然性等范畴和概念的重新认识,形成了一种新的自然观,将深刻的影响人类的思维方法,并涉及现代科学的逻辑体系的根本性问题。

迄今为止,最丰富的混沌现象是非线性震荡电路中观察到的,这是因为电路可以精密元件控制,因此可以通过精确地改变实验条件得到丰富的实验结果,蔡氏电路是华裔科学家蔡少棠设计的能产生混沌的最简单的电路,它是熟悉和理解非线性现象的经典电路。

本次实验通过蔡氏电路研究混沌、混沌同步与混沌通信。

了解有源性负阻的I-U特性曲线与混沌现象的规律。

二.实验原理1. 费恩鲍姆系数一个完全确定的系统,即使非常简单,由于系统内部的非线性作用,同样具有内在的随机性,可以产生随机性的非周期运动。

在许多非线性系统中,既有周期运动,又有混沌运动。

所谓混沌,是服从确定性规律但具有随机性的运动,其主要特征是系统行为对于初始条件的敏感性。

菲根鲍姆发现,一个动力学系统中分岔点处参量n 收敛服从普适规律。

存在常数:,被称为菲根鲍姆常数。

电路分析实验:实验十 非正弦周期电流电路的仿真

电路分析实验:实验十  非正弦周期电流电路的仿真

实验10非正弦周期电流电路的仿真研究一实验目的(1)利用仿真软件分析非正弦交流电路。

(2)用示波器观察非正弦电路中电感及电容对电流波形的影响。

(3)加深对非正弦有效值关系式及功率公式的理解。

(4)加深理解谐振的概念,学习通过谐振的方法来达到滤波的目的。

二实验原理与说明一切满足狄里赫里条件的非正弦周期函数都可以分解成傅里叶级数。

电工技术中的非正弦周期信号都满足这个条件。

一个二端网络在非正弦周期电源的作用下,端口电压“⑴和电流®为非正弦周期信号, 可分解成下列傅里叶级数:X〃(,) = % +工。

匚85(/' +幻)(5-10-1)i=l沧)=1。

+£上*(" +加)(5-10-2)i=l对于任何周期性的电压或电流,无论是正弦的还是非正弦的,有效值是在一个周期内的均方根值。

因此,非正弦周期电压〃⑺和电流i(f)的有效值分别为U =" 2(M = J 况 + S *。

&310-3)/ = yf0尸(必二(5-10-4)设“⑴和电流,•⑺的参考方向关联,则该二端网络吸收的平均功率P为P=yjJ/(r>(r)Jf(5-10-5)将式(5-10-1)和式(5-10-2)代入式(5-10-5),再利用三角函数的正交性,可以求出平均功率为X P = U Q I Q + ZWk cos%(5-10-6)M式中,4、/,分别是第#次电压谐波和电流谐的有效值,中为第A次电压谐波与第比次电流谐ft k■ k波的相位差,即:电路的功率因数式(5-10-6)说明,非正弦周期信号的功率是直流分量的功率与各次谐波功率之和。

这是电路的视在功率定义为电路的功率因数对于非正弦电路而言,功率因数中的中己经不是一个具体相位差了,cos中是电路的总有功功率与总视在功率之比。

由于非正弦周期信号可以分解成诸次谐波之和(包括直流分量),线性电路在非正弦周期信号激励I、•的稳态响应可以用叠加定理求解。

电磁场仿真实验报告

电磁场仿真实验报告

电磁场仿真实验报告第一篇:电磁场仿真实验报告电磁场仿真实验报告电气工程学院 2011级2班 2011302540056 黄涛实验题目:有一极长的方形金属槽,边宽为1m,除顶盖电位为100sin(pi*x)V外,其它三面的电位均为零,试用差分法求槽内点位的分布。

1、有限差分法的原理它的基本思想是将场域划分成网格,用网格节点的差分方程近似代替场域内的偏微分方程,然后解这些差分方程求出离散节点上位函数的值。

一般来说,只要划分得充分细,其结果就可达到足够的精确度。

差分网格的划分有多种不同的方式,这里将讨论二维拉普拉斯方程的正方形网格划分法。

如下图1所示,用分别平行与x,y轴的两组直线把场域D划分成许多正方行网格,网格线的交点称为节点,两相邻平行网格线间的距离h称为步距。

用表示节点处的电位值。

利用二元函数泰勒公式,可将与节点(xi,yi)直接相邻的节点上的电位值表示为上述公式经整理可得差分方程这就是二维拉普拉斯方程的差分格式,它将场域内任意一点的位函数值表示为周围直接相邻的四个位函数值的平均值。

这一关系式对场域内的每一节点都成立,也就是说,对场域的每一个节点都可以列出一个上式形式的差分方程,所有节点的差分方程构成联立差分方程组。

已知的边界条件经离散化后成为边界点上已知数值。

若场域的边界正好落在网格点上,则将这些点赋予边界上的位函数值。

一般情况下,场域的边界不一定正好落在网格节点上,最简单的近似处理就是将最靠近边界点的节点作为边界节点,并将位函数的边界值赋予这些节点。

2、差分方程的求解方法:简单迭代法先对静电场内的节点赋予迭代初值,其上标(0)表示初始近似值。

然后再按下面的公式:进行多次迭代(k=0,1,2,3…)。

当两次邻近的迭代值差足够小时,就认为得到了电位函数的近似数值解。

实验程序: a=zeros(135,135);for i=1:135 a(i,i)=1;end;for i=1:7 a(15*i+1,15*i+2)=-0.25;a(15*i+1,15*i+16)=-0.25;a(15*i+1,15*i-14)=-0.25;end for i=1:7 a(15*i+15,15*i+14)=-0.25;a(15*i+15,15*i+30)=-0.25;a(15*i+15,15*i)=-0.25;enda(1,2)=-0.25;a(1,16)=-0.25;a(121,122)=-0.25;a(121,106)=-0.25;a(135,134)=-0.25;a(135,120)=-0.25;a(15,14)=-0.25;a(15,30)=-0.25;for i=2:14 a(i,i-1)=-0.25;a(i,i+1)=-0.25;a(i,i+15)=-0.25;end for i=122:134 a(i,i-1)=-0.25;a(i,i+1)=-0.25;a(i,i-15)=-0.25;end for i=1:7 for j=2:14;a(15*i+j,15*i+j-1)=-0.25;a(15*i+j,15*i+j+1)=-0.25;a(15*i+j,15*i+j+15)=-0.25;a(15*i+j,15*i+j-15)=-0.25;end end b=a^(-1);c=zeros(135,1);for i=121:135 c(i,1)=25;end d=b*c;s=zeros(11,17);for i=2:16 s(11,j)=100*sin(pi.*i);end for i=1:9 for j=1:15 s(i+1,j+1)=d(15*(i-1)+j,1);end end subplot(1,2,1),mesh(s)axis([0,17,0,11,0,100])subplot(1,2,2),contour(s,32)实验结果如下:***010***65432151015以上是划分为135*135个网格的过程,同理可有如下数据:(1)将题干场域划分为16个网格,共有25各节点,其中16个边界的节点的电位值是已知,现在要解的是经典场域内的9个内节点的电位值。

华中科技大学《电磁场与电磁波》课程仿真实验报告

华中科技大学《电磁场与电磁波》课程仿真实验报告

华中科技⼤学《电磁场与电磁波》课程仿真实验报告.《电磁场与电磁波》课程仿真实验报告学号*********姓名Crainax专业光学与电⼦信息学院院(系)******2016 年11⽉27⽇1.实验⽬的1)理解均匀波导中电磁波的分析⽅法,TEM/TE/TM 模式的传输特性;2)了解HFSS 仿真的基本原理、操作步骤;3)会⽤HFSS 对⾦属波导的导波特性进⾏仿真;4)画出波导主模的电磁场分布;5)理解波导中的模式、单模传输、⾊散与截⽌频率等概念。

2.实验原理2.1导波原理如图1,z轴与⾦属波导管的轴线重合。

假设:1)波导管内填充的介质是均匀、线性、各向同性的;2)波导管内⽆⾃由电荷和传导电流;3)波导管内的场是时谐场。

图1 矩形波导以电场为例⼦,将上式代⼊亥姆霍兹⽅程?2E+k2E=0,并在直⾓坐标内展开,即有:其中?k c表⽰电磁波在与传播⽅向相垂直的平⾯上的波数。

如果导波沿z⽅向传播,则对波导中传播的电磁波进⾏分析可知:1)场的横向分量可由纵向分量表⽰;2)既满⾜亥姆霍兹⽅程有满⾜边界条件的解很多,每个解对应⼀个波形(或称之为模式)3)k c是在特定边界条件下的特征值,当相移常数β=0 时,意味着波导系统不在传播,此时k c=k,k c称为截⽌波数。

2.2 矩形波导中传输模式的纵向传输特性波导中的电磁波在传输⽅向的波数β由下式给出:式中k为⾃由空间中同频率的电磁波的波数。

要使波导中存在导波,则β必须为实数,即>或<>如上式不满⾜,则电磁波不能在波导内传输,即截⽌。

矩形波导中TE10模的截⽌波长最长,故称它为最低模式,其余模式均称为⾼次模。

由于TE10模的截⽌波长最长且等于2a,⽤它来传输可以保证单模传输。

当波导尺⼨给定且有a>2b时,则要求电磁波的⼯作波长满⾜a<λ<2a λ>2b当⼯作波长给定时,则波导尺⼨必须满⾜<<<3.实验内容在HFSS中完成圆波导的设计与仿真,要求画出电场分布,获得⾊散曲线。

电磁场与微波技术实验报告

电磁场与微波技术实验报告

电磁场与微波技术实验报告实验题目:基于ADS软件的平行耦合微带线带通滤波器的设计与仿真学号:学生姓名:专业:班级:指导教师:一、实验目的1、熟悉ADS软件的基本使用方法2、了解基本传输线、微带线的特性3、利用ADS软件进行基本传输线和微带线的电路设计和仿真二、实验仪器Advanced Design System软件。

三、实验原理滤波器是用来分离不同频率信号的一种器件,在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,微带电路具有体积小,重量轻、频带宽等诸多优点,在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一。

平行耦合微带线带通滤波器在微波集成电路中是被广为应用的带通滤波器。

1、滤波器的介绍滤波波器可以分为四种:低通滤波器和高通滤波器、带通滤波器和带阻滤波器。

射频滤波器又可以分为以下波导滤波器、同轴线滤波器、带状线滤波器、微带滤波器。

滤波的性能指标:频率范围:滤波器通过或截断信号的频率界限通带衰减:滤波器残存的反射以及滤波器元件的损耗引起阻带衰减:取通带外与截止频率为一定比值的某频率的衰减值寄生通带:有分布参数的频率周期性引起,在通带外又产生新的通带2、平行耦合微带线滤波器的理论当频率达到或接近GHz时,滤波器通常由分布参数元件构成,平行耦合微带传输线由两个无屏蔽的平行微带传输线紧靠在一起构成,由于两个传输线之间电磁场的相互作用,在两个传输线之间会有功率耦合,这种传输线也因此称为耦合传输线。

平行耦合微带线可以构成带通滤波器,这种滤波器是由四分之一波长耦合线段构成,她是一种常用的分布参数带通滤波器。

当两个无屏蔽的传输线紧靠一起时,由于传输线之间电磁场的相互作用,在传输线之间会有功率耦合,这种传输线称之为耦合传输线。

根据传输线理论,每条单独的微带线都等价为小段串联电感和小段并联电容。

每条微带线的特性阻抗为Z0,相互耦合的部分长度为L,微带线的宽度为W,微带线之间的距离为S,偶模特性阻抗为Z e,奇模特性阻抗为Z0。

电磁场与微波测量实验报告天线特性测试实验报告

电磁场与微波测量实验报告天线特性测试实验报告

电磁场与微波测量实验报告天线特性测试实验报告北京邮电大学电磁场与微波测量实验报告1天线特性测试及分析本实验主要是学习天线理论、掌握天线方向图的概念以及学习天线方向图的测量方法。

以下是天线的概念及有关名词的解释。

一、天线的概念无线电发射机输出的射频信号功率,通过馈线输送到天线,由天线以电磁波形式辐射出去。

电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。

可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。

天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。

对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等。

二、天线的方向性发射天线的基本功能之一是把从馈线取得的能量向周围空间辐射出去,基本功能之二是把大部分能量朝所需的方向辐射。

天线对空间不同方向具有不同的辐射或接收能力,这就是天线的方向性。

衡量天线方向性通常使用方向图,在水平面上,辐射与接收无最大方向的2天线称为全向天线,有一个或多个最大方向的天线称为定向天线。

全向天线由于其无方向性,所以多用在点对多点通信的中心台。

定向天线由于具有最大辐射或接收方向,因此能量集中,增益相对全向天线要高,适合于远距离点对点通信,同时由于具有方向性,抗干扰能力比较强。

三、天线的增益增益是天线的主要指标之一,它是方向系数与效率的乘积,是天线辐射或接收电波大小的表现。

增益大小的选择取决于系统设计对电波覆盖区域的要求,简单地说,在同等条件下,增益越高,电波传播的距离越远。

增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。

它定量地描述一个天线把输入功率集中辐射的程度。

电磁场与微波技术实验报告

电磁场与微波技术实验报告

电磁场与微波技术实验报告
部门: xxx
时间: xxx
整理范文,仅供参考,可下载自行编辑
华北电力大学
实验报告
|
|
实验名称仿真实验一:Smith圆图的仿真
课程名称电磁场与微波技术
|
|
专业班级:学生姓名:
学号:成绩:
指导教师:实验日期:
验证性、综合性实验报告应含的主要内容:
一、实验目的及要求
二、所用仪器、设备
三、实验原理
四、实验方法与步骤
五、实验结果与数据处理
六、讨论与结论<对实验现象、实验故障及处理方法、实验中存在的问题
等进行分析和讨论,对实验的进一步想法或改进意见)b5E2RGbCAP
七、所附实验输出的结果或数据
设计性实验报告应含的主要内容:
一、设计要求
二、选择的方案
三、所用仪器、设备
四、实验方法与步骤
五、实验结果与数据处理
六、结论<依据“设计要求”)
七、所附实验输出的结果或数据
* 封面左侧印痕处装订
为半径的圆。

那么不同的反射系数出,这是一个直线方程,表明在复平面上等反射系数幅角线是由将。

我们把前面所讲的四种轨迹画在一张极坐标图上,
文件下的Sch1,在右侧空白处建立电路图,如下图所New Item>Analyses>Add linear Analysis。

申明:
所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

电磁场与微波实验十报告——非线性电路仿真实验

电磁场与微波实验十报告——非线性电路仿真实验

非线性电路仿真实验之五兆芳芳创作1.实验原理通过一个复杂的功率缩小器的设计来介绍射频非线性电路的设计与仿真,以此来熟悉非线性电路中的各类参数以及各类非线性元件的使用,熟悉支电路的使用等等.使用MWO中的丈量元件得到器件三极管的特性曲线图.通过参数调谐,不雅察特性曲线图的变更.用此三极管器件,设计其直流偏置电路,得到一个功率缩小器,使用谐波平衡来仿真此电路在基波下的输出功率曲线.射频缩小器与常规低频电路的设计办法完全不合,它需要考虑一些特殊的因素.尤其是入射电压波和入射电流波都必须与有源器件良好匹配,以便下降电压驻波比、避免寄生振荡.利用单级或多级晶体管电路对输入信号进行缩小是模拟电路理论中最重要并且是最困难的任务.2.实验步调首先新建Project和一个Schematic电路图,命名为BJT,进行整个Project的属性设置,起始频率设置为1.5GHz,终止频率设置为2.5GHz,Step设置为0.2GHz,然后会转到电路图BJT,在Element页面中,选择BLT11_chip,将其放在BJT原理图中,此元件便为一个BJT晶体管,在使用这个器件之前,一般都需要先不雅察其特性曲线,使用丈量元件来实现,选择MeasDevice → IV,在下面的窗口中选择IVCURVEI,将其放置在原理图中,这个元件为I_V曲线追踪器,在设置的若干个电流值的条件下做出电压的曲线,此元件一般用在丈量电流控制器件的I_V特性曲线.再新建一个方框图BJTGraph来输出仿真结果.右键点击BJTGraph,选择Add Measurments,在对话框窗口的Meas. Type中选择Nonlinear Current,在Measurement中选择IVCurve,在Date Source Name中选择BJT,然后选择“OK”结束设置.最后选择仿真,则出现此晶体管的仿真曲线.下面设计此晶体管的直流偏置电路,并且使用谐波平衡来仿真此电路在基波下的输出功率曲线.新建一个Schematic原理图,命名为DCBjt,绘出原理图如下,图中L1、L2两个电感为高频扼流电感,都取1μH其中电容C1为三极管发射极旁路电容,C2、C3辨别为基极、集电极隔直电容.I_METER为丈量电流元件,V_METER为丈量电压元件,辨别丈量集电极电流和电压.DCVS为直流电压源,V1为1V,V2为6V,晶体管输入、输出两端辨别有两个支电路,辨别为输入匹配电路与输出匹配电路,引入这两个电路的办法为,首先右键点击Schematic选项,选择Import Schematic,然后选择路径,将目标文件夹中的input match和output match两个电路原理图文件都引入.然后回到DCBjt电路图中,在Element页面中,选择Subcircuits,在下面的窗口中将出现此Project中所有的电路原理图.图中最左边的端口Port1为谐波平衡端口,这个端口除了具有普通端口的功效外,阻抗也为50欧姆,还带有单音信号源,用于谐波仿真.参数中Z仍是代表阻抗值,Pwr暗示单音信号源的功效振幅.电路原理图完成后,我们可以先看看在不合频率下I_METER与V_METER的值.在Graph选项中,选择Add Gtaph,然后选择Tabular表图,新建Graph2,右键点击,选择Add Measurement,在对话框中Meas. Type选择Nonlinear Current,Measurement选择Icomp,Icomp为单音谐波电流.对话框中有Hamomic Index 一项,“0”暗示直流偏置,对应电压丈量也是如此,Meas. Type中选择Nonlinear Voltage,Measurement选择Vcomp,Vcomp为单音谐波电压.选择完后可以进行仿真看到各个频率点上的电压与电流值.然后,需要丈量输出端口,即Port2的输出功率曲线.先新建一个方框图Graph3,选择Add Measurement,由于需要丈量的是输出端口的功率值,因而在Add Measurement对话框中,Meas. Type选择Nonlinear Power,Measurement选择Pcomp为单音谐波功率.由于此缩小器是设计使用在基波频率下的,需要丈量的输出功率是在基波频率下的值,因而Hamomic Index一项选择1,Measurement Component选择PORT_2,其他使用默认值,最后选择“仿真”,在Graph3中会出现各个频率点的输出功率值.3.实验结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非线性电路仿真实验
1.实验原理
通过一个简单的功率放大器的设计来介绍射频非线性电路的设计与仿真,以此来熟悉非线性电路中的各种参数以及各种非线性元件的使用,熟悉支电路的使用等等。

使用MWO中的测量元件得到器件三极管的特性曲线图。

通过参数调谐,观察特性曲线图的变化。

用此三极管器件,设计其直流偏置电路,得到一个功率放大器,使用谐波平衡来仿真此电路在基波下的输出功率曲线。

射频放大器与常规低频电路的设计方法完全不同,它需要考虑一些特殊的因素。

尤其是入射电压波和入射电流波都必须与有源器件良好匹配,以便降低电压驻波比、避免寄生振荡。

利用单级或多级晶体管电路对输入信号进行放大是模拟电路理论中最重要而且是最困难的任务。

2.实验步骤
首先新建Project和一个Schematic电路图,命名为BJT,进行整个Project的属性设置,起始频率设置为1.5GHz,终止频率设置为2.5GHz,Step设置为0.2GHz,然后会转到电路图BJT,在Element页面中,选择BLT11_chip,将其放在BJT原理图中,此元件便为一个BJT晶体管,在使用这个器件之前,一般都需要先观察其特性曲线,使用测量元件来实现,选择MeasDevice →IV,在下面的窗口中选择IVCURVEI,将其放置在原理图中,这个元件为I_V曲线追踪器,在设置的若干个电流值的条件下做出电压的曲线,此元件一般用在测量电流控制器件的I_V特性曲线。

再新建一个方框图BJTGraph来输出仿真结果。

右键点击BJTGraph,选择Add Measurments,在对话框窗口的Meas. Type中选择Nonlinear Current,在Measurement中选择IVCurve,在Date Source Name中选择BJT,然后选择“OK”结束设置。

最后选择仿真,则出现此晶体管的仿真曲线。

下面设计此晶体管的直流偏置电路,并且使用谐波平衡来仿真此电路在基波下的输出功率曲线。

新建一个Schematic原理图,命名为DCBjt,绘出原理图如下,图中L1、L2两个电感为高频扼流电感,都取1μH
其中电容C1为三极管发射极旁路电容,C2、C3分别为基极、集电极隔直电容。

I_METER为测量电流元件,V_METER为测量电压元件,分别测量集电极电流和电压。

DCVS为直流电压源,V1为1V,V2为6V,晶体管输入、输出两端分别有两个支电路,分别为输入匹配电路与输出匹配电路,引入这两个电路的方法为,首先右键点击Schematic选项,选择Import Schematic,然后选择路径,将目标文件夹中的input match和output match两个电路原理图文件都引入。

然后回到DCBjt电路图中,在Element页面中,选择Subcircuits,在下面的窗口中将出现此Project中所有的电路原理图。

图中最左边的端口Port1为谐波平衡端口,这个端口除了具有普通端口的功能外,阻抗也为50欧姆,还带有单音信号源,用于谐波仿真。

参数中Z还是代表阻抗值,Pwr表示单音信号源的功能振幅。

电路原理图完成后,我们可以先看看在不同频率下I_METER与V_METER的值。

在Graph选项中,选择Add Gtaph,然后选择Tabular表图,新建Graph2,右键点击,选择Add Measurement,在对话框中Meas. Type选择Nonlinear Current,Measurement选择Icomp,Icomp为单音谐波电流。

对话框中有Hamomic Index一项,“0”表示直流偏置,对应电压测量也是如此,Meas. Type中选择Nonlinear V oltage,Measurement选择Vcomp,Vcomp为单音谐波电压。

选择完后可以进行仿真看到各个频率点上的电压与电流值。

然后,需要测量输出端口,即Port2的输出功率曲线。

先新建一个方框图Graph3,选择Add Measurement,由于需要测量的是输出端口的
功率值,因而在Add Measurement对话框中,Meas. Type选择Nonlinear Power,Measurement选择Pcomp 为单音谐波功率。

由于此放大器是设计使用在基波频率下的,需要测量的输出功率是在基波频率下的值,因而Hamomic Index一项选择1,Measurement Component选择PORT_2,其他使用默认值,最后选择“仿真”,在Graph3中会出现各个频率点的输出功率值。

3.实验结果。

相关文档
最新文档