262有理数的加法运算律

合集下载

华师大七年级数学上册《有理数加法的运算律》课件

华师大七年级数学上册《有理数加法的运算律》课件

讲解 请你当老师
符号相同
计算:
的先结合
互为相反数
(1)(-23)+(+58)+(-17) 的先结合
(2)(-2.8)+(-3.6)+(-1.5)+3.6
(3) —16 + (- —27 ) + (- —65 ) + (+ —57 )
分母相同的 先结合
例3 有一批食品罐头,标准质量为每听454克. 现抽取10 听样品进行检测, 结果如下表(单位: 克):
听号
1
2345
与标准质量的差值 -10 + 5 0 + 5 0
听号
6
7 8 9 10
与标准质量的差值
0 - 5 0 + 5 + 10
这10听罐头与标准质量差值的和为
(10) 5 0 5 0 0 (5) 0 5 10 [(10) 10] [(5) 5] 5 5 10(克).
有理数的加法
2. 有理数加法的运算律
回顾旧知 1.有理数加法法则要点
(1)同号两数相加, 取 相同的符号, 并把绝对值相加 . (2)异号两数相加, 绝对值相等时,和为0; 绝对值不等时,取绝对值较大加数的符号,
并用较大的绝对值减去较小的绝对值.
(3)一个数同零相加仍得这个数.
2、抢 答
(1)(-10)+(-8)= -18 (2)(-6)+(+9)= 3 (3)(-37)+0= -37 (4)(-3.86)+(+3.86)= 0 (5)(+416)+0= +416
(6)(+6)+(+9)= 15
有理数加法运算律
加法的交换律: a+b=b+a 加法的结合律: (a+b)+c=a+(b+c)

有理数的加减运算顺序有理数加减混合运算的步骤有理数加减混合运算法则

有理数的加减运算顺序有理数加减混合运算的步骤有理数加减混合运算法则

有理数加减混合运算的步骤(1)把减法转化为加法,写成省略加号和括号的形式;(2)应用加法的交换律与结合律,简化运算;(3)求出结果。

有理数的加减运算顺序:1.同级运算从左往右(从左往右算)2.异级运算先二后一(先算二级运算,再算一级运算,×、÷为二级,+、为一级)3.有括号的先里后外(先算括号里的,再算括号外的)有理数加减混合运算法则:(一)同号两数相加,取相同的符号,并把绝对值相加。

(二)异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值。

(三)一个数同0相加,仍得这个数。

有理数加减混合运算:有理数加法运算总是涉及两个方面:一方面是确定结果的符号,另一方面是求结果的绝对值。

步骤:①减法化加法②省略加号和括号③运用加法法则,加法运算律进行简便运算。

有理数减法法则:减去一个数,等于加上这个数的相反数。

注:在运用减法法则时,注意两个符号的变化,一是运算符号,减号变成加号,二是性质符号,减数变成它的相反数。

有理数的加减混合运算加减混合运算可以通过减法法则,将减法化加法,统一为加法运算。

有理数的加减法运算法则及顺口溜同号两数相加,取与加数相同的符号,并把绝对值相加。

减去一个数,等于加上这个数的相反数。

接下来给大家分享有理数的加减法运算法则及顺口溜。

有理数加减运算法则(1)同号两数相加,取与加数相同的符号,并把绝对值相加。

(2)异号两数相加,若绝对值相等则互为相反数的两数和为0;若绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

(3)互为相反数的两数相加得0。

(4)一个数同0相加仍得这个数。

(5)互为相反数的两个数,可以先相加。

(6)符号相同的数可以先相加。

(7)分母相同的数可以先相加。

(8)几个数相加能得整数的可以先相加。

有理数减法法则减去一个数,等于加上这个数的相反数,即把有理数的减法利用数的相反数变成加法进行运算。

有理数的加法运算律

有理数的加法运算律

905.4-90×10=5.4
答:10袋小麦一共905.4千克,总计 超过5.4千克。
1 一口水井,水面比井口低3米,一只蜗牛从水面沿着井壁
往井口爬,第一次往上爬了0.4米,下滑了0.2米,第二次爬0.59 米,却又下滑了0.12米,第三次上爬了0.88米,下滑了0.15米, 第四次往上爬了 0.93米,下滑了0.13米,问蜗牛爬出井口了吗? 解:因为0.4+(-0.2)+0.59)+ 0.93+(-0.13)=2.2<3 所以蜗牛不能爬出井口,第五 次她至少要爬3-2.2=0.8米
七、布置作业,引导预习 1.课本P41页,习题2.6 2.预习课本P42—P43 3,4,5
通过计算将怎样的 加法结合在一起, 可使运算简便?
答:10筐苹果总共重304千克
五、分层练习,形成能力 1 判断题
(1) 若两个数的和是0,则这两个数都是0; (×)
(2) 任何两数相加,和不小于任何一个加数 (×) (3) a+b+c+d=(a+c)+(b+d) (∨) (4) 某天早上的气温是-10C,中午上升了50C,则中午的 气温是-60C (×)
二、 得出法则,揭示内涵
有理数的加法中,两个数相加,交换加数的位置,和不变.
加法交换律: a+b=b+a
有理数的加法中,三个数相加,先把前两个数 相加,或者先把后两个数相加,和不变.
加法结合律:(a+b)+c=a+(b+c)
三、强化法则,深入理解
使用运算律通常有下列情形:
(1)符号相同的数可以先相加。 (2)互为相反数的两个数可先相加;
解:16+(-25)+24+(-35) =(-9)+24+(-35) 解:16+(-25)+24+(-35) =16+24+(-25)+(-35) (加法交换律)

有理数的加减混合运算法则

有理数的加减混合运算法则

有理数的加减混合运算法则1.有理数的加法法则⑴同号两数相加,取相同的符号,并把绝对值相加;⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;⑶互为相反数的两数相加,和为零;⑷一个数与零相加,仍得这个数。

2.有理数加法的运算律⑴加法交换律:a+b=b+a⑵加法结合律:(a+b)+c=a+(b+c)在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:①互为相反数的两个数先相加——“相反数结合法”;②符号相同的两个数先相加——“同号结合法”;③分母相同的数先相加——“同分母结合法”;④几个数相加得到整数,先相加——“凑整法”;⑤整数与整数、小数与小数相加——“同形结合法”。

3.加法性质一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和等于原数。

即:⑴当b>0时,a+b>a⑵当b<0时,a+b<a⑶当b=0时,a+b=a4.有理数减法法则减去一个数,等于加上这个数的相反数。

用字母表示为:a-b=a+(-b)。

5.有理数加减法统一成加法的意义在有理数加减法混合运算中,根据有理数减法法则,可以将减法转化成加法后,再按照加法法则进行计算。

在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。

如:(-8)+(-7)+(-6)+(+5)=-8-7-6+5.和式的读法:①按这个式子表示的意义读作“负8、负7、负6、正5的和”②按运算意义读作“负8减7减6加5”6.有理数加减混合运算中运用结合律时的一些技巧:Ⅰ.把符号相同的加数相结合(同号结合法)(-33)-(-18)+(-15)-(+1)+(+23)原式=-33+(+18)+(-15)+(-1)+(+23)(将减法转换成加法)=-33+18-15-1+23(省略加号和括号)=(-33-15-1)+(18+23)(把符号相同的加数相结合)=-49+41(运用加法法则一进行运算)=-8(运用加法法则二进行运算)Ⅱ.把和为整数的加数相结合(凑整法)(+6.6)+(-5.2)-(-3.8)+(-2.6)-(+4.8)原式=(+6.6)+(-5.2)+(+3.8)+(-2.6)+(-4.8)(将减法转换成加法)=6.6-5.2+3.8-2.6-4.8(省略加号和括号)=(6.6-2.6)+(-5.2-4.8)+3.8(把和为整数的加数相结合)=4-10+3.8(运用加法法则进行运算)=7.8-10(把符号相同的加数相结合,并进行运算)=-2.2(得出结论)Ⅲ.把分母相同或便于通分的加数相结合(同分母结合法)--+-+-原式=(--)+(-+)+(+-)=-1+0-=-1Ⅳ.既有小数又有分数的运算要统一后再结合(先统一后结合)(+0.125)-(-3)+(-3)-(-10)-(+1.25)原式=(+)+(+3)+(-3)+(+10)+(-1)=+3-3+10-1=(3-1)+(-3)+10=2-3+10=-3+13=10Ⅴ.把带分数拆分后再结合(先拆分后结合)-3+10-12+4原式=(-3+10-12+4)+(-+)+(-)=-1++=-1++Ⅵ.分组结合2-3-4+5+6-7-8+9…+66-67-68+69原式=(2-3-4+5)+(6-7-8+9)+…+(66-67-68+69)=0Ⅶ.先拆项后结合(1+3+5+7...+99)-(2+4+6+8 (100)有理数的乘除法1.有理数的乘法法则法则一:两数相乘,同号得正,异号得负,并把绝对值相乘;(“同号得正,异号得负”专指“两数相乘”的情况,如果因数超过两个,就必须运用法则三)法则二:任何数同0相乘,都得0;法则三:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数;法则四:几个数相乘,如果其中有因数为0,则积等于0.2.倒数乘积是1的两个数互为倒数,其中一个数叫做另一个数的倒数,用式子表示为a·=1(a≠0),就是说a和互为倒数,即a是的倒数,是a的倒数。

有理数加减混合运算法则

有理数加减混合运算法则

知识点1:有理数的加法法则把两个或两个以上的有理数合并成一个有理数的运算,叫做有理数的加法,相加的两个数叫做加数,得到的结果叫做和。

由于有理数分为正有理数、零、负有理数三类,所以两个有理数相加就有以下三种情况:同号两数相加;异号两数相加;一个数同0相加。

⑴一个数同0相加,仍得这个数。

如:(-2)+0=-2,6+0=6.⑵借助数轴来探究同号两数相加的情况:(规定向东为正方向,1个单位长度为1米)同号两数相加,取相同的符号,并把绝对值相加。

⑶借助数轴来探究异号两数相加的情况:(规定向东为正方向,1个单位长度为1米)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0。

知识点2:有理数加法的运算步骤进行有理数加法运算时,应按照以下“一判,二定,三加减”的步骤:第一步:判断加法的类型,并根据加法的类型确定使用哪一个法则;第二步:根据加法绝对值的大小及有理数的符号,确定和的符号:第三步:对绝对值进行加或减,确定和的绝对值。

知识点3:有理数的加法运算律加法交换律:两个数相加,交换加数的位置和不变。

即a+b=b+a。

交换加数的位置时,各加数应连同其符号一起交换。

加法结合律:三个数相加,先把前两个数相加或先把后两个数相加和不变。

即(a+b)+c=a+(b+c)。

多个数相加时,灵活运用加法运算律,可使运算简便,通常有以下运算技巧。

①凑0,即和为0的几个数先加。

②凑10或凑100,即和为整10或者100的几个数先加。

③凑整,即和为整数的几个数先加。

④同号的几个数先加。

⑤同分母或易通分的分数先加。

知识点4:有理数的减法法则减法的概念:已知两个数的和与其中的一个加数,求另一个加数的运算叫做减法,减法是加法的逆运算。

在小学时,被减数要大于减数,引入负数后,任何两个数都可以进行减法运算。

有理数减法法则:减去一个数等于加这个数的相反数。

即a-b=a+(-b)。

0减去任何数得这个数的相反数。

有理数加法运算律

有理数加法运算律

§2.6 .2有理数加法的运算律知识点:1、有理数加法交换律:两个数相加,交换加数的位置,和不变。

字母表示为:a+b=b+a结合律:先把前两个数相加,或者先把后两个数相加,和不变。

字母表示为:(a+b)+c=a+(b+c)2.运用加法运算律简化运算(1)同号先相加(2)同分母先相加(3)能凑整的先凑整3.有理数加法的两种应用类型。

学习效果检测(1)、(-7)+(+10)+(-11)+(-2) (2)、 2+(-3)+(-5)+(+4)+6(3)、(-13)+11+(-17)+39 (4)、(-26)+(+6)+(-44)+(+104)(5)、(-5.6)+(+1)+(-4.4)+(+8.1)+0.9(6)、(-9.6)+1.5 +(-0.4)+(-0.3)+8.5(7)(-2.4)+(-3.7)+(+4.2)+0.7+(-4.2);(8)(-12)+314+2.75+(-612)(9)13+(-34)+(-13)+(-14)+1819一、选择题1.两个有理数相加,如果和小于每一个加数,那么()A.这两个加数同为负数; B.这两个加数同为正数C.这两个加数中有一个负数,一个正数; D.这两个加数中有一个为零2.下列说法正确的是()A.两数之和必大于任何一个加数B.同号两数相加,符号不变,并把绝对值相加C.两负数相加和为负数,并把绝对值相减D.异号两数相加,取绝对值较大的加数的符号,并把绝对值相加二、填空题1.(-56)+(-16)=_______, _______+(-32)=0.2.-2003与2004的和的倒数是________.3.A地海拔高度为-210m,B地比A地高580m,B地海拔高度为_________.三、解答题1、某城市一天早晨的气温是-25℃,中午上升了11℃,夜间又下降了13℃,那么这天夜间的气温是多少?2、某人用400元购买了8套儿童服装,准备以一定价格出售,如果每套儿童服装以55元的价格为标准,超出的记作正数,不足的记作负数,记录如下:+2,-3,+2,+1,-1,-2,0,-2,当它卖它这8套儿童服装后是盈利还是亏损?盈利(亏损)多少钱?3、某公路养护小组乘车沿东西向公路巡视维护.某天早晨从A地出发,晚上时到达B地.规定向东为正方向,行走记录如下(单位千米): +18, -9, +7, -14, -6, +13, -6, -8.(1)B地在A地的哪个方向? 它们相距多少千米?(2)若汽车行驶每千米耗油0.2升,求该天共耗油多少升.4.阅读下面的方法,并计算.-5+(-9)+(-3)+17.解:原式=[(-5)+(-)]+[(-9)+(-)]+[(-3)+(-)]+(17+)=[(-5)+(-9)+(-3)+17]+[(-)+(-)+(-)+]=0+(-)=-.上述这种方法叫做拆项法,依照上述方法计算:(-2013)+(-2012)+4026+(-1).。

有理数的加法运算律

有理数的加法运算律

分析
本题中,判断这个老板是盈利还是亏损,应先求出他销售 这10件玩具的总收入,然后与成本300元进行比较,若总收 入高于300元,则盈利;若总收入低于300元,则亏损;若 总收入等于300元,则不亏损也不盈利.可先求出各数与基准 数48元的差的和.,得到总的增减量,然后再求出总收入, 与成本300元比较.
7 12 3 87 (kg)
答:这7筐西红柿的总质量是87kg.
中考 试题
例1
某玩具店老板用300元购买了10件玩具,如果按自定的价格每 件玩具48元作为标准出售,超出的钱数记为正数,不足的钱数记 为负数,现记录如下(单位:元):+5,-2,+9,-6,-1,0,+3, -9,+4,-8,请你帮助这个老板计算一下,当他卖完这10件玩具 后,是盈利还是亏损?
3、下列各题计算运用运算律恰当吗?
(1)28 (19) 42 (21)
(19) (21) (28 42)
3 3 (2)( 3.75) (2 ) 5 (8.4) 5 4
3 3 (3.75) 5 (2 ) (8.4) 4 5
(1)把正数和负数分别结合在一起相加 (2)把互为相反数的结合,能凑整的结合 (3)把同分母的数结合相加
2.算一算: 1 16 25 24 (35) 2 3.48 5.33 9.52 5.33 (3.05)
3 1 2 3 1 3 2 3 3 2 1 5 4 5 4 3
中考 试题
例2
在1,-1,-2这三个数中,任意两数之和的最大值是( B ). A.1 B.0 C.-1 D.-3

第2课时 有理数的加法运算律

第2课时 有理数的加法运算律
两次所得的和相同吗?换几个加数再试一试. 从上述计算中,你能得出什么结论?
归纳
在有理数的加法中,三个数相加,先把前两个数相 加,或者先把后两个数相加,和不变.
加法结合律: (a + b)+ c = a +(b + c)
特别提醒: 根据加法交换律和结合律,多个有理数相加,可以 任意交换加数的位置,也可以先把其中的几个数相加.
加法交换律: a + b = b + a
有理数的加法中,三个数相加,先把前两个数 相加,或者先把后两个数相加,和不变.
加法结合律: (a + b)+ c = a +(b + c)
解法1:先计算 10 袋小麦一共多少千克: 50.5+50.5+50.8+49.5+50.6+50.7+49.2+49.4+50.9+50.4=502.5 再计算总计超过多少千克:
502.5 - 50×10 = 2.5.
解法2:把每袋小麦超过 50 kg 的千克数记作正数, 不足的千克数记作负数. 10 袋小麦对应的数分别为 +0.5,+0.5,+0.8,-0.5,+0.6,+0.7,-0.8,-0.6, +0.9,+0.4.
巩固练习
计算: 7.3 + (-13.7) + (-25.3) + 13.7. 解:原式 = [7.3 + (-25.3)] +[(-13.7) + 13.7].
= (-18) + 0 = - 18
例 题 【教材P29】
例 2 计算:
(1)8 + (-6) + (-8); (2)16 + (-25) +24 +(-35).

七年级数学上册有理数的加法(考点讲解)(含答案)

七年级数学上册有理数的加法(考点讲解)(含答案)

第四讲有理数的加法【学习目标】1.掌握有理数加法的意义,法则及运算律,并会使用运算律简算;2.理解运算符号和性质符号的意义,运用加法运算律合理简算,并会解决简单的实际问题.【知识结构】【考点总结】一、有理数的加法1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.2.法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.注意要点:利用法则进行加法运算的步骤:(1)判断两个加数的符号是同号、异号,还是有一个加数为零,以此来选择用哪条法则.(2)确定和的符号(是“+”还是“-”).(3)求各加数的绝对值,并确定和的绝对值(加数的绝对值是相加还是相减).3.运算律:有理加法文字语言两个数相加,交换加数的位置,和不变注意要点:交换加数的位置时,不要忘记符号.【例题讲解】【类型】一、有理数的加法运算例1、下列计算正确的个数是( ).①(-5)+(-5)=0;②(-6)+(+4)=-10;③0+(-2)=-2;④⎝⎛⎭⎫+56+⎝⎛⎭⎫-16=23;⑤23+⎝⎛⎭⎫-723=-7. A .0 B .1 C .2 D .3 解析:①误将(-5)+(-5)当成了两个互为相反数的和,②(-6)+(+4)=-(|6|-|4|)=-2,所以①②错误;根据有理数的加法法则可知,③④⑤正确.故选D.答案:D例2、下列运算中运用的运算律是( ).(+18)+(-7)+2+(-3)=[(+18)+2]+[(-7)+(-3)].A .加法交换律B .加法结合律C .加法交换律和结合律D .以上答案都不对 解析:-7与2交换位置,运用了加法的交换律;而+18与2相加,-7与-3相加运用了加法结合律,故本题同时运用了加法交换律和结合律.答案:C例3、计算: (1)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+4332;(2)()5.3415-+⎪⎭⎫ ⎝⎛-;(3)(-16)+16;(4)(-8)+0. 分析:进行有理数的加法时,要先看类型,再运算.类型有三种:一是同号两数相加;二是异号两数相加;三是与0相加.(1)是异号两数相加;(2)是同号两数相加;(3)是互为相反数相加;(4)是一个数与0相加.解:(1)⎝⎛⎭⎫+23+⎝⎛⎭⎫-34(异号两数相加)=-⎝⎛⎭⎫34-23 (取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值)=-112; (2)⎝⎛⎭⎫-514+(-3.5)(同号两数相加)=-⎝⎛⎭⎫514+3.5(取相同的符号,并把绝对值相加) =-834; (3)(-16)+16(互为相反数的两数相加)=0;(和为0)(4)(-8)+0(一个数与0相加)=-8.(仍得这个数)例5、用简便方法计算:⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+311524325536 分析:本题是多个有理数的加法,可利用加法的交换律、结合律进行简便计算,先把同分母的两个数(正数与正数、负数与负数)相加.解:⎝⎛⎭⎫+635+⎝⎛⎭⎫-523+⎝⎛⎭⎫+425+⎝⎛⎭⎫-113 =⎣⎡⎦⎤⎝⎛⎭⎫+635+⎝⎛⎭⎫+425+⎣⎡⎦⎤⎝⎛⎭⎫-523+⎝⎛⎭⎫-113 =11+(-7)=4.例6、计算:(-1)+(+2)+(-3)+(+4)+…+(-2 013)+(+2 014).分析:本题相邻数的符号不同,且绝对值逐个增加1,而前两个数相加为1,第3个与第4个相加也为1,则可从第1个数开始,每两个数为一组,则共有1 007组,每组的和都是1.解:(-1)+(+2)+(-3)+(+4)+…+(-2 013)+(+2 014)=[(-1)+(+2)]+[(-3)+(+4)]+…+[(-2 013)+(+2 014)]=10071111++⋯+个=1 007.例7、如图,数轴上A ,B 两点所表示的有理数的和是__________.解析:先从数轴上读数,再进行有理数的加法运算.由数轴可知,点A 表示-3,点B 表示2,所以(-3)+2=-1.答案:-1例8、已知a 的相反数是2,|b |=3,则a +b =__________.解析:先确定a和b的值,再按有理数的加法计算.因为2的相反数是-2,所以a=-2;因为|b|=3,所以b=3,或b=-3,所以a+b=(-2)+3=1,或a+b=(-2)+(-3)=-5.答案:1或-5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数的加法仍满足加法交换律和结合律
加法交换律:两个数相加,交换加数的位置, 和不变。
a+b=b+a 加法结合律:三个数相加,先把前两个数 相加,或者先把后两个数相加,和不变。
(a+b)+c=a+(b&#以任意交换加数的位置,也可以先 把其中的几个数相加,使计算简化。
(1)(+26)+(-18)+5+(-16); (2)(-1.75)+1.5+(+7.3)+(-2.25)+(-8.5)
交换、结合的目的是什么? 你能从中发现什么规律?
1、同号结合 2、凑整(0) 3、同分母结合
— ——————————————————————————
例1 (1)(+26)+(-18)+5+(-16); (2)(-1.75)+1.5+(+7.3)+(-2.25)+(-8.5) 先由学生自己解答,并引导学生发现,简化加法运算的原则是什么? 首先消去互为相反数的两数(其和为0),同号结合或凑整数. 运用运算律的好处在于能简化运算。
有理数加法法则
1、同号两数相加 2、绝对值不等的两数相加 3、互为相反数的两个数相加 4、一个数与零相加
判断:两个有理数相加,和是否一定大 于每个加数?
(1)(—9.18)+6.18;
(2)6.18+( — 9.18);
(3)( — 2.37)+( — 4.63);
(4)( — 4.63)+( — 2.37);
有理数加法交换律和结合律的目 的是什么?原则是什么?
P34第2题的(2、3、6小题)和第3题的(2、
4小题)
(5) (2 2) 1 ;(6)1 (2 2)
32
2
3
(1)[8+(-5)]+(-4); (2)8+[(-5)+(-4)]; (3)[(-7)+(-10)]+(-11); (4)(-7)+[(-10)+(-11)]; (5)[(-22)+(-27)]+(+27); (6)(-22)+[(-27)+(+27)].
相关文档
最新文档