第7章高分子溶液性质及应用汇编
高分子溶液性质学习资料.ppt
学习资料
5
问答题: 高分子溶液的特征是什么?
学习资料
6
答案 从下表的比较项目中,可看出它们的不同以及高分子溶
液的特征:
比较项目
高分子溶液
分散质点的尺寸 大分子
10-10~10-8m
胶体溶液 真溶液 胶 团 低分子
10-10~10-8m <10-10m
扩散与渗透性质 扩散慢, 扩散慢, 扩散快,
学习资料
23
例:高密度聚乙烯在120℃以上才开始溶于 四氢萘。
聚丙烯在130℃下与十氢萘很好混合 溶解。
聚乙烯
四氢萘
聚丙烯
十氢萘
学习资料
24
极性结晶高聚物的溶解
①方法同上(加热)。
②极性结晶高聚物可于室温下溶于极性强的 溶剂中。
原因:结晶中非晶部分与极性溶剂发生混合 时,两者发生强烈作用(如生成H键)而放 出大量热。此热足以破坏晶格,使结晶部分 熔融。
学习资料
42
因此要满足 GM
0,亦即
H
很小或
M
0,即:
E1 / v~1(1) E2 / v~2 ( 2 ) 或相等
NR δ=16.2
甲苯δ=18.2(溶)
四氯化碳δ=17.7(溶)
乙醇δ=26.0(不溶)
甲醇δ=29.0(不溶)
学习资料
43
*对于极性高聚物溶解于极性溶剂中时,由于放 热,H M 0 ,所以 H M TSM
亦 GM H M TSM 0 ,能自发进行.
学习资料
44
(2)溶解度参数和内聚能密度的概念
①内聚能密度(cohesive energy density):指 单位体积的内聚能,其值大小反映了高聚 物分子间作用力大小(亦指极性大小)
高分子溶液性质及其应用
第八章高分子溶液性质及其应用第一部分内容简介§8.1 高分子的溶解一.溶解的过程:非交联高聚物:溶胀溶解;结晶高聚物:晶区破坏→再溶解交联高聚物:只溶胀特点:(1) 溶胀→溶解,对结晶高聚物则是先(2) 溶解时间长二.溶剂的选择原则1.极性相近原则:非极性体系PS :苯甲苯丁酮2.溶度参数相近原则:δ=(ΔE/V)1/2△Fm=△Hm-T△Sm<0T>0,△Sm>0,则△Hm<T「△Sm「△Hm=Vφ1φ2〔(△E/V1)1/2-(△E/V2)1/2〕2V 总体积φ1 φ2 体积分数令(△E/V)1/2=δ则△Hm=Vφ1φ2(δ1-δ2)2若「δ1-δ2「→0 则△Hm越小△Hm-T△Sm<0对于混合溶剂δ=φAδA+φ2δB3.溶剂化原则—广义的酸碱原则如PAN-26(δ=31.5)不溶于乙醇(δ=26)而能溶于甲基甲酰胺—C(O)—NH2—因为C—C()—和CH3—CH2(OH)—都是亲电基团亲核(碱)基团有:CH 2NH 2>C 6H 6NH 2>—CO —N(CH 3)2>—CO —NH>PO 4 >—CH 2—CO —CH 2>CH 2—O —CO —CH 2>—CH 2—O —CH 2—亲电(酸) 基团有:—SO 2OH>—COOH>—C 6H 4OH>—CH()—>—C(NO 2)—>—C(Cl)—Cl> —C(Cl)—§8.2 高分子稀溶液热力学理想溶液性质△S mi =-R(N 1lnx 1+N 2lnx 2) △H mi =o△F mi =RT(n 1lnx 1+n 2lnx 2)高分子稀溶液(Flory-Huggin 理论)假设(1) 每个溶剂分子和链段占有格子的几率相同 (2)高分子链是柔性的,所有构象能相同思路: △μ→△F →△S m =? △H m =?一、△S m 的求法设溶剂分子数为N 1链,大分子数为N 2 每个链段数为x 则格子总数为N=N 1+xN 2若已放入i 个链,则i +1个链的放法数为w i +1第1个链段放法为 N-iN 2 第2个链段放法为NiN N z12--第3个链段放法为Nxj N z 2)1(---第x 个链段放法为Nx xj N z 1)1(+---则i+1个链段放法为1x 2)1(1-+-=+Nz z Wi x N I 个大分子总的放法为 n=∏-=+1122!1N i i w N =!!)1(!12)1(22xN N N N z N x N --- S 溶液=kln n=-k[N 1lnez x N xN N N N xN N N 1ln)1(ln 12212221---+++ N 1=0时S 溶质=-k(N 2lnx+(x+1)N 2lnez 1-) △S m =S 溶液-(S 溶质+S 溶剂)=-k (N 1ln2122211lnxN N xN N xN N N +++) △S m =-R(n 1ln φ1+ n 2ln φ2)二、△H m 的求法△Hm=P 12△ε12 △ε12=ε12-(21ε11+ε12) P 12=[(z-2)x+2]N 2211xN N N +=(z-2)N 1φ2X 1=Tz )2(-△ε12 △H m =RTx 1n 1φ2(1)ΔSm=-R(n 1ln φ1+ n 2ln φ2)其中φ1=211xN N N +φ2=212xN N xN +(2)△Hm=RTX 1n 1φ2 其中X 1=RTz 12)2(ε∆-三、△F m =△H m -T ΔS m=RT[n 1ln φ1+ n 2ln φ2 +n 1X 1φ2 ]四、△μ1的求法△μ1=[P Tn n Fm 2])(1∂∆∂ = RT[ln φ1+ )11(x-ln φ2 +X 1φ2 2] ln φ1= ln(1-φ2)=-φ2-(1/2)φ22△μ1= RT[(-1/X)ln φ2 +X 1-21φ2 2] 而理想溶液 △μ1I =-RTX 2=-RTN 2=-xRTφ2 超额化学位 △μ1E =△μ1-△μ1I △μ1E =RT(X 1-21)φ22溶解过程判据 五、Θ温度的定义X 1-21=Κ1-Ψ1Κ1:热参数 Ψ1:熵参数定义 Θ=11ψK T/Θ=11K ψΘ温度即为热参数等于熵参数的温度 §8.3 相分离原理∵ 化学位 △μ1/(RT)→φ2的关系: △μ1=-RT[x 1φ2-(X-21)φ22]产生相分离可能性 (1) φ2↑→φ2c (2) X 1↑→X 1c (3) T ↓→T 1cTP )(221φμ∂∆∂=0 φ2c =x10)(2212=∂∆∂TP φμ X 1c =x121+由X 1-21=Ψ1()1-Tθ当X 1= X 1c 时 T c =)111(1xψ+Θ 相分离时 φ2c =x1X 1c =x121+T c =)111(1xψ+Θ §8.4 膜渗透压法测分子量纯溶剂的化学位是溶剂在标准状态下的化学位, 为纯溶剂的蒸汽压溶液中溶剂的化学位p 1为纯溶剂的蒸汽压溶液中溶剂化学位与纯溶剂中化学位之差为对于恒温过程有如果总压力的变化值为根据Van’t Hoff方程,对于小分子而言而高分子不服从Raoult定律,则有将Flory-Huggins稀溶液理论中溶剂中化学位表达式代入把展开,在稀溶液中远小于1因为定义第二维利系数为第二维利系数可量度高分子链段与链段之间以及高分子与溶剂之间相互作用的大小。
高分子物理上海交大第七章高分子的溶液性质-PPT精选文档
Xj 2 Z11 N
X 1 Xj Z 1 1 N
《1》微观状态数
• 考察第 j+1 个高分子放入的情况
– 第1个结构单元:可放(N – X j)个空格 – 第2个结构单元: Xj 1 Z1 N Z为配位数 可放 Xj 1
1 N 为配位数Z中“空的”可能性
– 第3个结构单元:可放 – 第X个结构单元:可放
F F V M
F:基团的克分子吸引常数 (可查表) V:聚合物重复单元的克分 子体积 M:重复单元分子量 :聚合物的密度
1—4
溶度参数
的测定
〈3〉计算法(Small法则) • M=105 =1.05 聚苯乙烯:
[ CH 2 CH ]
• • • • • 一个 -CH2一个 >CH五个 =CH一个 =C< 131 . 5 86 . 0 117*5 98 . 1
2—1 高分子溶液的混合熵变 《1》先讨论微观状态数
N1个溶 剂分子 N2个 高分子
放入N(=N1+XN2) 个格子中
2— 1
高分子溶液的混合熵变
《1》微观状态数
因 1 1 2 1 2
N2个高分子放好后 N1个溶剂分子只有一种放法 所以: 为N2个高分子放入N个格子 中的方法数
第七章 高分子的溶液性质
• 高聚物的溶解与溶剂选择 • Flory-Huggins 高分子溶液理论 • 高分子浓溶液
§1 高聚物的溶解与溶剂选择
1—1 概述
《1》研究意义 • 高分子溶液能反映高分子链的形态结构 稀溶液(浓度< 1%)的性质可研究高分 子链的构象、分子量等 • 通过溶解和沉析可对高聚物分级、精制 • 加工应用的方便形式
2024九年级化学下册第7章溶液7.2物质溶解的量授课课件科粤版
感悟新知
解析:饱和溶液是指在一定条件下不能再溶解 知1-练 该溶质,已经溶解的物质可能多也可能少,因此饱和溶液 可能是浓溶液,也可能是稀溶液;同理稀溶液是指溶液中 已经溶解的物质比较少,但它可能还能继续溶解该溶质, 也可能已经达到饱和状态,因此稀溶液不一定是不饱和溶 液;相同温度下,同种溶质的饱和溶液一定比不饱和溶液 浓,不同种溶质的溶液,由于溶解性不同,一种物质的饱 和溶液可能比另一种物质的不饱和溶液稀。
D. 改变条件可以使不饱和溶液变成饱和溶液
感悟新知
知1-练
解题秘方:对于饱和溶液、不饱和溶液概念的理解, 一是注意强调两个条件,二是明确一种物质的饱和溶液可 以溶解其他物质。
感悟新知
知1-练
解析:向KNO3 饱和溶液中加KNO3 晶体,KNO3 晶 体不再溶解,溶液质量不变;饱和溶液是指在一定温度、 一定量的溶剂中不能继续溶解原溶质,若温度、溶剂量发 生改变,它可变成不饱和溶液,可以继续溶解原溶质;在 一定温度下,饱和的氯化钠溶液不能继续溶解氯化钠,但 能再溶解蔗糖,A、B、C不正确。
感悟新知
易错提醒:
知2-练
影响固体溶解度的因素:内因是溶质和溶剂的性质,
因为同种溶质在不同溶剂中,不同种溶质在同种溶剂中
溶解能力不同;外因是温度。
当溶质、溶剂确定时,就只能通过改变温度来改变
固体物质的溶解度。搅拌只能加速溶解,不能改变固体
的溶解度。
感悟新知
题型3 根据溶解度判断溶解性
知2-练
例7 将3 g 某物质在20 ℃时溶于200 g 水中,恰好形成饱
C. Ⅱ和Ⅲ对比——不同物质在不同溶剂中的溶解性相同
D. Ⅲ和Ⅳ对比——同种物质在不同溶剂中的溶解性不同
高分子物理之高分子溶液
—(CH2—CH)n— CL
电子接受体(亲电子体)
—C— O
电子给予体(亲核体)
—CH2—C—H+·······O= CL
学习文档
不同的亲电,亲核试剂具有不同的亲核亲电能力。 常见的一些亲电基团的强弱次序:
—SO2OH >—COOH > —C6H5 > —C6H4OH > = CHCN > —CHNO2 > —CH2CL > —CHCL
对于非极性高聚物,溶解一般是吸热的
(ΔHM>0),只有 解。
HM T SM 时才能自发溶
学习文档
假定一种溶液在混合过程中ΔV=0, Hildebrand溶度公式(只对非极性高聚 物):
HM V12 E1 V1 1/ 2 E2 V2 1/ 2
内聚能密度(cohesive energy density): 在零压力下单位体积的液体变成气体的 气化能
重复单元的分子量为: 100.1; 高聚物的密度为:1.19 把上述数据代入公式得:
2 = F / V = F ( / Mu) = 786.7(1.19 / 100.1) = 9.35
学习文档
于是我们知道PMMA可以溶解在: 丙酮:1=10.0;或者三氯甲烷:1= 9.3 有的单一溶剂不能溶解可以选择混合溶剂
CED EV
学习文档
内聚能: 克服分子间力,把1mol固体或液体移
到其分子间引力范围之外所需要的能量。 低分子化合物,其内聚能近似为恒容蒸
发或升华热:
E H RT
RT是转化为气体时所做的膨胀功
学习文档
定义溶度参数(solubility parameter)为内聚能
密度的平方根: E V 1/ 2
高分子物理 高分子的溶液性质
高分子溶液用 ? 1 和 ? 2 (体积分数) 极端条件下:如果高分子和溶剂分子相等,
就是说一个高分子只有一个链段,即,x ? 1
则:
?1 ?
N1 N1 ? xN2
?
X1
?2
?
N2 N1 ? xN2
?
X2
? 那么理想溶液的 ? SMi 和高分子溶液的? SM 完
全一样。实际上:由? SM
计算出的结果比? S
推导仍用似晶格模型,只考虑邻近分子间
的作用。
(1 溶剂分子; 2 高分子的一个链段)
溶解过程
? 1-1 + 2-2
2(1-2)或
? 1/2 (1-1 + 2-2 )
1-2
? 生成一对1-2时能量的变化
1
? ?12 ? ?12 ? 2 (?11 ? ?22 )
? 假定溶液中有 p12对[1-2],混合时没有体积的变化,
i M
大得多。
? 这是因为一个高分子在溶液中不止起一个
小分子的作用但是也起不到x个小分子的作
用。因为高分子中每一个链段相互连结的, 因此高分子溶液的 要? S比M 高分子切成x个
链段后再与溶剂混合的混合熵要小:
? S (理想)< ? S (高分子)< ? S( x个链段)
3.2.2. 高分子溶液的混合热 ? HM
观状态数有如下的关系
?
S ? k1n?
? N1个溶剂分子和N2个高分子组成的溶液的
微观状态数等于在N=N1 +x N2个格子内放 置N1个溶剂分子和N2个高分子的排列方法 总数。
? 假定已经有j个高分子被无规地放在晶格内
了,还剩下N-xj个空格,现在要计算第j+1 个高分子放入N-xj个空格中去的放置方法数 Wj+1.
高分子溶液性质及应用
高分子溶液性质及应用大多数线型或支化高分子材料置于适当溶剂并给予恰当条件(温度、时间、搅拌等),就可溶解而成为高分子溶液。
如天然橡胶溶于汽油或苯、聚乙烯在135℃以上溶于十氢萘、聚乙烯醇溶于水等。
高分子溶液是分子级分散体系,处于热力学平衡态时,服从溶解-析出的相平衡规律,可用热力学状态函数描述。
但由于高分子的链状分子特征,其溶液与理想小分子溶液相比偏差较大。
按照现代高分子凝聚态物理的观点,高分子溶液可按浓度大小及分子链形态的不同分为:高分子极稀溶液、稀溶液、亚浓溶液、浓溶液、极浓溶液和熔体,其间的分界浓度如下所示:高分子极稀溶液 → 稀溶液 → 亚浓溶液 → 浓溶液 → 极浓溶液和熔体分界浓度: s C *C e C **C名称:动态接触浓度 接触浓度 缠结浓度 -浓度范围: ~10-2% ~10-1% ~0.5-10% ~10稀溶液和浓溶液的本质区别,在于稀溶液中单个大分子链线团是孤立存在的,相互之间没有交叠;而在浓厚体系中,大分子链之间发生聚集和缠结。
高分子稀溶液理论已发展得相当成熟,已经建立起描述稀溶液热力学和动力学性质的定量和半定量关系式,建立起研究大分子尺寸,形态和进行分子量及其分布测定的可行性方法。
对高分子浓厚体系,由于de Gennes 和Doi-Edwards 等人的出色工作,分别建立了“蠕动模型”和“管道模型”,将多链体系简化为一条受到约束的单链体系,从而使“缠结”问题的处理得以简化,得到了很有价值的结果。
该理论已应用于讨论诸如流动、扩散、弛豫、结晶、相分离动力学等问题。
上述成就无论在理论还是在指导生产上都有重要的意义,在化学纤维的溶液纺丝、粘合剂、油漆、涂料等工业中,经常会碰到高分子浓溶液问题。
一、高分子材料的溶解和溶胀(一)聚合物溶解过程的特点高分子材料因其结构的复杂性和多重性,溶解过程有自身特点。
1、溶解过程缓慢,且先溶胀再溶解。
由于大分子链与溶剂小分子尺寸相差悬殊,扩散能力不同,加之原本大分子链相互缠结,分子间作用力大,因此溶解过程相当缓慢,常常需要几小时、几天,甚至几星期。
高分子的溶液性质课件
Z 1 N
N1
ln
N
xN2
ln
N
N1
xN2
N2
ln
N2
N2
N1
ln
N1
N1
S溶液
k[N1
ln
N1 N
N2
ln
N2 N
-N2 (x
1) ln
N
Z 1 (x 1)N2 N2 (x 1) ln( N )]
2019/11/5
25
3.2.1 高分子溶液的混合熵
2019/11/5
30
3.2.2 高分子溶液的混合热
一个高分子周围有(Z-2)x+2个空格,当x很大时可近似
等于(Z-2)x,每个空格被溶剂分子所占有的几率为 1 , 也就是说1个高分子可以生成 (Z 2)x1 对[1-2]。
在溶液中共有N2个高分子,则
P12 (Z 2)x1N2 (Z 2)2N1
2019/11/5
20
3.2.1 高分子溶液的混合熵
第j+1个高分子的第1个“链段”可放在N-jx个空格中的任意 一个格子内,第2个“链段” 只能放在第1个“链段”的邻近 空格内。
假定晶格的配位数为Z,第1个“链段”的邻近空格数不一 定为Z,因为有可能已被放进去的高分子“链段”所占据。 根据高分子“链段”在溶液中均匀分布的假定,第一个 “链段”邻近的空格数应为
混合热 HM 0
(2)高分子链的排列方式比同一数目的小分 子溶液的排列方式多.
混合熵
S M
S
i M
理想溶液不足以正确描述高分子溶液的性质
高分子溶液性质及其应用上课讲义
第八章高分子溶液性质及其应用第一部分内容简介§8.1 高分子的溶解一.溶解的过程:非交联高聚物:溶胀溶解;结晶高聚物:晶区破坏→再溶解交联高聚物:只溶胀特点:(1) 溶胀→溶解,对结晶高聚物则是先(2) 溶解时间长二.溶剂的选择原则1. 极性相近原则: 非极性体系PS :苯甲苯丁酮2. 溶度参数相近原则: δ=(ΔE/V)1/2△Fm=△Hm-T△Sm<0T>0,△Sm>0,则△Hm<T「△Sm「△Hm=Vφ1φ2〔(△E/V1)1/2-(△E/V2)1/2〕2V 总体积φ1 φ2 体积分数令(△E/V)1/2=δ则△Hm=Vφ1φ2(δ1-δ2)2若「δ1-δ2「→0 则△Hm越小△Hm-T△Sm<0对于混合溶剂δ=φAδA+φ2δB3.溶剂化原则—广义的酸碱原则如PAN-26(δ=31.5)不溶于乙醇(δ=26)而能溶于甲基甲酰胺—C(O)—NH2—因为C—C(CN)—和CH3—CH2(OH)—都是亲电基团亲核(碱)基团有:CH 2NH 2>C 6H 6NH 2>—CO —N(CH 3)2>—CO —NH>PO 4 >—CH 2—CO —CH 2>CH 2—O —CO —CH 2>—CH 2—O —CH 2—亲电(酸) 基团有:—SO 2OH>—COOH>—C 6H 4OH>—CH(CN)—>—C(NO 2)—>—C(Cl)—Cl> —C(Cl)—§8.2 高分子稀溶液热力学理想溶液性质△S mi =-R(N 1lnx 1+N 2lnx 2) △H mi =o△F mi =RT(n 1lnx 1+n 2lnx 2)高分子稀溶液(Flory-Huggin 理论)假设(1) 每个溶剂分子和链段占有格子的几率相同 (2)高分子链是柔性的,所有构象能相同思路: △μ→△F →△S m =? △H m =?一、△S m 的求法设溶剂分子数为N 1链,大分子数为N 2 每个链段数为x 则格子总数为N=N 1+xN 2若已放入i 个链,则i +1个链的放法数为w i +1第1个链段放法为 N-iN 2 第2个链段放法为 NiN N z12--第3个链段放法为Nxj N z 2)1(---第x 个链段放法为Nx xj N z 1)1(+---则i+1个链段放法为1x 2)1(1-+-=+Nz z Wi x N I 个大分子总的放法为 n=∏-=+1122!1N i i w N =!!)1(!12)1(22xN N N N z N x N --- S 溶液=kln n=-k[N 1lnez x N xN N N N xN N N 1ln )1(ln 12212221---+++N 1=0时 S 溶质=-k(N 2lnx+(x+1)N 2lnez 1-) △S m =S 溶液-(S 溶质+S 溶剂)=-k (N 1ln2122211ln xN N xN N xN N N +++)△S m =-R(n 1ln φ1+ n 2ln φ2)二、△H m 的求法△Hm=P 12△ε12 △ε12=ε12-(21ε11+ε12) P 12=[(z-2)x+2]N 2211xN N N +=(z-2)N 1φ2X 1=Tz )2(-△ε12 △H m =RTx 1n 1φ2(1)ΔSm=-R(n 1ln φ1+ n 2ln φ2) 其中φ1=211xN N N + φ2=212xN N xN +(2)△Hm=RTX 1n 1φ2 其中X 1=RTz 12)2(ε∆-三、△F m =△H m -T ΔS m=RT[n 1ln φ1+ n 2ln φ2 +n 1X 1φ2 ]四、△μ1的求法△μ1=[P Tn n Fm 2])(1∂∆∂ = RT[ln φ1+ )11(x-ln φ2 +X 1φ2 2]ln φ1= ln(1-φ2)=- φ2-(1/2)φ22△μ1= RT[(-1/X)ln φ2 +X 1-21φ2 2] 而理想溶液 △μ1I =-RTX 2=-RTN 2=-xRTφ2 超额化学位 △μ1E =△μ1-△μ1I△μ1E =RT(X 1-21)φ22溶解过程判据 五、Θ温度的定义X 1-21=Κ1-Ψ1 Κ1:热参数 Ψ1:熵参数定义 Θ=11ψK T/Θ=11K ψΘ温度即为热参数等于熵参数的温度 §8.3 相分离原理∵ 化学位 △μ1/(RT)→φ2 的关系: △μ1=-RT[x 1φ2-(X-21)φ22]产生相分离可能性 (1) φ2↑→φ2c (2) X 1↑→X 1c (3) T ↓→T 1cTP )(221φμ∂∆∂=0 φ2c =x10)(2212=∂∆∂TP φμ X 1c =x121+由X 1-21=Ψ1()1-Tθ当X 1= X 1c 时 T c =)111(1xψ+Θ 相分离时 φ2c =x1X 1c =x121+ T c =)111(1xψ+Θ §8.4 膜渗透压法测分子量纯溶剂的化学位是溶剂在标准状态下的化学位, 为纯溶剂的蒸汽压溶液中溶剂的化学位p 1为纯溶剂的蒸汽压溶液中溶剂化学位与纯溶剂中化学位之差为对于恒温过程有如果总压力的变化值为根据Van’t Hoff方程,对于小分子而言而高分子不服从Raoult定律,则有将Flory-Huggins稀溶液理论中溶剂中化学位表达式代入把展开,在稀溶液中远小于1因为定义第二维利系数为第二维利系数可量度高分子链段与链段之间以及高分子与溶剂之间相互作用的大小。
初中九年级(初三)化学 高分子溶液的性质及其应用
第八章高分子溶液性质及其应用第一部分内容简介§8.1 高分子的溶解一.溶解的过程:非交联高聚物:溶胀溶解;结晶高聚物:晶区破坏→再溶解交联高聚物:只溶胀特点:(1) 溶胀→溶解,对结晶高聚物则是先(2) 溶解时间长二.溶剂的选择原则1. 极性相近原则: 非极性体系PS :苯甲苯丁酮2. 溶度参数相近原则: δ=(ΔE/V)1/2△Fm=△Hm-T△Sm<0T>0,△Sm>0,则△Hm<T「△Sm「△Hm=Vφ1φ2〔(△E/V1)1/2-(△E/V2)1/2〕2V 总体积φ1 φ2 体积分数令(△E/V)1/2=δ则△Hm=Vφ1φ2(δ1-δ2)2若「δ1-δ2「→0 则△Hm越小△Hm-T△Sm<0对于混合溶剂δ=φAδA+φ2δB3.溶剂化原则—广义的酸碱原则如PAN-26(δ=31.5)不溶于乙醇(δ=26)而能溶于甲基甲酰胺—C(O)—NH2—因为C—C(CN)—和CH3—CH2(OH)—都是亲电基团亲核(碱)基团有:CH 2NH 2>C 6H 6NH 2>—CO —N(CH 3)2>—CO —NH>PO 4 >—CH 2—CO —CH 2>CH 2—O —CO —CH 2>—CH 2—O —CH 2—亲电(酸) 基团有:—SO 2OH>—COOH>—C 6H 4OH>—CH(CN)—>—C(NO 2)—>—C(Cl)—Cl> —C(Cl)—§8.2 高分子稀溶液热力学理想溶液性质△S mi =-R(N 1lnx 1+N 2lnx 2) △H mi =o△F mi =RT(n 1lnx 1+n 2lnx 2)高分子稀溶液(Flory-Huggin 理论)假设(1) 每个溶剂分子和链段占有格子的几率相同 (2)高分子链是柔性的,所有构象能相同思路: △μ→△F →△S m =? △H m =?一、△S m 的求法设溶剂分子数为N 1链,大分子数为N 2 每个链段数为x 则格子总数为N=N 1+xN 2若已放入i 个链,则i +1个链的放法数为w i +1第1个链段放法为 N-iN 2 第2个链段放法为 NiN N z12--第3个链段放法为Nxj N z 2)1(---第x 个链段放法为Nx xj N z 1)1(+---则i+1个链段放法为1x 2)1(1-+-=+Nz z Wi x N I 个大分子总的放法为 n=∏-=+1122!1N i i w N =!!)1(!12)1(22xN N N N z N x N --- S 溶液=kln n=-k[N 1lnez x N xN N N N xN N N 1ln )1(ln 12212221---+++N 1=0时 S 溶质=-k(N 2lnx+(x+1)N 2lnez 1-) △S m =S 溶液-(S 溶质+S 溶剂)=-k (N 1ln2122211ln xN N xN N xN N N +++)△S m =-R(n 1ln φ1+ n 2ln φ2)二、△H m 的求法△Hm=P 12△ε12△ε12=ε12-(21ε11+ε12)P 12=[(z-2)x+2]N 2211xN N N +=(z-2)N 1φ2X 1=Tz )2(-△ε12△H m =RTx 1n 1φ2(1)ΔSm=-R(n 1ln φ1+ n 2ln φ2)其中φ1=211xN N N + φ2=212xN N xN +(2)△Hm=RTX 1n 1φ2其中X 1=RTz 12)2(ε∆-三、△F m =△H m -T ΔS m=RT[n 1ln φ1+ n 2ln φ 2 +n 1X 1φ 2 ]四、△μ1的求法△μ1=[P Tn n Fm 2])(1∂∆∂ = RT[ln φ1+ )11(x-ln φ 2 +X 1φ2 2]ln φ1= ln(1-φ2)=- φ2-(1/2)φ22△μ1= RT[(-1/X)ln φ 2 +X 1-21φ2 2] 而理想溶液 △μ1I =-RTX 2=-RTN 2=-xRTφ 2 超额化学位 △μ1E=△μ1-△μ1I△μ1E=RT(X 1-21)φ22溶解过程判据 五、Θ温度的定义X 1-21=Κ1-Ψ1 Κ1:热参数 Ψ1:熵参数定义 Θ=11ψK T/Θ=11K ψΘ温度即为热参数等于熵参数的温度 §8.3 相分离原理∵ 化学位 △μ1/(RT)→φ2 的关系: △μ1=-RT[x 1φ2-(X-21)φ22]产生相分离可能性 (1) φ2↑→φ2c (2) X 1↑→X 1c (3) T ↓→T 1cTP )(221φμ∂∆∂=0 φ2c =x10)(2212=∂∆∂TP φμ X 1c =x121+由X 1-21=Ψ1()1-Tθ当X 1= X 1c 时 T c =)111(1xψ+Θ 相分离时 φ2c =x1X 1c =x121+ T c =)111(1xψ+Θ §8.4 膜渗透压法测分子量纯溶剂的化学位是溶剂在标准状态下的化学位, 为纯溶剂的蒸汽压溶液中溶剂的化学位p 1为纯溶剂的蒸汽压溶液中溶剂化学位与纯溶剂中化学位之差为对于恒温过程有如果总压力的变化值为根据Van’t Hoff方程,对于小分子而言而高分子不服从Raoult定律,则有将Flory-Huggins稀溶液理论中溶剂中化学位表达式代入把展开,在稀溶液中远小于1因为定义第二维利系数为第二维利系数可量度高分子链段与链段之间以及高分子与溶剂之间相互作用的大小。
高分子溶液性质共149页
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
高分子溶液性质
6、纪律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯
10、一个人应该:活泼而守纪律,天 真而不 幼稚, 勇敢而 鲁莽, 倔强书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
第7章-高分子溶液性质及应用汇编
2.2.3 混合热计算
高分子溶液中存在三种近邻相互作用,它们是溶剂分子-溶剂分子、链段-链 段、链段-溶剂分子间的相互作用,分别用接触对[1-1]、[2-2]、[1-2]表示, 其结合能分别用W11、W22、W12表示。
每生成一个[1-2]接触对引起体系能量的变化△W12为:
△W12=W12-1/2(W11+ W22)
第7章 高分子溶液性质及应用
本章主要内容
第1节 高分子材料的溶解和溶胀 1.1 高分子材料溶解过程的特点 1.2 溶剂选择的主要原则 1.3 溶解度参数的实验测量和理论计算 1. 4 交联聚合物的平衡溶胀 第2节 柔性链高分子稀溶液的热力学性质 2.1理想溶液的热力学性质 2.2 Flory-Huggins稀溶液理论 2. 3 高分子溶液的“理想状态”——Θ状态 第3节 聚合物平均分子量、分子量分布及测 量方法 3.1 平均分子量及分子量分布定义 3.2 膜渗透压法测数均分子量 3. 3 光散射法测重均分子量 3. 4 黏度法测黏均分子量 3. 5 相分离原理及聚合物按分子量的分级 3.6 凝胶渗透色谱法测分子量及分布 3.7 溶胀平衡法测交联聚合物的网链平均 分子量 第4节 关于高分子共混体系的讨论 4.1 高分子-高分子共混热力学 4.2 关于吸热混合过程中相容性的讨论 4.3 相图与相分离
2.3 高分子溶液的“理想状态”——Θ状态
若在某种条件下(合适的溶剂,合适的温度)使 E 从而使得超额化学位 1 0
12 1 / 2
,
于是在这一点上高分子溶液满足“理想溶液”的条件。称这种状态为高分 子溶液的Θ状态(Θ-condition),这是高分子溶液一个十分重要的参考状 态。此时的溶剂称Θ溶剂,温度称Θ温度。
ni n1 n2 M n M1 M 2 M i n n n ni M i / ni N i M i