概率论课后答案
概率论与数理统计学1至7章课后答案
第二章作业题解:掷一颗匀称的骰子两次, 以X 表示前后两次出现的点数之和, 求X 的概率分布, 并验证其满足(2.2.2) 式.解:由表格知X 的可能取值为2,3,4,5,6,7,8,9,10,11,12。
并且,361)12()2(====X P X P ;362)11()3(====X P X P ; 363)10()4(====X P X P ;364)9()5(====X P X P ; 365)8()6(====X P X P ;366)7(==X P 。
即 36|7|6)(k k X P --== (k =2,3,4,5,6,7,8,9,10,11,12)设离散型随机变量的概率分布为,2,1,}{ ===-k ae k X P k 试确定常数a .解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---eae 。
故 1-=e a甲、乙两人投篮时, 命中率分别为 和 , 今甲、乙各投篮两次, 求下列事件的概率:(1) 两人投中的次数相同; (2) 甲比乙投中的次数多. 解:分别用)2,1(,=i B A i i 表示甲乙第一、二次投中,则12121212()()0.7,()()0.3,()()0.4,()()0.6,P A P A P A P A P B P B P B P B ========两人两次都未投中的概率为:0324.06.06.03.03.0)(2121=⨯⨯⨯=B B A A P , 两人各投中一次的概率为:2016.06.04.03.07.04)()()()(1221211212212121=⨯⨯⨯⨯=+++B B A A P B B A A P B B A A P B B A A P 两人各投中两次的概率为:0784.0)(2121=B B A A P 。
所以:(1)两人投中次数相同的概率为3124.00784.02016.00324.0=++ (2) 甲比乙投中的次数多的概率为:12121221121212121212()()()()()20.490.40.60.490.3620.210.360.5628P A A B B P A A B B P A A B B P A A B B P A A B B ++++=⨯⨯⨯+⨯+⨯⨯= 设离散型随机变量X 的概率分布为5,4,3,2,1,15}{===k kk X P ,求)31()1(≤≤X P )5.25.0()2(<<X P 解:(1)52153152151)31(=++=≤≤X P (2) )2()1()5.25.0(=+==<<X P X P X P 51152151=+= 设离散型随机变量X 的概率分布为,,3,2,1,21}{ ===k k X P k,求 };6,4,2{)1( =X P }3{)2(≥X P解:31)21211(21212121}6,4,2{)1(422642=++⨯=++== X P 41}2{}1{1}3{)2(==-=-=≥X P X P X P设事件A 在每次试验中发生的概率均为 , 当A 发生3 次或3 次以上时, 指示灯发出 信号, 求下列事件的概率:(1) 进行4 次独立试验, 指示灯发出信号; (2) 进行5 次独立试验, 指示灯发出信号.解:(1))4()3()3(=+==≥X P X P X P1792.04.06.04.04334=+⨯=C (2) )5()4()3()3(=+=+==≥X P X P X P X P31744.04.06.04.06.04.054452335=+⨯+⨯=C C .某城市在长度为t (单位:小时) 的时间间隔内发生火灾的次数X 服从参数为 的泊 松分布, 且与时间间隔的起点无关, 求下列事件的概率: (1) 某天中午12 时至下午15 时未发生火灾; (2) 某天中午12 时至下午16 时至少发生两次火灾. 解:(1) ()!kP X k e k λλ-==,由题意,0.53 1.5,0k λ=⨯==,所求事件的概率为 1.5e -.(2) 0(2)110!1!P X e e e e λλλλλλλ----≥=--=--, 由题意,0.54 1.5λ=⨯=,所求事件的概率为213e --.为保证设备的正常运行, 必须配备一定数量的设备维修人员. 现有同类设备180 台, 且各台设备工作相互独立, 任一时刻发生故障的概率都是,假设一台设备的故障由一人进行修理,问至少应配备多少名修理人员, 才能保证设备发生故障后能得到及时修理的概率不小于解:设应配备m 名设备维修人员。
概率论与数理统计第二版课后答案
概率论与数理统计第二版课后答案第一章:概率论的基本概念与性质1.1 概率的定义及其性质1.概率的定义:概率是对随机事件发生的可能性大小的度量。
在概率论中,我们将事件A的概率记为P(A),其中P(A)的值介于0和1之间。
2.概率的基本性质:–非负性:对于任何事件A,其概率满足P(A) ≥ 0。
–规范性:对于样本空间Ω中的全部事件,其概率之和为1,即P(Ω) = 1。
–可列可加性:对于互不相容的事件序列{Ai}(即Ai∩Aj = ∅,i ≠ j),有P(A1∪A2∪…) = P(A1) + P(A2) + …。
1.2 随机事件与随机变量1.随机事件:随机事件是指在一次试验中所发生的某种结果。
–基本事件:对于只包含一个样本点的事件,称为基本事件。
–复合事件:由一个或多个基本事件组成的事件称为复合事件。
2.随机变量:随机变量是将样本空间Ω上的每个样本点赋予一个实数的函数。
随机变量可以分为两种类型:–离散型随机变量:其取值只可能是有限个或可列无穷个实数。
–连续型随机变量:其取值在某个区间内的任意一个值。
1.3 事件的关系与运算1.事件的关系:事件A包含于事件B(记作A ⊆ B)指的是事件B发生时,事件A一定发生。
如果A ⊆ B且B ⊆ A,则A与B相等(记作A = B)。
–互不相容事件:指的是两个事件不能同时发生,即A∩B = ∅。
2.事件的运算:对于两个事件A和B,有以下几种运算:–并:事件A和事件B至少有一个发生,记作A∪B。
–交:事件A和事件B同时发生,记作A∩B。
–差:事件A发生而事件B不发生,记作A-B。
第二章:条件概率与独立性2.1 条件概率与乘法定理1.条件概率:在事件B发生的条件下,事件A发生的概率称为事件A在事件B发生的条件下的条件概率,记作P(A|B)。
–条件概率的计算公式:P(A|B) = P(A∩B) / P(B)。
2.乘法定理:对于任意两个事件A和B,有P(A∩B) = P(A|B) * P(B) =P(B|A) * P(A)。
概率论和数理统计大学课后题答案
7习题七1.设总体X 服从二项分布b 〔n ,p 〕,n ,X 1,X 2,…,X n 为来自X 的样本,求参数p 的矩法估计.【解】1(),(),E X np E X A X ===因此np =X所以p 的矩估计量 ˆXpn= 2.设总体X 的密度函数f 〔x ,θ〕=22(),0,0,.x x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为其样本,试求参数θ的矩法估计.【解】23022022()()d ,233x x E X x x x θθθθθθθ⎛⎫=-=-= ⎪⎝⎭⎰令E (X )=A 1=X ,因此3θ=X 所以θ的矩估计量为 ^3.X θ=3.设总体X 的密度函数为f 〔x ,θ〕,X 1,X 2,…,X n 为其样本,求θ的极大似然估计.〔1〕 f 〔x ,θ〕=,0,0,0.e x x x θθ-⎧≥⎨<⎩〔2〕 f 〔x ,θ〕=1,01,0,.x x θθ-⎧<<⎨⎩其他【解】〔1〕 似然函数111(,)ee eniii n nx x nn ii i L f x θθθθθθ=---==∑===∏∏1ln ln ni i g L n x θθ===-∑由1d d ln 0d d ni i g L n x θθθ===-=∑知 1ˆnii nxθ==∑所以θ的极大似然估计量为1ˆXθ=. (2) 似然函数11,01nni i i L x x θθ-==<<∏,i =1,2,…,n.1ln ln (1)ln ni i L n x θθ==+-∏由1d ln ln 0d ni i L nx θθ==+=∏知 11ˆln ln nniii i n nxx θ===-=-∑∏所以θ的极大似然估计量为 1ˆln nii nxθ==-∑【解】0.094x =-0.101893s =9n =0.094.EX x ==-由222221()()[()],()ni i x E X D X E X E X A n==+==∑知222ˆˆ[()]E X A σ+=,即有 ˆσ=于是 ˆ0.101890.0966σ=== 所以这批股民的平均收益率的矩估计值及标准差的矩估计值分别为-0.94和0.966. 5.随机变量X 服从[0,θ]上的均匀分布,今得X 的样本观测值:0.9,0.8,0.2,0.8,0.4,0.4,0.7,0.6,求θ的矩法估计和极大似然估计,它们是否为θ的无偏估计. 【解】(1)()2E X θ=,令()E X X =,那么ˆ2X θ=且ˆ()2()2()E E X E X θθ===, 所以θ的矩估计值为ˆ220.6 1.2x θ==⨯=且ˆ2X θ=是一个无偏估计.(2) 似然函数8811(,)i i L f x θθ=⎛⎫== ⎪⎝⎭∏,i =1,2, (8)显然L =L (θ)↓(θ>0),那么18max{}i i x θ≤≤=时,L =L (θ)最大,所以θ的极大似然估计值ˆθ=0.9. 因为E(ˆθ)=E (18max{}i i x ≤≤)≠θ,所以ˆθ=18max{}ii x ≤≤不是θ的无偏计. 6.设X 1,X 2,…,X n 是取自总体X 的样本,E 〔X 〕=μ,D 〔X 〕=σ2,2ˆσ=k 1211()n i i i XX -+=-∑,问k 为何值时2ˆσ为σ2的无偏估计. 【解】令 1,i i i Y X X +=-i =1,2,…,n -1,那么 21()()()0,()2,i i i i E Y E X E X D Y μμσ+=-=-==于是 1222211ˆ[()](1)2(1),n ii E E k Yk n EY n k σσ-===-=-∑那么当22ˆ()E σσ=,即222(1)n k σσ-=时, 有 1.2(1)k n =-7.设X 1,X 2是从正态总体N 〔μ,σ2〕中抽取的样本112212312211311ˆˆˆ;;;334422X X X X X X μμμ=+=+=+ 试证123ˆˆˆ,,μμμ都是μ的无偏估计量,并求出每一估计量的方差. 【证明】〔1〕11212212121ˆ()()(),333333E E X X E X E X μμμμ⎛⎫=+=+=+= ⎪⎝⎭21213ˆ()()()44E E X E X μμ=+=, 31211ˆ()()(),22E E X E X μμ=+= 所以123ˆˆˆ,,μμμ均是μ的无偏估计量. (2) 22221122145ˆ()()(),3399D D X D X X σμσ⎛⎫⎛⎫=+== ⎪ ⎪⎝⎭⎝⎭222212135ˆ()()(),448D D X D X σμ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭()223121ˆ()()(),22D D X D X σμ⎛⎫=+= ⎪⎝⎭8.某车间生产的螺钉,其直径X ~N 〔μ,σ2〕,由过去的经历知道σ2=0.06,今随机抽取6枚,测得其长度〔单位mm 〕如下: 14.715.014.814.915.115.2试求μ的置信概率为0.95的置信区间.【解】n =6,σ2=0.06,α=1-0.95=0.05,0.25214.95, 1.96,a x u u ===,μ的置信度为0.95的置信区间为/2(14.950.1 1.96)(14.754,15.146)x u α⎛±=±⨯= ⎝.9.总体X ~N (μ,σ2),σ2,问需抽取容量n 多大的样本,才能使μ的置信概率为1-α,且置信区间的长度不大于L ?【解】由σ2可知μ的置信度为1-α的置信区间为/2x u α⎛± ⎝,/2u α,/2u α≤L ,得n ≥22/224()u L ασ 10.设某种砖头的抗压强度X ~N 〔μ,σ2〕,今随机抽取20块砖头,测得数据如下〔kg ·cm -2〕:64694992559741848899 846610098727487844881〔1〕 求μ的置信概率为0.95的置信区间.〔2〕 求σ2的置信概率为0.95的置信区间.【解】76.6,18.14,10.950.05,20,x s n α===-==/20.025222/20.0250.975(1)(19) 2.093,(1)(19)32.852,(19)8.907t n t n ααχχχ-==-===(1) μ的置信度为0.95的置信区间/2(1)76.6 2.093(68.11,85.089)a x n ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭(2)2σ的置信度为0.95的置信区间222222/21/2(1)(1)1919,18.14,18.14(190.33,702.01)(1)(1)32.8528.907n s n s n n ααχχ-⎛⎫--⎛⎫=⨯⨯= ⎪⎪--⎝⎭⎝⎭ 11.设总体X ~f (x )=(1),01;10,.x x θθθ⎧+<<>-⎨⎩其中其他X 1,X 2,…,X n 是X 的一个样本,求θ的矩估计量及极大似然估计量.【解】(1)1101()()d (1)d ,2E X xf x x x x θθθθ+∞+-∞+==+=+⎰⎰ 又1(),2X E X θθ+==+ 故21ˆ1X Xθ-=-所以θ的矩估计量 21ˆ.1X Xθ-=- (2) 似然函数11(1) 01(1,2,,)()()0n n ni i i i i x x i n L L f x θθθ==⎧+<<=⎪===⎨⎪⎩∏∏其他. 取对数11ln ln(1)ln (01;1),d ln ln 0,d 1nii i ni i L n x x i n L n x θθθθ===++<<≤≤=+=+∑∑所以θ的极大似然估计量为1ˆ1.ln nii nXθ==--∑12.设总体X ~f (x )= 36(),0;0,.xx x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为总体X 的一个样本〔1〕 求θ的矩估计量;〔2〕 求ˆ()D θ.【解】(1) 236()()d ()d ,2x E X xf x x x x θθθθ+∞-∞=-=⎰⎰令 ,2EX X θ==所以θ的矩估计量 ˆ2.X θ= (2)4ˆ()(2)4(),D D X D X DX nθ===, 又322236()63()d ,2010x x E X x θθθθθ-===⎰于是222223()()(),10420D XE X EX θθθ=-=-=,所以2ˆ().5D nθθ=13.设某种电子元件的使用寿命X 的概率密度函数为f (x ,θ)= 2()2,;0,.x x x θθθ--⎧>⎨≤⎩e其中θ(θ>0)为未知参数,又设x 1,x 2,…,x n 是总体X 的一组样本观察值,求θ的极大似然估计值.【解】似然函数12()12e 0;1,2,,;()0ln ln 22(),;1,2,,,ni i x n i n i i i x i n L L L n x x i n θθθθ=--=⎧∑⎪⋅≥===⎨⎪⎩=--≥=∑其他.由d ln 20ln (),d Ln L θθ=>↑知 那么当01ˆˆmin{}ln ()max ln ()ii nx L L θθθθ>≤≤==时 所以θ的极大似然估计量1ˆmin{}ii nx θ≤≤=其中θ(0<θ<2)是未知参数,利用总体的如下样本值3,1,3,0,3,1,2,3,求θ的矩估计值和极大似然估计值. 【解】813ˆ(1)()34,()4 28ii x E X E X x x x θθ=-=-====∑令得又 所以θ的矩估计值31ˆ.44x θ-== 〔2〕 似然函数86241(,)4(1)(12).ii L P x θθθθ===--∏2ln ln 46ln 2ln(1)4ln(1),d ln 628628240,d 112(1)(12)L L θθθθθθθθθθθθ=++-+--+=--==---- 解2628240θθ-+=得1,272θ±=. 由于71,122> 所以θ的极大似然估计值为 ˆθ=15.设总体X 的分布函数为F 〔x ,β〕=1,,0,.x xx ββααα⎧->⎪⎨⎪≤⎩其中未知参数β>1,α>0,设X 1,X 2,…,X n 为来自总体X 的样本 〔1〕 当α=1时,求β的矩估计量; 〔2〕 当α=1时,求β的极大似然估计量; 〔3〕 当β=2时,求α的极大似然估计量.【解】当α=1时,11,1;(,)(,1,)0, 1.x x f x F x x x ββββ+⎧≥⎪==⎨⎪<⎩当β=2时,2132,;(,)(,,2)0,.x x f x F x x x ααααα⎧≥⎪==⎨⎪<⎩(1) 111()d 11E X x x x βββββββ+∞-+∞===--⎰令()E X X =,于是ˆ,1XX β=- 所以β的矩估计量ˆ.1XX β=- (2) 似然函数(1)1111,1,(1,2,,);()(,)0,.ln ln (1)ln ,d ln ln 0,d n n ni i i i i n i i ni i x x i n L L f x L n x L n x ββββββββ-+====⎧⎛⎫>=⎪ ⎪===⎨⎝⎭⎪⎩=-+=-=∏∏∑∑其他所以β的极大似然估计量1ˆ.ln nii nxβ==∑(3) 似然函数23112,,(1,2,,);(,)0,.n ni nn i i i i x i n L f x x ααα==⎧≥=⎪⎪⎛⎫==⎨ ⎪⎝⎭⎪⎪⎩∏∏其他显然(),L L α=↑那么当1ˆmin{}i i nx α≤≤=时,0ˆ()max ()a L L L αα>== , 所以α的极大似然估计量1ˆmin{}i i nx α≤≤=.16.从正态总体X~N〔3.4,62〕中抽取容量为n的样本,如果其样本均值位于区间〔1.4,5.4〕的概率不小于0.95,问n至少应取多大?2/2()dz tz tϕ-=⎰【解】26~ 3.4,X Nn⎛⎫⎪⎝⎭,那么~(0,1),XZ N={1.4 5.4}33210.95333ZP X PPZΦΦΦ<<<<=⎧=-<<⎨⎩⎭⎛⎫⎛⎛⎫=-=-≥-⎪ ⎪⎝⎭⎝⎭⎝⎭于是0.975Φ≥ 1.96≥,∴n≥35.17. 设总体X的概率密度为f(x,θ)=,01,1,12,0,.xxθθ<<⎧⎪-≤<⎨⎪⎩其他其中θ是未知参数〔0<θ<1〕,X1,X2,…,X n为来自总体X的简单随机样本,记N为样本值x1,x2,…,x n中小于1的个数.求:〔1〕θ的矩估计;〔2〕θ的最大似然估计.解(1)由于1201(;)d d(1)dEX xf x x x x x xθθθ+∞-∞==+⎰⎰⎰-133(1)222θθθ=+-=-.令32Xθ-=,解得32Xθ=-,所以参数θ的矩估计为32Xθ=-.(2)似然函数为1()(;)(1)nN n NiiL f xθθθθ-===-∏,取对数,得ln ()ln ()ln(1),L N n N θθθ=+--两边对θ求导,得d ln ().d 1L N n Nθθθθ-=-- 令 d ln ()0,d L θθ=得 Nnθ=,所以θ的最大似然估计为Nnθ=.。
概率论与数理统计课后习题答案
第一章 事件与概率1.写出下列随机试验的样本空间。
(1)记录一个班级一次概率统计考试的平均分数(设以百分制记分)。
(2)同时掷三颗骰子,记录三颗骰子点数之和。
(3)生产产品直到有10件正品为止,记录生产产品的总件数。
(4)对某工厂出厂的产品进行检查,合格的记上“正品”,不合格的记上“次品”,如连续查出2个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
(5)在单位正方形内任意取一点,记录它的坐标。
(6)实测某种型号灯泡的寿命。
解(1)},100,,1,0{n i n i ==Ω其中n 为班级人数。
(2)}18,,4,3{ =Ω。
(3)},11,10{ =Ω。
(4)=Ω{00,100,0100,0101,0110,1100,1010,1011,0111,1101,0111,1111},其中0表示次品,1表示正品。
(5)=Ω{(x,y)| 0<x<1,0<y<1}。
(6)=Ω{ t | t ≥ 0}。
2.设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列各事件,。
(1)A 发生,B 与C 不发生。
(2)A 与B 都发生,而C 不发生。
(3)A ,B ,C 中至少有一个发生。
(4)A ,B ,C 都发生。
(5)A ,B ,C 都不发生。
(6)A ,B ,C 中不多于一个发生。
(7)A ,B ,C 至少有一个不发生。
(8)A ,B ,C 中至少有两个发生。
解 (1)C B A ,(2)C AB ,(3)C B A ++,(4)ABC ,(5)C B A ,(6)C B C A B A ++或C B A C B A C B A C B A +++,(7)C B A ++,(8)BC AC AB ++或ABC BC A C B A C AB ⋃⋃⋃3.指出下列命题中哪些成立,哪些不成立,并作图说明。
(1)B B A B A =(2)AB B A =(3)AB B A B =⊂则若,(4)若A B B A ⊂⊂则,(5)C B A C B A = (6)若Φ=AB 且A C ⊂,则Φ=BC解 : (1) 成立,因为B A B B B A B B A ==))((。
概率论与数理统计教程第四版课后答案
1i jk n
若事件 A1 , A2 ,, An 互不相容,则
PA1 A2 An PA1 PA2 PAn 3
2.条件概率及乘法定理
条件概率
PA
|
B
PAB PB
,
PB
|
A
PAB PA
.
乘法定理 PAB PB PA| B PA PB | A
PA1 A2 An PA1 PA2 | A1PA3 | A1A2 PAn | A1A2 An1
N
P10 10
设事件A 表示指定的3本放在一起,
则A所包含的基本事件的数: M P33 P88
∴
P(A)
M N
P33 P88 P10
10
8!3! 1 0.067 10! 15
11
6. 为减少比赛场次,把20个球队任意分成两组(每组10队)进行 比赛,求最强的两队分在不同组内的概率。
解
解 基本事件的总数:N 9 105
设事件A 表示电话号码是由完全不同的数字组成, 则A所包含的基本事件的数: M 9 P95
∴
P( A) M N
9 P95 9 105
189 1250
0.1512
10
5. 把10本书任意地放在书架上, 求其中指定的3本放在一起的概率。
解
基本事件的总数:
C
1 4
C
2 3
C
1 3
43
9 0.5625
16
13. 某工厂生产的100个产品中,有5个次品,从这批产品中任取一
半来检查,设A表示发现次品不多于1个,求A的概率。
解
P( A)
C
50 95
C
1 5
《概率论基础》(李贤平)第三版-课后答案
第一章事件与概率1、解:(1) P{只订购A 的}=P{A(B∪C)}=P(A)-{P(AB)+P(AC)-P(ABC)}=0.45-0.1.-0.08+0.03=0.30.(2) P{只订购A 及B 的}=P{AB}-C}=P(AB)-P(ABC)=0.10-0.03=0.07(3) P{只订购A 的}=0.30,P{只订购B 的}=P{B-(A∪C)}=0.35-(0.10+0.05-0.03)=0.23.P{只订购C 的}=P{C-(A∪B)}=0.30-(0.05+0.08-0.03)=0.20.∴P{只订购一种报纸的}=P{只订购A}+P{只订购B}+P{只订购C}=0.30+0.23+0.20=0.73.(4)P{正好订购两种报纸的}=P{(AB-C) ∪(AC-B) ∪(BC-A)}=P(AB-ABC)+P(AC-ABC)+P(BC-ABC)=(0.1-0.03)+(0.08-0.03)+.(0.05-0.03)=0.07+0.05+0.02=0.14.(5)P{至少订购一种报纸的}= P{只订一种的}+ P{恰订两种的}+ P{恰订三种的}=0.73+0.14+0.03=0.90.(6) P{不订任何报纸的}=1-0.90=0.10.2、解:(1)ABC =A ⇒BC ⊃A( A BC ⊂A显然) ⇒B ⊃A且C ⊃A ,若A发生,则B 与C 必同时发生。
(2)A ∪ B ∪ C =A ⇒B ∪ C ⊂A ⇒B ⊂A且C ⊂ A ,B 发生或C 发生,均导致A 发生。
(3)AB ⊂C ⇒A与B 同时发生必导致C 发生。
(4)A ⊂BC ⇒A ⊂B ∪ C ,A 发生,则B 与C 至少有一不发生。
3、解: A1 ∪ A2 ∪…∪ A n =A1 + ( A2 -A1 ) +… + ( A n -A1 -… -A n-1 )(或)=A1 +A2 A1 +…+A n A1 A2 … A n-1 .4、解:(1)ABC ={抽到的是男同学,又不爱唱歌,又不是运动员};ABC ={抽到的是男同学,又爱唱歌,又是运动员}。
概率论课后习题答案
习题1解答1. 写出下列随机试验的样本空间Ω:(1)记录一个班一次数学考试的平均分数(设以百分制记分); (2)生产产品直到有10件正品为止,记录生产产品的总件数;(3)对某工厂出厂的产品进行检查,合格的记为“正品”,不合格的记为“次品”,如连续查出了2件次品就停止检查,或检查了4件产品就停止检查,记录检查的结果; (4)在单位圆内任意取一点,记录它的坐标.解:(1)以n 表示该班的学生人数,总成绩的可能取值为0,1,2,…,100n ,所以该试验的样本空间为{|0,1,2,,100}ii n nΩ==.(2)设在生产第10件正品前共生产了k 件不合格品,样本空间为{10|0,1,2,}k k Ω=+=,或写成{10,11,12,}.Ω=(3)采用0表示检查到一个次品,以1表示检查到一个正品,例如0110表示第一次与第四次检查到次品,而第二次与第三次检查到的是正品,样本空间可表示为{00,100,0100,0101,0110,1100,1010,1011,0111,1101,1110,1111}Ω=.(3)取直角坐标系,则有22{(,)|1}x y x y Ω=+<,若取极坐标系,则有{(,)|01,02π}ρθρθΩ=≤<≤<.2.设A 、B 、C 为三事件,用A 、B 、C 及其运算关系表示下列事件. (1)A 发生而B 与C 不发生; (2)A 、B 、C 中恰好发生一个; (3)A 、B 、C 中至少有一个发生; (4)A 、B 、C 中恰好有两个发生; (5)A 、B 、C 中至少有两个发生; (6)A 、B 、C 中有不多于一个事件发生.解:(1)ABC 或A B C --或()A B C -;(2)ABC ABC ABC ;(3)AB C 或ABCABCABCABCABCABCABC ;(4)ABC ABCABC .(5)AB AC BC 或ABC ABC ABCABC ;(6)ABCABCABCABC .3.设样本空间{|02}x x Ω=≤≤,事件{|0.51}A x x =≤≤,{|0.8 1.6}B x x =<≤,具体写出下列事件:(1)AB ;(2)A B -;(3)A B -;(4)A B .解:(1){|0.81}AB x x =<≤; (2){|0.50.8}A B x x -=≤≤;(3){|00.50.82}A B x x x -=≤<<≤或; (4){|00.5 1.62}AB x x x =≤<<≤或.4. 一个样本空间有三个样本点, 其对应的概率分别为22,,41p p p -, 求p 的值. 解:由于样本空间所有的样本点构成一个必然事件,所以2241 1.p p p ++-=解之得1233p p =-=-,又因为一个事件的概率总是大于0,所以3p =- 5. 已知()P A =0.3,()P B =0.5,()P A B =0.8,求(1)()P AB ;(2)()P A B -;(3)()P AB .解:(1)由()()()()P AB P A P B P AB =+-得()()()()030.50.80P AB P A P B P A B =+-=+-=.(2) ()()()0.300.3P A B P A P AB -=-=-=. (3) ()1()1()10.80.2.P AB P AB P AB =-=-=-=6. 设()P AB =()P AB ,且()P A p =,求()P B . 解:由()P AB =()1()1()1()()()P AB P AB P AB P A P B P AB =-=-=--+得()()1P A P B +=,从而()1.P B p =-7. 设3个事件A 、B 、C ,()0.4P A =,()0.5P B =,()0.6P C =,()0.2P AC =,()P BC =0.4且AB =Φ,求()P A B C .解:()()()()()()()()0.40.50.600.20.400.9.P A B C P A P B P C P AB P AC P BC P ABC =++---+=++---+=8. 将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率. 解:依题意可知,基本事件总数为34个.以,1,2,3i A i =表示事件“杯子中球的最大个数为i ”,则1A 表示每个杯子最多放一个球,共有34A 种方法,故34136().416A P A ==2A 表示3个球中任取2个放入4个杯子中的任一个中,其余一个放入其余3个杯子中,放法总数为211343C C C 种,故211343239().416C C C P A == 3A 表示3个球放入同一个杯子中,共有14C 种放法,故14331().416C P A ==9. 在整数0至9中任取4个,能排成一个四位偶数的概率是多少?解:从0至9 中任取4个数进行排列共有10×9×8×7种排法.其中有(4×9×8×7-4×8×7+9×8×7)种能成4位偶数. 故所求概率为4987487987411098790P ⨯⨯⨯-⨯⨯+⨯⨯==⨯⨯⨯. 10. 一部五卷的文集,按任意次序放到书架上去,试求下列事件的概率:(1)第一卷出现在旁边;(2)第一卷及第五卷出现在旁边;(3)第一卷或第五卷出现在旁边;(4)第一卷及第五卷都不出现在旁边;(5)第三卷正好在正中.解:(1)第一卷出现在旁边,可能出现在左边或右边,剩下四卷可在剩下四个位置上任意排,所以5/2!5/!42=⨯=p .(2)可能有第一卷出现在左边而第五卷出现右边,或者第一卷出现在右边而第五卷出现在左边,剩下三卷可在中间三人上位置上任意排,所以 10/1!5/!32=⨯=p .(3)p P ={第一卷出现在旁边}+P{第五卷出现旁边}-P{第一卷及第五卷出现在旁边}2217551010=+-=. (4)这里事件是(3)中事件的对立事件,所以 10/310/71=-=P .(5)第三卷居中,其余四卷在剩下四个位置上可任意排,所以5/1!5/!41=⨯=P . 11. 把2,3,4,5诸数各写在一X 小纸片上,任取其三而排成自左向右的次序,求所得数是偶数的概率.解:末位数可能是2或4.当末位数是2(或4)时,前两位数字从剩下三个数字中选排,所以 23342/1/2P A A =⨯=.12. 一幢10层楼的楼房中的一架电梯,在底层登上7位乘客.电梯在每一层都停,乘客从第二层起离开电梯,假设每位乘客在哪一层离开电梯是等可能的,求没有两位及两位以上乘客在同一层离开的概率.解:每位乘客可在除底层外的9层中任意一层离开电梯,现有7位乘客,所以样本点总数为79.事件A “没有两位及两位以上乘客在同一层离开”相当于“从9层中任取7层,各有一位乘客离开电梯”.所以包含79A 个样本点,于是7799)(A A P =.13. 某人午觉醒来,发觉表停了, 他打开收音机,想听电台报时, 设电台每正点是报时一次,求他(她)等待时间短于10分钟的概率.解:以分钟为单位, 记上一次报时时刻为下一次报时时刻为60, 于是这个人打开收音机的时间必在),60,0(记 “等待时间短于10分钟”为事件,A 则有(0,60),Ω=)60,50(=A ,⊂Ω于是)(A P 6010=.61= 14. 甲乙两人相约812-点在预定地点会面。
概率论课后习题答案北大
概率论课后习题答案北大概率论课后习题答案北大北大是中国著名的高等学府,其数学系在国内乃至国际上都享有盛誉。
概率论是数学系的一门重要课程,它研究的是随机现象的规律性。
作为一门理论性较强的学科,概率论的习题往往需要一定的思考和推理能力。
下面,我们就来看一下北大概率论课后习题的答案。
1. 设A、B、C为三个事件,且P(A)=0.3,P(B)=0.4,P(C)=0.5,且P(A∩B)=0.1,P(A∩C)=0.2,P(B∩C)=0.3,P(A∩B∩C)=0.05,求:(1) P(A∪B∪C)的值;(2) P(A'∩B'∩C')的值。
解答:(1) 根据概率的加法原理,有P(A∪B∪C) = P(A) + P(B) + P(C) - P(A∩B) -P(A∩C) - P(B∩C) + P(A∩B∩C)。
代入已知条件,可得P(A∪B∪C) = 0.3 + 0.4 + 0.5 - 0.1 - 0.2 - 0.3 + 0.05 =0.65。
(2) 根据概率的补集公式,有P(A'∩B'∩C') = 1 - P(A∪B∪C)。
代入已知条件,可得P(A'∩B'∩C') = 1 - 0.65 = 0.35。
2. 设随机变量X服从正态分布N(μ, σ^2),已知P(X > 2) = 0.3,P(X < -1) = 0.1,求:(1) X的期望μ和方差σ^2的值;(2) P(-1 < X < 2)的值。
解答:(1) 根据正态分布的性质,有P(X > 2) = P(Z > (2-μ)/σ) = 0.3,其中Z是标准正态分布。
查表可得,对应的Z值为0.524,即(2-μ)/σ = 0.524。
同理,有P(X < -1) = P(Z < (-1-μ)/σ) = 0.1,对应的Z值为-1.281,即(-1-μ)/σ = -1.281。
概率论第三章课后习题答案_课后习题答案
第三章 离散型随机变量率分布。
,试写出命中次数的概标的命中率为目;设已知射手每次射击射击中命中目标的次数指示射手在这三次独立以本空间上定义一个函数验的样本空间;试在样作为试验,试写出此试察这些次射击是否命中三次独立射击,现将观一射手对某目标进行了7.0.1.343.0441.0189.0027.03210027.0)7.01()()0()0(189.0)7.01()7.01(7.03)(3)1()1()1()1(441.0)7.01(7.07.03)(3)2()2()2()2(343.0)7.0()()3()3()(0)(1)()()(2)()()(3)(},,,{)},,(),,,(),,,(),,,(),,,(),,,(),,,(),,,{(3,2,1332183217653214323321187654321821321321321321321321321321⎪⎪⎭⎫ ⎝⎛=-======-⨯-⨯⨯===+=+====-⨯⨯⨯===+=+===================Ω==的分布列为所以,,则简记为将,,则代表击中目标的次数,令则次射中”,“第解:设ξξξξξξξξξξξξξξωξωξωξωξωξωξωξωξωξξωωωA A A P P P A A A P P P P P A A A P P P P P A A A P P P A A A A A A A A A A A A A A A A A A A A A A A A i i A i i i。
出的废品数的概率分布前已取个,求在取得合格品之不再放回而再取来使用,若取得废品就个这批零件中任取个废品,安装机器时从个合格品、一批零件中有1139.2118805499101112123)3(132054109112123)2(13227119123)1(129)0(32101919110111111211213110191111211213111191121311219=⨯⨯⨯=⋅⋅⋅===⨯⨯=⋅⋅===⨯=⋅=====C C C C C C C C P C C C C C C P C C C C P C C P ξξξξξξ,,,可能取值为:代表废品数,则解:令.1188054132054132271293210⎪⎪⎭⎫ ⎝⎛的分布列为所以,ξ废品数的概率分布。
概率论课后习题答案第一章
2008年4月第一章1.1 解⑴记9件合格品分别为正1正2�6�7正9记不合格品为次则Ω正1正2正1正3正1正4�6�7正1正9正1次正2正3正2正4�6�7正2正9正2次正3正4�6�7正3正9正3次�6�7 正8正9正8次正9次A正1次正2次正3次�6�7正9次⑵记2个白球分别为w1w23个黑球分别为b1b2b34个红球分别为r1r2r3r4。
则Ωw1w2b1b2b3r1r2r3r4 ⅰA w1w2。
ⅱB r1r2r3r4。
1.2 解⑴事件ABC表示该生是三年级男生但不是运动员。
⑵ABCC等价于CAB表示全系运动员都是三年级的男生。
⑶当全系运动员都是三年级学生时。
⑷当全系女生都在三年级并且三年级学生都是女生时。
1.3 解⑴1niiA⑵22221222211nCDniCDiCDCDnCDACDCD ⑶11nnijijjiAA⑷原事件即“至少有两个零件是合格品”可表为1nijijijAA。
1.4 解1—4显然5和6的证法分别类似于课文第10—12页1.5式和1.6式的证法。
1.5 解样本点总数为28A8×7。
所得分数为既约分数必须分子分母或为71113中的两个或246812中的一个和71113中的一个组合所以事件A“所得分数为既约分数”包含28A218A×15A3×22×3×52×3×6个样本点。
于是PA23698714。
1.6 解样本点总数为5310。
所取三条线段能构成一个三角形这三条线段必须是3、5、7或5、7、9。
所以事件A“所取三条线段能构成一个三角形”包含3个样本点于是PA310。
17解显然样本点总数为13事件A“恰好组成MATHEMATICIAN”包含3222个样本点。
所以3222481313PA 18解任意固定红“车”的位置黑“车”可处在9×10-189个不同位置当它处于和红“车”同行或同列的9817个位置之一时正好互相“吃掉”。
概率论第一章课后习题答案
《概率论与数理统计》课后习题解答习题一3.设A ,B ,C 表示三个事件,用A ,B ,C 的运算关系表示下列各事件:(1)A 发生,B 与C 不发生;(2)A 与B 都发生,而C 不发生;(3)A ,B ,C 都发生;(4)A ,B ,C 都不发生;(5)A ,B ,C 中至少有一个发生;(6)A ,B ,C 中恰有一个发生;(7)A ,B ,C 中至少有两个发生;(8)A ,B ,C 中最多有一个发生.解:(1)C B A ; (2)C AB ; (3)ABC ; (4)C B A ;(5)C B A ; (6)C B A C B A C B A ++; (7)BC AC AB ;(8)BC AC AB 或C B C A B A .5.在房间里有10个人,分别佩戴从1号到10号的纪念章,任选3人记录其纪念章的号码.(1)求最小的号码为5的概率;(2)求最大的号码为5的概率.解:设事件A 表示“最小的号码为5”,事件B 表示“最大的号码为5”,由概率的古典定义得(1)121)(31025==C C A P ; (2)201)(31024==C C B P . 6.一批产品共有200件,其中有6件废品,求:(1)任取3件产品恰有1件是废品的概率;(2)任取3件产品没有废品的概率;(3)任取3件产品中废品不少于2件的概率.解:设事件i A 表示“取出的3件产品中恰有i 件废品”)3,2,1,0(=i ,由概率的古典定义得(1)0855.0)(32002194161≈=C C C A P ; (2)9122.0)(320031940≈=C C A P ; (3)0023.0)(32003611942632≈+=+C C C C A A P . 8.从0,1,2,…,9这十个数字中任意取出三个不同的数字,求下列事件的概率:A 表示“这三个数字中不含0和5”; B 表示“这三个数字中包含0或5”; C 表示“这三个数字中含0但不含5”. 解:由概率的古典定义得157)(31038==C C A P ;158)(1)(=-=A P B P ;307)(31028==C C C P 9.已知5.0)(=A P ,6.0)(=B P ,8.0)(=A B P ,求)(AB P 和)(B A P .解:4.08.05.0)|()()(=⨯==A B P A P AB P)]()()([1)(1)()(AB P B P A P B A P B A P B A P -+-=-==3.0)4.06.05.0(1=-+-=10.已知4.0)(=B P ,6.0)(=B A P ,求)(B A P . 解:314.014.06.0)(1)()()()()(=--=--==B P B P B A P B P B A P B A P 11.某种品牌电冰箱能正常使用10年的概率为9.0,能正常使用15年的概率为3.0,现某人购买的该品牌电冰箱已经正常使用了10年,问还能正常用到15年的概率是多少?解:设事件B A ,分别表示“该品牌电冰箱能正常使用10,15年”,依题可知 3.0)()(,9.0)(===B P AB P A P ,则所求的概率为319.03.0)()()|(===A P AB P A B P 12.某人忘记了电话号码的最后一个数字,因而他随意地拨最后一个号码.(1)求他拨号不超过三次而接通的概率;(2)若已知最后一个数字是奇数,那么他拨号不超过三次而接通的概率又是多少?解:设事件A 分别表示“他拨号不超过三次而接通”,事件B 分别表示“最后一个数字是奇数”,则所求的概率为(1)103819810991109101)(=⨯⨯+⨯+=A P (2)53314354415451)|(=⨯⨯+⨯+=B A P 13.一盒里有10个电子元件,其中有7个正品,3个次品.从中每次抽取一个,不放回地连续抽取四次,求第一、第二次取得次品且第三、第四次取得正品的概率. 解:设事件i A 表示“第i 次取得次品”(4,3,2,1=i ),则所求的概率为 )|()|()|()()(32142131214321A A A A P A A A P A A P A P A A A A P =201768792103=⨯⨯⨯= 14.一仓库中有10箱同种规格的产品,其中由甲、乙、丙三厂生产的分别有5箱、3箱、2箱,三厂产品的次品率依次为1.0,2.0,3.0,从这10箱中任取 一箱,再从这箱中任取一件产品,求取得正品的概率.解:设事件321,,A A A 分别表示“产品是甲,乙,丙厂生产的”,事件B 表示“产品是正品”,显然,事件321,,A A A 构成一个完备事件组,且2.0102)(,3.0103)(,5.0105)(321======A P A P A P 7.03.01)|(,8.02.01)|(,9.01.01)|(321=-==-==-=A B P A B P A B P 由全概率公式得83.07.02.08.03.09.05.0)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P15.甲、乙、丙三门高炮同时独立地各向敌机发射一枚炮弹,它们命中敌机的概率都是2.0.飞机被击中1弹而坠毁的概率为1.0,被击中2弹而坠毁的概率为5.0,被击中3弹必定坠毁.(1)求飞机坠毁的概率;(2)已知飞机已经坠毁,试求它在坠毁前只被命中1弹的概率.解:设事件i A 表示“飞机被击中i 弹而坠毁”)3,2,1(=i ,事件B 表示“飞机坠毁”,显然,事件321,,A A A 构成一个完备事件组,由二项概率公式计算得008.0)2.0()(,096.0)8.0()2.0()(,384.0)8.0()2.0()(33331223221131======C A P C A P C A P 1)|(,5.0)|(,1.0)|(321===A B P A B P A B P(1)由全概率公式得0944.01008.05.0096.01.0384.0)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P(2)由贝叶斯公式得407.00944.01.0384.0)|()()|()()|(31111≈⨯==∑=i ii A B P A P A B P A P B A P 16.设甲袋中装有5个红球,4个白球;乙袋中装有4个红球,5个白球.先从甲袋中任取2个球放入乙袋中,然后从乙袋中任取一个球,求取到是白球的概率. 解:设事件i A 表示“从甲袋取出的2个球中有i 个白球”)2,1,0(=i ,事件B 表示“从乙袋中取出的一个球是白球”,显然,事件321,,A A A 构成一个完备事件组,且29254)(C C C A P i i i -=,115)|(i A B P i +=,)2,1,0(=i ,由全概率公式得 5354.09953115)|()()(202925420==+⋅==∑∑=-=i i i i i i i C C C A B P A P B P 17.已知男子有%5是色盲患者,女子有%25.0是色盲患者.现在从男女人数相等的人群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少? 解:设事件A 表示“此人是男性”,事件B 表示“此人是色盲患者”,显然,事件A A ,构成一个完备事件组,且5.0)()(==A P A P ,%25.0)|(%,5)|(==A B P A B P由贝叶斯公式得9524.02120%25.05.0%55.0%55.0)|()()|()()|()()|(≈=⨯+⨯⨯=+=A B P A P A B P A P A B P A P B A P 18.设机器正常时生产合格品的概率为%98,当机器发生故障时生产合格品的概率为%30,而机器正常(即不发生故障)的概率为%95.某天,工人使用该机器生产的第一件产品是合格品,求机器是正常的概率.解:设事件A 表示“该机器正常”,事件B 表示“产品是合格品”,显然,事件A A ,构成一个完备事件组,且%30)|(%,98)|(%,5)(1)(%,95)(===-==A B P A B P A P A P A P由贝叶斯公式得984.0%30%5%98%95%98%95)|()()|()()|()()|(≈⨯+⨯⨯=+=A B P A P A B P A P A B P A P B A P 19.三人独立地去破译一个密码,他们能够译出的概率分别是51,31,41,问能将密码译出的概率是多少?解:设事件C B A ,,分别表示“第一人,第二人,第三人破译出密码”,显然事件C B A ,,相互独立,且41)(,31)(,51)(===C P B P A P ,则所求的概率为 53)411)(311)(511(1)()()(1)(=----=-=C P B P A P C B A P 20.加工某一零件共需经过四道工序,设第一、二、三、四道工序的次品率分别是02.0,03.0,05.0和03.0.假设各道工序是互不影响的,求加工出来的零件的次品率.解:设事件i A 表示“第i 道工序加工出次品”)4,3,2,1(=i ,显然事件4321,,,A A A A 相互独立,且03.0)(,05.0)(,03.0)(,02.0)(4321====A P A P A P A P ,则所求的概率为)()()()(1)(43214321A P A P A P A P A A A A P -=124.0)03.01)(05.01)(03.01)(02.01(1=-----=21.设第一个盒子里装有3个蓝球,2个绿球,2个白球;第二个盒子里装有2个蓝球,3个绿球,4个白球.现在独立地分别从两个盒子里各取一个球.(1)求至少有一个蓝球的概率;(2)求有一个蓝球一个白球的概率;(3)已知至少有一个蓝球,求有一个蓝球一个白球的概率.解:设事件21,A A 表示“从第一个盒子里取出的球是篮球,白球”,事件21,B B 表示“从第二个盒子里取出的球是篮球,白球”,显然事件i A 与j B 相互独立)2,1;2,1(==j i ,且94)(,92)(,72)(,73)(2121====B P B P A P A P ,则所求的概率为 (1)95)921)(731(1)()(1)(1111=---=-=+B P A P B A P ; (2)631692729473)()()()()(12211221=⨯+⨯=+=+B P A P B P A P B A B A P ; (3))()])([()](|)[(11111221111221B A P B A B A B A P B A B A B A P +++=++ 3516956316)()(111221==++=B A P B A B A P 22.设一系统由三个元件联结而成(如图51-),各个元件独立地工作,且每个元件能正常工作的概率均为p (10<<p ).求系统能正常工作的概率.图51- 解:设事件i A 表示“第i 个元件正常工作”)3,2,1(=i ,事件B 表示“该系统正常工作”,显然,事件321,,A A A 相互独立,且p A P i =)(,则所求的概率为 )()()()(])[()(32132313231321A A A P A A P A A P A A A A P A A A P B P -+=== 3232132312)()()()()()()(p p A P A P A P A P A P A P A P -=-+=24.一批产品中有%20的次品,进行放回抽样检查,共取5件样品.计算:(1)这5件样品中恰有2件次品的概率;(2)这5件样品中最多有2件次品的概率.解:设事件A 表示“该样品是次品”,显然,这是一个伯努利概型,其中%80)(%,20)(,5===A P A P n ,由二项概率公式有(1)2048.0%)80(%)20()2(32255==C P(2)942.0%)80(%)20()(2055205==∑∑=-=k k k k k C k P。
概率论课后习题解答
一、习题详解:1.1 写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数;解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω;(2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和;解:}{12,11,4,3,22 =Ω;(3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{,2,1,03=Ω; (4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故:()}{;51,4≤≤=Ωj i j i(5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ω ;(7) 在单位圆内任取两点, 观察这两点的距离;解:}{207 x x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度.解:()}{l y x y x y x =+=Ω,0,0,8 ;1.2 设A ,B ,C 为三事件, 用A;B;C 的运算关系表示下列各事件:(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃;(3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃;(5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃;(6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃; (7) A;B;C 中至多有两个发生;ABC ;(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ;注意:此类题目答案一般不唯一,有不同的表示方式。
同济大学第二版概率论课后习题答案
习题一解答1. 用集合的形式写出下列随机试验的样本空间与随机事件A :(1) 抛一枚硬币两次,观察出现的面,事件}{两次出现的面相同=A ;(2) 记录某电话总机一分钟内接到的呼叫次数,事件{=A 一分钟内呼叫次数不超过3次};(3) 从一批灯泡中随机抽取一只,测试其寿命,事件{=A 寿命在2000到2500小时之间}。
解 (1) )},(),,(),,(),,{(--+--+++=Ω, )},(),,{(--++=A . (2) 记X 为一分钟内接到的呼叫次数,则},2,1,0|{ ===Ωk k X , }3,2,1,0|{===k k X A .(3) 记X 为抽到的灯泡的寿命(单位:小时),则)},0({∞+∈=ΩX , )}2500,2000({∈=X A .2. 袋中有10个球,分别编有号码1至10,从中任取1球,设=A {取得球的号码是偶数},=B {取得球的号码是奇数},=C {取得球的号码小于5},问下列运算表示什么事件:(1)B A ;(2)AB ;(3)AC ;(4)AC ;(5)C A ;(6)C B ;(7)C A -. 解 (1) Ω=B A 是必然事件; (2) φ=AB 是不可能事件;(3) =AC {取得球的号码是2,4};(4) =AC {取得球的号码是1,3,5,6,7,8,9,10};(5) =C A {取得球的号码为奇数,且不小于5}={取得球的号码为5,7,9};(6) ==C B C B {取得球的号码是不小于5的偶数}={取得球的号码为6,8,10};(7) ==-C A C A {取得球的号码是不小于5的偶数}={取得球的号码为6,8,10}3. 在区间]2,0[上任取一数,记⎭⎬⎫⎩⎨⎧≤<=121x x A ,⎭⎬⎫⎩⎨⎧≤≤=2341x x B ,求下列事件的表达式:(1)B A ;(2)B A ;(3)B A ;(4)B A .解 (1) ⎭⎬⎫⎩⎨⎧≤≤=2341x x B A ;(2) =⎭⎬⎫⎩⎨⎧≤<≤≤=B x x x B A 21210或⎭⎬⎫⎩⎨⎧≤<⎭⎬⎫⎩⎨⎧≤≤2312141x x x x ;(3) 因为B A ⊂,所以φ=B A ; (4)=⎭⎬⎫⎩⎨⎧≤<<≤=223410x x x A B A 或 ⎭⎬⎫⎩⎨⎧≤<≤<<≤223121410x x x x 或或 4. 用事件C B A ,,的运算关系式表示下列事件:(1) A 出现,C B ,都不出现(记为1E ); (2) B A ,都出现,C 不出现(记为2E ); (3) 所有三个事件都出现(记为3E ); (4) 三个事件中至少有一个出现(记为4E ); (5) 三个事件都不出现(记为5E ); (6) 不多于一个事件出现(记为6E ); (7) 不多于两个事件出现(记为7E ); (8) 三个事件中至少有两个出现(记为8E )。
概率论课后习题解答
一、习题详解:写出下列随机试验的样本空间:(1)某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数;解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω;(2)掷一颗匀称的骰子两次, 观察前后两次出现的点数之和;解:}{12,11,4,3,22 =Ω;(3)观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{ ,2,1,03=Ω;(4)从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故:(5)检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6)观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ω ;(7)在单位圆内任取两点, 观察这两点的距离;解:}{207 x x =Ω;(8)在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度.解:()}{l y x y x y x =+=Ω,0,0,8 ;设A ,B ,C 为三事件, 用A;B;C 的运算关系表示下列各事件:(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃;(3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃;(5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃;(6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃; (7) A;B;C 中至多有两个发生;ABC ;(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ;注意:此类题目答案一般不唯一,有不同的表示方式。
概率论第4-6章课后习题答案
习题四E(X) = (-l)x- + 0x —+ lx- + 2x —=—;【解】(1) 8 2 8 4 2 ⑵£区)=(一]% + 0弓+ % + 2.卜春£(2X+3) = 2£(X) + 3 = 2x- + 3 = 4⑶ 22.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差.故£(X) = 0583x0+0340x1 + 0.070x2 + 0.007x3 + 0x4 + 0x5= 0・50hD(X) = ±[兀-E(X)]胡=(O-O・5O1)2X O・583+(1-O・5O1)2X O・34O+…+ (5-0.501)2x0= 0.432.3•设随机变量X的分布律为且已知 E (X) sE(X2)s求Pl. P2. P3・【解】因A + A + A = l…①,又E(X) = (-l)A+0・;^ + l・& = /^-A =0」②,£(X2)=(-1)2・/;+O2・&+12・&=A+^=O・9■■③由①②③联立解得人=g £ = 0丄& = 054.袋中有N 只球,其中的白球数X 为一随机变量,已知E (X) =n,问从袋中任取1球为白 球的概率是多少 【解】记A 可从袋中任取1球为白球卜则 N PG4)全鯉公迖另P{ AIX =灯"{ X =灯 A-0 N b I N =工万P 泌 * = -DP{X*} *■0 N /V Jt.(>5・E 心需5•设随机变量X 的概率密度为 X, 0<%<1,2 - A, 1 < X < 2,(X 其他. f(X) 求 E (X), D CX). [解]E(X)=匚 (x)dx =£x -dx + [ x(2 - x}dxE( X 2)=匚 x-f(x)dx =J : x'dv + j\'(2-%)cLv = £ 故 D(X)"X)-阳 r 6•设随机变量X, Y, Z 相互独立,且E (X) =5, E (Y) =11. E ⑵=8.求下列随机变的 数学期望.(1) (2) U=2X+3Y+1; V=YZ 4X. 【解】 ⑴ ElU] = E(2X+3Y + l) = 2E(X} + 3E(Y} + \= 2x5 + 3x11 + 1=44. ⑵ EIV] = EIYZ-4X] = E[YZ]-4E(X) 因人 Z 独立E(y>E(Z)-4E(X)= 11x8-4x5 = 6 &7•设随机变量 X, Y 柑互独立,且 E (X) =E(Y) =3, D (X) =12. D (Y) =16,求 E (3X 2Y), D C2X 3Y).【解】⑴ £(3X -2r)= 3£(X)-2£(y)=3x3-2x3 = 3.⑵ D(2X-3y)= 2'D(X) + (-3)-Dr = 4x12 + 9x16=192.8.设随机变量ex. Y)的概率密度为k. 0<%< to< y < X,f(x,八仏其他试确世常数k,并求E (XY) • 阳因匸匚心曲T :时沁二EgE{XY} = J J x)/(x, y)dxdy = [xtkj^ 2ydy = 0.259•设X, Y 是相互独立的随机变量,其概率密度分别为fa 、y)=/xW*/r(y)=- 2甘7, 0<x<ty>5,0.其他,于是2儿 0. fX(X) 求 E(XY) • 【解】方法一: 0<%<1,其他;,严,y>5, fY (y)其他先求X & j Y 的均值£(X) = J x*2Adv = —,E(Y) = [ ■ 5] e"^dz + £ ze^dz = 5 + 1 =6.由X 仃Y 的独立性,得 £(xr)= E(X)・E(y)= -x6 = 4. 方法二:利用随机变量函数的均值公式•因X 与Y 独立,故联合密度为H-OO .ye->-00ye E(XY) = £ A3'*2.ve~*'■^'dxdy = £ 2x -dv*J^ ye~^= — x 6 = 4. 5 ) 0 5W.设随机变Sx, Y 的槪率密度分别为 2e-\ %>0, 0, x<0; < 4e^\ y>a fY(Y)=k 求(1) E (X+Y); (2) E (2X 3Y2) •fx(X)9P(X=O) = —= 0.750,123 2 9P{X=2) = — x — x — = 0.041,12 II 10于是,得到X的概率分布表如卜•:3 9P{X =l| = — x —= 0,204,12 II3 2 19P{X=3} = —X—X —x- = 0・005【解](X)= J1^(x)叫7兀・2产血=[7严]『匚e-^dx= e dx = —.Jo 2E(Y)=匚曲(y)dyj「.v4e^'dy =右E(尸)=匚必(y)dy =匸y-*4e-*'cly = ^ = |从而⑴ E(X + Y)-E(X) + E(y)--+才一二E(2X -3Y-) = 2E(X}-3E(Y-} = 2x--3x- = -⑵ 2 8 811•设随机变量X的概率密度为x>0,0, X V 0.f(X)求(1)系数C; (2) E (X) ; (3) D(X) •【解】⑴由匚ETX叫烽“得"2£(%) = J xf (x)d(x) = £d%=2叮宀=££(x2)=匸/・2心&& P4 一兀故12.袋中有12个零件,其中9个合格品,3个废品.安装机器时,从袋中一个一个地取出(取出后不放回),设在取出合格品之前已取出的废品数为随机变SX,求E <X)和D CX).【解】设随机变SX表示在取得合格品以前已取出的废品数,则X的可能取值为0, 1. 2, 3•为求英分布律,下而求取这些可能值的概率,易知・12 II 10 9由此可得 £(X) =0x0.750 + 1x0.204 + 2x0.041+3x0.005 = 0.301-£(X -) = 0'x750 + Px0.204 + 2-x0.04I + 3-x0,005 = 0413D(X) = E(X-)-[£(%)]- =0.413-(0.301)- =0.322.13•—工厂生产某种设备的寿命X (以年计)服从指数分布,概率密度为-e \ A>0, 40,为确保消费者的利益,工厂规左出售的设备若在一年内损坏可以调换•若售出一台设备,工 厂获利100元,而调换一台则损失200元,试求工厂出售一台设备赢利的数学期望. 【解】厂方出售一台设备净盈利Y 只有两个值:100元和 200元P{ Y = 100} = P{ X > 1} =「扌 P{y=-2oo} = P{x <1} = 1-「"故E(Y) = 100x 「"+(-200)x0-「")= 300&"4一200 = 33.64 (元)14•设XI, X2,…,Xn 是相互独立的随机变量,且有E (Xi)=山D (Xi) =o2, i=lr 2, 记• S2=£(%) = £(丄====1/2 匕丿《 tr «ZT ftD(X) = D 二工Xj =4D (EXJXN 间相互独立二・±DXtV n j-l 丿/-I=矿 r-1x< 0. (1)b验证E(X)=n ,D(X) = n(2)丄(iz ・j 亍)验证S2J_] j(3) 验证E (S2) =o2・【证】X*-对=x(x:+亍-2无O = ZX: + "亍-2乂f Xfr-l r-l r・l r-l=f X: + "X2 -2X.«X = £X: -《戸2r・l /-I故宀占討用(3)因F(X,) = «,£>(Xj) = b[故£(X;) = D(XJ + (EXj)2 = b2+«2・同理因从而T ■* _ _ ____________ *> 疔. _ £{X) = //,D(X) = —£(X") = _ + w-«,故《E(s-) = E(XX/-H F) =_^iE(f x:)-M(r)] j-l n 一I r-1=占[£丘*2)-“E(亍)]Z 1<T" ->—+irI ««-1=b\15•对随机变量X 和Y,已知D (X) =2, D (Y) =3, Cov(X,Y)= 1, 计算:Cov (3X 2Y+1, X+4Y 3) •[解]Cov(3X-2r + tX+4y-3) = 3D(X) + 10Cov(X,y)-8D(y)= 3x2 + 10x(-l)-8x3 = -28(因常数与任一随机变量独立,故Cov(X3)=Cov{V;3)=0, Jt余类似). 16•设二维随机变量(X, Y)的概率密度为1 -> ■一,A - + V' < b7t0, 其他.f (X. y)=试脸证X和Y是不相关的,但X和Y不是相互独立的.【解】设》= {(3)1宀亡1}.fCX) = J" J (X,y)<i'dy = — JJ .vdxdy1f" fl=九J?8S&・g=0.同理E(Y)=0.而c°v(xy)=匚匚[-呦・卜-砒)]心、用与=—必勺心心=丄[J sin&COS&心d& = 0兀x-+y'<l 兀由此得Qx厂°,故X仃Y不相关.下面讨论独立性,当冈•时,办刚轻纠必时,恥)厲存V"显然()')*/(& y)・故X和Y不是相互独立的.17•设随机变量(X, Y)的分布律为3验证X和Y是不柑关的,但X和Y不是相互独立的.【解】联合分布表中含有零元素,X与Y显然不独立,由联合分布律易求得X, Y及XY的分布律,尖分布律如下表X 1 01P 3 2 38 8 8Y 1 01P 3 2 38 8 8XY 1 01P 2 4 28 8 8由期望;d^义易得E (X) =E (Y) =E (XY) =0. 从而E(XY)=E(X)・E(Y),再由相关系数性质知pXY=0.X即X 与Y 的相关系数为0,从而X 和Y 是不相关的.P{X=-1}・ P{Y = -1} = 2X -H 丄又8 8从而X 与Y 不是柑互独立的.18.设二维随机变量(X. Y )在以 匀分布,求 Cov (X. Y ), pXY.题18图2, (X, y) € D, 0,其他.E(X) = 0 易(兀刃 dxdy = £ chf 々dy = | E( X 2) = JJ x-f(x, y)d.xdy = £ 时「2x'dv = *D(X) = E(X^)-lE(X)f=--- 从而6 2丿 同/5皿)卞E(XY) = JJ A>y'(x,>)dYd>' = JJ 2x>'dxdy = £ d.v£ 々jydy =—Q/)0 0 12cov(x,r)= £(xy)-£(x)-£(y)=—--x-=-—12 3 3 3o19•设(X, Y )的概率密度为【解】如图,SD=2 ,故(X, Y ) 的概率密度为X+>'=l8 = P{X=7y = _l}(0, 0), (0, 1),(1, 0)为顶点的三角形区域上服从均 "18而 所以从而Cov(X.y)g ""(疔加)一一2—sin(x + y)> 0<x< —,0< v<—, 2 2*20, 其他.E(X) = J J 对ay)dxdy = [ dxj^ 兀・—sin(x +y)dy =中.E(X 2)= J3J7F 运 sinCv+y)dy = + + + 2.从而£>(X) = E(X2)一[E(X)F=^ + f-210 2同理Z/2 z/2 JT E(XY} = j dvj Qsin(x+ y)cUdy = —1,u2Cov (x,r )= £(xr )-£(x )>£(r )= 故I 兀_4 IQ ■ - - 7D (X ).7W S +ZS-216 2Cov(x,r) (71-4)" _ 7t" -8兀 + 16 TU' +8 兀一 32 兀2 + 8兀一 32 20.已知二维随机变量(X, Y )的协方差矩阵为Ll 4」,试求zrx 相关系数. 【解】由已知知:D (X )=l,D (Y )=4,Cov (X,Y )=l.从而 2Y 和 Z2=2X Y 的 D(Zi)= D(X-2y)= D(X) + 4D(Y) - 4Cov(X") = 1+4x4-4x1 = 13, D(Z,) = n(2X-r)= 4D(X) + P(r)-4Cov(X,y)= 4xl+4-4xl=4, Cov(ZpZ,) = Cov(X-2y,2X-y) = 2Cov{x,x)-4Cov(y,x)-cov(x,r)+2Cov(y,r) = 2D(X)-5Cov(X.Y) + 2Q(y)= 2xl-5xl + 2x4 = 5・f (X, y )=求协方差Cov (X, Y )和柑关系数pXY ・故21.对于两个随机变量V, W.若E(V2). E (W2)存在,证明: [E (VW)] 2<E (V2) E (W2). 这一不等式称为柯西许瓦兹(CouchY Schwarz)不等式.[证]令g(F) = E{[V + fWF},FeR. 显然0< g(t) = E[(y + tW)-] = ElV- + 2tVW + rW-]= £[V -] + 2M£iny]+z^£[W'],Vr€/?.可见此关于t 的二次式非负,故其判别式AG,0>A = [2£(VW)]'-4£(W')>£(V')= 4l[E(VW)f -E(V-}^EiW-)}.故[E(viy)F<E(W)・E(w2)}・22.假设一设备开机后无故障工作的时间X 服从参数2出的指数分布.设备立时开机,出现 故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作 的时间Y 的分布函数F (丫).【解】设Y 表示毎次开机后无故障的工作时间,由题设知设备首次发生故障的等待时间X~E(ME(X)二久=5. 依题意 Y=min{X,2). 对于 y<0j{y)=P{Y<y}=0. 对于 y>2,F{y)=P(X<y)=l.对于0<y<2,当x>0时,在(0,x)内无故障的概率分布为 P{X<x}=l eXx,所以F(y)=P{Y<y}=P{min(X,2)<y}=P{X<y}=l e y/5.23.已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装 有3件合格品.从甲箱中任取3件产品放乙箱后,求:(1)乙箱中次品件数Z 的数学期望:(2) 从乙箱中任取一件产品是次品的概率.【解】(1) Z 的可能取值为0, 1. 2, 3. Z 的概率分布为P{Z 旳=芒'Q = 9 Z?) = 5 =仝 /7T从一匹百品Z 「辰矿*7 -HP因此, I 9 9 I 3£(Z ) = 0X - + !X - + 2X - + 3X - = -(2)设A 表示事件“从乙箱中任取出一件产品是次品r 根据全概率公式有 3 P (A ) = XP{Z = R}・P{AIZ = k} *■(> 1^9192131 20 20 6 20 6 20 6 4 24•假设由自动线加工的某种零件的内径X (亳米)服从正态分布N (儿1),内径小于10或 大于12为不合格品,其余为合格品•销售每件合格品获利,销售每件不合格品亏损,已知销 售利润T (单位:元)与销售零件的内径X 有如下关系 若 %<10,若 10<X<12, 若X >12. < 20,T —5,T= J 问:平均直径A 取何值时,销售一个零件的平均利润最大 [解]E (T ) = -P{X vl0} + 20P{10<X<12}-5P{X >12} = -P{X-u<10-u} + 2QP{\Q-u<X-u<\2-u}-5P{X-u>\2-u} = -e (io-M )+2O [e (i2-")-e (io-»)]-5[i-e (i2-«)]= 25e (12-w )-2ie (10-M )-5・ 兰4 = 250(12-“)乂(一1)-210(10-“)><(-1)丄 dit 0(这里卩心话严 25「3 円2 = 21「3加两边取对数有 ln25--(12_M )2=ln21_-(10_H )) 2 解得 M = ll -丄 In 艺=11 一丄]nl ・19al0・9128 2 21 2 (毫米)由此可得,当u=10.9亳米时,平均利润最大. 25•设随机变量X 的概率密度为 1 X —cos —, 0 < A < n, 2 20. 其他.对X 独立地重复观察4次,用Y 表示观察值大于只“的次数,求Y2的数学期望.(2002研考)1, x>-.3(/ = 1,2,3,4)0. X<-・ 3y = D~B(4 丿)则 j•因为jrTTjr1V1p = PiX>-, = l-P,X.-,^P{X.-, = £ -cos-dv = -^£(};) = -,D(}^) = -.£(y)= 4x - = 2,D(Y) = 4x-x- = \ = E(Y-)-(EY)-2 2从而 E (尸)=D(Y) + [E(Y)f = 1 + 2, = 5.26.两台同样的自动记录仪,每台无故障工作的时间Ti(i=l,2)flK 从参数为5的指数分布,首先 开动其中一台,当;ft 发生故障时停用而另一台自动开启.试求两台记录仪无故障工作的总时 间T=T1+T2的概率密度fr(t).数学期望E (T)及方差D (T). 【解】由题意知:因"丁2 独立,所以 lT(t)=fl(t)*f2(t). 当 tvo 时,fr(t)=o ; 当GO 时,利用卷积公式得片⑴=£ W •厶(F 一 X)dx = £ 5e 亠・5ef T J A = 25re$ 故得25宀 />0, 0,f < 0・由于 Ti 吒(5)”故知 E(Ti)= 5 ,D(Ti)= 25 {i=i^2)2因此,有 E(T)=E{T1+T2)=^.2又T1J2 独立,所以 D (T) =D (T1+T2) =25【解】令所以Z(0 =•5汽 r>0, 0, t <0.所以Q(小EXlEWr 宁一古=宁27•设两个随机变量X, Y 相互独立,且都服从均值为0.方差为3的正态分布,求随机变 量IX Y|的方差.D(X-y)= P(Z) = £(IZ|-)-l£(IZI)]-E(Z-) = D(Z) = 1、E(l Z I)=匚I z I -y=e-^''-dz=急2%弋,所以 28•某流水生产线上每个产品不合格的概率为p(0<p<l). 产品合格与否相互独立,当出现 一个不合格产品时,即停机检修•设开机后第一次停机时已生产了的产品个数为X,求E (X) 和 D(X) •【解】记q=l p ,X 的概率分布为P{X=i}=qi…,E(X) = nqip = P (工孑丫 = P -故i-l1-1\ 1X X X£(灯)=立 n = X(〜脚5+£衍5 又1-1 f-2 1-1=pq (工 dy+— = pq 角 P _ 2pq 1 _ 1 + q _ 2 - p (D , p p- p-【解】设Z 二X Y ・ 且X 和Y 相互独立, 因X ~ N 0, FI “丿丿由于故 Z~N (0, 1) • (IS P+—p题29图29.设随机变量X 和Y 的联合分布在点(0, 1). (1. 0)及(1, 1)为顶点的三角形区域上 服从均匀分布.(如图),试求随机变S U=X+Y 的方差. 【解】D(U)=D(X+Y)=D(X)+D(Y)+2Cov(X,Y) =D{X)+D(Y)+2[E{XY) E(X)-E{Y)]. 由条件知X 和Y 的联合密度为2, (X, y) e G. 0, t <0.G = {(x,y)10<x< 1.0< y < hx + y > 1}・H 寸 /x w = P /(X y)dy = f' 2dy = 2儿 从而 J Y Ji 因此E(X) = £机(X)" = f 2A-dv = -,£(X -) = J^2x^cU =-,2 ° 2D{X) = E(X-)-lE(X)f .2 9 18同理可御EE 詁”占E( X Y) = Jj 2xydxdy = 2 J :兀时]ydy =春,G7 12Cov(X.Y} = E(XY}-E{X).E(Y} = — -- = -—,12 936于是30•设随机变量U 在区间[2,2]上服从均匀分布,1,Y=1}=P{U< 1,U>1}=P{ 0 }=0,y1OIX随机变量7 u<-t h U > —1.一1・ u<u t 若u>l ・X=试求(I) X 和Y 的联合概率分布;(2) D (X+Y). 【解】(1)为求X 和Y 的联合概率分布, (1, P{x=Y=就要讣算(X. Y)的4个可能取值ib( 1,1)41, 1)及(ij)的概率• 1,Y=1}=P{U<1,U<1}=p© 一 1}=「空=「空二'J J Y 4J-2 4 4P{X=P{X=1,Y= 1}=P{U> 1,U<1}= p(-l<£/<l) = £^ = iP{x=hy = i} = p{t/>-iQ>i} = P{c/>i}f 罟=1 故得X 与Y 的联合概率分布为(71) (1-1)(X 』)~.4⑵因D (x+y )= E[(x+y )2]-(E (x+y )F^x+Y 及如〉2的概率分布相应为"-2 0 2'"0 4' x+y~1 1 1 (x+y)--I 1_4 2 4._2 2.E(X + y)= (-2)x- + 2x- = 0, 从而 4 4 £t(X + r)-] = 0x-+4x- = 2,2 2所以 D(x+y)= E[(x+y)']-[£(x+y)r = 2・—e31•设随机变量X 的概率密度为f (x )= 2 求Cov (XJX|b 并问X 与|X|是否不相关 问X 与|X|是否相互独立,为什么£>(X)=匚(x-O)'.ie-'^d.v = = 2.⑵ Cov(XJX) = £(XelXI)-£(X)<£(IXI) = £(XJXI)=J x\x b —e""dx = 0,2所以X 与|X|互不相关.⑶ 为判断1X19 X 的独立性,需依定义构造适当事件后再作岀判断,为此,对世义域8vx<:+8中的子区间(0户g )上给出任意点xO ・则有{-Xo<X <xJ = {IXI<xJc{X <xj.8<X<+8⑴求E (X)及D (X); (2) (3)【解】E(x)=r\丄“啊1・=0・ ⑴ Jp 2所以 OvP {\X\<x,]<P{X<x,}<i. 故由P{X<x,JXI<xJ = P(IXI<xJ >P {IXI<_rJ>P{X<xJ得出X 与|X|不相互独立.32•已知随机变量X 和Y 分别服从正态分布N (1. 32)和N (0, 42).且X 与Y 的相关系数X Y-- 1—设 Z= 32求Z 的数学期望E (Z)和方差D (Z); 求X 与Z 的相关系数pXZ ; 问X 与Z 是否相互独立,为什么= _x9.-xl6^2x-x-Cov(X,npXY= (1) (2) (3)【解】E(Z) = E 养 ⑴V d L)cov( X V)=PxY = 匕严x4"6所以p(Z) = ..4-6x- = 3.( y y 1 I 1Cov(X,Z) = Cov %,- + - =-Cov(X,X)+ -Cov(X,r)L 3 2 丿 3 2 所以= £D (X) +舟x(-6) =善一3=0,丿厶」_ Cov(X,Z) 私"a(莎 e(z)"_cZ~N 亦3 ,X~N(1,9)⑶由Qxz —U,得X 与z 不相关•又因 2 )立.33•将一枚硬币重复掷n 次,以X 和Y 表示正而向上和反而向上的次数•试求X 和Y 的相关系 ,所以X 与Z 也相互独数【解】由条件知X+Y=n.则有D(X+Y) =D (n) =0.D{Z} = D 3X “ 再由 X^B(n,pKY^B(n,q)t 且 p=q= 2 ,从而有 E(X)=P(A),E(Y)=P(B), D(X)=P(A)・P(A),D(Y)=P(B)・P(B),从而有 D{X) = npq = - =D(Y}所以0 = D(X+Y) = L>(X) + D(Y) + 2p XY J D (X)・J D (Y)n r nn + 2% •孑故p,YX P所以E (XY)= Cov(KY)=E(XY) +=E(X)・E(Y)= x=0PxY =035.对于任意两事件A 和B, 0<P{A)<l. 0<P(B)<l,则称p= JP(A)P(B)P(7)P(®)为事件A 和B 的相关系数■试证: (1)事件A 和B 独立的充分必要条件是p=0; ⑵ lp|G.【证】(D 由P 的立义知,p=0当且仅当P(AB) P(A)・P(B)=0.而这恰好是两事件A 、B 独立的运义,即p=0是A 和B 独立的充分必要条件. ⑵引入随机变ilx 与Y 为_J1,若A 发生, x = k 若砂生;从而发生,0■若亍发由条件知,X 和Y 都服从01分布,即0 1l-P(A) P(A)0 1 l-P(B) P(B)34•设随机变量X 和Y 的联合概率分布为试求X 和Y 的相关系数p.【解】由已知知E(X)=,E(Y)=.而XY 的概率分布为Cov(KY)=P(AB) P(A)・P(B)所以,事件A和B的相关系数就是随机变量X和Y的相关系数.于是由二元随机变量相关系数的基本性质可得|p|<l.36.设随机变量X的概率密度为4 00<%< 2,其他.fX(x)= I令Y=X2, F (x,y)为二维随机变量(X, Y)的分布函数,求:⑴Y的概率密度fY(y):(2) Cov(X,Y):F(-亍4)⑶ 2 •解:(1) Y的分布函数为Fy(y} = PlY<y} = P{X-<y}当ySO时,当OVyCl时,Fy(y)=P{—"<x<"}=p{—77<x<o}+P{o<x<"}=扌77当l<y<4时, Fy(y) = P{-l<X<O} + P{O<X<“} = l+i“乙当朗时,F『(y) = i, /r(y)= o 故Y的概率密度为• 3—=.0<y<l,8"齐(y) = o—=J<y<4,8"a s其他⑵ fE(X)二匚必(x)dx = J :i 皿+ J :]dv 冷£(r)=£(X')=J^x -/y(A-)ch=j"-!-x'dx + J^i.v'dv = -)® 12 0 4 6 E (XY )二 E (尸)二 办(X 他=f ;丄&■ +『丄才&. = 7/2£(xy)-£(x)-£(y)=- Cov(X,Y) = 3F(—,4) = P{X<-一,y<4) = P{X <-一.X- <4) 2 2 =P{X <-夕-2<X<2} = P{-2<X<-j}37. 习题五1•一颗骰子连续掷4次,点数总和记为X •估计P{10<X<18}.I 斛设g 每次痂点数’贝广沪E(Xi) = 1X — 2x — 3 X — 4 X —5 x — 6 x —=—,6 6 6 6 6 62£(Xf) = Pxi + 2'xl + 3'xi + 4'x -!- + 5'xi + 6'xi= — f 6 6 6 66 6 64 4 7£(X) = E(》Xd£(XJ = 4x - = 14. 从而心 i 2」」35 35D(X) = D(XX,) = XD(X,) = 4x- = yP{10<X <I8} = P{IX-14I<4)>I-^^=«O.271, 4'\2从而又X1,X2,X3,X4独立冋分布D(XJ = E(X :) - [E(Xj)F=y-(右^35所以2. 假设一条生产线生产的产品合格率是•要使一批产品的合格率达到在76%与84%Z 间的概 率不小于90%,问这批产品至少要生产多少件1,若第i 个产品是合格品,(X 其他悄形•II ZXjP {0.76 < 上^— < 0.84} > 0.9. nHP 響“-0& <铤 < 讐一°&} >0.9V/ix0.8x0.2 /?x0・8x0・2 J" x 0.8 x 0.2由中心极限定理得整理得 n>z 故取 n=269.3.某车间有同型号机床200部,毎部机床开动的概率为,假左徉机床开动与否互不影响, 开动时毎部机床消耗电能15个单位.问至少供应多少单位电能才可以95%的概率保证不致因 供电不足而影响生产.【解】要确定最低的供应的电能量,应先确此车间同时开动的机床数目最大值m,而m 要满足200部机床中同时开动的机床数目不超过m 的概率为95%,于是我们只要供应15m 单 位电能就可满足要求•令X 表同时开动机床数目,则X~B (200,),£(X)= I4O,D(X) = 42,0.95 = P{0<X <m} = P{X <m)=① 川 一140— =1-64,所以供电能151x15=2265 (单位).4. 一加法器同时收到20个噪声电压Vk (k=r 2•“ 20).设它们是相互独立的随机变量,20【解】令而至少要生产n 件,则i=l,2,...,n,且XI, X2 .... Xn 独立同分布,P=P{Xi=l}=.现要求n,使得£Xj -0&/-) 0.84” 一0・8" 70.16/1-e '0・76n-0・8n 、 >09 10/H -140査表知且都在区间(0, 10)上服从均匀分布•记V=*-« ,求P{V>105}的近似值・100 >75} = l-P{X<75}al-e 75-100x0.8<5/100x0.8x0.2100【解】易知:E{Vk)=5,D(Vk)= 12由中心极限定理知,随机变量20工% 120x5 V _20X 5近傾的Y 12I!卩有 P{V>105>5.有一批建筑房屋用的木柱,其中80%的长度不小于3m.现从这批木柱中随机地取出100 根,问其中至少有30根短于3m 的概率是多少【解】设W0根中有X 根短于3e 则X-B (100.)从而= l-e(2・5) = l-O ・9938 = O ・OO62・6. 某药厂断言,该厂生产的某种药品对于医治一种疑难的血液病的治愈率为•医院检验员任 意抽查100个服用此药品的病人,如果其中多于75人治愈,就接受这一断言,否则就拒绝 这一断言.(1)(2) 100 X令 心(1) X~B(100 八于是 P{V>105} = P 彳 V-20x5 105-20x5=P<Z-①(0・387) = 0・34&P{X>3O} = l-P{X<3O}Ql-e 30-100x0・2 、J100x0.2x0.8j 若实际上此药品对这种疾病的治愈率是,问接受这一断言的概率是多少 若实际上此药品对这种疾病的治愈率是,问接受这一断言的概率是多少:膽治愈-2…期0,其他.【解】= l-e(-l ・25) = e(l ・25) = 0・8944・(2) X~B(100 八IOOP{》Xj >75} = l-P{X<75}al-e =1-<1>(旦)=1一6(1・09) = 0」379・7. 用Laplace 中心极限定理近似计算从一批废品率为的产品中,任取1000件,苴中有20件 废品的槪率.【解】令1000件中废品数X,则P 弓 n=10COX~B(1000八E(X)=50r D(X)=.故严X=2°} =而亍S 備苗厂6:895^ &895丿8. 设有30个电子器件•它们的使用寿命T1•…,T30服从参数入二[单位:(小时〉・1]的指数分 布,其使用情况是第一个损坏第二个立即使用,以此类推.令T 为30个器件使用的总计时间, 求T 超过350小时的概率.E(TJ = — = — = 10, 【解】 几0・19. 上题中的电子器件若每件为a 元,那么在年il 划中一年至少需多少元才能以95%的概率 保证够用(假注一年有306个工作日,毎个工作日为8小时).【解】设至少需n 件才够用.则E(Ti)=10, D(Ti)=100,E(T)=10n» Dfr)=100n.P{^7; >306x8) = 0.95, 0.05①①从而心即 故 75-100x0.7<f 20-50 <P 6.895 16.895 込 | = 4・5X 10*D(7;) = ^ = 100,£(7) = 10x30 = 300, D(T) = 3000.P{T>350}al-e・913) = 0・1814・ ‘306x8-10" < 10亦I On-24480.95 = e10亦 .所以需272a 元.10. 对于一个学生而言,来参加家长会的家长人数是一个随机变S,设一个学生无家长、1 名家长、2划家长来参加会议的概率分别为".若学校共有400名学生,设^$学生参加会议的 家长数相打独立,且服从同一分布.(1)(2)【解】而 j,由中心极限定理得11. 设男孩出生率为,求在10000个新生婴儿中女孩不少于男孩的概率【解】用X 表10000个婴儿中男孩的个数,则X-B (10000.)要求女孩个数不少于男孩个 数的概率,即求P{X<5000}-由中心极限世理有12. 设有1000个人独立行动,每个人能够按时进入掩蔽体的概率为•以95%概率估计,在一 次行动中:(1) 至少有多少个人能够进入(2) 至多有多少人能够进入【解】用Xi 表第i 个人能够按时进入掩蔽体(i=t2”1000).令 Sn=Xl+X2+ (X1000)(1)设至少有m 人能够进入掩蔽体,要求P{m<Sn<1000}>•事件400ZOOxi.W%" 7400x0-19 5/4X T9P{X >450} = 1 -P{X<450}Ql-eF 是 450-400x1」= l-e (l ・ 147) = 0.1357.⑵以Y 记有一名家长来参加会议的学生数•则¥-6(400,由拉普拉斯中心极限圧理得P "<3402340-400 X 0.8 ,7400x0-8x0.2 > = e (2・5)= 0.993& P{X <5000}沁 5000-10000x0.515 Z0000x0.515x0.485 丿= e (-3) = l-e (3) = 0・00135・ 求参加会议的家长数X 超过450的概率求有1名家长来参加会议的学生数不多于340的槪率.易知 E (Xi=) ,D (Xi )=J=1.2,...4OO-{加<»}=加-1000X 0.9 V » -900171000x0.9x0.1由中心极限定理知:所以mHN884人 (2)设至多有M 人能进入掩蔽体,要求P{O<Sn<M}>. M-900査表知帧 sM=900+=^916人.13.在一定保险公司里有10000人参加保险,每人毎年付12元保险费,在一年内一个人死 亡的概率为,死亡者其家属可向保险公司领得1000元赔偿费■求:(1)保险公司没有利润的概率为多大; (2) 保险公司一年的利润不少于60000元的概率为多大 【解】设X 为在一年中参加保险者的死亡人数,则X~B(10000,) •⑴公司没有利润当且仅当"1000X=10000X 12"HP"X=120". 于是所求概率为Rv =i?m 〜 =化,VI 0000x0.006x0.994 &10000x0・006x0.994 丿_ 妙64 卑1759.64 ) ~ ^^'759.64= 0.0517xe 皿⑻】"⑵ 因为“公司利润260000”当且仅当“0»统0”于是所求概率为14. 设随机变量X 和Y 的数学期望都是2.方差分别为1和4.而相关系数为试根据契比雪 夫不等式给出P{|X-Y|n6}的估计*(2001研考〉 【解】令Z=X-Y>有£(Z) = 0,P(Z) = P(X -y)= £>(X) + £)(r)-2pj^.p7^W<7^00 =3. P{/«<5J = I -P{5…</«}^1-<D 心 000x0.9」“"WIOOOxO.QxOJ“7-900 从而 < 0.05, I 帧Jp{Sc<M}ae如_900、 = 0.95.120-10000x0.006 60P {0<X<60}g 60-10000x0.006 I J10000X 0.006 X 0.994 厂① 0-10000 x 0.006 I 710000x0.006x0.994 J 60 a 0.5.所以D ( Y _ y\ 3 1P{IZ-E (Z ) 1>6) = P {IX-Yln6}< —, 6' 36 1215. 某保险公司多年统计资料表明,在索赔户中.被盗索赔户占20%.以X 表示在随机抽查 的100个索赔户中,因被盗向保险公司索赔的户数.(1) 写出X 的概率分布:(2) 利用中心极限左理,求被盗索赔户不少于14户且不多于30户的概率近似值.(1988研考)【解】(I ) X 可看作100次重复独立试验中,被盗户数出现的次数,而在每次试验中被盗 户出现的槪率是.因此,X-B (100,,故X 的概率分布是 P{X=R}=C :OO OTO ・8)叫二 £ = 12 (100)(2)被盗索赔户不少于14户且不多于30户的概率即为事件{14<X<30}的概率・由中心极限;4^ 理,得= e (2・5)-e (-l ・5) = 0.994-[-9.33] = 0・927・16•—生产线生产的产品成箱包装,每箱的重量是随机的•假设每箱平均重50千克,标准差 为5千克,若用最大载重量为5吨的汽车承运,试利用中心极限;4^理说明每辆车最多可以装 多少箱,才能保障不超载的概率大于•【解】设Xi (i=Un )是装运i 箱的重量(单位:千克人n 为所求的箱数.由条件知,可 把Xi, X2, Xn 视为独立同分布的随机变量,而n 箱的总重Tn=Xl+X2+...+Xn 是独立同 分布随机变量之和,由条件知:E (XJ = 50,£(7;,) = 50/1,T -50/1近似地” r - N ((U )依中心极限定理,当n 较大时,5" ,故箱数n 取决于条件P{7; <5000} = pj 三二^即最多可装98箱.习题六P {14<X<30}ae 30-100x0.2 14-100x0.2 < J100x0・2x0& 1-7100x0.2x0.8 > 1000-10/7 > 0.977 = e (2)・因此可从 麻1000-叫2解出n<.1•设总体X-N (60. 152),从总体X中抽取一个容量为100的样本,求样本均值与总体均值之差的绝对值大于3的概率.【解】n=60,o2=152,n=100upP (IX-60l> 3) = P (IZI> 30/15) = l-P(IZk 2)=2[l-e( 2)] = 2(1-0.9772) = 0・0456・2•从正态总体N G 52)中抽取容量为n的样本,若要求苴样本均值位于区间(,)内的概率不小于,则样本容Sn至少取多大【解】X-4P(2.2 < X < 6.2) < Z 竺竺皿= 2e(0・4孙一l = 0・95.则初=,故HP n>,所以n至少应取253.设某厂生产的灯泡的使用寿命X~N (1000. 02)(单位:小时),随机抽取一容量为9的样本,并测得样本均值及样本方差•但是由于工作上的失误,事后失去了此试验的结果,只记得样本方差为52=1002 >试求P (X >1062).【解】n=1000,n=9, S2=1002S/yfn 100/3— 1062-1000P(X > 1062) = P{t > ------- ) = P(Z > 1.86) = 0.05100/34•从一正态总体中抽取容量为10的样本,假定有2%的样本均值与总体均值之差的绝对值在4以上,求总体的标准差.z=— -mi) _【解】 b/心,由p(|X・m>4)=得P|Z|>4(a/n)s迟 2.33,<75•设总体X~N (P ,16), Xlr X2 .... XIO 是来自总体X 的一个容量为10的简单随机样本, S2为其样本方差,且P (S2>a ) =r 求aZ 值.f Q/I A⑼,p(5^>«)= plr>—1=0.1.査表得6•设总体X 服从标准正态分布,XI, X2Xn 是来自总体X 的一个简单随机样本,试问统 计量YX,Y= I 服从何种分布*=》X ;~r(5)、*=》X ; - X\n-5)【解】-2 2 且力「与力;相互独立•所以7•求总体冶N (20. 3)的容量分别为10, 15的两个独立随机样本平均值差的绝对值大于的 概率.令X 的容量为10的样本均值,V 为容量为15的样本均值•则X~N (20,310),3_y~N(20,15),且X yy 相互独立.‘4皿 <T =0.02 ①,即 ‘4皿 b = 0.99.査表得 所以"迟5.43.2.33 .95' y-=——【解】 16 所以 丄 4.684x16=26 込9【解】X 一r ~N [O ,2+3 |=N (0・0・5). 则 I 10 15丿y_yZ=-^~N(0J),那么 g5所以—- f 0 3P(\X-Y\>0.3) = P IZI> = 2(1-0-6628) = 0.6744.7X ; + X/ + ・・・+X…;8.设总体炉N (0. a2) ,Xl,.・.,Xi0,.・.,Xi5为总体的一个样本.则Y= 2(X H +X/ +…+X]5 ) 服从 分布,参数为X.【解】b1=1,2,...,15. 2 2 且龙I 与"相互独立,所以所以Y~F 分布,参数为(10,5) •V X9•设总体X~N (也02儿总体Y~N (n222),XbX2" 如和Yl, Y2,分别来自总体X 和Y 的简单随机样本,则工(X 厂乂 )2 + £0_P)2J-l ;-l n| _ n> _X(x 厂 x)2 =(耳一1)S ;E (力-亍)2 =(吗—1)S ;,/-I J-l=2(1-0(0.424)]届) 10 zr = Z 那么 i15 / Y 、2 1-11V b /-r(5)•+【解】令 I_ 1 恥 _肾=百尹可斗芦pF*) (M[—l)Sr J- ( 7 (,?,—1)S; 7. ( zr = ' / ' - /■(«i -az2 = / ~ -z'(«2-ix 又- i 那么 _ «3 _ 乞(Xj-Xy + X(Yj-YF /-I ;-| rt, + —2 齐匚护&好+b 宠) = b [E(z ;)+ E(/)] "l + 川2 一 2 2 =—-—[(«|-1) + (心 _ 1)] = b , + ”2 _ 2 ・ — 1 力 % = — 10•设总体X~N(H ,a2), XI, X2 ... X2n (n>2)是总体X 的一个样本, 加i ,令 £(E + X"厂 2壬)2 ,求 E(Y)・ 【解】令Zi 二Xi+Xn+i,匸12・・・小・则ZrN(2n ,2a2){l<i<nb 且 Zl.Z2,...,Zn 相互独立. =Z ・ Z s2=Y(Zj — Z)2/H 7 /-I " r-l IZi « 故 那么 Z = 2X I-) 所以 E(Y) = (« - 1)E5- = 2(” 一 1)<T\-2X)-=^(Z.-Z)-=(/i-l)S\ r.)11. 本, 解: —e 设总体X 的概率密度为f(x)= 2 (•8vx<+8),xi, X2,…,Xn 为总体X 的简单随机样 其样本方差为S2,求E(S2). 由题意,得—ej x<0.2丄em l2£(5') = D(X) = £(X')-£-(X) E(X)=匚 yf(x)dx = ij2 xeTMtU = 0 E(X2)=匚 x'/(x)ctv = ij^ x&Wldx =匚 A-e-"dv =2, 2 0 于是所以E(S-) =。
概率论课后习题答案
概率论课后习题答案概率论与数理统计习题及答案习题⼀4.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P (AB ). 【解】 P (AB )=1-P (AB )=1-[P (A )-P (A -B )] =1-[0.7-0.3]=0.66.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0,P (AC )=1/12,求A ,B ,C ⾄少有⼀事件发⽣的概率.【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC )=14+14+13-112=3413. ⼀个袋内装有⼤⼩相同的7个球,其中4个是⽩球,3个是⿊球,从中⼀次抽取3个,计算⾄少有两个是⽩球的概率. 【解】设A i ={恰有i 个⽩球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故 232322()()()35P A A P A P A =+=23. 设P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B )【解】 ()()()()()()()()P AB P A P AB P B A B P A B P A P B P AB -==+- 0.70.510.70.60.54-==+-33. 三⼈独⽴地破译⼀个密码,他们能破译的概率分别为15,13,14,求将此密码破译出的概率.【解】设A i ={第i ⼈能破译}(i =1,2,3),则310.6534=-= 34. 甲、⼄、丙三⼈独⽴地向同⼀飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有⼀⼈击中,则飞机被击落的概率为0.2;若有两⼈击中,则飞机被击落的概率为0.6;若三⼈都击中,则飞机⼀定被击落,求:飞机被击落的概率. 【解】设A ={飞机被击落},B i ={恰有i ⼈击中飞机},i =0,1,2,3由全概率公式,得3()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7 =0.458习题⼆1.⼀袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表⽰取出的3只球中的最⼤号码,写出随机变量X 的分布律. 【解】353524353,4,51(3)0.1C 3(4)0.3C C (5)0.6C X P X P X P X ========== 故所求分布律为4.(1)设随机变量X 的分布律为P {X =k }=!k akλ,其中k =0,1,2,…,λ>0为常数,试确定常数a . (2)设随机变量X 的分布律为P {X =k }=a/N , k =1,2,…,N ,试确定常数a . 【解】(1)由分布律的性质知1()e !ka λ-=(2) 由分布律的性质知111()N Nk k aP X k a N======∑∑即 1a =.8.已知在五重贝努⾥试验中成功的次数X 满⾜P {X =1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则1422355C (1)C (1)p p p p -=-故 13p =所以 4451210(4)C ()33243P X ===. 21.设X ~N (3,22),(1)求P {222X P X P ---??<≤=<≤11(1)(1)1220.841310.69150.5328ΦΦΦΦ=--=-+ ? ?=-+=433103(410)222X P X P ----??(||2)(2)(2)P X P X P X >=>+<-323323222215151122220.691510.99380.6977X X P P ΦΦΦΦ-----=>+< ? ?=--+-=+- ? ? ? ?????????=+-=333(3)()1(0)0.522X P X P Φ->=>=-=- (2) c=322.由某机器⽣产的螺栓长度(cm )X ~N (10.05,0.062),规定长度在10.05±0.12内为合格品,求⼀螺栓为不合格品的概率.【解】10.050.12(|10.05|0.12)0.060.06X P X P ?-?->=>1(2)(2)2[1(2)]0.0456ΦΦΦ=-+-=-=24.设随机变量X 分布函数为F (x )=e ,0,(0),00.xt A B x ,x λ-?+≥>?(1)求常数A ,B ;(2)求P {X ≤2},P {X >3};(3)求分布密度f (x ).【解】(1)由00lim ()1lim ()lim ()x x x F x F x F x →+∞→+→-==??得11A B =??=-?(2) 2(2)(2)1e P X F λ-≤==-33(3)1(3)1(1e )e P X F λλ-->=-=--=(3) e ,0()()0,0x x f x F x x λλ-?≥'==?44.若随机变量X 在(1,6)上服从均匀分布,则⽅程y 2+Xy +1=0有实根的概率是多少?0,x f x ?<24(40)(2)(2)(2)5P X P X P X P X -≥=≥+≤-=≥=习题三(1)求关于X 和关于Y 的边缘分布;(2) X 与Y 是否相互独⽴?【解】(1)X 和Y 的边缘分布如下表(2) 因{2}{0.4}0.20.8P X P Y ===? 0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独⽴.习题四1.设随机变量X 的分布律为求【解】(1) 11111()(1)012;82842E X =-?+?+?+?= (2) 2222211115()(1)012;82844E X =-?+?+?+?=(3) 1(23)2()32342E X E X +=+=?+=5.设随机变量X 的概率密度为f (x )=??≤≤-<≤.,0,21,2,10,其他x x x x求E (X ),D (X ). 【解】12201()()d d (2)d E X xf x x x x x x x +∞-∞=332011 1.33x x x ??=+-=?122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=故 221()()[()].6D XE X E X =-=7.设随机变量X ,Y 相互独⽴,且E (X )=E (Y )=3,D (X )=12,D (Y )=16,求E (3X -2Y ),D (2X -3Y ). 【解】(1) (32)3()2()3323 3.E X Y E X E Y -=-=?-?=(2) 22(23)2()(3)412916192.D X Y D X DY -=+-=?+?=习题七2.设总体X 的密度函数f (x ,θ)=22(),0,0,.x x θθθ?-<X 1,X 2,…,X n 为其样本,试求参数θ的矩法估计. 【解】23022()()d ,233x x E X x x x θθθθθθθ??=-=-=令E (X )=A 1=X ,因此3θ=X 所以θ的矩估计量为 ^3.X θ=3.设总体X 的密度函数为f (x ,θ),X 1,X 2,…,X n 为其样本,求θ的极⼤似然估计.(1) f (x ,θ)=,0,0,0.e x x x θθ-?≥?(2) f (x ,θ)=1,01,0,.x x θθ-?<【解】(1)似然函数111(,)ee eniii n nx x nn ii i L f x θθθθθθ=---==∑===∏∏1ln ln ni i g L n x θθ===-∑i i g L n x θθθ===-=∑知 1 nii nxθ==∑所以θ的极⼤似然估计量为1 Xθ=. (2) 似然函数11,01nni i i L x x θθ-==<<∏,i =1,2,…,n.1ln ln (1)ln ni i L n x θθ==+-∏由1d ln ln 0d ni i L n x θθ==+=∏知11?ln ln nniii i n nxx θ===-=-∑∏ii nxθ==-∑10.设某种砖头的抗压强度X ~N (µ,σ2),今随机抽取20块砖头,测得数据如下(kg ·cm -2):64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1)求µ的置信概率为0.95的置信区间. (2)求σ2的置信概率为0.95的置信区间. 【解】76.6,18.14,10.950.05,20,x s n α===-==/20.025222/20.0250.975(1)(19)2.093,(1)(19)32.852,(19)8.907t n t n ααχχχ-==-===(1) µ的置信度为0.95的置信区间/2(1)76.6 2.093(68.11,85.089)a x n-== ? ?????(2)2σ的置信度为0.95的置信区间222222/21/2(1)(1)1919,18.14,18.14(190.33,702.01)(1)(1)32.8528.907n s n s n n ααχχ-??--??=??= ?--其中θ(0<θ<2)是未知参数,利⽤总体的如下样本值3,1,3,0,3,1,2,3,求θ的矩估计值和极⼤似然估计值. 【解】8i x E X E X x x x θθ=-=-====∑令得⼜所以θ的矩估计值31 .44x θ-== (2)似然函数86241(,)4(1)(12).ii L P x θθθθ===--∏2ln ln 46ln 2ln(1)4ln(1),d ln 628628240,d 112(1)(12)L L θθθθθθθθθθθθ=++-+--+=--==----解2628240θθ-+=得 1,2θ=.由于71,122+>所以θ的极⼤似然估计值为 7?2θ=。
概率论课后习题第3章答案
第三章 多维随机向量及其概率分布(一)基本题答案1、设X 和Y 的可能取值分别为.2,1,0;3,2,1,0,==j i j i 则与因盒子里有3种球,在这3种球中任取4个,其中黑球和红球的个数之和必不超过4.另一方面,因白球只有2个,任取的4个球中,黑球和红球个数之和最小为2个,故有j i 与ٛ且,42≤+≤j i ./),(474223C C C C j Y i X p j i j i −−===因而 或0),(===j Y i X P 2).2,1,0;3,2,1,0,4(<+j i ==>+j i j i于是 ,0)0,0(1111======y Y x X P P ,0)0,0(2112======y Y x X P p.35/1/)0,0(472212033113=======C C C C y Y x X P p即 2、X 和. ⎥⎦⎤⎢⎣⎡04.032.064.0210~X ⎥⎦⎤⎢⎣⎡25.05.025.0210~Y 由独立性知,X 和Y 的联合分布为3、Y 的分布函数为显知有四个可能值:).0(0)(),0(1)(≤=>−=−y y F y e y F y ),(21X X }{{}{}11−=e ,2,10,0).1,1(),0,1(),1,0(),0,0(121−≤=≤≤===Y P Y Y P X X P 易知{}{}{}{}{},221−−−=e e 12<=P ,10,1,02,11,02121≤≤>====>≤===Y Y Y P X X P Y Y P X X P{}{}{},212,10,12121−=≤<=≤>===e e Y P Y Y P X X P {}−− {}{}.22,11,1221−=>=>>===e Y P Y Y P X X P于是,可将X 1和X 24、∑=====nm m n P n X P 0),()(ηζ∑=−−−−=nm mn m n e m n m p p 0)!(!)1(λλ()[]).,2,1,0(!1!)1()!(!!!==−+=−−=−−−=−∑n n e p p n e p p m n m n n e n n n mn m nm n λλλλλλ即X 是服从参数为λ的泊松分布.∑∑∞=−−∞=−−−−−=−−==mn mn m n mn m m mn m n m n p m e p em n m p p m Y P )!()1(!)!(!)1()(λλλλλ).,2,1,0(,!)(!)()1( ==⋅=−−−−m m ep e e m ep pmp mλλλλλλ即Y 是服从参数为λp 的泊松分布.5、由定义F (y x ,)=P {}∫∫∞−∞−=≤≤x y dxdy y x y Y x X .),(,ϕ因为ϕ(y x ,)是分段函数,要正确计算出F (y x ,;1>y ),必须对积分区域进行适当分块:等5个部分.10,10,1;1,1;10,100≤≤≤≤>>>≤≤<x y x y x y y x 或;0<≤≤x (1)对于 有 F (,00<<y x 或y x ,)=P{X ≤,x Y ≤y}=0; (2)对于 有 ;,10,10≤≤≤≤y x 2204),(y x vdudv u y x F x y ==∫∫(3)对于, 有 10,1≤≤>y x {};,1),(2y y Y X P y x F =≤≤= (4)对于, 有 10,1≤≤>x y {}21,),(x Y x X P y x F =≤≤=; (5)对于 有 ,1,1>>y x 1),(=y x F .故X 和Y 的联合分布函数⎪⎪⎪⎩⎪⎪⎪⎨⎧<<≤≤<<≤≤≤≤≤≤<<=.1,1,.1,10,1,,1,10,,10,10,,00,0),(2222y x y x y y x x y x y x y x y x F 或6、(1) ,0,0;0),(,00>>=≤≤y x y x F y x 或),(y x F =∫∫+−x y t s dsdt ze)2())(())((200202yt x s y t x se e dt e ds e−−−−−−==∫∫=)1)(1(2y x e e −−−−即⎩⎨⎧>>−−=−−.,0,0,0),1)(1(),(2其它y x e e y x F y x (2)P ()()220(),22x x y x yxy xY X f x y dxdy dx e dy e e d +∞+∞−−−−<≤===−∫∫∫∫∫x∫∫∞+−−−∞+−−=−−=03220)(2)1(2dx e e dx e e x x x x .312131(2)2131(2023=−−=−=∞+−−x x e e7、(1)时,0>x ,0)(,0;)(=≤==∫∞+−−x f x e dy e x f X Xx y X 时 即 ⎩⎨⎧≤>=−.0,0,0,)(x x e x f x X (2){}2/111210121),(1−−≤+−−−+===≤+∫∫∫∫e e dy e dxdxdy y x f Y X P y x x xy8、(1)(i )时,,;),()(计算根据公式∫∞+∞−=dy y x f x f X 0≤x 当10;0)(<<=x x f X 当时()();24.224.2)2(8.4)(202x x x y dy x y x f xx X −=−=−=∫0)(,1=≥x f x X 时当即⎩⎨⎧<<−=.,0;10),2(4.2)(2其它x x x x f X (ii ) 利用公式计算. 当∫∞+∞−=dx y x f y f Y ),()(;0)(,0=≤y f y Y 时,10时当<<y112)22(8.4)2(8.4)(y y Y x x y dx x y y f ∫−=−=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−=222128.42y y y );43(4.2)2223(8.422y y y y y y +−=+−=当时,1≥y .0)(=y f Y 即⎩⎨⎧<<+−=.0;10),43(4.2)(2其它y y y y y f Y 121111222211111(2)((1(,1(,)1.22222P X Y P X Y f x y dxdy dx dxdy +∞+∞⎧⎫<<=−≥≥=−=−=⎨⎬⎩⎭∫∫∫∫∪58、47809、本题先求出关于x 的边缘概率密度,再求出其在2=x 之值. 由于平面区域D 的面积为)2(X f ,2121=dx =∫x S e D 故(X,Y )的联合概率密度为⎪⎩⎪⎨⎧∈=.,0;),(,21),其它D y x y x (f易知,X 的概率密度为∫∞+∞−⎪⎩⎪⎨⎧<<==,,0,1,21),()(2其它e x xdy y x f x f X 故.41221)2(=×=X f 10、(1)有放回抽取:当第一次抽取到第个数字时,第二次可抽取到该数字仍有十种可能机会,即为 k {}).9, ,1,0(101====i k Y i X P (2)不放回抽取:(i )当第一次抽取第)90(≤≤k k 个数时,则第二次抽到此(第个)数是不可能的,故 k {}.)9,,1,0,; =k i k (0====i k Y i X P(ii )当第一次抽取第个数时,而第二次抽到其他数字(非k )的机会为,知)90(≤≤k k 9/1{}.)9,,1,0,; =k i k (9/1≠===i k Y i X P 11、(1)因∫−=−=12,)1(12)1(24)(yy y ydx x y f η.,0)(;10其它=≤≤y f y n 故在0≤y ≤1时,⎩⎨⎧≤≤−−=;1)1/()1(2)(2其它x y y x y x f ηξ因()∫−=−=x y x ydy x x f 022,)1(12124)(ξ.,0)(;10其它=≤≤x f x ξ故在0≤x ≤1时,⎩⎨⎧≤≤=.0,0/2)(2其它x y x y x y f ξη(2)因;1,121)(2/12∞≤≤==∫x x nxdy y x X f x x ξ;,0)(其它=x f ξ故在1≤x<时,∞⎪⎩⎪⎨⎧<<=.,1121)(其它x y xnxy x y f ξη因 ⎪⎪⎪⎩⎪⎪⎪⎨⎧∞<<=≤<==∫∫∞∞,002121102121)(22/12其它y y dx y x y dx y x y f y y η 故在10≤<y 时,⎪⎩⎪⎨⎧∞<<=;011)(2其它x y y x x y f ξη 而在,1时∞<<y ⎪⎩⎪⎨⎧∞<<=.0)(2其它x y x yx y f ξη(3)在x >0,.0,0)(;0,)(≤=>==∫∞−−x x f x e dy e x f x xy ξξ⎪⎩⎪⎨⎧>=−.0,)(其它x y e x y f y x ξη ;0,)(0>==∫−−y ye dx e y f y yy η .故在y>0时,0,0)(≤=y y f η⎪⎩⎪⎨⎧<<=.0,01)(其它y x y y x f ηξ12、1(1)(2)2(),0(1)(1)X n n n n n f x dy x x y x ∞−−−−==+++∫>,故12(1)(2)0,(/1)0.n nY X n y y f y −⎧−+>=⎨⎩其它 13、X 和Y 是否独立,可用分布函数或概率密度函数验证.方法一:X 的分布函数的分布函数分别为 Y x F X 和)()(y F Y ⎩⎨⎧<≥−=+∞=−,0001),()(5.0x x e x F x F x X ⎩⎨⎧<≥−=+∞=−.0001),()(5.0y y e y F y F yY 由于独立.Y X y F x F y x F Y X 和知),()(),(={}{}{}[][]1.005.005.0)1.0(1)1.0(11.01.01.0,1.0−−−=⋅=−⋅−=>⋅>=>>=e e e F F Y P X P Y X P Y X αY X Y X x f x f y x f Y X 和分别表示和),,()()(),,(方法二:以的概率密度,可知 ⎩⎨⎧≥≥=∂∂∂=+−.00,025.0),(),()(5.02其它y x e y x y x F y x f y x ∫∞+∞−−⎩⎨⎧<≥==,0005.0),()(5.0x x e dy y x f x f x X ∫∞+∞−−⎩⎨⎧<≥==.00,05.0),()(5.0y y e dx y x f y f yY ∫∫∞+∞+−+−==>>==1.01.01.0)(5.0.25.0}1.0,1.0{.),()(),(e dxdy e Y X P a Y X y f x f y x f y x Y X 独立和知由于)()(),(j i j i y Y P x x P y Y x X P =⋅====14、因知X 与Y 相互独立,即有 . )3,2,1,2,1(==j i 首先,根据边缘分布的定义知 .2418161),(11=−===y Y x X P 又根据独立性有),(61)()(},{2411111i x X p y Y p x X p y Y x X p ===⋅===== 解得41)(==i x X P ,从而有 1218124141),(31=−−===y Y x X P 又由 )()(),(2121y Y P x X P y Y x X P =⋅====, 可得 ),(41812y Y P == 即有21)(2==y Y P , 从而 838121),(22=−===y Y x X P .类似地,由),()(),(3131y Y P x X P y Y x X P ===== 有),(411213y Y P ==得31)(3==y Y P ,从而,.111),(31=−===y Y x X P 最后=)(2x X P =1+3+1=3. 将上述数值填入表中有1x1/24 1/8 1/12 1/4 2x1/8 3/8 1/4 3/4 {}j P y X P j ⋅==1/6 1/2 1/3115、本题的关键是由题设P{X 1X 2=0}=1,可推出P{X 1X 2≠0}=0;再利用边缘分布的定义即可列出概率分布表.(1)由P{X 1X 2=0}=1,可见易见,0}1,1{}1,1{2121=====−=X X P X X P 25.0}1{}0,1{121=−===−=X P X X P 5.0}1{}1,0{221=====X P X X P 25.0}1{}0,1{121=====X P X X P 0}0,0{21===X X P121212.16、(1) ⎩⎨⎧<<=,,0,10,1)(其他x x f X ⎪⎩⎪⎨⎧≤>=−.0,0,021)(2y y ey f yY 因为X ,Y 独立,对任何y x ,都有 ).,()()y x f y f x Y =⋅(f X ⎪⎩⎪⎨⎧><<=−.,0,0,10,21),(2其他所以有y x e y x f y(2)二次方程 有实根,△ t Y Xt t 中022=++,04)2(2≥−=Y X ,02≥−Y X 即,2X Y ≤ 故=)(有实根t P dydx e dydx y x f X Y P yx y x 2122221),(}{−≤∫∫∫∫==≤∫−−=1022)(dx ex y=dx edx edx x x x 2101010222221211)21(−−∫∫−=−=−πππ21−=[∫∫∞−∞−−−−1022222121dx edx exx ππ].1445.08555.01]5.08413.0[21)]0()1([21=−≈−−≈Φ−Φ−=ππ17、(1)因为X ,Y 独立,所以 .⎩⎨⎧>>==+−.,0,0,0,)()(),()(其他y x e y f x f y x f uy x Y X λλμ(2)根据Z 的定义,有 P{z=1}=P{Y ≥X}∫∫∫∫∞+∞−+−≥==)(),(xy x xy dydx e dydx y x f μλλμ∫∫∞+∞+−−=)(dx dy e e xy x μλμλ ),0u dx ee x x +=⋅=∫∞+−−λλλμλ{}{110=−==Z P Z P Z 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤+<=.1,1,10,,0,0)(z z z z F Z μλμ18、∵X 、Y 分别仅取0,1两个数值,∴Z 亦只取0,1两个数值. 又∵X 与Y 相互独立,∴{}{}{}{}==========00)0,0(0),max(0Y P X P Y X P Y X P Z P 1/2×1/2=1/4, 故{}{}.4/34/110111=−==−===Z P Z P 19、 X 由2×2阶行列式表示,仍是一随机变量,且X=X 1X 4--X 2X 3,根据X 1,X 2,X 3,X 4的地位是等价且相互独立的,X 1X 4与X 2X 3也是独立同分布的,因此可先求出X 1X 4和X 2X 3的分布律,再求X 的分布律. ,则X=Y 1--Y 2.随机变量Y 1和Y 2独立同分布:322411,X X Y X X Y ==记}{}{}{{}.84.016.01}0{0112121=−========Y P Y Y P Y P 16.01,132===P X X P 显见, 随机变量X=Y 1--Y 2有三个可能值--1,0,1.易见 P{X=--1}=P{Y 1=0,Y 2=1}=0.84×0.16= 0.1344, P{X=1}=P{Y 1=1,Y 2=0}=0.16×0.84=0.1344, P{X=0}=1--2×0.1344=0.7312. 于是,行列式的概率分布为 4321X X X X X =~ ⎥⎦⎤⎢⎣⎡−1344.07312.01344.010120、因为{Z=i }={X+Y=i }={X=0,Y=i }}.0,{}1,1{==−==Y i X i Y X ∪ ∪∪ 由于上述各事件互不相容,且注意到X 与Y 相与独立,则有 ∑∑==−===−====i k ik k i Y P k X P k i Y k X P i Z P 00}{}{},{}{∑=+−−−−−=−−=iik ki n ki k i nkn kk n P p pC P p c 022111()1()1∑=−−+ik k i n k n in n C Cp 02121)(,,1,0,)1(212121n n i p p C i n n i i n n+=−=−++).,(~21p n n B Y X Z ++=故注:在上述计算过程中,已约定:当r>n 时,用到了公式 并,0=rnC .12121∑=+−=ik i n n k i n k n C C C21、X 和Y 的概率分布密度为},2)(exp{21)(22σσπy x x f X −−=);(+∞<<−∞x ⎩⎨⎧≤≤−=.,0,),2/(1)(其它πππy y f Y 因X 和Y 独立,考虑到 )仅在[)(y f Y ππ,−]上才有非零值,故由卷积公式知Z 的概率密度为.221)()()(222)(dy edy y f y z f z f a y z Y X Z ∫∫−−−−∞+∞−=−=ππμσππ令σμ−−=y z t ,则上式右端等于.(2122122⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛−−Φ−−+Φ=∫−+−−−σμπσμππππσμπσμπz z dt e z z t 22、(1)由题设知 {}y X X P y M P y F n M ≤=≤=),,max()()(1),,(1y X y X P n ≤≤= )()()()()(121y F y F y X P y X P y X P Xn X n =≤≤≤=.∵),1(],0[~:,,1n i U X X X i n ≤≤θ独立且同分布 ∴⎪⎩⎪⎨⎧><<≤=,0,1,0,,0,0)(x x x x x F i X θθ∴⎪⎪⎩⎪⎪⎨⎧≥<<≤=.,1,0,,0,0)(θθθy y y y y F n n M 故⎪⎩⎪⎨⎧<<=−.,0,0,)(1其它θθy ny y f n n M(2){}y X X P y N P y N P y F n N >−=>−=≤=),,min(1)(1)()(1()y X P y X P y X P y X y X y X P n n >>>−=>>>−= )()(1,,,12121()[])(11)(11y F y X P i X i ni −−=>Π−==故 ⎪⎩⎪⎨⎧<<−=⎪⎩⎪⎨⎧<<−−−=−−其它其它,0,00,)(,001(1()(11y y n y y n y f n n n N θθθθθ 23、由题设容易得出随机变量(X ,Y )的概率密度,本题相当于求随机变量X 、Y 的函数S=XY 的概率密度,可用分布函数微分法求之.依题设,知二维随机变量(X ,Y )的概率密度为()()()⎩⎨⎧∉∈=G y x Gy x y x f ,,0,2/1,若若 设为S 的分布函数,则 当{s S P s F ≤=)(}0≤s 时,()0=s F ; 当时, .2≥s ()1=s F 现设0<s<2. 曲线s xy =与矩形G 的上边交于点(s,1);位于曲线s xy =上方的点满足s xy >,位于下方的点满足s xy <. 故(){}{}{}).ln 2ln 1(2211211121s sdy dx dxdy S XY P s XY P s S P s F s x s sxy −+=−=−=>−=≤=≤=∫∫∫∫>于是,⎩⎨⎧≥≤<<−=.20,0,20,2/)ln 2(ln )(s s s s s f 或若若(二)、补充题答案1.由于即{},0)(),,min(,,max =<==Y X P Y X 故知ηξηξ{}{}{}03,23,12,1=========Y X P Y X P Y X P ;又易知{}{}{}{},9/1111,11,1==⋅=======ηξηξP P P Y X P{}{},9/12,22,2======ηξP Y X P {}{},9/13,33,3======ηξP Y X P {}{}{},9/29/19/11,22,11,2=+===+=====ηξηξP P Y X P{}{}{},9/22,33,22,3===+=====ηξηξP P Y X P {}.9/29/711,3=−===Y X P 所以2.(1)x{}.,2,1,0,0,)1( =≤≤−===n n m P P C n X m Y P m n {}(2){}{}n X P n X m Y P m Y n X P ======,.,2,1,0,0,!)1( =≤≤⋅⋅−=−−n n m e P P C n m n mm n λλ3.22)1()1()1()0()0()1(p p Y P X P Y P X P z P +−===+====)1(2)0()1()1()0()0(p p Y P X P Y P X P z P −===+====而,由2)1,1()1,1(p Y X P Z X P ======),1()1()1,1(=====Z P X P Z X P 得. 2/1=p 5.:设随机变量ξ和η相互独立,都服从分 )1,0(N 布.则⎭⎬⎫⎩⎨⎧+−⋅=)(21exp 21),(22y x y x p π.显然, ,),(),(∫∫∫∫<SGdxdy y x p dxdy y x p,其中 G 和S 分别是如图所示的矩形ABCD 和圆.22/)21(),(2∫∫∫−−=a ax Gdx e dxdy y x p π,令,sin ,cos ϕγϕγ==y x 则 ∫∫∫∫=ππ20221),(a aSdxdy y x p 所以221212/a aaxe dx e −−−−<∫π.6.设这类电子管的寿命为ξ,则(1)三个管子均不要替换的概率为;(2)三个管子均要替换的概率为 .∫∞+==>1502.3/2)/(100)150(dx x P ξ21(−27/8)3/2(3=27/1)3/3=7.假设总体X 的密度函数为,分布函数为,第次的观察值为,独立同分布,其联合密度函数)(x f ,(1x f )(x F )()2x f i (n x )1(n i X i ≤≤i X )(),1n f x f x =.依题意,所求的概率为{}∫∫∫∫∫∫∞+∞−∞−∞−∞−−−−=−==>>><n n n nx i x x x x n n nn nn n i n n n n dx x f dx x f dx x f dx x f dx dx xx f X X X X X X P 112211111,...,2,1121)(...)()()(),,(.,...,,∫∫∞+∞−∞+∞−−−==)()()()(11n n n n n n n x dF x F dx x f x F.1)(1n x F nn n=∞−∞+=8.)(),()(21211211n P n k P n k P =+=+===+=ξξξξξξξξ)()()(2121n P k n P k P =+−===ξξξξ.由普哇松分布的可加性,知服从参数为的普哇松分布,所以 21ξξ+21λλ+)(21212112121!)()!(!)(λλλλλλλλξξξ+−−−−+−⋅==+=e n e k n ek n k P n k n k.1211211kn kk n −⎟⎟⎠⎞⎜⎜⎝⎛+−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=λλλλλλ9.当,0≤z (),0)(=≤=z Z P z F z ,0>z 当()z Z P z F z ≤=)(∫∫−+−=20)2(02xz y x z dy e dx∫∫−−−−−−−==202012x z z z y z x ze e dy e dxe ,所以 Y X z 2+=的分布函数为 ⎩⎨⎧>+−≤=−.0,)1(1,0,0),(z e z z y x F z10.由条件知X 和Y 的联合密度为⎪⎩⎪⎨⎧≤≤≤≤=其他若,0,31,31,41),(y x y x p以表示随机{})()(∞<<−∞≤=u u U P u F 变量U 的分布函数.显然,当0≤u 时, 0)(=u F ;当时,; 2≥u 1)(=u F 当,则20<<u []∫∫∫∫≤−uy x y x p ||,(≤−−−=−−===uy x u u dxdy dxdy u F ||2)2(411)2(44141))(2u−于是,随机变量的密度为⎪⎩⎪⎨⎧<<−=其他,0;20),2(21)(u u u p .11.记为这3个元件无故障工作的时间,则的分布函数321,,X X X ),,min(321X X X T ={}[][].)(1),,min(1(31321t X P t X X X P t F T −=>−(11)13X P t ≤−−=>)()t T P =≤=⎩⎨⎧≤>−=∴⎩⎨⎧=≤>−=−−,0,0,0,1)()3,2,1(,0,0,0,1)(~3t t e t F i t t e t F X t T t i λλ∵ 故 ⎪⎩⎪⎨⎧≤>==−.0,0,0,3)(')(3t t e t F t f t T T λλ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题1-21. 选择题(1) 设随机事件A ,B 满足关系A B ⊃,则下列表述正确的是( ). (A) 若A 发生, 则B 必发生. (B) A , B 同时发生.(C) 若A 发生, 则B 必不发生. (D) 若A 不发生,则B 一定不发生.解 根据事件的包含关系, 考虑对立事件, 本题应选(D).(2) 设A 表示“甲种商品畅销, 乙种商品滞销”, 其对立事件A 表示( ). (A) 甲种商品滞销, 乙种商品畅销. (B) 甲种商品畅销, 乙种商品畅销. (C) 甲种商品滞销, 乙种商品滞销.(D) 甲种商品滞销, 或者乙种商品畅销.解 设B 表示“甲种商品畅销”,C 表示“乙种商品滞销”,根据公式B C B C =, 本题应选(D). 2. 写出下列各题中随机事件的样本空间:(1) 一袋中有5只球, 其中有3只白球和2只黑球, 从袋中任意取一球, 观察其颜色; (2) 从(1)的袋中不放回任意取两次球, 每次取出一个, 观察其颜色; (3) 从(1)的袋中不放回任意取3只球, 记录取到的黑球个数; (4) 生产产品直到有10件正品为止, 记录生产产品的总件数. 解 (1) {黑球,白球}; (2) {黑黑,黑白,白黑,白白}; (3) {0,1,2};(4) 设在生产第10件正品前共生产了n 件不合格品,则样本空间为{10|0,1,2,n n +=}.3. 设A, B, C 是三个随机事件, 试以A, B, C 的运算关系来表示下列各事件: (1) 仅有A 发生;(2) A , B , C 中至少有一个发生; (3) A , B , C 中恰有一个发生; (4) A , B , C 中最多有一个发生; (5) A , B , C 都不发生;(6) A 不发生, B , C 中至少有一个发生. 解 (1) ABC ; (2) A B C ; (3) ABC ABC ABC ; (4) ABCABC ABC ABC ; (5) ABC ; (6) ()A BC .4. 事件A i 表示某射手第i 次(i =1, 2, 3)击中目标, 试用文字叙述下列事件: (1) A 1∪A 2; (2) A 1∪A 2∪A 3; (3)3A ; (4) A 2-A 3; (5)23A A ; (6)12A A .解 (1) 射手第一次或第二次击中目标;(2) 射手三次射击中至少击中目标;(3) 射手第三次没有击中目标;(4) 射手第二次击中目标,但是第三次没有击中目标;(5) 射手第二次和第三次都没有击中目标;(6) 射手第一次或第二次没有击中目标.习题1-31. 选择题 (1) 设A, B 为任二事件, 则下列关系正确的是( ).(A)()()()P A B P A P B -=-. (B)()()()P A B P A P B =+.(C)()()()P AB P A P B =. (D)()()()P A P AB P AB =+.解 由文氏图易知本题应选(D).(2) 若两个事件A 和B 同时出现的概率P (AB )=0, 则下列结论正确的是 ( ).(A) A 和B 互不相容. (B) AB 是不可能事件. (C) AB 未必是不可能事件. (D) P (A )=0或P (B )=0. 解 本题答案应选(C). 2. 设P (AB )=P (AB ), 且P (A )=p ,求P (B ). 解 因 ()1()1()()()()P AB P AB P A P B P AB P AB =-=--+=,故()()1P A P B +=. 于是()1.P B p =-3. 已知()0.4P A =,()0.3P B =,()0.4P A B =, 求()P AB .解 由公式()()()()P A B P A P B P AB =+-知()0.3P AB =. 于是()()()0.1.P AB P A P AB =-=4. 设A , B 为随机事件,()0.7P A =,()0.3P A B -=, 求()P AB .解 由公式()()()P A B P A P AB -=-可知,()0.4P AB =. 于是()0.6P AB =. 5. 设A , B 是两个事件, 且()0.6P A =, ()0.7P B =.问: (1) 在什么条件下()P AB 取到最大值, 最大值是多少? (2) 在什么条件下()P AB 取到最小值, 最小值是多少?解 ()()()()P AB P A P B P A B =+-=1.3()P A B -.(1) 如果A B B =, 即当A B ⊂时, P B A P =)( ()B =0.7, 则()P AB 有最大值是0.6 . (2) 如果)(B A P =1,或者A B S =时, ()P AB 有最小值是0.3 .6. 已知1()()()4P A P B P C ===,()0P AB =, 1()()12P AC P BC ==, 求A , B , C 全不发生的概率.解 因为ABC AB ⊂,所以0()P ABC P AB ≤≤()=0, 即有()P ABC =0. 由概率一般加法公式得()()()()()()()()7.12P A B C P A P B P C P AB P AC P BC P ABC =++---+= 由对立事件的概率性质知A ,B , C 全不发生的概率是5()()1()12P ABC P A B C P A B C ==-=.习题1-41. 选择题在5件产品中, 有3件一等品和2件二等品. 若从中任取2件, 那么以0.7为概率的事件是( ).(A) 都不是一等品. (B) 恰有1件一等品. (C) 至少有1件一等品. (D) 至多有1件一等品. 解 至多有一件一等品包括恰有一件一等品和没有一等品, 其中只含有一件一等品的概率为113225C C C ⨯, 没有一等品的概率为23225C C C ⨯, 将两者加起即为0.7. 答案为(D ).2. 从由45件正品、5件次品组成的产品中任取3件. 求: (1) 恰有1件次品的概率; (2) 恰有2件次品的概率; (3) 至少有1件次品的概率; (4) 至多有1件次品的概率; (5) 至少有2件次品的概率.解 (1) 恰有1件次品的概率是12545350C C C ;(2) 恰有2件次品的概率是21545350C C C ; (3 )至少有1件次品的概率是1-03545350C C C ; (4) 至多有1件次品的概率是03545350C C C +12545350C C C ; (5) 至少有2件次品的概率是21545350C C C +30545350C C C .3. 袋中有9个球, 其中有4个白球和5个黑球. 现从中任取两个球. 求:(1) 两个球均为白球的概率;(2) 两个球中一个是白的, 另一个是黑的概率; (3)至少有一个黑球的概率.解 从9个球中取出2个球的取法有29C 种,两个球都是白球的取法有24C 种,一黑一白的取法有1154C C 种,由古典概率的公式知道(1) 两球都是白球的概率是2924C C ;(2)两球中一黑一白的概率是115429C C C ;(3)至少有一个黑球的概率是12924C C -.4. 在区间(0, 1)中随机地取两个数, 求下列事件的概率:(1) 两数之和小于65;(2) 两数之积小于14;(3) 以上两个条件同时满足;(4) 两数之差的绝对值小于12的概率. 解 设X , Y 为所取的两个数, 则样本空间S = {(X , Y )|0<X , Y <1}.,(1) P {X +Y <65}=1441172550.68125-⨯⨯=≈;(2) P {XY <14}=11411111ln 40.64444dx x⨯+=+≈⎰; (3) P {X +Y <65, XY <14}=0.2680.932110.2680.932516161()()5545x dx dx x dx x ⨯+-++-⎰⎰⎰≈0.593. (4) 解 设x , y 为所取的两个数, 则样本空间Ω = {(x , y )|0<x , y <1}, 记A = {(x , y )|(x , y )∈S , |x -y |<12}. 参见图1-1.图1-1 第2题样本空间故 111123222()14AS P A S Ω-⨯⨯⨯===, 其中 S A , S Ω分别表示A 与Ω的面积.习题1-51. 选择题(1) 设随机事件A , B 满足P (A |B )=1, 则下列结论正确的是( )(A) A 是必然事件. (B) B 是必然事件. (C) AB B =. (D)()()P AB P B =.解 由条件概率定义可知选(D).(2) 设A , B 为两个随机事件, 且0()1P A <<, 则下列命题正确的是( ).(A) 若()()P AB P A =, 则A , B 互斥.(B) 若()1P BA =, 则()0P AB =.(C) 若()()1P AB P AB +=, 则A , B 为对立事件. (D) 若(|)1P B A =, 则B 为必然事件.解 由条件概率的定义知选(B ).2. 从1,2,3,4中任取一个数, 记为X , 再从1,2,…,X 中任取一个数, 记为Y ,求P {Y =2}. 解 解 P {Y =2}=P {X =1}P {Y =2|X =1}+P {X =2}P {Y =2|X =2}+P {X =3}P {Y =2|X =3}+P {X =4}P {Y =2|X =4} =41×(0+21+31+41)=4813. 3. 口袋中有b 个黑球、r 个红球, 从中任取一个, 放回后再放入同颜色的球a 个. 设B i ={第i 次取到黑球}, 求1234()P B B B B .解 用乘法公式得到)|()|()|()()(32142131214321B B B B P B B B P B B P B P B B B B P =.32ar b ar a r b r a r b a b r b b +++⋅++⋅+++⋅+=注意, a = 1和a = 0分别对应有放回和无放回抽样.4. 甲、乙、丙三人同时对某飞机进行射击, 三人击中的概率分别为0.4, 0.5, 0.7. 飞机被一人击中而被击落的概率为0.2, 被两人击中而被击落的概率为0.6, 若三人都击中, 飞机必定被击落. 求该飞机被击落的概率.解 目标被击落是由于三人射击的结果, 但它显然不能看作三人射击的和事件. 因此这属于全概率类型. 设A 表示“飞机在一次三人射击中被击落”, 则(0,1,2,3)i B i =表示“恰有i 发击中目标”. i B 为互斥的完备事件组.于是没有击中目标概率为0()0.60.50.30.09P B =⨯⨯=, 恰有一发击中目标概率为1()0.40.50.30.60.50.30.60.50.70.36P B =⨯⨯+⨯⨯+⨯⨯=,恰有两发击中目标概率为2()0.40.50.30.60.50.70.40.50.70.41P B =⨯⨯+⨯⨯+⨯⨯=,恰有三发击中目标概率为3()0.40.50.70.14P B =⨯⨯=.又已知 0123(|)0,(|)0.2,(|)0.6,(|)1P A B P A B P A B P A B ====, 所以由全概率公式得到 3()()(|)0.360.20.410.60.1410.458.iii P A P B P A B ===⨯+⨯+⨯=∑5. 在三个箱子中, 第一箱装有4个黑球, 1个白球; 第二箱装有3个黑球, 3个白球; 第三箱装有3个黑球, 5个白球. 现任取一箱, 再从该箱中任取一球.(1) 求取出的球是白球的概率;(2) 若取出的为白球, 求该球属于第二箱的概率.解 (1)以A 表示“取得球是白球”,i H 表示“取得球来至第i 个箱子”,i =1,2,3. 则P (i H )=13, i =1,2,3, 123115(|),(|),(|)528P A H P A H P A H ===. 由全概率公式知P (A )=112233()(|)()(|)()(|)P H P A H P H P A H P H P A H ++=12053. (2) 由贝叶斯公式知 P (2|H A )=222()()(|)20()()53P AH P H P A H P A P A ==6. 某厂甲、乙、丙三个车间生产同一种产品, 其产量分别占全厂总产量的40%, 38%, 22%, 经检验知各车间的次品率分别为0.04, 0.03, 0.05. 现从该种产品中任意取一件进行检查. (1) 求这件产品是次品的概率;(2) 已知抽得的一件是次品, 问此产品来自甲、乙、丙各车间的概率分别是多少?解 设A 表示“取到的是一件次品”,i B (i =1, 2, 3)分别表示“所取到的产品来自甲、乙、丙工厂”. 易知,123,,B B B 是样本空间S 的一个划分, 且122()0.4,()0.38,()0.22P B P B P B ===,12(|)0.04,(|)0.03P A B P A B ==,3(|)0.05P A B =.(1) 由全概率公式可得112233()(|)()(|)()(|)()P A P A B P B P A B P B P A B P B =++0.40.040.380.030.220.050.0384.=⨯+⨯+⨯=.(2) 由贝叶斯公式可得111(|)()0.40.045(|)()0.038412P A B P B P B A P A ⨯===,222(|)()0.380.0319(|)()0.038464P A B P B P B A P A ⨯===,333(|)()0.220.0555(|)()0.0384192P A B P B P B A P A ⨯===.习题1-61. 选择题(1) 设随机事件A 与B 互不相容, 且有P (A )>0, P (B )>0, 则下列关系成立的是( ).(A) A , B 相互独立. (B) A , B 不相互独立.(C) A , B 互为对立事件. (D) A , B 不互为对立事件. 解 用反证法, 本题应选(B).(2) 设事件A 与B 独立, 则下面的说法中错误的是( ).(A) A 与B 独立. (B) A 与B 独立.(C)()()()P AB P A P B =. (D) A 与B 一定互斥.解 因事件A 与B 独立, 故AB 与,A 与B 及A 与B 也相互独立. 因此本题应选(D). (3) 设事件A 与 B 相互独立, 且0<P (B )<1, 则下列说法错误的是( ).(A)(|)()P A B P A =. (B) ()()()P AB P A P B =.(C) A 与B 一定互斥. (D)()()()()()P A B P A P B P A P B =+-.解 因事件A 与B 独立, 故AB 与也相互独立, 于是(B)是正确的. 再由条件概率及一般加法概率公式可知(A)和(D)也是正确的. 从而本题应选(C).2.设A , B 是任意两个事件, 其中A 的概率不等于0和1, 证明P (B |A )=)(A B P 是事件A 与B 独立的充分必要条件.证 由于A 的概率不等于0和1, 故题中两个条件概率都存在.充分性. 因事件A 与B 独立, 知事件A 与B 也独立, 因此()(),()()P B A P B P B A P B ==,从而()()P B A P B A =.必要性. 已知()()P BA PB A =, 由条件概率公式和对立事件概率公式得到()()()()()1()()P AB P AB P B P AB P A P A P A -==-,移项得[]()1()()()()(),P AB P A P A P B P A P AB -=-化简得 P (AB )=P (A )P (B ), 因此A 和B 独立.3. 设三事件A , B 和C 两两独立, 满足条件:,ABC =∅1()()()2P A P B P C ==<, 且9()16P A B C =,求()P A .解 根据一般加法公式有()()()()()()()()P A B C P A P B P C P AC P AB P BC P ABC =++---+.由题设可知 A , B 和C 两两相互独立, ,ABC =∅ 1()()()2P A P B P C ==<, 因此有2()()()[()],()()0,P AB P AC P BC P A P ABC P ====∅=从而29()3()3[()]16P AB C P A P A =-=,于是3()4P A =或1()4P A =, 再根据题设1()2P A <, 故1()4P A =.4. 某人向同一目标独立重复射击, 每次射击命中目标的概率为p (0<p <1), 求此人第4次射击时恰好第2次命中目标的概率.解 “第4次射击恰好第2次命中” 表示4次射击中第4次命中目标, 前3次射击中有一次命中目标. 由独立重复性知所求概率为1223(1)C p p -.5. 甲、乙两人各自向同一目标射击, 已知甲命中目标的概率为 0.7, 乙命中目标的概率为0.8. 求:(1) 甲、乙两人同时命中目标的概率; (2) 恰有一人命中目标的概率; (3) 目标被命中的概率.解 甲、乙两人各自向同一目标射击应看作相互独立事件. 于是(1) ()()()0.70.80.56;P AB P A P B ==⨯=(2) ()()0.70.20.30.80.38;P AB P AB +=⨯+⨯= (3)()()()()()0.70.80.560.94.P A B P A P B P A P B =+-=+-=总 习 题 一1. 选择题:设,,A B C 是三个相互独立的随机事件, 且0()1P C <<, 则在下列给定的四对事件中不相互独立的是( ).(A)A B 与C . (B)AC 与C .(C) A B -与C . (D) AB 与C .解 由于A , B , C 是三个相互独立的随机事件, 故其中任意两个事件的和、差、交、并与另一个事件或其逆是相互独立的, 根据这一性质知(A), (C), (D)三项中的两事件是相互独立的, 因而均为干扰项, 只有选项(B)正确..2. 一批产品由95件正品和5件次品组成, 先后从中抽取两件, 第一次取出后不再放回.求: (1) 第一次抽得正品且第二次抽得次品的概率; (2) 抽得一件为正品, 一件为次品的概率.解 (1) 第一次抽得正品且第二次抽得次品的概率为9551910099396⨯=⨯.(1) 抽得一件为正品,一件为次品的概率为95559519.10099198⨯+⨯=⨯3. 设有一箱同类型的产品是由三家工厂生产的. 已知其中有21的产品是第一家工厂生产的, 其它二厂各生产41. 又知第一、第二家工厂生产的产品中有2%是次品, 第三家工厂生产的产品中有4%是次品. 现从此箱中任取一件产品, 求取到的是次品的概率.解 从此箱中任取一件产品, 必然是这三个厂中某一家工厂的产品. 设A ={取到的产品是次品},B i ={取到的产品属于第i 家工厂生产}, i =1, 2, 3. 由于B i B j =∅(i ≠j, i , j =1, 2, 3)且B 1∪B 2∪B 3=S , 所以B 1, B 2, B 3是S 的一个划分. 又 P (B 1)=21, P (B 2) =41, P (B 3)=41, P (A | B 1)=1002, P (A | B 2)=1002, P (A | B 3)=1004,由全概率公式得P (A )=P (B 1)P (A |B 1)+P (B 2)P (A |B 2)+P (B 3)P (A | B 3) =100441100241100221⨯+⨯+⨯=0.025. 4. 某厂自动生产设备在生产前须进行调整. 假定调整良好时, 合格品为90%; 如果调整不成功, 则合格品有30%. 若调整成功的概率为75%, 某日调整后试生产, 发现第一个产品合格. 问设备被调整好的概率是多少?解 设A ={设备调整成功}, B ={产品合格}. 则全概率公式得到()()(|)()(|)0.750.90.250.30.75P B P A P B A P A P B A =+=⨯+⨯=.由贝叶斯公式可得()0.750.9(|)0.9()0.75()(|)()P AB P A B P B P A P B A P B ⨯====.5. 将两份信息分别编码为A 和B 传递出去. 接收站收到时, A 被误收作B 的概率为0.02, 而B 被误收作A 的概率为0.01, 信息A 与信息B 传送的频繁程度为2:1. 若接收站收到的信息是A , 问原发信息是A 的概率是多少?解 以D 表示事件“将信息A 传递出去”,以D 表示事件“将信息B 传递出去”,以R 表示事件“接收到信息A ”,以R 表示事件“接收到信息B ”.已知21()0.02,()0.01,(),()33P R D P R D P D P D ====.由贝叶斯公式知()()()196()()197()()()()P R D P D P DR P D R P R P R D P D P R D P D ===+. 习题2-21. 设A 为任一随机事件, 且P (A )=p (0<p <1). 定义随机变量1,,0,A X A =⎧⎨⎩发生不发生. 写出随机变量X 的分布律.解 P {X =1}=p , P {X =0}=1-p . 或者2. 已知随机变量X 只能取-1,0,1,2四个值, 且取这四个值的相应概率依次为cc c c 167,85,43,21. 试确定常数c , 并计算条件概率}0|1{≠<X XP .解 由离散型随机变量的分布律的性质知,13571,24816c c c c+++= 所以3716c=. 所求概率为 P {X <1| X0≠}=258167852121}0{}1{=++=≠-=cc c c X P X P . 3. 设随机变量X 服从参数为2, p 的二项分布, 随机变量Y 服从参数为3, p 的二项分布, 若{P X ≥51}9=,求{P Y ≥1}.解 注意p{x=k}=kk n k n C p q -,由题设5{9P X =≥21}1{0}1,P X q =-==-故213qp =-=. 从而{P Y ≥32191}1{0}1().327P Y =-==-=4. 在三次独立的重复试验中, 每次试验成功的概率相同, 已知至少成功一次的概率为1927, 求每次试验成功的概率.解 设每次试验成功的概率为p , 由题意知至少成功一次的概率是2719,那么一次都没有成功的概率是278.即278)1(3=-p , 故 p =31.5. 若X 服从参数为λ的泊松分布, 且{1}{3}P X P X ===, 求参数λ.解 由泊松分布的分布律可知6=λ.6. 一袋中装有5只球, 编号为1,2,3,4,5. 在袋中同时取3只球, 以X 表示取出的3只球中的最大号码, 写出随机变量X 的分布律.解 从1,2,3,4,5中随机取3个,以X 表示3个数中的最大值,X 的可能取值是3,4,5,在5个数中取3个共有1035=C 种取法.{X =3}表示取出的3个数以3为最大值,P{X =3}=2235C C =101;{X =4}表示取出的3个数以4为最大值,P{X =4}=1033523=C C ;{X =5}表示取出的3个数以5为最大值,P{X =5}=533524=C C .X 的分布律是1. 设求分布函数解 (1) F (x )=0,1,0.15,10,0.35,01,1,1.x x x x <-⎧⎪-<⎪⎨<⎪⎪⎩≤≤≥(2) P {X <0}=P {X =-1}=0.15;(3) P {X <2}= P {X =-1}+P {X =0}+P {X =1}=1; (4) P {-2≤x <1}=P {X =-1}+P {X =0}=0.35. 2. 设随机变量X 的分布函数为F (x ) = A +B arctan x -∞<x <+∞.试求: (1) 常数A 与B ; (2) X 落在(-1, 1]内的概率.解 (1) 由于F (-∞) = 0, F (+∞) = 1, 可知()0112,.2()12A B A B A B πππ⎧+-=⎪⎪⇒==⎨⎪+=⎪⎩于是11()arctan ,.2F x x x π=+-∞<<+∞ (2){11}(1)(1)P X F F -<=--≤1111(arctan1)(arctan(1))22ππ=+-+-11111().24242ππππ=+⋅---=3. 设随机变量X 的分布函数为F (x )=0, 0,01,21,1,,x xx x <<⎧⎪⎪⎨⎪⎪⎩ ≤ ≥求P {X ≤-1}, P {0.3 <X <0.7}, P {0<X ≤2}.解 P {X 1}(1)0F -=-=≤,P {0.3<X <0.7}=F (0.7)-F {0.3}-P {X =0.7}=0.2,P {0<X ≤2}=F (2)-F (0)=1.5. 假设随机变量X 的绝对值不大于1;11{1},{1}84P X P X =-===; 在事件{11}X -<<出现的条件下, X 在(-1,1)内任一子区间上取值的条件概率与该区间的长度成正比. (1) 求X的分布函数(){F x P X =≤x }; (2) 求X 取负值的概率p .解 (1) 由条件可知, 当1x <-时, ()0F x =; 当1x =-时,1(1)8F -=;当1x =时, F (1)=P {X ≤1}=P (S )=1.所以115{11}(1)(1){1}1.848P X F F P X -<<=---==--=易见, 在X 的值属于(1,1)-的条件下, 事件{1}X x -<<的条件概率为{1P X -<≤|11}[(1)]x X k x -<<=--,取x =1得到 1=k (1+1), 所以k =12. 因此{1P X -<≤|11}12x X x -<<=+. 于是, 对于11x -<<, 有 {1P X -<≤}{1x P X =-<≤,11}x X -<<{11}{1|11}≤P X P X x X =-<<-<-<< 5155.8216x x ++=⨯= 对于x ≥1, 有() 1.F x = 从而0,1,57(),11,161,1.x x F x x x <-+=-<<⎧⎪⎪⎨⎪⎪⎩≥ (2) X 取负值的概率7{0}(0){0}(0)[(0)(0)](0).16p P X F P X F F F F =<=-==---=-=习题2-41. 选择题 (1) 设2, [0,],()0, [0,].x x c f x x c ∈=∉⎧⎨⎩如果c =( ), 则()f x 是某一随机变量的概率密度函数. (A)13. (B) 12. (C) 1. (D) 32.解 由概率密度函数的性质()d 1f x x +∞-∞=⎰可得02d 1cx x =⎰, 于是1=c , 故本题应选(C ).(2) 设~(0,1),XN 又常数c 满足{}{}P X c P X c =<≥, 则c 等于( ).(A) 1. (B) 0. (C) 12. (D) -1.解 因为{}{}P X c P X c =<≥, 所以1{}{}P X c P X c -<=<,即2{}1P X c <=, 从而{}0.5P X c <=,即()0.5c Φ=, 得c =0. 因此本题应选(B).(3) 下列函数中可以作为某一随机变量的概率密度的是( ). (A)cos ,[0,],()0,x x f x π∈=⎧⎨⎩其它. (B) 1,2,()20,x f x <=⎧⎪⎨⎪⎩其它.(C)22()2,0,()0,0.≥x x f x x μσ--=<⎧⎩ (D) e ,0,()0,0.≥x x f x x -=<⎧⎨⎩ 解 由概率密度函数的性质()1f x dx +∞-∞=⎰可知本题应选(D).(4) 设随机变量2~(,4)XN μ, 2~(,5)Y N μ, 1{X P P =≤4μ-}, {2P P Y =≥5μ+}, 则( ).(A) 对任意的实数12,P P μ=. (B) 对任意的实数12,P P μ<. (C) 只对实数μ的个别值, 有12P P =. (D) 对任意的实数12,P P μ>. 解 由正态分布函数的性质可知对任意的实数μ, 有 12(1)1(1)P P ΦΦ=-=-=. 因此本题应选(A).(5) 设随机变量X 的概率密度为()f x , 且()()f x f x =-, 又F (x )为分布函数, 则对任意实数a , 有( ).(A)()1d ()∫aF a x f x -=-. (B) 01()d 2()∫aF a x f x -=-.(C) ()()F a F a -=. (D) ()2()1F a F a -=-.解 由分布函数的几何意义及概率密度的性质知答案为(B). (6) 设随机变量X服从正态分布211(,)N μσ,Y服从正态分布222(,)N μσ,且12{1}{1},P X P Y μμ-<>-< 则下式中成立的是( ).(A) σ1 < σ2. (B ) σ1 > σ2. (C) μ1 <μ2. (D) μ1 >μ2.解 答案是(A).(7) 设随机变量X 服从正态分布N (0,1), 对给定的正数)10(<<αα, 数αu 满足{}P X u αα>=, 若{}P X x α<=, 则x 等于( ).(A)2u α . (B) 21α-u. (C)1-2u α. (D) α-1u .解 答案是(C).2. 设连续型随机变量X 服从参数为λ的指数分布, 要使1{2}4P kX k <<=成立, 应当怎样选择数k ? 解 因为随机变量X 服从参数为λ的指数分布, 其分布函数为1e ,0,()0,0.≤x x F x x λ-->=⎧⎨⎩由题意可知221{2}(2)()(1e )(1e )e e 4k k k k P k X k F k F k λλλλ----=<<=-=---=-.于是ln 2k λ=.3. 设随机变量X 有概率密度34,01,()0,x x f x <<=⎧⎨⎩其它,要使{}{}≥P X a P X a =<(其中a >0)成立, 应当怎样选择数a ?解 由条件变形,得到1{}{}P Xa P X a -<=<,可知{}0.5P X a <=, 于是304d 0.5ax x =⎰,因此a =.4. 设连续型随机变量X 的分布函数为20,0,()01,1,1,,≤≤x F x x x x <=>⎧⎪⎨⎪⎩求: (1) X 的概率密度; (2){0.30.7}P X <<.解 (1) 根据分布函数与概率密度的关系()()F x f x '=,可得2,01,()0,其它.x x f x <<⎧=⎨⎩(2)22{0.30.7}(0.7)(0.3)0.70.30.4P X F F <<=-=-=.5. 设随机变量X 的概率密度为f (x )=2,01,0,x x ⎧⎨⎩≤≤ 其它, 求P {X ≤12}与P {14X <≤2}.解{P X ≤12201112d 2240}x x x ===⎰;1{4P X <≤12141152}2d 1164x x x ===⎰. 6. 设连续型随机变量X 具有概率密度函数,01,(),12,0,x x f x A x x <=-<⎧⎪⎨⎪⎩≤≤其它.求: (1) 常数A ;(2) X 的分布函数F (x ).解 (1) 由概率密度的性质可得12221121111d ()d []122x x A x x xAx x A =+-=+-=-⎰⎰,于是2A =;(2) 由公式()()d x F x f x x -∞=⎰可得当x ≤0时,()0F x =;当0x <≤1时, 201()d 2xF x x x x ==⎰;当1x <≤2时, 2101()d (2)d 212x x F x x x x x x =+-=--⎰⎰;当x >2时,()1F x =.所以220,0,1()221, 2.1,021,12x F x x x x x x x =->⎧⎪⎪<⎪⎨⎪-<⎪⎪⎩≤≤,≤,7. 设随机变量X 的概率密度为1(1),02,()40,x x f x ⎧⎪⎨⎪⎩+<<=其它,对X 独立观察3次, 求至少有2次的结果大于1的概率.解 根据概率密度与分布函数的关系式{P a X <≤}()()()d bab F b F a f x x =-=⎰,可得2115{1}(1)d 48P X x x >=+=⎰.所以, 3次观察中至少有2次的结果大于1的概率为223333535175()()()888256C C +=. 8. 设~(0,5)X U , 求关于x 的方程24420x Xx ++=有实根的概率.解 随机变量X 的概率密度为105,()50,,x f x <=⎧⎪⎨⎪⎩≤其它,若方程有实根, 则21632X -≥0, 于是2X ≥2. 故方程有实根的概率为P {2X ≥2}=21{2}P X -<1{P X =-<<1d 5x =-15=-.9. 设随机变量)2,3(~2N X.(1) 计算{25}P X <≤, {410}P X -<≤, {||2}P X >, }3{>X P ; (2) 确定c 使得{}{};P X c P X c >=≤ (3) 设d 满足{}0.9P X d >≥, 问d 至多为多少?解 (1) 由P {a <x ≤b }=P {33333}()()22222a Xb b a ΦΦ-----<=-≤公式, 得到 P {2<X ≤5}=(1)(0.5)0.5328ΦΦ--=,P {-4<X ≤10}=(3.5)( 3.5)0.9996ΦΦ--=,{||2}P X >={2}P X >+{2}P X <-=123()2Φ--+23()2Φ--=0.6977,}3{>X P =133{3}1()1(0)2P X ΦΦ-=-=-≤=0.5 . (2) 若{}{}≤P X c P X c >=,得1{}{}P X c P x c -=≤≤,所以{}0.5P X c =≤由(0)Φ=0推得30,2c -=于是c =3. (3){}0.9≥P X d > 即13()0.92d Φ--≥, 也就是 3()0.9(1.282)2d ΦΦ--=≥,因分布函数是一个不减函数, 故(3)1.282,2d --≥ 解得 32( 1.282)0.436d +⨯-=≤.10. 设随机变量2~(2,)X N σ, 若{04}0.3P X <<=, 求{0}P X <.解 因为()~2,X N σ2,所以~(0,1)X Z N μσ-=. 由条件{04}0.3P X <<=可知02242220.3{04}{}()()X P X P ΦΦσσσσσ---=<<=<<=--,于是22()10.3Φσ-=, 从而2()0.65Φσ=. 所以{{}2020}P P X X σσ==--<<22()1()0.35ΦΦσσ-=-=. 习题2-51. 选择题(1) 设X 的分布函数为F (x ), 则31Y X =+的分布函数()G y 为( ).(A) 11()33F y -. (B) (31)F y +.(C)3()1F y +. (D)1133()F y -. 解 由随机变量函数的分布可得, 本题应选(A).(2) 设()~01,XN ,令2Y X =--, 则~Y ( ).(A)(2,1)N --. (B)(0,1)N . (C)(2,1)N -. (D)(2,1)N .解 由正态分布函数的性质可知本题应选(C).2. 设~(1,2),23X N Z X =+, 求Z 所服从的分布及概率密度. 解 若随机变量2~(,)X N μσ, 则X 的线性函数Y aX b =+也服从正态分布, 即2~(,()).Y aX b N a b a μσ=++ 这里1,μσ==所以Z ~(5,8)N .概率密度为()f z =2(5)16,x x ---∞<<+∞.3. 已知随机变量X 的分布律为(1) 求Y =2-X 的分布律; (2) 求Y =3+X 2分布律. 解 (1)(2)4. 已知随机变量X ()X f x =1142ln 20x x <<⎧⎪⎨⎪⎩, , , 其它,且Y =2-X , 试求Y 的概率密度.解 先求Y 的分布函数)(y F Y :)(y F Y ={P Y ≤}{2y P X =-≤}{y P X=≥2}y -1{2}P Xy =-<-=1-2()d yX f x x --∞⎰.于是可得Y 的概率密度为()(2)(2)Y X f y f y y '=---=12(2)ln 20,.,124,其它y y -⎧<-<⎪⎨⎪⎩即 121,2(2)ln 20, ,()其它.Y y y f y -<<-⎧⎪=⎨⎪⎩5. 设随机变量X 服从区间(-2,2)上的均匀分布, 求随机变量2YX =的概率密度.解 由题意可知随机变量X 的概率密度为()0,.1,22,4其它X f x x =⎧-<<⎪⎨⎪⎩因为对于0<y<4,(){Y F y P Y =≤2}{y P X =≤}{y P =X(X X F F =-.于是随机变量2YX =的概率密度函数为()Y f y (X X ff =0 4.y =<<即()04,0,.其它f y y =<<⎩总习题二1. 一批产品中有20%的次品, 现进行有放回抽样, 共抽取5件样品. 分别计算这5件样品中恰好有3件次品及至多有3件次品的概率.解 以X 表示抽取的5件样品中含有的次品数. 依题意知~(5,0.2)X B .(1) 恰好有3件次品的概率是P {X =3}=23358.02.0C .(2) 至多有3件次品的概率是k k k k C-=∑5358.02.0.2. 一办公楼装有5个同类型的供水设备. 调查表明, 在任一时刻t 每个设备被使用的概率为0.1. 问在同一时刻(1) 恰有两个设备被使用的概率是多少? (2) 至少有1个设备被使用的概率是多少? (3) 至多有3个设备被使用的概率是多少? (4) 至少有3个设备被使用的概率是多少?解 以X 表示同一时刻被使用的设备的个数,则X ~B (5,0.1),P {X =k }=k kkC -559.01.0,k =0,1, (5)(1) 所求的概率是P {X =2}=0729.09.01.03225=C ; (2)所求的概率是P {X ≥1}=140951.0)1.01(5=--;(3) 所求的概率是 P {X ≤3}=1-P{X =4}-P {X =5}=0.99954;(4) 所求的概率是P {X ≥3}=P {X =3}+P {X =4}+P {X =5}=0.00856. 3. 设随机变量X 的概率密度为e ,0,()00,≥,x k x f x x θθ-=<⎧⎪⎨⎪⎩且已知1{1}2P X>=, 求常数k , θ.解 由概率密度的性质可知e d 1xkx θθ-+∞=⎰得到k =1.由已知条件111e d 2xx θθ-+∞=⎰, 得1ln 2θ=.4. 某产品的某一质量指标2~(160,)X N σ, 若要求{120P ≤X ≤200}≥0.8, 问允许σ最大是多少?解 由{120P ≤X ≤}200120160160200160{}X P σσσ---=≤≤=404040()(1())2()1ΦΦΦσσσ--=-≥0.8,得到40()Φσ≥0.9, 查表得40σ≥1.29, 由此可得允许σ最大值为31.20.5. 设随机变量X 的概率密度为φ(x ) = A e -|x |, -∞<x <+∞.试求: (1) 常数A ; (2) P {0<X <1}; (3) X 的分布函数.解 (1) 由于||()d e d 1,x x x A x ϕ+∞+∞--∞-∞==⎰⎰即02e d 1x A x +∞-=⎰故2A = 1, 得到A =12.所以 φ(x ) =12e -|x |.(2) P {0<X <1} =111111e e d (e )0.316.0222xxx ----=-=≈⎰(3) 因为||1()e d ,2xx F x x --∞=⎰ 得到 当x <0时, 11()e d e ,22x x xF x x -∞==⎰当x ≥0时, 00111()e d e d 1e ,222x x x xF x x x ---∞=+=-⎰⎰所以X 的分布函数为 1,0,2()11,0.2xx x F x x -⎧<⎪⎪=⎨⎪-⎪⎩e e ≥习题3-11.而且12{0}1P X X ==. 求X 1和X 2的联合分布律.解 由{0}1P X X ==知{0}0P X X ≠=. 因此X 1和X 2的联合分布必形如于是根据边缘概率密度和联合概率分布的关系有X 1和X 2的联合分布律(2) 注意到12{0,0}0P X X ===, 而121{0}{0}04P X P X =⋅==≠, 所以X 1和X 2不独立.2. 一盒子中有3只黑球、2只红球和2只白球, 在其中任取4只球. 以X 表示取到黑球的只数, 以Y 表示取到红球的只数. 求X 和Y 的联合分布律.解 从7只球中取4球只有3547=C 种取法. 在4只球中, 黑球有i 只, 红球有j 只(余下为白球4i j --只)的取法为4322i j i j C C C --,0,1,2,3,0,1,2,i j i j ==+≤4.于是有0223221{0,2}3535P X Y C C C ====,1113226{1,1}3535P X Y C C C ====,1213226{1,2}3535P X Y C C C ====,2023223{2,0}3535P X Y C C C ====,21132212{2,1}3535P X Y C C C ====,2203223{2,2}3535P XY C C C ====,3013222{3,0}3535P X Y C C C ====,3103222{3,1}3535P X Y C C C ====,{0,0}{0,1}{1,0}{3,2}0P X Y P X Y P X Y P X Y ============.3.(,)(6),02,24,0,.f x y k x y x y =--<<<<⎧⎨⎩其它求: (1) 常数k ; (2){1,3}P X Y <<; (3) { 1.5}P X <; (4) {4}P X Y +≤.解 (1) 由(,)d d 1f x y x y +∞+∞-∞-∞=⎰⎰, 得2424222204211d (6)d (6)d (10)82y k x y x k y x x y k y y k =--=--=-=⎡⎤⎢⎥⎣⎦⎰⎰⎰, 所以18k =. (2)3121,31{1,3}d (6)d 8(,)d d x y P X Y y x y x f x y x y <<<<==--⎰⎰⎰⎰1322011(6)d 82y x x y =--⎡⎤⎢⎥⎣⎦⎰321113()d 828y y =-=⎰.(3)1.51.5{ 1.5}d (,)d ()d X P X x f x y y f x x +∞-∞-∞-∞<==⎰⎰⎰4 1.521d (6)d 8y x y x --=⎰⎰1.5422011(6)d 82y x x y =--⎡⎤⎢⎥⎣⎦⎰ 421633()d 882y y =-⎰ 2732=. (4) 作直线4x y +=, 并记此直线下方区域与(,)0f x y ≠的矩形区域(0,2)(0,4)⨯的交集为G . 即:02,0G x y <<<≤4x -.见图3-8. 因此{P X Y +≤4}{(,)}P X Y G =∈(,)d d Gf x y x y =⎰⎰44201d (6)d 8x y x y x -=--⎰⎰4422011(6)d 82xy x x y -=--⎡⎤⎢⎥⎣⎦⎰ 42211[(6)(4)(4)]d 82y y y y =----⎰ 42211[2(4)(4)]d 82y y y =-+-⎰ 423211(4)(4)86y y =----⎡⎤⎢⎥⎣⎦23=.图3-8 第4题积分区域4. 二维随机变量(,)X Y 的概率密度为2(,),1,01,0,f x y kxy x y x =⎧⎨⎩≤≤≤≤其它. 试确定k , 并求2{(,)},:,01P X Y G G x y x x ∈≤≤≤≤.解 由2111401(,)d d d (1)d 26xk k f x y xdy x kxy y x x x +∞+∞-∞-∞====-⎰⎰⎰⎰⎰,解得6=k . 因而2112401{(,)}d 6d 3()d 4xxP X Y G x xy y x x x x ∈==-=⎰⎰⎰. 5. 设二维随机变量(X , Y )概率密度为4.8(2),01,0,(,)0,.y x x y x f x y -=⎧⎨⎩≤≤≤≤其它 求关于X 和Y 边缘概率密度.解(,)X Y 的概率密度(,)f x y 在区域:0G ≤x ≤1,0≤y ≤x 外取零值.因而, 有24.8(2)d ,01,()(,)d 0,2.4(2),01,0,xX y x y x f x f x y y x x x +∞-∞-<<==-<<=⎧⎪⎨⎪⎩⎧⎨⎩⎰⎰其它.其它. 124.8(2)d ,01,()(,)d 0,2.4(34),01,0,yY y x x y f y f x y x y y y y +∞-∞-<<==-+<<=⎧⎪⎨⎪⎩⎧⎨⎩⎰⎰其它.其它.6. 假设随机变量U 在区间[-2, 2]上服从均匀分布, 随机变量1,1,1,1,U X U --=>-⎧⎨⎩若≤若1,1,1, 1.U Y U -=>⎧⎨⎩若≤若试求:(1) X 和Y 的联合概率分布;(2){P X Y +≤1}.解 (1) 见本章第三节三(4).(2){P X Y +≤1}1{1}P X Y =-+>1{1,1}P X Y =-==13144=-=. 习题3-21. 设(X , Y )的分布律为求: (1) 在条件X =2下Y 的条件分布律;{22}P X Y ≥≤.(2)解 (1) 由于6.02.01.003.0}2{=+++==XP ,所以在条件X =2下Y 的条件分布律为216.03.0}2{}1,2{}2|1{========X P Y X P X Y P ,06.00}2{}2,2{}2|2{========X P Y X P X Y P ,616.01.0}2{}3,2{}2|3{========X P Y X P X Y P ,316.02.0}2{}4,2{}2|4{========X P Y X P X YP ,或写成(2) {P Y≤2}{1}{2}P Y P Y ==+==0.10.3000.20.6++++=.而{2,2}{2,1}{2,2}{3,1}{3,2}P X Y P X Y P X Y P X Y P X Y ===+==+==+==≥≤0.3000.20.5=+++=.因此{2,2}{22}{2}P X Y P X Y P Y =≥≤≤≥≤0.550.66==. 2. 设平面区域D 由曲线1y x=及直线20,1,e y x x ===所围成, 二维随机变量(X , Y )在区域D 上服从均匀分布, 求(X , Y )关于X 的边缘概率密度在x =2处的值.解 由题设知D 的面积为22e e111d ln 2DS x x x ===⎰.因此, (X ,Y )的密度为1,(,),(,)20x y D f x y ∈=⎧⎪⎨⎪⎩,其它.由此可得关于X 的边缘概率密度()(,)d X f x f x y y +∞-∞=⎰.显然, 当x ≤1或x ≥e 2时,()0X f x =; 当21e x <<时,111()d 22x X f x y x==⎰. 故(2)14X f =. 3. 设二维随机变量(X , Y )的概率密度为(,)1,01,02,0,.f x y x y x =<<<<⎧⎨⎩其它求:(1) (X , Y )的边缘概率密度(),()X Y f x f y ;(2)11{}.22P Y X ≤≤ 解 (1) 当01x <<时,20()(,)d d 2x X f x f x y y y x +∞-∞===⎰⎰;当x ≤0时或x ≥1时, ()0X f x =.故2,01,()0,其它.X x x f x <<=⎧⎨⎩当0<y <2时,12()(,)d d 12y Y y f y f x y x x +∞-∞===-⎰⎰;当y ≤0时或y ≥2时, ()0Y f y =.故1,02,()20,.Y yy f y -<<=⎧⎪⎨⎪⎩其它(2) 当z ≤0时,()0Z F z =;当z ≥2时,1)(=z F Z ; 当0<z <2时,(){2Z F z P X Y =-≤2}(,)d d x y zz f x y x y -=⎰⎰≤2x12202-2d 1d d 1d zxz x zx y x y =⋅+⋅⎰⎰⎰⎰24zz =-.故1,02,()20,.()其它Z z zz f z F z -<<'==⎧⎪⎨⎪⎩(3) {}{}11311322161122442≤,≤≤≤≤P X Y P Y X P X ===⎧⎫⎨⎬⎩⎭. 4. 设G 是由直线y =x , y =3,x =1所围成的三角形区域, 二维随机变量(,)X Y 在G 上服从二维均匀分布.求:(1) (X , Y )的联合概率密度;(2) {1}P Y X -≤;(3) 关于X 的边缘概率密度. 解 (1)由于三角形区域G 的面积等于2, 所以(,)X Y 的概率密度为⎪⎩⎪⎨⎧∉∈=.),(,0,),(,21),(G y x G y x y x f (2)记区域x y y x D -=|),{(≤}1与G 的交集为0G ,则{1}P Y X -≤0011113d d (2)22224G G x y S ===-=⎰⎰.其中0G S 为G 0的面积.(3) X 的边缘概率密度()(,)d X f x f x y y +∞-∞=⎰. 所以,当]3,1[∈x 时, 311()d (3)22X xf x y x ==-⎰. 当1<x 或3>x 时, 0)(=x f X .因此⎪⎩⎪⎨⎧∈-=.,0],3,1[),1(21)(其它x x x f X习题3-31. 设X 与Y 相互独立, 且分布律分别为下表:求二维随机变量(,)X Y 的分布律. 解 由于X 与Y 相互独立, 所以有}{}{},{j i j i y Y P x X P y Y x X P =⋅====,6,5,2,0;0,21,1=--=j i .因此可得二维随机变量(,)X Y 的联合分布律2. 设(X , Y )的分布律如下表:问,αβ为何值时X 与Y 相互独立?解 首先,由于边缘分布满足23111,1i j i j pp ⋅⋅====∑∑, 又X , Y 相互独立的等价条件为p ij = p i . p .j (i =1,2; j =1,2,3).故可得方程组21,3111().939αβα++==⋅+⎧⎪⎪⎨⎪⎪⎩ 解得29α=,19β=.经检验, 当29α=,19β=时, 对于所有的i =1,2; j =1,2,3均有p ij = p i . p .j 成立. 因此当29α=,19β=时, X与Y 相互独立..3. 设随机变量X 与Y 的概率密度为()e (,)0,.,01,0,x y b f x y x y -+=⎧<<>⎨⎩其它 (1) 试确定常数b . (2) 求边缘概率密度()X f x , ()Y f y .(3) 问X 与Y 是否相互独立?解 (1) 由11()101(,)d d e d d e d e d (1e )x y y x f x y x y b y x b y x b +∞+∞+∞+∞-+----∞-∞====-⎰⎰⎰⎰⎰⎰,得111eb -=-.(2) ()(,)d X f x f x y y ∞-∞=⎰1e ,01,1e 0,xx --<<=-⎧⎪⎨⎪⎩其它.()(,)d Y f y f x y x ∞-∞=⎰e ,0,0,y y ->=⎧⎨⎩其它.(3) 由于(,)()()X Y f x y f x f y =⋅,所以X 与Y 相互独立.4. 设X 和Y 是两个相互独立的随机变量, X 在(0, 1)上服从均匀分布, Y 的概率密度为21e ,0,()20Y yy f y y ->=⎧⎪⎨⎪⎩,≤0.(1) 求X 和Y 的联合概率密度.(2) 设关于a 的二次方程为220a Xa Y ++=, 试求a 有实根的概率.解 (1) 由题设知X 和Y 的概率密度分别为1,01,()0,X x f x <<=⎧⎨⎩其它, 21e ,0,()20,.yY y f y ->=⎧⎪⎨⎪⎩其它 因X 和Y 相互独立, 故(X , Y )的联合概率密度为21e ,01,0(,)()()20,.yX Y x y f x y f x f y -<<>==⎧⎪⎨⎪⎩其它 (2) 方程有实根的充要条件是判别式大于等于零. 即244X Y ∆=-≥20X ⇔≥Y .因此事件{方程有实根}2{X =≥}Y .下面计算2{P X ≥}Y (参见图3-3).2{P X ≥}Y 2211221(,)d d e d (1e)d 2yxx Df x y xdy x y x --===-⎰⎰⎰⎰⎰。