74HC595-中文芯片手册
74HC595中文手册(手工翻译,可复制)
74HC595/74HCT595
它是带控制端的8位串行输入并行输入的移位寄存器,具有3态输出。
特点
➢8位串行输入
➢8位串行或并行输出
➢带有3态输出的存储寄存器
➢移位寄存器具有清零控制端
➢100MHz移位输出频率
➢输出能力:并行输出,总线驱动;串行输出,标准输出
应用
串行数据转并行
远程控制保持寄存器
相关描述
74HC/HCT595是高速硅栅CMOS元件与低功耗肖特基TTL引脚兼容。
它们符合JEDEC第7A号标准。
“595”是一个带存储器的8级串行移位寄存器,有3态输出。
移位寄存器以及存储寄存器有独立的时钟输入端。
当SH_CP端接收一个上跳沿时数据会发生移位。
当ST_CP端接收一个上跳沿时,移位寄存器中的数据将被送入存储寄存器。
当SH_CP端和ST_CP端短接时,移位寄存器当中所存储的数据将会永远比存储寄存器中的数据状态早一个时钟周期。
移位寄存器有一个串行输入(DS端)以及一个标准的串行级联输出端(Q7’)。
该芯片的8位移位寄存器有一个复位引脚(MR,低电平有效)。
存储寄存器有8条并行的3态总线连接至输出引脚。
只要芯片的输出使能引脚(OE)处于低电平,芯片就实时将存储寄存器中的数据输出至输出引脚。
74HC595-中文芯片手册
74HC595
8位移位寄存器与输出锁存器
功能描述
这种高速移位寄存器采用先进的硅栅CMOS技术。
该装置具有高的抗干扰性和标准CMOS集成电路的低功率消耗,以及用于驱动15个LS-TTL负载的能力。
.
此装置包含馈送一个8位D型存储寄存器的8位串行入,并行出移位寄存器。
存储寄存器具有8 TRI-STATEÉ输出。
提供了用于两个移位寄存器和存储寄存器独立的时钟。
移位寄存器有直接首要明确,串行输入和串行输出(标准)引脚级联。
两个移位寄存器和存储寄存器的使用正边沿触发的时钟。
如果两个时钟被连接在一起时,移位寄存器的状态将总是提前存储寄存器的一个时钟脉冲。
该54HC/74HC逻辑系列就是速度,功能和引脚输出与标准54LS/74LS逻辑系列兼容。
所有输入免受损害,由于静电放电由内部二极管钳位到VCC和地面。
产品特点
!
1低静态电流:80 mA最大值(74HC系列)
2低输入电流为1mA最大
38位串行输入,并行出移位寄存器以存储
4宽工作电压范围:2V±6V
5级联
6移位寄存器直接明确
7保证移频率:DC至30兆赫。
74HC595中文资料_数据手册_参数
onsemicom7功能表手术输入结果函数重启串行输入一个转移时钟闩时钟产量启用转移寄存器内容闩寄存器内容串行产量sqh平行输出大号大号大号将数据移入换档寄存器lh大号dsrsrn锁存寄存器保持不变不变sr移位寄存器内容数据lh逻辑电平低到高取决于复位和移位时钟输入lr保持不变从高到低取决于锁存时钟74hc595输入引脚说明inputsa引脚1474hc595串行数据输入
图 SERIAL数据 INPUT 14 11 10 12 13转移时钟重启 LATCH时钟 OUTPUT ENABLE转 移寄存器 LATCH 15 1 2 3 4五 6 7 9 Q A Q B Q C Q D Q E Q F Q G Q H SQ H一个 V CC = PIN 16 GND = PIN 8平行数据产出 SERIAL数据 OUTPUT引脚分配 13 14 15 16 9 10 11 12五 4 3 2 1 8 7 6锁定时钟输出启用一CK Q E Q D Q C Q B GND Q H Q G Q F订购信息设备包 运输 ? 74HC595DR2G SOIC-16 (无铅) 2500磁带和卷轴 74HC595DTR2G TSSOP-16 * 2500磁带和卷轴 ?有关磁带和 卷轴规格的信息,包括零件方向和磁带尺寸,请参阅我们的74hc595磁带和卷轴包 74hc595装规格手册,BRD8011 / D. *该封装本身具有无铅功能.74HC595中文资料第3 页精选内容: 74HC595 3最大额定值符号参数值单元 V CC 直流电源电压(参考GND) - 0.5至+ 7.0 V V IN直流输入电压(参考GND) - 0.5至 V CC + 0.5 V V OUT直流输出电压(参考GND) - 0.5至V CC + 0.5 V 我 在直流输入 电流,每个引脚 ±20嘛 我 出去了直流输出电流,每个引脚 ±35嘛 我 CC DC电源 电流,V CC 和GND引脚 ±75嘛 P D.静止空气中的功率耗散, SOIC封装? TSSOP封 装? 500 450毫瓦 T STG储存温度 - 65至+ 150 _C T L引线温度,距壳体1毫米,持续10 秒 (SOIC或TSSOP封装) 260 _C74hc595强调超过最大额定值74hc595可能会损坏设 备.最大额定值是压力仅限评级.不建议在推荐操作条件之上进行功能操作.长时间暴 露在高于推荐操作条件的应力下可能会影响设备74hc595可靠性. ?降额 - SOIC封 装: - 从65到125°C时为7 MW / _C TSSOP封装: - 从65_到125_C的6.1 MW / _C有 关高频或高负载考虑事项,请参阅安森美半导体高速CMOS数据手册(DL129 / D) 的第2章.推荐工作条件符号参数敏马克斯单元 V CC直流电源电压(参考GND) 2.0 6 V V IN ,V OUT 直流输入电压,输出电压 (参考GND) 0 V CC V T A.工作温 度,所有封装类型 - 55 + 125 _C T R ,T F输入上升和下降时间 V CC = 2.0 V (图1) V CC = 4.5V V CC = 6.0 V 0 0 0 1000 500 400 NS此设备包含保护防止损坏的电路由于高静态电压或电领域.但是,必 须采取预防措施被采取以避免任何应用程序电压高于最大额定值这个高阻抗电路 的电压 - CUIT. 为了正确的操作,V IN 和 V OUT 应该受到限制 范围GND V(V IN 或V OUT )V V CC .未使用的输入必须始终为绑定到适当的逻辑电压 电平(例 如,GND或V CC ).未使用的输出必须保持打开状态.74HC595中文资料第1页精选 内容:74HC595中文资料第7页精选内容: 74HC595 7功能表 手术输入结果函数重启串行输入一个转移时钟闩时钟产量启用转移寄存器内容闩 寄存器内容串行产量 SQ H平行输出 Q A - Q H复位移位寄存器大号 X X L,H, ↓ 大→号SR大N号+ 1üü大S号R Gü→将S数R 据H 移ü入移换74h档c5寄95存位器寄H存D器↑保持L,不H变,H↓X大L号,DH→,S↓R LA,; SHR,N↓ 大号 ü ü ü ü转移移位寄存器内容锁定寄存器 H X L,H,↓ ↑大号 ü SR N →LR N ü SR N锁存寄存器保持不变不变 X X X L,H,↓大号 * ü * ü启用并行输 出 X X X X大号 * ** *启用强制输出为高阻抗状态 X X X X H * ** * ? SR =移位寄存器 内容 D =数据(L,H)逻辑电平 ↑=低到高 * =取决于复位和移位时钟输入 LR =锁 存寄存器内容 U =保持不变 ↓=从高到低 ** =取决于锁存时钟74hc595输入引脚说明 I1N4)PU7T4ShcA5(95串引行脚数据输入.该引脚上的数据被移入 8位串行移位寄存器.控制输入移 位时钟(引脚11)移位寄存器时钟输入.从低到高的过渡该输74hc595入会导致串行
74HC595史上最全的中文资料【中为电科】
X X 注:
X X
H L L L
L H H H
X H X X
L Q6S NC Q6S
Z NC QnS QnS
清空移位寄存器,并行输出高阻态 移位寄存器数据分别移动一位; 第 6 位数据 移入 Q7S 移位寄存器的内容传给存储寄存器并输出 移位寄存器的所有数据移动一位; 移位寄存 器中的所有数据转入存储寄存器并输出
7. 8. 9. 10. 11. 12. 13.
1 / 15
科技效法自然 中为电科
74HC595;74HCT595
8 位串行输入,串行或并行输出移位寄存器,输出具有锁存、三态功能
1. 简介
74HC595、 74HCT595 是一款高速硅栅 (Si‐gate) COMS 器件, 并且与低压肖特基 TTL (LSTTL) 兼容。它们符合 JEDEC 7A 号文件标准。 74HC595、74HCT595 是一个 8 位串行并且带有存储寄存器和三态输出的移位寄存器, 存储寄存器和移位寄存器同步于不同的时钟。 数据在移位寄存器时钟(SHCP)的正跳变下移动,在存储寄存器时钟(STCP)的正跳 变下数据由移位寄存器转存到存储寄存器。假如 SHCP 和 STCP 被连在一起,移位寄存器将 总是超前于存储寄存器一个时钟脉冲。 移位寄存器有一个串行输入端(DS) ,还有一个用于级联的串行输出端。8 位移位寄存 器可以异步复位 (低电平复位) 。 存储寄存器有一个 8 位三态并行输出端。 当输出使能端 (OE) 被使能(低有效)数据将从存储寄存器中输出至器件引脚。
4 / 15
科技效法自然 中为电科
6. 引脚定义
6.1 引脚图
图 4 引脚定义 6.2 引脚描述 符号 Q1 Q2 Q3 Q4 Q5 Q6 Q7 GND Q7S MR SHCP STCP OE DS Q0 Vcc 引脚号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 地(0V) 数据串行输出 复位(低有效) 移位寄存器时钟(输入) 存储寄存器时钟(输入) 输出使能(低有效) 数据串行输入 数据并行输出 0 电源 数据并行输出 1 ~ 7 描述
74hc595中文数据手册(datasheet)
IO=‐6.0mA 4.18 4.31
4.13
4.10
6.0
IO=‐7.8mA 5.68 5.8
5.63
5.60
VOL 输出低电平 2.0 VI=VIH IO=20μA
0.0 0.1
0.1
(SQH)
4.5 or VIL
0.0 0.1
0.1
0.1
V
0.1
6.0
0.0 0.1
0.1
0.1
4.5
IO=4.0mA
‐1‐
输入输出管脚电路:
CMOS 移位寄存器 74HC595
真值表:
输入管脚
SI SCK SCLR RCK OE
XX X X H
XX X X L
XX L L 上沿 H H 上沿 H X 下沿 H
XX X
XX X
时序图:
XX XX XX XX 上沿 X 下沿 X
输出管脚
QA—QH 输出高阻 QA—QH 输出有效值 移位寄存器清零 移位寄存器存储 L 移位寄存器存储 H 移位寄存器状态保持 输出存储器锁存移位寄存器中的状态值 输出存储器状态保持
‐3‐
CMOS 移位寄存器 74HC595
DC 电气特性:
类型 参数定义 测试条件
数值
单位
VCC
VIH 输入高电平 2.0 4.5 6.0
VIL 输入低电平 2.0
25℃
‐40℃—85℃ ‐55℃—125℃
Min Typ Max Min Max Min Max
1.46
1.46
1.46
V
3.23
3.23
管脚图:
管脚说明:
管脚编号 管脚名
1、2、3、4、 QA—QH 5、6、7、15
74HC595D中文资料_数据手册_参数
74HC595D中⽂资料_数据⼿册_参数74HC595; 74HCT5958-bit serial-in, serial or parallel-out shift register with outputlatches; 3-stateRev. 6 — 12 December 2011Product data sheet1. General descriptionThe 74HC595; 74HCT595 are high-speed Si-gate CMOS devices and are pin compatible with Low-power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard No.7A.The 74HC595; 74HCT595 are 8-stage serial shift registers with a storage register and3-state outputs. The registers have separate clocks.Data is shifted on the positive-going transitions of the shift register clock input (SHCP). The data in each register is transferred to the storage register on a positive-going transition of the storage register clock input (STCP). If both clocks are connected together, the shift register will always be one clock pulse ahead of the storage register.The shift register has a serial input (DS) and a serial standard output (Q7S) for cascading. It is also provided with asynchronous reset (active LOW) for all 8 shift register stages. The storage register has 8 parallel 3-state bus driver outputs. Data in the storage register appears at the output whenever the output enable input (OE) is LOW.2. Features and benefits8-bit serial input8-bit serial or parallel outputStorage register with 3-state outputsShift register with direct clear100MHz (typical) shift out frequencyESD protection:◆HBM JESD22-A114F exceeds2000V◆MM JESD22-A115-A exceeds200VMultiple package optionsSpecified from -40C to+85C and from -40C to+125C3. ApplicationsSerial-to-parallel data conversionRemote control holding register3-state4. Ordering information5. Functional diagramTable 1.Ordering informationType numberPackageTemperature rangeName DescriptionVersion 74HC595N -40?C to +125?CDIP16plastic dual in-line package; 16leads (300mil)SOT38-474HCT595N 74HC595D -40?C to +125?CSO16plastic small outline package; 16leads;body width 3.9mmSOT109-174HCT595D 74HC595DB -40?C to +125?CSSOP16plastic shrink small outline package; 16leads; body width 5.3mmSOT338-174HCT595DB 74HC595PW -40?C to +125?CTSSOP16plastic thin shrink small outline package; 16leads; body width 4.4mmSOT403-174HCT595PW 74HC595BQ -40?C to +125?CDHVQFN16plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16terminals; body 2.5 ? 3.5 ? 0.85 mmSOT763-174HCT595BQ3-state3-state 6. Pinning information3-state6.2Pin descriptionTable 2.Pin description Symbol Pin DescriptionQ11parallel data output 1Q22parallel data output 2Q33parallel data output 3Q44parallel data output 4Q55parallel data output 5Q66parallel data output 6Q77parallel data output 7 GND8ground (0 V)Q7S9serial data outputMR10master reset (active LOW)OE13output enable input (active LOW)DS14serial data inputQ015parallel data output 0V CC16supply voltage7. Functional descriptionTable 3.Function table[1]Control Input Output FunctionSHCP STCP OE MR DS Q7S QnX X L L X L NC a LOW-level on MR only affects the shift registersX↑L L X L L empty shift register loaded into storage registerX X H L X L Z shift register clear; parallel outputs in high-impedance OFF-state↑X L H H Q6S NC logic HIGH-level shifted into shift register stage 0. Contents of all shift register stages shifted through, e.g. previous state of stage 6(internal Q6S) appears on the serial output (Q7S).X↑L H X NC QnS contents of shift register stages (internal QnS) are transferred to the storage register and parallel output stages↑↑L H X Q6S QnS contents of shift register shifted through; previous contents of the shift register is transferred to the storage register and the paralleloutput stages[1]H=HIGH voltage state;L=LOW voltage state;↑=LOW-to-HIGH transition;X=don’t care;NC=no change;Z=high-impedance OFF-state.3-state8. Limiting valuesTable 4.Limiting valuesIn accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V). Symbol Parameter Conditions Min Max UnitV CC supply voltage-0.5+7VI IK input clamping current V I < -0.5V or V I>V CC+0.5 V-±20mAI OK output clamping current V O<-0.5V or V O > V CC + 0.5 V-±20mAI O output current V O=-0.5V to (V CC+0.5V)pin Q7S-±25mApins Qn-±35mAI CC supply current-70mAI GND ground current-70-mAT stg storage temperature-65+150?CP tot total power dissipationDIP16 package[1]-750mWSO16 package[2]-500mWSSOP16 package[3]-500mWTSSOP16 package[3]-500mWDHVQFN16 package[4]-500mW[1]For DIP16 package: P tot derates linearly with 12mW/K above 70 ?C.[2]For SO16 package: P tot derates linearly with 8mW/K above 70 ?C.[3]For SSOP16 and TSSOP16 packages: P tot derates linearly with 5.5mW/K above 60 ?C.9. Recommended operating conditions10. Static characteristicsTable 5.Recommended operating conditionsSymbol ParameterConditions74HC59574HCT595UnitMinTyp Max Min Typ Max V CC supply voltage 2.0 5.0 6.0 4.5 5.0 5.5V V I input voltage 0-V CC 0-V CC V V O output voltage 0-V CC 0-V CC V ?t/?Vinput transition rise and fall rateV CC = 2.0 V --625---ns/V V CC = 4.5 V - 1.67139- 1.67139ns/V V CC = 6.0 V--83---ns/V T ambambient temperature-40+25+125-40+25+125C Table 6.Static characteristicsAt recommended operating conditions; voltages are referenced to GND (ground =0V).Symbol ParameterConditions-40?C to +85?C -40?C to +125?C UnitMinTypMaxMinMax74HC595V IHHIGH-level input voltageV CC =2.0V 1.5 1.2- 1.5-V V CC =4.5V 3.15 2.4- 3.15-V V CC =6.0VV CC =2.0V -0.80.5-0.5V V CC =4.5V - 2.1 1.35- 1.35V V CC =6.0V- 2.81.8- 1.8VV OHHIGH-level output voltageV I =V IH or V IL all outputsI O =-20µA; V CC =2.0V 1.9 2.0- 1.9-V I O =-20µA; V CC =4.5V 4.4 4.5- 4.4-V I O =-20µA; V CC =6.0V 5.96.0- 5.9-VQ7S outputI O =-4mA; V CC =4.5V 3.84 4.32- 3.7-V I O =-5.2mA; V CC =6.0V 5.345.81- 5.2-VQn bus driver outputs I O =-6mA; V CC =4.5V 3.84 4.32- 3.7-V I O =-7.8mA; V CC =6.0V5.345.81- 5.2-V3-stateV OL LOW-leveloutput voltage V I=V IH or V ILall outputsI O=20µA; V CC=2.0V-00.1-0.1V I O=20µA; V CC=4.5V-00.1-0.1V I O=20µA; V CC=6.0V-00.1-0.1V Q7S output I O=4mA;V CC=4.5V-0.150.33-0.4V I O=5.2mA;V CC=6.0V-0.160.33-0.4V Qn bus driver outputsI O=6mA;V CC=4.5V-0.150.33-0.4V I O=7.8mA;V CC=6.0V-0.160.33-0.4VI I input leakagecurrentV I=V CC or GND; V CC=6.0V--±1.0-±1.0µAI OZ OFF-state--80-160µAC I inputcapacitance- 3.5---pF 74HCT595V IH HIGH-levelinput voltageV CC=4.5V to 5.5V 2.0 1.6- 2.0-VV IL LOW-levelinput voltageV CC=4.5V to 5.5V- 1.20.8-0.8VV OH HIGH-leveloutput voltage V I=V IH or V IL; V CC=4.5Vall outputsI O=-20µA 4.4 4.5- 4.4-V Q7S outputI O=-4mA 3.84 4.32- 3.7-V Qn bus driver outputsI O=-6mA 3.7 4.32- 3.7-VV OL LOW-leveloutput voltage V I=V IH or V IL; V CC=4.5Vall outputsI O=20µA-00.1-0.1V Q7S outputI O=4.0mA-0.150.33-0.4V Qn bus driver outputsI O=6.0mA-0.160.33-0.4VI I input leakagecurrent V I=V CC or GND; V CC=5.5V--±1.0-±1.0µATable 6.Static characteristics …continuedAt recommended operating conditions; voltages are referenced to GND (ground=0V). Symbol Parameter Conditions-40?C to +85?C-40?C to +125?C UnitMin Typ Max Min Max3-stateI OZ OFF-state--80-160µAI CC additionalsupply current per input pin; I O=0A; V I=V CC-2.1V; other inputs at V CC or GND;V CC=4.5V to5.5Vpins MR, SHCP, STCP, OE-150675-735µA pin DS-25113-123µAC I inputcapacitance - 3.5---pFTable 6.Static characteristics …continuedAt recommended operating conditions; voltages are referenced to GND (ground=0V).Symbol Parameter Conditions-40?C to +85?C-40?C to +125?C UnitMin Typ Max Min Max3-state 11. Dynamic characteristicsTable 7.Dynamic characteristicsVoltages are referenced to GND (ground = 0 V); for test circuit see Figure14.Symbol Parameter Conditions25 ?C-40?C to+85 ?C-40?C to+125 ?C UnitMin Typ[1]Max Min Max Min Max74HC595t pd propagationdelay SHCP to Q7S; see Figure9[2]V CC = 2 V-52160-200-240ns V CC = 4.5 V-1932-40-48ns V CC = 6 V-1527-34-41ns STCP to Qn; see Figure10[2] V CC = 2 V-55175-220-265ns V CC = 4.5 V-2035-44-53ns V CC = 6 V-1630-37-45ns MR to Q7S; see Figure12[3] V CC = 2 V-47175-220-265ns V CC = 4.5 V-1735-44-53ns V CC = 6 V-1430-37-45nst en enable time OE to Qn; see Figure13[4]V CC = 2 V-47150-190-225nsV CC = 4.5 V-1730-38-45nsV CC = 6 V-1426-33-38ns t dis disable time OE to Qn; see Figure13[5]V CC = 2 V-41150-190-225nsV CC = 4.5 V-1530-38-45nsV CC = 6 V-1227-33-38ns t W pulse width SHCP HIGH or LOW;V CC = 4.5 V156-19-22-nsV CC = 6 V135-16-19-nsSTCP HIGH or LOW;see Figure10V CC = 2 V7511-95-110-nsV CC = 4.5 V154-19-22-nsV CC = 6 V133-16-19-nsMR LOW; see Figure12V CC = 2 V7517-95-110-nsV CC = 4.5 V156-19-22-nsV CC = 6 V135-16-19-ns3-statet suset-up timeDS to SHCP; see Figure 10V CC = 2 V 5011-65-75-ns V CC = 4.5 V 104-13-15-ns V CC = 6 V 9 3-11-13-nsSHCP to STCP; see Figure 11V CC = 2 V 7522-95-110-ns V CC = 4.5 V 158-19-22-ns V CC = 6 V 137-16-19-ns t hhold timeDS to SHCP; see Figure 11V CC = 2 V 3-6-3-3-ns V CC = 4.5 V 3-2-3-3-ns V CC = 6 V3-2-3-3-ns t recrecovery timeMR to SHCP; see Figure 12V CC = 2 V 50-19-65-75-ns V CC = 4.5 V 10-7-13-15-ns V CC = 6 V 9-6-11-13f maxmaximum frequencySHCP or STCP; see Figure 9 and 10V CC = 2 V 930- 4.8-4-MHz V CC = 4.5 V 3091-24-20-MHz V CC = 6 V35108-28-24-MHz C PDpower dissipation capacitancef i = 1 MHz; V I =GND to V CC [6][7]-115-----pF74HCT595; V CC = 4.5 V to 5.5 V t pdpropagation delay SHCP to Q7S; see Figure 9[2]-2542-53-63ns STCP to Qn; see Figure 10[2]-2440-50-60ns MR to Q7S; see Figure 12[3]-2340-50-60ns t en enable time OE to Qn; see Figure 13[4]-2135-44-53ns t dis disable time OE to Qn; see Figure 13[5] -1830-38-45ns t Wpulse widthSHCP HIGH or LOW;see Figure 9166-20-24-ns STCP HIGH or LOW; see Figure 10165-20-24-ns MR LOW; see Figure 12208-25-30-ns t suset-up timeDS to SHCP; see Figure 10165-20-24-ns SHCP to STCP; see Figure 11168-20-24-ns t hhold timeDS to SHCP; see Figure 113-2-3-nsTable 7.Dynamic characteristics …continuedVoltages are referenced to GND (ground = 0 V); for test circuit see Figure 14.Symbol Parameter Conditions25 ?C -40?C to +85 ?C -40?C to +125 ?C Unit Min Typ [1]Max Min Max Min Max3-state[1]Typical values are measured at nominal supply voltage.[2]t pd is the same as t PHL and t PLH .[3]t pd is the same as t PHL only.[4]t en is the same as t PZL and t PZH .[5]t dis is the same as t PLZ and t PHZ .[6]C PD is used to determine the dynamic power dissipation (P D in µW).P D =C PD ?V CC 2?f i +∑(C L ?V CC 2?f o )where:f i=input frequency in MHz;f o =output frequency in MHz;∑(C L ?V CC 2?f o )=sum of outputs;C L =output load capacitance in pF;V CC =supply voltage in V.[7]All 9outputs switching.12. Waveformst rec recovery time MR to SHCP; see Figure 1210-7-13-15-ns f max maximum frequencySHCP and STCP; see Figure 9 and 103052-24-20-MHz C PDpower dissipation capacitancef i = 1 MHz; V I =GND to V CC [6] [7]-130-----pFTable 7.Dynamic characteristics …continuedVoltages are referenced to GND (ground = 0 V); for test circuit see Figure 14.Symbol Parameter Conditions25 ?C -40?C to +85 ?C -40?C to +125 ?C Unit Min Typ [1]Max Min Max Min Max3-stateTable 8.Measurement points Type Input OutputV M V M74HC5950.5V CC0.5V CC 74HCT595 1.3V 1.3V3-stateTable 9.Test data74HC595V CC6ns50 pF1kΩopen GND V CC74HCT5953V6ns50 pF1kΩopen GND V CC3-state 13. Package outlineDIP16: plastic dual in-line package; 16 leads (300 mil)SOT38-4Fig 15.Package outline SOT38-4 (DIP16)3-state SO16: plastic small outline package; 16 leads; body width 3.9 mm SOT109-1Fig 16.Package outline SOT109-1 (SO16)3-state SSOP16: plastic shrink small outline package; 16 leads; body width 5.3 mm SOT338-1Fig 17.Package outline SOT338-1 (SSOP16)3-state TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm SOT403-1Fig 18.Package outline SOT403-1 (TSSOP16)。
74HC595D中文资料_数据手册_参数
NXP Semiconductors
74HC595; 74HCT595
8-bit serial-in, serial or parallel-out shift register with output latches; 3-state
11 12
SHCP STCP
14 DS
Q7S 9 15
All information provided in this document is subject to legal disclaimers.
Rev. 6 — 12 December 2011
© NXP B.V. 2011. All rights reserved.
3 of 24
NXP Semiconductors
Fig 7. Pin configuration for DHVQFN16
74HC_HCT595
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 6 — 12 December 2011
16 VCC 15 Q0 14 DS 13 OE 12 STCP 11 SHCP 10 MR 9 Q7S
001aao241
Fig 5. Pin configuration DIP16, SO16
74HC595 74HCT595
Q1 1 Q2 2 Q3 3 Q4 4 Q5 5 Q6 6 Q7 7 GND 8
5. Functional diagram
14 DS 11 SHCP 10 MR
8-STAGE SHIFT REGISTER
74HC595完整中文资料
74HC595是8位串行输入/输出或者并行输出移位寄存器,具有高阻、关、断状态。
三态。
特点 8位串行输入 8位串行或并行输出存储状态寄存器,三种状态输出寄存器可以直接清除 100MHz的移位频率输出能力并行输出,总线驱动串行输出;标准中等规模集成电路应用串行到并行的数据转换 Remote contr ol holding register. 描述 595是告诉的硅结构的CMOS器件,兼容低电压TTL电路,遵守JEDEC标准。
595是具有8位移位寄存器和一个存储器,三态输出功能。
移位寄存器和存储器是分别的时钟。
数据在SCHcp的上升沿输入,在STcp 的上升沿进入的存储寄存器中去。
如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。
移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7’),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。
CPD决定动态的能耗, PD=CPD×VCC×f1+∑(CL×VCC2×f0) F1=输入频率,CL=输出电容 f0=输出频率(MHz) Vcc=电源电压引脚说明符号引脚描述内部结构结合引脚说明就能很快理解 595的工作情况引脚功能表:真值表:SRCK(11脚):上升沿时数据寄存器的数据移位。
QA-->QB-->QC-->...-->QH;下降沿移位寄存器数据不变。
(脉冲宽度:5V时,大于几十纳秒就行了。
我通常都选微秒级)RCK(12脚):上升沿时移位寄存器的数据进入数据存储寄存器,下降沿时存储寄存器数据不变。
(通常我将RCK置为低电平,) 当移位结束后,在RCK端产生一个正脉冲(5V时,大于几十纳秒就行了。
我通常都选微秒级),更新显示数据。
/G(13脚): 高电平时禁止输出(高阻态)。
如果单片机的引脚不紧张,用一个引脚控制它,可以方便地产生闪烁和熄灭效果。
74HC595完整中文资料
74HC595芯片是一种串入并出的芯片, 在电子显示屏制作当中有广泛的应用。
74HC595是8位串行输入/ 输出或者并行输出移位寄存器,具有高阻、关、断状态。
三态。
特点8 位串行输入8 位串行或并行输出存储状态寄存器,三种状态输出寄存器可以直接清除100MHz的移位频率输出能力并行输出,总线驱动串行输出;标准中等规模集成电路应用串行到并行的数据转换Remote c ontrol holding register. 描述595 是告诉的硅结构的CMOS器件,兼容低电压TTL 电路,遵守JEDEC标准。
595 是具有8位移位寄存器和一个存储器,三态输出功能。
移位寄存器和存储器是分别的时钟。
数据在SCHcp的上升沿输入,在S Tcp 的上升沿进入的存储寄存器中去。
如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。
移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7'), 和一个异步的低电平复位,存储寄存器有一个并行8 位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。
CPD决定动态的能耗,PD=CPD×VCC×f1+∑(CL×VCC2×f0) F 1=输入频率,CL=输出电容f0 =输出频率(MHz)Vcc= 电源电压引脚说明符号引脚描述内部结构结合引脚说明就能很快理解595 的工作情况功能表:真值表:74595 的数据端:QA--QH: 八位并行输出端,可以直接控制数码管的8 个段。
QH': 级联输出端。
我将它接下一个595的SI 端。
SI: 串行数据输入端。
74595 的控制端说明:/SRCLR(10脚): 低点平时将移位寄存器的数据清零。
通常我将它接Vcc。
SRCK(11脚):上升沿时数据寄存器的数据移位。
QA-->QB-->QC-->...-->QH ;下降沿移位寄存器数据不变。
LED驱动芯片-74HC595中文资料
2V
75
175
tPZL 的最大延迟时 CL =50pF
间(普通状态) CL =150pF 2V
100
245
CL =50pF 4.5V 15
35
TA=25 to 85℃ TA=-55 to 125℃
极限值
4.8
4.0
24
20
28
24
265
315
367
441
53
63
74
88
45
54
63
76
220
265
306
58
210
CL =150pF 2V
83
294
tPHL SCK 到 Q’H 的 CL =50pF 4.5V
14
42
tPLH 最大延迟时间 CL =150pF 4.5V
17
58
CL =50pF 6V
10
36
CL =150pF 6V
14
50
CL =50pF 2V
70
175
tPHL tPLH
RCK 到 QA 至 QH 的最大延迟
17
42
tPHZ
G 到 QA 至 QH 的最大延迟时
RL =1kΩ
2V 4.5V
75 15
175 35
tPLZ
间(高阻态) CL =50pF
6V
13
30
SER 到 SCK 最
tS
小状态建立时
间
2V
100
4.5V
20
6V
17
SCLR 到 SCK
tR
最小状态建立
时间
2V
50
74HC595中文资料,74HC595D规格书,74HC595N技术文档,DATASHEET,飞利浦公司代理
CODE
SOT38-4 SOT38-4 SOT109-1 SOT109-1 SOT338-1 SOT338-1 SOT403-1 SOT403-1 SOT763-1 SOT763-1
2003 Jun 25
3
Philips Semiconductors
8-bit serial-in, serial or parallel-out shift register with output latches; 3-state
100
57
MHz
3.5
3.5
pF
115
130
pF
Notes 1. CPD is used to determine the dynamic power dissipation (PD in µW).
PD = CPD × VCC2 × fi × N + Σ(CL × VCC2 × fo) where: fi = input frequency in MHz; fo = output frequency in MHz; CL = output load capacitance in pF; VCC = supply voltage in Volts; N = total load switching outputs; Σ(CL × VCC2 × fo) = sum of the outputs. 2. For 74HC595 the condition is VI = GND to VCC. For 74HCT595 the condition is VI = GND to VCC − 1.5 V.
9??????v4544v6059vq7standardoutputio?40maio?52maqnbusdriveroutputs4537????v6052vio?60maio?78mavivihorvil4537????v6052vvollowleveloutputvoltagealloutputsio20?aq7standardoutput45??01vio40ma45??04vqnbusdriveroutputsio60ma45??????04viliinputleakagecurrentvivccorgnd551
[整理]74HC595完整中文资料
74HC595芯片是一种串入并出的芯片,在电子显示屏制作当中有广泛的应用。
74HC595是8位串行输入/输出或者并行输出移位寄存器,具有高阻、关、断状态。
三态。
特点 8位串行输入 8位串行或并行输出存储状态寄存器,三种状态输出寄存器可以直接清除 100MHz的移位频率输出能力并行输出,总线驱动串行输出;标准中等规模集成电路应用串行到并行的数据转换 Remote contr ol holding register. 描述 595是告诉的硅结构的CMOS器件,兼容低电压TTL电路,遵守JEDEC标准。
595是具有8位移位寄存器和一个存储器,三态输出功能。
移位寄存器和存储器是分别的时钟。
数据在SCHcp的上升沿输入,在STcp 的上升沿进入的存储寄存器中去。
如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。
移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7’),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。
CPD决定动态的能耗, PD=CPD×VCC×f1+∑(CL×VCC2×f0) F1=输入频率,CL=输出电容 f0=输出频率(MHz) Vcc=电源电压引脚说明符号引脚描述内部结构结合引脚说明就能很快理解 595的工作情况引脚功能表:管脚编号管脚名 管脚定义功能1、2、3、4、5、6、7、15 QA —QH三态输出管脚8GND电源地9 SQH串行数据输出管脚10SCLR移位寄存器清零端11SCK 数据输入时钟线12 RCK输出存储器锁存时钟线 13OE 输出使能14 SI 数据线 15VCC电源端真值表:输入管脚输出管脚SI SCK SCLR RCKOEX X X X H QA —QH 输出高阻 X X X X L QA —QH 输出有效值 X X L X X 移位寄存器清零 L 上沿 H X X 移位寄存器存储L H 上沿 H X X 移位寄存器存储H X 下沿 H X X 移位寄存器状态保持X X X 上沿 X 输出存储器锁存移位寄存器中的状态值XXX下沿X输出存储器状态保持74595的数据端:QA--QH: 八位并行输出端,可以直接控制数码管的8个段。
74hc595中文资料
QA—QH
三态输出管脚
8
GND
电源地
9
SQH
串行数据输出管脚
10
SCLR
移位寄存器清零端
11
SCK
数据输入时钟线
12
RCK
输出存储器锁存时钟线
13
OE
输出使能
14
SI
数据线
15
VCC
电源端
图1 74HC595引脚图
图2 74HC595逻辑图
真值表:
输入管脚
输出管脚
SI
Maximum Output Enable Time from G to QA thru QH最大输出启用时间G to QA thru QH
RL=1kΩ CL=45pF
17
28
ns
tPHZ, tPLZ
Maximum Output Disable Time from G to QA thru QH最大输出禁用时间G to QA thru QH
CL = 50 pF
2.0V
58
210
265
315
ns
CL = 150 pF
2.0V
83
294
367
441
CL = 50 pF
4.5V
14
42
53
63
CL = 150 pF
4.5V
17
58
74
88
CL = 50 pF
6.0V
10
36
45
54
CL = 150 pF
6.0V
14
50
63
76
tPHL, tPLH
HC595完整中文资料
74HC595芯片是一种串入并出的芯片,在电子显示屏制作当中有广泛的应用。
74HC595是8位串行输入/输出或者并行输出移位寄存器,具有高阻、关、断状态。
三态。
特点 8位串行输入 8位串行或并行输出存储状态寄存器,三种状态输出寄存器可以直接清除 100MHz的移位频率输出能力并行输出,总线驱动串行输出;标准中等规模集成电路应用串行到并行的数据转换 Remote contr ol holding register. 描述 595是告诉的硅结构的CMOS器件,兼容低电压TTL电路,遵守JEDEC标准。
595是具有8位移位寄存器和一个存储器,三态输出功能。
移位寄存器和存储器是分别的时钟。
数据在SCHcp的上升沿输入,在STcp 的上升沿进入的存储寄存器中去。
如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。
移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7’),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。
CPD决定动态的能耗, PD=CPD×VCC×f1+∑(CL×VCC2×f0) F1=输入频率,CL=输出电容 f0=输出频率(MHz) Vcc=电源电压引脚说明符号引脚描述内部结构结合引脚说明就能很快理解 595的工作情况引脚功能表:真值表:的驱动电流(25mA)比74595(35mA)的要小,14脚封装,体积也小一些。
2)74595的主要优点是具有数据存储寄存器,在移位的过程中,输出端的数据可以保持不变。
这在串行速度慢的场合很有用处,数码管没有闪烁感。
与164只有数据清零端相比,595还多有输出端时能/禁止控制端,可以使输出为高阻态。
3)595是串入并出带有锁存功能移位寄存器,它的使用方法很简单,在正常使用时SCLR为高电平, G为低电平。
从SER每输入一位数据,串行输595是串入并出带有锁存功能移位寄存器,它的使用方法很简单,如下面的真值表,在正常使用时SCLR为高电平, G为低电平。
74HC595的中文资料
74HC595的中文资料
74HC595——具有三态输出锁存功能的8位串行输入、串行/并行输出移位寄存器(本文翻译自NXP的74HC595的datasheet)
74HC595和74HCT595是带有存储寄存器和三态输出的8位串行移位寄存器,移位寄存器和存储寄存器有各自的时钟。
每当移位寄存器输入时钟SHCP上升沿来临之时,数据被移出。
每当存储寄存器输入时钟STCP上升沿来临之时,数据并行的存储到存储寄存器。
如果两个时钟上升沿同时到来,移位寄存器总是要比存储寄存器的提前一个时钟。
移位寄存器有一个串行出入(DS)和一个串行标准输出(Q7S)。
同时也提供一个异步复位端(低电平有效),存储寄存器有一个8位3态总线输出。
输出使能(OE)为低电平时,存储寄存器的值就输出。
下面是一个功能框图,有利于理解:
接着是一个逻辑符号:
功能表如下:
时序图:
在SH CP上升沿进入移位寄存器,在ST CP上升沿输出到并行端口。
74HC595中文资料
概述:74HC595 是一款漏极开路输出的CMOS 移位寄存器,输出端口为可控的三态输出端,亦能串行输出控制下一级级联芯片。
特点:高速移位时钟频率Fmax>25MHz标准串行(SPI)接口CMOS 串行输出,可用于多个设备的级联低功耗:TA =25℃时,Icc=4μA(MAX)图2 74HC595逻辑图真值表:输入管脚输出管脚SI SCK SCLR RCK OEX X X X H QA—QH 输出高阻X X X X L QA—QH 输出有效值X X L X X 移位寄存器清零L 上沿H X X 移位寄存器存储LH 上沿H X X 移位寄存器存储HX 下沿H X X 移位寄存器状态保持X X X 上沿X 输出存储器锁存移位寄存器中的状态值X X X 下沿X 输出存储器状态保持引脚功能表:管脚编号管脚名管脚定义功能1、2、3、4、5、6、7、15QA—QH 三态输出管脚8 GND 电源地9 SQH 串行数据输出管脚10 SCLR 移位寄存器清零端11 SCK 数据输入时钟线12 RCK 输出存储器锁存时钟线13 OE 输出使能14 SI 数据线15 VCC 电源端图1 74HC595引脚图Absolute Maximum Ratings绝对最大额定值参数数值Supply Voltage电源电压(VCC)−0.5 to +7.0VDC Input Voltage 直流输入电压(VIN)−1.5 to VCC +1.5V DC Output Voltage 直流输出电压(VOUT)−0.5 to VCC +0.5V Clamp Diode Current 钳位二极管电流(IIK, IOK)±20mADC Output Current直流输出电流,每个引脚(输出)±35mADC VCC or GND Current,per pin (ICC)±70mAStorage Temperature Range 储存温度范围(TSTG)−65℃ to +150℃Power Dissipation 功耗(PD)(Note 3)600mWS.O. Package only500mWLead Tem perature (TL) (Soldering 10 seconds)260℃Recommended Operating Conditions建议操作条件参数最小最大单位Supply Voltage电源电压(VCC)26v DC Input or Output Voltage(VIN, VOUT)输入输出电压0VCC V Operating Tem perature Range工作温度范围(TA)−40+85℃Input Rise or Fall Times 输入上升或下降时间(tr,tf) VCC = 2.0V-1000ns VCC = 4.5V-500ns VCC = 6.0V-400ns DC SPEC IFICATIONS直流电气规格Symbol 符号Parameter 参数Conditions 条件VCCTA=25℃TA=−40to85℃TA=−55to125℃UNIT单位典型Guaranteed Limits保证界限VIH Minimum HighLevel Input Voltage最大高电平输入电压-2.0V- 1.5 1.5 1.5V4.5V- 3.153.15 3.156.0V- 4.2 4.2 4.2VIL Maximum LOWLevel Input Voltage最大低电平输入电压-2.0V-0.50.50.5V4.5V- 1.351.35 1.356.0V- 1.8 1.8 1.8VOH Minimum HIGHLevel OutputVoltage最大高电平VIN=VIH orVIL|IOUT|≤20μA2.0V2.01.9 1.9 1.9V4.5V4.54.4 4.4 4.46.0V6.05.9 5.9 5.9输出电压Q'H VIN = VIH or VILV |IOUT| ≤4.0mA 4.5V 4.2 3.98 3.84 3.7|IOUT| ≤5.2mA 6.0V5.25.485.34 5.2QA thru QH VIN = VIH or VILV |IOUT| ≤6.0mA 4.5V 4.2 3.98 3.84 3.7IOUT| ≤ 7.8mA 6.0V5.75.485.34 5.2VOL Maximum LOWLevel OutputVoltage最大低电平输出电压VIN=VIH orVIL|IOUT| ≤20μA2.0V00.10.10.1V4.5V00.10.10.16.0V00.10.10.1Q'HVIN = VIH or VILV |IOUT| ≤ 4mA 4.5V 0.2 0.26 0.33 0.4|IOUT| ≤5.2mA 6.0V0.20.260.33 0.4QA thru QHVIN = VIH or VILV |IOUT| ≤6.0mA 4.5V 0.20.26 0.33 0.4|IOUT| ≤7.8mA 6.0V0.20.260.330.4IIN Maximum InputCurrent最大输入电流VIN=VCC orGND6.0V-±0.1±1.0±1.0μAIOZ Maximum 3-STATEOutput Leakage最大3态输出泄漏电流VOUT = VCC orGND G = VIH6.0V-±0.5±5.0±10μAICC MaximumQuiescent SupplyCurrent电源电流VIN=VCC orGND IOUT = 0μA6.0V-8.080160μA交流电气特性:Symbol 符号Parameter 参数Conditions条件典型GuaranteedLimitUNIT单位fMax最高工作频率-5030MHztPHL, tPLH Maximum Propagation Delay,最大传输延迟SCK to Q’ HCL = 45 pF1220nstPHL, tPLH Maximum Propagation Delay, 最大传输延迟RCK to QA thru QHCL = 45 pF1830nstPZH, tPZL Maximum Output Enable Tim e from G to QAthru QH 最大输出启用时间G to QA thru QHRL=1kΩCL=45pF1728nstPHZ, tPLZ Maximum Output Disable Tim e from G to QAthru QH最大输出禁用时间G to QA thru QHRL=1kΩCL=5pF1525nstS Minimum Setup Time from SER to SCK--20nstS Minimum Setup Time from SCLR to SCK--20ns tS Minimum Setup Time from SCK to RCK--40ns tH Minimum Hold Time from SER to SCK--0ns tW Minimum Pulse Width of SCK or RCK--16ns 交流电气特性:(续)Symbol 符号Parameter 参数Conditions条件VCCTA = 25℃TA =−40 to85℃TA =−55 to125℃UNIT单位典型Guaranteed Limits 保证界限fMax Maximum OperatingFrequency最高工作频率CL = 50 pF2.0V106 4.8 4.0MHz4.5V453024206.0V50352824tPHL, tPLH Maximum PropagationDelay from SCK to Q’ H最大传输延迟传播延迟CK to QCL = 50 pF 2.0V 58 210 265 315nsCL = 150 pF 2.0V83294367441CL = 50 pF 4.5V 14 42 53 63CL = 150 pF 4.5V17587488CL = 50 pF 6.0V 10 36 45 54CL = 150 pF 6.0V14506376tPHL, tPLH Maximum PropagationDelay from RCK to QA thruQHCK to QCK to Q最大传输延迟RCK to QA thru QHCKto QCK to QCL = 50 pF 2.0V 70 175 220 265nsCL = 150 pF 2.0V105245306368CL = 50 pF 4.5V 21 3544 53CL = 150 pF 4.5V28496174CL = 50 pF 6.0V 18 30 37 45CL = 150 pF 6.0V26425363tPHL, tPLH Maximum PropagationDelay from SCLR to Q’ H最大传输延迟to Q’ H-2.0V-175221261ns4.5V-3544526.0V-303744tPZH, tPZL Maximum Output Enablefrom G to QA thru QH最大输出启用RL=1kΩCL=50pF2.0V 75 175 220 265nsRL=1kΩCL=150pF2.0V100245306368CL= 50pF 4.5V 15 35 44 53CL = 150pF 4.5V20496174CL = 50 pF 6.0V13303745CL = 150 pF 6.0V17425363CPD Power DissipationCapacitance,G = VCC-90 ---pFG = GND150---OutputsEnabled (Note 6)功耗电容CIN Maximum InputCapacitance最大输入电容--5101010pFCOUT Maximum Output最大输出电容--15202020pF图3 74HC595 时序图图应用电路图:图4 87LPC76x与74HC595单片机构成的键盘显示电路图5。
74HC595完整中文资料
74HC595完整中文资料74HC595芯片是一种串入并出的芯片,在电子显示屏制作当中有广泛的应用。
74HC595是8位串行输入/输出或者并行输出移位寄存器,具有咼阻、关、断状态。
三态。
特点8位串行输入8位串行或并行输出存储状态寄存器,三种状态输出寄存器可以直接清除100MHz的移位频率输出能力并行输出,总线驱动串行输出;标准中等规模集成电路应用串行到并行的数据转换Remote c ontrol holding register. 描述595是告诉的硅结构的CMO器件,兼容低电压TTL电路,遵守JEDEC标准。
595是具有8位移位寄存器和一个存储器,三态输出功能。
移位寄存器和存储器是分别的时钟。
数据在SCHcp勺上升沿输入,在S Tcp 的上升沿进入的存储寄存器中去。
如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。
移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7 ),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能0E时(为低电平),存储寄存器的数据输出到总线。
CPD决定动态的能耗,PD= CPD< VCC< f1 + 刀(CL X VCC2< f0) F 1=输入频率,。
1=输出电容f0 =输出频率(MHZ Vcc=电源电压引脚说明符号引脚描述内部结构结合引脚说明就能很快理解595的工作情况功能表:真值表:74595的数据端:QA--QH:八位并行输出端,可以直接控制数码管的8个段。
QH':级联输出端。
我将它接下一个595的SI端。
SI:串行数据输入端。
74595的控制端说明:/SRCLR(10脚):低点平时将移位寄存器的数据清零。
通常我将它接Vcc。
SRCK(11脚):上升沿时数据寄存器的数据移位。
QA-->QB-->QC-->…-->QH ;下降沿移位寄存器数据不变。
(脉冲宽度:5V时,大于几十纳秒就行了。
74HC595的中文资料-主要是针对时序图
74HC595的中文资料
74HC595——具有三态输出锁存功能的8位串行输入、串行/并行输出移位寄存器
本文翻译自NXP的74HC595的datasheet
74HC595和74HCT595是带有存储寄存器和三态输出的8位串行移位寄存器,移位寄存器和存储寄存器有各自的时钟。
每当移位寄存器输入时钟SHCP上升沿来临之时,数据被移出。
每当存储寄存器输入时钟STCP上升沿来临之时,数据并行的存储到存储寄存器。
如果两个时钟上升沿同时到来,移位寄存器总是要比存储寄存器的提前一个时钟。
移位寄存器有一个串行出入(DS)和一个串行标准输出(Q7S)。
同时也提供一个异步复位端(低电平有效),存储寄存器有一个8位3态总线输出。
输出使能(OE)为低电平时,存储寄存器的值就输出。
下面是一个功能框图,有利于理解:
接着是一个逻辑符号:
各引脚的的说明如下:
符号引脚描述
Q1 1 并行输出1
Q2 2 并行输出2
Q3 3 并行输出3
Q4 4 并行输出4
Q1 5 并行输出5
Q2 6 并行输出6
Q3 7 并行输出7
GND 8 接地
Q7S 9 串行数据输出
MR 10 (master reset)复位-低电平有效
SHCP 11 移位寄存器输入时钟(shift register clock iuput)STCP 12 存储寄存器输入时钟(storage register clock iuput)OE 13 输出使能(地电位有效)
DS 14 串行数据输出输入
Q0 15 并行数据输出0
Vcc 16 电源
功能表如下:
时序图:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
74HC595
8位移位寄存器与输出锁存器
功能描述
这种高速移位寄存器采用先进的硅栅CMOS技术。
该装置具有高的抗干扰性和标准CMOS集成电路的低功率消耗,以及用于驱动15个LS-TTL负载的能力。
.
此装置包含馈送一个8位D型存储寄存器的8位串行入,并行出移位寄存器。
存储寄存器具有8 TRI-STATEÉ输出。
提供了用于两个移位寄存器和存储寄存器独立的时钟。
移位寄存器有直接首要明确,串行输入和串行输出(标准)引脚级联。
两个移位寄存器和存储寄存器的使用正边沿触发的时钟。
如果两个时钟被连接在一起时,移位寄存器的状态将总是提前存储寄存器的一个时钟脉冲。
该54HC/74HC逻辑系列就是速度,功能和引脚输出与标准54LS/74LS逻辑系列兼容。
所有输入免受损害,由于静电放电由内部二极管钳位到VCC和地面。
产品特点
!
1低静态电流:80 mA最大值(74HC系列)
2低输入电流为1mA最大
38位串行输入,并行出移位寄存器以存储
4宽工作电压范围:2V±6V
5级联
6移位寄存器直接明确
7保证移频率:DC至30兆赫。