七年级数学上册_有理数乘法公开课课件3_北师大版[1]
合集下载
有理数的乘除运算第3课时有理数除法法则课件 2024-2025学年北师大版七年级数学上册
贰 新知初探
贰 新知初探
探究一:有理数除法法则
问题:观察下面的算式及计算结果,你有什么发现?
-3
商的绝对值与被除数和除数的 符号及绝对值之间有何关系?从中归纳猜想出一般规律,并用自己的语 言叙述规律.
贰 新知初探
两个有理数相除, 同号得_正___, 异号得__负___,并把绝 对值__相__除___. 0除以任何一个不等于0的数都得__0___.
叁 当堂达标
叁 当堂达标
1.如果两个有理数在数轴上对应的点分别在原点的两侧,则这两个数相 除所得的商是( A )
A.一定是负数; B.一定是正数; C.等于0; D.以上都不是
2.一个数的 2 是- 16 ,这个数是 -8 55
3.用“<”、“>”或“=”填空
(1)(- 1 )÷(- 1 )÷(- 1 ) < 0
1 3
(2)(—12)÷(- 2 )
3
(2)(-12)÷(-2)
3
;
=(-12)×(-3)
2
=18
(3)(-23)÷(-3)× 1 ;
3
(3)(-23)÷(-3)×1
3
=(-23)×(-1)×1
3
3
=23
9
叁 当堂达标
5.一天,小张和小李利用温度差测量山的高度,小张在山顶测得的温度是- 1℃,小李在山脚下测得的温度是5℃,已知该地区高度每上升100m,气温下 降约0.8℃,请你帮他们算算,这座山的高度大约是多少?
贰 新知初探
除以一个不等于0的数,等于乘这个数的倒数。
除数变为倒数作因数
也可以表示成:
1
a ÷ b = a · b (b≠0)
除号变乘号
北师大版七年级数学上册 (有理数的乘法)有理数及其运算课件(第1课时)
一个数同两个数的和相乘,等于把这个数 分别同这两个数相乘,再把积相加.
乘法分配律:a(b+c)=ab+ac
知2-导
根据分配律可以推出:一个数同几个数的和相 乘,等于把这个数分别同这几个数相乘,再把 积相加.
知2-讲
例3 计算:
(1)
-
5 6
+
3 8
-24;
(2)
-7
-
4 3
5 14
.
解: (1)
倒数的性质: (1)如果a,b互为倒数,那么ab=1; (2)0没有倒数(因为0与任何数相乘都不为1); (3)正数的倒数是正数,负数的倒数是负数; (4)倒数等于它本身的数是±1; (5)倒数是成对出现的.
1.必做: 完成教材P51-52,随堂练习(1)、 (3), 习题T1(1)-(4)、2、3、4
知1-练
(来自《典中点》)
知1-练
3 若五个有理数相乘的积为正数,则五个数中负
数的个数是( D )
A.0 B.2 C.4 D.0或2或4
4
(中考·台湾)算式
-1
1 2
-3
1 4
2 3
之
值为何?( D )
A. 1 B. 11 C. 11 D. 13
4
12
4
4
(来自《典中点》)
知识点 2 有理数的乘法运算律
知1-讲
要点精析: (1)在有理数乘法中,每个乘数都叫做一个因数. (2)几个有理数相乘,先确定积的符号,然后将绝对
值相乘. (3)几个有理数相乘,如果有一个因数为0,那么积
就等于0;反之,如果积为0,那么至少有一个因 数为0.
知1-讲
例2 计算:
(1)(-5)×(-4)×(-2)×(-2);
乘法分配律:a(b+c)=ab+ac
知2-导
根据分配律可以推出:一个数同几个数的和相 乘,等于把这个数分别同这几个数相乘,再把 积相加.
知2-讲
例3 计算:
(1)
-
5 6
+
3 8
-24;
(2)
-7
-
4 3
5 14
.
解: (1)
倒数的性质: (1)如果a,b互为倒数,那么ab=1; (2)0没有倒数(因为0与任何数相乘都不为1); (3)正数的倒数是正数,负数的倒数是负数; (4)倒数等于它本身的数是±1; (5)倒数是成对出现的.
1.必做: 完成教材P51-52,随堂练习(1)、 (3), 习题T1(1)-(4)、2、3、4
知1-练
(来自《典中点》)
知1-练
3 若五个有理数相乘的积为正数,则五个数中负
数的个数是( D )
A.0 B.2 C.4 D.0或2或4
4
(中考·台湾)算式
-1
1 2
-3
1 4
2 3
之
值为何?( D )
A. 1 B. 11 C. 11 D. 13
4
12
4
4
(来自《典中点》)
知识点 2 有理数的乘法运算律
知1-讲
要点精析: (1)在有理数乘法中,每个乘数都叫做一个因数. (2)几个有理数相乘,先确定积的符号,然后将绝对
值相乘. (3)几个有理数相乘,如果有一个因数为0,那么积
就等于0;反之,如果积为0,那么至少有一个因 数为0.
知1-讲
例2 计算:
(1)(-5)×(-4)×(-2)×(-2);
北师大版2024年新版七年级数学上册课件:2.3 课时1 有理数的乘法法则
(−3)×1= −3 (−3)×2=−6 (−3)×3=−9 (−3)×4=−12
两个因数的符号不同,积的结果是负数.
探究新知
(−3)×0=0 3×0=0 一个数与0相乘是0.
探究新知
归纳: 有理数乘法法则
两数相乘,同号得正,异号得负,并把绝对值相乘. 任何数与0相乘,积仍为0.
有理数乘法的步骤: 1.确定积的符号 2.将绝对值相乘
北师大版 七年级(上册) 2024新版教材
2.3 课时1 有理数的乘法法则
学习目标
1. 经历探索有理数乘法法则的过程,掌握有理数的 乘法法则,并体会法则的合理性. 2. 会进行有理数的乘法运算. 3. 理解倒数的含义,会识别两个数是否互为倒数.
新知导入
甲水库的水位每天升高3厘米,乙水库的水位每天下降3厘米, 4天后甲、乙水库水位的总变化量各是多少?
(4)(− 38)×(− 83) = +(38 × 83) = 1.
探究新知
知识点 2 倒数
计算:(1)(− 38)×(− 83)
(2)(−3)×(− 13)
解: (1)(− 38)×(− 83)
(2) (−3)×(− 13)
= +(38 × 83) =1.
= +(3× 13) =1.
想一想,这两个算式有什么特点? 两个数的乘积都是1
甲水库
乙水库
新知导入 甲水库
乙水库
如果用正号表示水位上升,用负号表示水位下降,
那么4天后甲水库的水位变化量为: 3+3+3+3 =3×4 =12(cm)
乙水库的水位变化量为:
(−3)+(−3)+(−3)+(−3)=(−3)×4
-12
探究新知
知识点 1 有理数乘法法则
北师大版《有理数的乘法》优课一等奖课件
3 9
解:原式
(
8 3
4 9
)
32 27
同号得正, 绝对值相乘
➢活动一
活动规则:班级分成8个小组,每个小 组成员写出自己喜欢的有理数,老师将会任 选两名小组的成员来展示,要求其他同学回 答他们的乘积.
➢探究二
先计算,再观察算式和结果特征,得出结论.
(1)( 8) ( 3) 38
解:原式 (8 3) 38
请列出算式,完成填空. (1)5 分钟后,液体冰激凌的温度是__(_2_)__5___℃. (2)8 分钟 前,液体冰激凌的温度是_(__2_)_(___8)___℃.
➢探究新知
甲水库的水位每天升高3厘米,乙水库的水位每天下 降3厘米,4天后甲、乙水库水位的总变化量各是多少?
➢探究新知
如果用正号表示水位上升,用负号表示水 位下降,那么4天后甲水库的水位变化量为:
(2)(0.125) (8) 解:原式 (0.1258)
1
1
从以上两题的求解中你发现了什么?
乘积为1的两个有理数互为倒数.
➢实践出真知
例2:计算
(1)(6)
7(5)源自4(2) 3 10 2
5 9
解:原式
6
7
5 4
解:原式
3 5
10 9
2
(42) ( 5) 4
42 5 4
北师大版七年级上第二章有理数及其运算
2.7 有理数的乘法
➢情景引入
在冷冻室中,用冷却的方法可将液体冰激凌的温度每1 分钟下降 2 ℃.如果现在液体冰激凌的温度是0 ℃.
规定用正数表示温度上升,负数表示温度下降;以现在对应时间 为“基准”0分钟, 往后记为正, 之前记为负, 如:1分钟前记为-1分钟.
2024年秋新北师大版七年级上册数学教学课件 2.4有理数的乘方课时3
还记得底数为10的幂有什么规律吗?算一算,想一想.
101=__1_0_ , 102=_1_0_0_ ,103=_1_0_0_0_ , 104=_1_0_0_0_0_, 106=_1_0_0_0__0_0_0_, 1010 =_1_0_0_0_0__0_0_0_0_0_0__, … 指数与运算结果中的0的个数有什么关系? 10的指数等于1后面0的个数;
A.9 060
B.90 600
C.906 000
D.9 060 000
随堂练习
6.写出下列用科学记数法表示的数据的原数. (1)地球绕太阳公转的速度约是1.1×105千米/时;__1_1_0__0_0_0__ (2)一个正常人一年的心跳次数大约为3.679×107次;__3_6_7_9_0__0_0_0 (3)世界文化遗产长城总长约6.7×106 m.__6_7_0_0__0_0_0_
随堂练习
4.废旧电池对环境的危害十分巨大,一粒纽扣电池能污染 600立方米的水(相当于一个人一生的饮水量).某班有50名学 生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收, 那么被该班学生一年丢弃的纽扣电池能污染的水量用科学记 数法表示为___3_×__1_0_4 __立方米.
随堂练习
5.用科学记数法表示9.06×105,则原数是( C )
新知探究 知识点1 科学记数法
还记得底数为10的幂有什么规律吗?算一算,想一想. 101=__1_0_ , 102=_1_0_0_ ,103=_1_0_0_0_ , 104=_1_0_0_0_0_, 106=_1_0_0_0__0_0_0_, 1010 =_1_0_0_0_0__0_0_0_0_0_0__, … 指数与运算结果的位数有什么关系?
10的指数比运算结果的位数少1;
101=__1_0_ , 102=_1_0_0_ ,103=_1_0_0_0_ , 104=_1_0_0_0_0_, 106=_1_0_0_0__0_0_0_, 1010 =_1_0_0_0_0__0_0_0_0_0_0__, … 指数与运算结果中的0的个数有什么关系? 10的指数等于1后面0的个数;
A.9 060
B.90 600
C.906 000
D.9 060 000
随堂练习
6.写出下列用科学记数法表示的数据的原数. (1)地球绕太阳公转的速度约是1.1×105千米/时;__1_1_0__0_0_0__ (2)一个正常人一年的心跳次数大约为3.679×107次;__3_6_7_9_0__0_0_0 (3)世界文化遗产长城总长约6.7×106 m.__6_7_0_0__0_0_0_
随堂练习
4.废旧电池对环境的危害十分巨大,一粒纽扣电池能污染 600立方米的水(相当于一个人一生的饮水量).某班有50名学 生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收, 那么被该班学生一年丢弃的纽扣电池能污染的水量用科学记 数法表示为___3_×__1_0_4 __立方米.
随堂练习
5.用科学记数法表示9.06×105,则原数是( C )
新知探究 知识点1 科学记数法
还记得底数为10的幂有什么规律吗?算一算,想一想. 101=__1_0_ , 102=_1_0_0_ ,103=_1_0_0_0_ , 104=_1_0_0_0_0_, 106=_1_0_0_0__0_0_0_, 1010 =_1_0_0_0_0__0_0_0_0_0_0__, … 指数与运算结果的位数有什么关系?
10的指数比运算结果的位数少1;
(2024秋新版本)北师大版七年级数学上册 《 有理数的乘方》PPT课件)
−
1 2
×
−
1 2
×
−
1 2
=18
(3)
−
1 4
2
=
−
1 4
×
−
1 4
=116
连接中考
1. (-1)2等于( B )
A.-1
B.1
C.-2
D.2
2. 32可表示为( C )
A.3×2
B.2×2×2
C.3×3 D.3+3
课堂检测
基础巩固题
1.关于-74的说法正确的是( C )
A.底数是-7
B.表示4个-7相乘
探究新知
想一想 (-2)4 , -24,它们一样吗?说说它们的意义与读法.
(-2)4 =(-2)×(-2)×(-2)×(-2) =16,表示4个(-2)相乘, 读作“负2的4次方” . -24 =-2×2×2×2=-16 ,表示4个2相乘的相反数, 读作“负的2的4次方”或 “2的4次方的相反数”. 思考:它们的底数分别是什么?相同么?
素养目标
3.运用乘方的意义解决相关问题;体会解决问题策略的多 样性,发展实践能力与创新意识. 2.能够正确进行有理数的乘方运算.
1.理解有理数的乘方,幂,底数,指数概念.
探究新知 细胞分裂:
知识点 有理数的乘方
一次 2
二次 2×2
三次 2×2×2
探究新知
想一想 1个细胞30分钟后分裂成2个,经过5小时,这种细胞 由1个能分裂成多少个?
探究新知
计算:(1)
−
3 4
2
(2)-
3 4
2
(3)-342
解:
(1)
−
3 4
2
北师大版七年级数学上册《有理数的乘法》课件
7 10
=7 3
3
2 3
5 4
=
2 3
5 4
= 5 6
4
24 13
16 7
0
4 3
=0
5
5 4
1.2
1 9
=
5 4
6 5
1 9
=
3 2
1 9
=1 6
6
3 7
1 2
8 15
=
3 14
8 15
4 35
课堂小结
通过这节课的学习活动,你有什么收获?
24
(2) 7
4 3
5 14
解:(1)
5 6
3 8
24
在应用乘法对加 法的分配律时,括号
=
5 6
24
3 8
24
外的因数与括号内各
项相乘,各项应包含
=20 9
=11
前面的符号.
解:(2) 7
4 3
5 14
=
7
5 14
4 3
=
5 2
4 3
= 10 3
随堂练习
1.计算:
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
第2课时 有理数乘法的运算律
北师大版·七年级上册
知识回顾
1.有理数乘法法则是什么? 2.大家学过乘法的哪些运算律?
有理数乘法法则
两数相乘,同号得正,异号得负,并把 绝对值相乘.任何数与 0 相乘,积仍为 0.
乘法交换律 两个数相乘,交换因数的位置,积不变. 乘法结合律 三个数相乘,先把前两个数相乘,再和另 外一个数相乘,或先把后两个数相乘,再 和另外一个数相乘,积不变.
北师大版七年级数学上册《有理数》课件(共29张PPT)
(3)-1,2,-3,4,-5,6,-7,8 ,-9…… 其中第279个数为 _____ ,第320个数的符号 为___,规律是______________;
199
奇数为+ 偶数为-
+
-279
-345
2002
-2002
3的倍数为-其它为+
奇数为- 偶数为+
选做题
2、去超市买食品时经常看到包装袋上写着净重 150g±5g.这里表示什么意思?
用正数和负数可以表示具有相反意义的量
例1 (1)在知识竞赛中,如果+10分表示加10分,那么 扣20分怎样表示? (2)某人转动转盘,如果用+5表示沿逆时针方向转 了5圈,那么沿顺时针方向转了12圈怎样表示? (3)在某次乒乓球质量检测中,一只乒乓球超出标 准质量0.02克记作+0.02,那么-0.03克表示什么?
0
数怎么不够用了?
加10分
扣10分
得0分
第1题
第2题
第3题
第4题
第5题
第一队
第二队
第三队
第四队
某班进行知识竞赛,评分标准是:答对一题加10分, 答错一题扣10分,不答不得分;每一个队的基础分都是0分。
红色所表示的得 分比0分低。
带“-”的得分比0分低。
这里出现了比0分低的得分,我们可以用带有“-”号的数来表示,如-10(读作:负10)表示比0分低10分的数; 对于比0分高的得分,可以在前面加上“+”号,如+10(读作:正10)表示比0分高10的数。
里面食品的重量为比150g左右,多不会超过155g, 少不会少于145g.
选做题
3、小明的爸爸开的小店昨天获利120元,他在每日 收支账本上记下“120元”。今天小店亏了20元, 他应记作__。
199
奇数为+ 偶数为-
+
-279
-345
2002
-2002
3的倍数为-其它为+
奇数为- 偶数为+
选做题
2、去超市买食品时经常看到包装袋上写着净重 150g±5g.这里表示什么意思?
用正数和负数可以表示具有相反意义的量
例1 (1)在知识竞赛中,如果+10分表示加10分,那么 扣20分怎样表示? (2)某人转动转盘,如果用+5表示沿逆时针方向转 了5圈,那么沿顺时针方向转了12圈怎样表示? (3)在某次乒乓球质量检测中,一只乒乓球超出标 准质量0.02克记作+0.02,那么-0.03克表示什么?
0
数怎么不够用了?
加10分
扣10分
得0分
第1题
第2题
第3题
第4题
第5题
第一队
第二队
第三队
第四队
某班进行知识竞赛,评分标准是:答对一题加10分, 答错一题扣10分,不答不得分;每一个队的基础分都是0分。
红色所表示的得 分比0分低。
带“-”的得分比0分低。
这里出现了比0分低的得分,我们可以用带有“-”号的数来表示,如-10(读作:负10)表示比0分低10分的数; 对于比0分高的得分,可以在前面加上“+”号,如+10(读作:正10)表示比0分高10的数。
里面食品的重量为比150g左右,多不会超过155g, 少不会少于145g.
选做题
3、小明的爸爸开的小店昨天获利120元,他在每日 收支账本上记下“120元”。今天小店亏了20元, 他应记作__。
2.3 第1课时 有理数的乘法 北师大版七年级数学上册课件
8
l
探究5
(5)原地不动或运动了零次,结果是什么?
O
0
结果都是仍在原处,即结果都是_____.
用式子表达为:0×3=0;0×(-3)=0;
2×0=0;(-2)×0=0.
l
从符号和绝对值角度观察下列算式,你有什么发现?
(+2)×(+3)=+6; (-2)×(-3)=+6;
(-2)×(+3)=-6; (+2)×(-3)=-6;
m
课堂小结
有理数乘法
探究总结
有理数
乘法法则
两数相乘,同号得正,异号得负,并把绝对值相乘.
任何数与0相乘,积仍为0.
交流讨论
<
(1)若a<0,b>0,则ab______0
;
>
(2)若a<0,b<0,则ab______0
;
(3)若ab>0,则a、b应满足什么条件?
a、b同号
(4)若ab<0,则a、b应满足什么条件?
a、b异号
(1) 负因数的个数为偶数个,则积为正数;
(2) 负因数的个数为奇数个,则积为负数;
(3) 当有一个因数为零时,积为零.
例3 计算:
(1)(-3)× ×(- )×(
(2)(-5)×6×(- )× .
);
解:(1)原式=-3× × ×
(2)原式=5×6× ×
0×3=0 ; 0×(-3)=0 ; 2×0=0 ;
(-2)×0=0.
正
正
(同号得正)
正数乘正数积为____数;负数乘负数积为____数;
北师大版七年级上册数学有理数乘方的运算精品课件PPT
例2:计算
2 (1) ( 2 ) 3 ;(2) 4 ;(3) 3 2
4
解 : ( 1 ) 、 ( 2 ) 3 [ ( 2 ) ( 2 ) ( 2 ) ] ( 8 ) 8 (2 )、 2 4 (2 2 2 2 ) 1 6 (3)、 32 339 4 44
北师大版七年级上册数学 2.9.2有理数乘方的运算 课件
想一想
珠穆朗玛峰是
世界最高峰,它的 海拔高度是8848米。
≈
把一张足够大
的厚度为0.1毫米的
纸,连续对折30次
的厚度能超过珠穆
朗玛峰?
北师大版七年级上册数学 2.9.2有理数乘方的运算 课件
北师大版七年级上册数学 2.9.2有理数乘方的运算 课件
折纸与楼高
纸的厚度为0.1mm ,对折一次后,厚度为2×0.1mm (1) 对折两次后,厚度为多少毫米? (2)假设对折20次后,厚度为多少毫米? (3)若每层楼高度为3米,这张纸对折20次后约有多
北师大版七年级上册数学 2.9.2有理数乘方的运算 课件
通过上述练习,想一想乘方运算的符号 如何确定?
我们可以把有理数乘方运算的符号 法则总结如下 :
正数的任何次方都是正数, 负数的偶数次的幂是正数, 负数的奇数次的幂是负数.
0的任何正整数次幂都是0.
北师大版七年级上册数学 2.9.2有理数乘方的运算 课件
北师大版七年级上册数学 2.9.2有理数乘方的运算 课件
北师大版七年级上册数学 2.9.2有理数乘方的运算 课件
把下列各式写成乘方的形式: 3
(1)6×6×6 = 6
(2)2.1×2.1= 2.12
(3)(-3) ×(-3) ×(-3) ×(-3)=(-3)4
(4) 1 × 1 × 1×
2 (1) ( 2 ) 3 ;(2) 4 ;(3) 3 2
4
解 : ( 1 ) 、 ( 2 ) 3 [ ( 2 ) ( 2 ) ( 2 ) ] ( 8 ) 8 (2 )、 2 4 (2 2 2 2 ) 1 6 (3)、 32 339 4 44
北师大版七年级上册数学 2.9.2有理数乘方的运算 课件
想一想
珠穆朗玛峰是
世界最高峰,它的 海拔高度是8848米。
≈
把一张足够大
的厚度为0.1毫米的
纸,连续对折30次
的厚度能超过珠穆
朗玛峰?
北师大版七年级上册数学 2.9.2有理数乘方的运算 课件
北师大版七年级上册数学 2.9.2有理数乘方的运算 课件
折纸与楼高
纸的厚度为0.1mm ,对折一次后,厚度为2×0.1mm (1) 对折两次后,厚度为多少毫米? (2)假设对折20次后,厚度为多少毫米? (3)若每层楼高度为3米,这张纸对折20次后约有多
北师大版七年级上册数学 2.9.2有理数乘方的运算 课件
通过上述练习,想一想乘方运算的符号 如何确定?
我们可以把有理数乘方运算的符号 法则总结如下 :
正数的任何次方都是正数, 负数的偶数次的幂是正数, 负数的奇数次的幂是负数.
0的任何正整数次幂都是0.
北师大版七年级上册数学 2.9.2有理数乘方的运算 课件
北师大版七年级上册数学 2.9.2有理数乘方的运算 课件
北师大版七年级上册数学 2.9.2有理数乘方的运算 课件
把下列各式写成乘方的形式: 3
(1)6×6×6 = 6
(2)2.1×2.1= 2.12
(3)(-3) ×(-3) ×(-3) ×(-3)=(-3)4
(4) 1 × 1 × 1×
2024年北师大七年级数学上册 2.4 有理数的乘方(课件)
A.-104=(-10) ×(-10) ×(-10) ×(-10)
B.(-10) 3=1 000
C.-1 000=103
D.(-10) 3=-103
感悟新知
解题秘方:紧扣 10 的意义判断 .
n
知3-练
解:A 选项中, -104=-10× 10× 10× 10,故错误;
B 选项中,(-10) 3=-1 000,故错误;
;
3
3
3
3
3
27
(6)(- 1) 2 024.
(- 1) 2 024= (- 1)×(- 1)×(- 1)× … ×(- 1) =1.
2024个(- 1)
感悟新知
知2-练
2-1.下列运算正确的是( C
A.-22=4
C. (-
1 3
1
) =-
2
8
)
1 3
1
B. (-2 ) =-8
3
27
D.(-2) 3=-6
(1)-
53;
(2) -(-
2)4;
知2-练
2
(3) - 2;
3
2
2
(4) (- )2; (5)(-1 )3 ;(6)(- 1) 2 024.
3
3
解题秘方:计算时要分清 哪些“-”是属于底数的,
然后再根据运算法则进行计算 . 特别注意:
求带分数的乘方时,要先将带分数化成假
分数 .
感悟新知
(1)-
53 ;
底数是 - 5,指数是 4,读作 - 5 的 4 次方 .
感悟新知
知1-练
1
1
1
1
1-1.算式 (- )× (- )× (- )×(- )可表示为(
数学:有理数的乘方(北师大版七年级上)名师公开课获奖课件百校联赛一等奖课件
)3
2
例2:计算 (1)10 2 ,10 3 ,10 4 ; (2)(-10)2 ,(-10)3 ,(-10)4
猜一猜:你发觉了什么规律?
4
有理数乘方运算旳符号法则 :
1、正数旳任何次方都是正数,负 数旳偶多次旳幂是正数,负数旳奇 多次旳幂是负数.
2、10旳n次幂等于1旳背面有n个0.
3、互为相反数旳两个数旳偶次幂 相等,奇次幂相反.
第二章 有理数及其运算
1、了解有理数旳乘方旳意义; 2、能进行有理数旳乘方运算;
某种细胞每过 30分钟便由1个分裂 成2个。既有1个细 胞,经过5小时能分 裂成几种?
时 30 60 90 120 150 180 210 240 270 300
间: 分
个 数: 个
2×2×2………×2×2(共10个2) 有简朴旳表达措施吗?
8
教科书习题 2.13, 知识技能1、2、 问题处理2.
1、填空(1)在(-6)3中,底数是 ,指数是 ;
(2)在
(中6),4 底数是
5
,指数是
;
2、计算:(1) (3)3
(2) (1.5)2
(3) ( 1 )2 7
3、一种数旳平方为16,这个数可能是几?,一种数旳平方 可能是零吗?可能是负数吗?
8
4、计算: (1)2010
;
(1)2011
;
5、1012旳积旳末尾有 个0。 6、1米长旳小棒,第1次截去二分之一,第2次截去剩余 旳二分之一,如此截下去,第7次后剩余旳小棒有多长?
an
底数
指数
运算旳成果叫做幂
读做a 旳n次方,看作是 a旳n次方成果时,也可 读做a旳n次幂。
2
北师大版七年级数学上册课件2.4有理数的乘方(第一课时)课件(共29张PPT)
2
101
,
1 50
( )
4
a (a 0)
2
规律
(1)1的任何次幂都为1;
(2)-1的幂很有规律:
-1的奇次幂是-1, -1的偶次幂是1.
注意:当底数是负数或分数时,底数一定要加上
括号,这也是辨认底数的方法.
规律
1.底数为10的幂的特点:
10的几次幂,1的后面就有几个0.
2.有理数乘方运算的符号法则·
4.计算
=
++⋯+
个
.
1
5.计算:
(1)
;
(1) .
(2)
−
(2)-2.
×(-4)2;
(3)(-3)2÷27÷
(3)-1.
−
.
6.计算 −
7.计算:
×
−
×1.52 021的结果是
×
=
-9
注意:底数是负数或分数时,必须加上括号.
两个人打赌谁得到的钱多,甲对乙说:我从明天
开始,每天给你100元,而你第一天只需给我1元钱
,以后你每天给我的钱是前一天的2倍,时间为11天
,乙欣然同意了.
你觉得,最后谁得到的钱多呢?
乘方的意义
有理数的乘方
乘方的运算
规律探究
温故知新
课堂导学
核心素养分层练
温故知新
课堂导学
核心素养分层练
PART
03
核心素养分层练
让学习变的简单
1.-32的值是( D )
101
,
1 50
( )
4
a (a 0)
2
规律
(1)1的任何次幂都为1;
(2)-1的幂很有规律:
-1的奇次幂是-1, -1的偶次幂是1.
注意:当底数是负数或分数时,底数一定要加上
括号,这也是辨认底数的方法.
规律
1.底数为10的幂的特点:
10的几次幂,1的后面就有几个0.
2.有理数乘方运算的符号法则·
4.计算
=
++⋯+
个
.
1
5.计算:
(1)
;
(1) .
(2)
−
(2)-2.
×(-4)2;
(3)(-3)2÷27÷
(3)-1.
−
.
6.计算 −
7.计算:
×
−
×1.52 021的结果是
×
=
-9
注意:底数是负数或分数时,必须加上括号.
两个人打赌谁得到的钱多,甲对乙说:我从明天
开始,每天给你100元,而你第一天只需给我1元钱
,以后你每天给我的钱是前一天的2倍,时间为11天
,乙欣然同意了.
你觉得,最后谁得到的钱多呢?
乘方的意义
有理数的乘方
乘方的运算
规律探究
温故知新
课堂导学
核心素养分层练
温故知新
课堂导学
核心素养分层练
PART
03
核心素养分层练
让学习变的简单
1.-32的值是( D )
七年级数学上册第二章有理数及其运算7有理数的乘法课件新版北师大版
×(-24)
= 14
×(-24)+ 13 ×(-24)+ 152
×(-24)
= 1 ×24- 1 ×24+ 5 ×24
43
12
=6-8+10
=8.
(2)9 1141 ×(-5)= 10
3 14
×(-5)
=10×(-5)+ 134 ×(-5)
售出个数
7
6
3
5
4
5
每件(元)
+3
+2
+1
0
-1
-2
该超市售完这30个茶杯后,赚了多少钱? 解析 (+3)×7+(+2)×6+(+1)×3+0×5+(-1)×4+(-2)×5=22(元). (47-32)×30+22=472(元). 答:该超市售完这30个茶杯后,赚了472元.
(2)
1 2
1 6
3 8
5 12
×(-24)
= 12
×(-24)+ 1 ×(-24)- 3 ×(-24)+ 5 ×(-24)
6
8
12
=12-4+9-10=7.
(3)(-4)×57+(-4)×43=(-4)×(57+43)
=(-4)×100=-400.
(4)49 124 125
=-50+ 15 =-48 13 .
14 14
(3)(-10)× 272
+19× 272
-5× 272
数学北师大版(2024)七年级上册课件 2.3.1有理数的乘法法则
课堂练习
6. 用正负数表示气温的变化量,上升为正,下降为负. 登山队攀登一座山峰,每登高 1 km,气温的变化量为 -6 ℃. 攀登 3 km 后,气温有什么变化?
解:(-6)×3 = -18. 答:攀登 3 km 后,气温下降了 18 ℃.
课堂小结
1.有理数的乘法法则是什么? 两数相乘,同号得正,异号得负,并把 绝对值相乘 特殊情况:任何数同 0 相乘,都得 0
相反数、倒数及绝对值的区别运算
3.填空:
原 数
-2.5 __-___3___ __-___5___
1 2
3 14
____7____
相
反 ___2_._5___
3
____5____ __-__12____ __-__74____ -7
பைடு நூலகம்
数
倒 数
___-_25____ __-__13____
-15
4
1
____2____ ____7____ ____7____
1 3 互为倒数,
-3 8
与
-8 互 3
为倒数。
跟踪训练
1的倒数为
1
1 的倒数为 3
3
2 的倒数为 3
3
2
-1的倒数为 -1
- 1 的倒数为 -3
3
2
- 的倒数为
3
-3
2
0的倒数为 零没有倒数
1
思考:a的倒数是 对吗?
a
(a≠0时,a的倒数是1 ) a
归纳总结
方法总结
(1)0没有倒数; (2)倒数等于本身的数有两个:±1; (3)互为倒数的两个数符号相同; (4)分数的倒数是分子与分母颠倒位置.
最新北师大版七年级数学上册《有理数的乘法》优质教学课件
课第后二研章讨
第1课时 有理数的乘法
知识要点基础练
综合能力提升练
拓展探究突破练
-9-
上完这节课,你收获了什么? 有什么样的感悟?与同学相互交 流讨论。
第二章 第1课时 有理数的乘法
课 后 作 业 知识要点基础练
综合能力提升练
拓展探究突破练
-10-
1. 从课后习题中选取; 2. 完成练习册本课时的习题.
B.a-b>0 D.|b|<|a|
第二章
第1课时 有理数的乘法
知识要点基础练
综合能力提升练
面问题.规定:水位上升为正,水位下降为负;几天后为正,几天前 为负.如果水位每天下降4 cm,那么3天后的水位变化用算式表示正确的是( C ) A.( +4 )×( +3 ) B.( +4 )×( -3 ) C.( -4 )×( +3 ) D.( -4 )×( -3 ) 10.如果四个互不相等的整数的积为4,那么这四个数的和是( A )
5.若-3,5,a 的积是一个负数,则 a 的值可以( D )
A.-15
B.-2
C.0
D.15
6.( 原创 )下列各式中,积为负数的是( D )
A.( -2 )×3×( -6 )
B.( -3.2 )×( +5.7 )×( -3 )×( -2 )×0
C.-(
-5
)×
-
1 5
×(
-4
)
D.6×(
-3
)×(
A.1 B.2 C.3 D.4 2.如果两个有理数的积是负数,和也是负数,那么这两个有理数( D ) A.同号且均为负数 B.异号且正数的绝对值比负数的绝对值大 C.同号且均为正数 D.异号且负数的绝对值比正数的绝对值大 3.在-2,3,-4,-5这四个数中任取两个数相乘,得到的积最大的是( A )
北师大版七年级数学上册《有理数》有理数及其运算PPT教学课件
重要总结:
(1)正数中的“+”可以忽略不写,如+8可以写成8. 负数中的“-”不可忽略
(2)可以用正数和负数表示具有相反意义的量
在一次答题中,评分标准是:答对加1分,
答错减1分,不回答0分;有两个队,的基本分
均为0分.两队答题情况如下表:
现在我们可以用带有“﹢”号和“﹣”号的数
表示各队每道题的得分情况.试完成下表:
+14
-8
+7
+12
1.求该外卖小哥这一周平均每天送餐多少单?
2.外卖小哥每天的工资由底薪 30 元加上送单补贴构成,送单补贴的方案如下:每天送
餐量不超过40单的部分,每单补贴4元;超过40单但不超过50单的部分,每单补贴6元;
超过50单的部分,每单补贴8元求该外卖小哥这一周工资收入多少元?
课堂小练
第二章 有理数及其运算
1 有理数
七年级上册
新课导入
观 察
1.全国主要城市天气预报
城市
天气
高温
低温
城市
天气
高温
低温
长沙
小雨
15
6
长春
多云
18
10
沈阳
小雨
19
7
天津
小雨
12
8
呼和浩特
雨夹雪
8
﹣3
乌鲁木齐
晴
4
﹣3
西宁
小雪
5
﹣4
银川
小雪
0
﹣3
同学们可知道天气预报播音员是怎样读这些城市的气温的?
2.地形局部示意图
3.若该种食品每袋的合格标准为4505克,求该食品的抽样检测的合格率.
每袋与标准质量的差值(单位:克)
(1)正数中的“+”可以忽略不写,如+8可以写成8. 负数中的“-”不可忽略
(2)可以用正数和负数表示具有相反意义的量
在一次答题中,评分标准是:答对加1分,
答错减1分,不回答0分;有两个队,的基本分
均为0分.两队答题情况如下表:
现在我们可以用带有“﹢”号和“﹣”号的数
表示各队每道题的得分情况.试完成下表:
+14
-8
+7
+12
1.求该外卖小哥这一周平均每天送餐多少单?
2.外卖小哥每天的工资由底薪 30 元加上送单补贴构成,送单补贴的方案如下:每天送
餐量不超过40单的部分,每单补贴4元;超过40单但不超过50单的部分,每单补贴6元;
超过50单的部分,每单补贴8元求该外卖小哥这一周工资收入多少元?
课堂小练
第二章 有理数及其运算
1 有理数
七年级上册
新课导入
观 察
1.全国主要城市天气预报
城市
天气
高温
低温
城市
天气
高温
低温
长沙
小雨
15
6
长春
多云
18
10
沈阳
小雨
19
7
天津
小雨
12
8
呼和浩特
雨夹雪
8
﹣3
乌鲁木齐
晴
4
﹣3
西宁
小雪
5
﹣4
银川
小雪
0
﹣3
同学们可知道天气预报播音员是怎样读这些城市的气温的?
2.地形局部示意图
3.若该种食品每袋的合格标准为4505克,求该食品的抽样检测的合格率.
每袋与标准质量的差值(单位:克)
2.4 第1课时 有理数的乘方及其运算 课件 2024—2025学年北师大版数学七年级上册
1
1
1
6
(2) ( ) 表示 6 个 相乘,读作 的 6 次方,也读
2
2
2
1
作 的 6 次幂,其中 1 叫作 底数 ,6叫作 指数 。
2
2
知识讲解
探究:指出下列各组数的异同
(2) 和 2
4
4
6 2 62
( ) 和
5
5
点拨:
(1)负数的乘方,在书写时一定要把整个负数用小括号括起来。
(2)分数的乘方,在书写时一定要把整个分数用小括号括起来。
(2)假设对折20次后,厚度为多少毫米?
(3)若每层楼高度为3米,这张纸对折20次后约有多少层楼高?
(4)假设对折30次,其厚度能否超过珠穆朗玛峰 ?
(5)通过活动,你从中得到了什么启示?
知识讲解
对折2次厚度为
0.2
mm,
对折3次厚度为
0.4
mm,
对折4次厚度为
0.8
对折20次后大约
有35层楼高
mm,
胞由 1 个能分裂成多少个?
3
2
1 个细胞 30 min 后分裂成 2 个,1 h 后分裂成 2 × 2 个, h后
分裂成 2 × 2 × 2个……5 h 后要分裂 10 次,分裂成
。
。
知识讲解
一般地,n个相同的因数a相乘,记作an,读作“a
的n次幂(或a的n次方)”,即
a×a×…×a = an
n个
第二章 有理数及其运算
第二章 有理数及其运算
4 有理数的乘方
第1课时 有理数的乘方及其运算
学习目标
1 理解并掌握有理数的乘方、幂、底数、指数的概念及意义。(重点)
2 能够正确进行有理数的乘方运算。(难点)
1
1
6
(2) ( ) 表示 6 个 相乘,读作 的 6 次方,也读
2
2
2
1
作 的 6 次幂,其中 1 叫作 底数 ,6叫作 指数 。
2
2
知识讲解
探究:指出下列各组数的异同
(2) 和 2
4
4
6 2 62
( ) 和
5
5
点拨:
(1)负数的乘方,在书写时一定要把整个负数用小括号括起来。
(2)分数的乘方,在书写时一定要把整个分数用小括号括起来。
(2)假设对折20次后,厚度为多少毫米?
(3)若每层楼高度为3米,这张纸对折20次后约有多少层楼高?
(4)假设对折30次,其厚度能否超过珠穆朗玛峰 ?
(5)通过活动,你从中得到了什么启示?
知识讲解
对折2次厚度为
0.2
mm,
对折3次厚度为
0.4
mm,
对折4次厚度为
0.8
对折20次后大约
有35层楼高
mm,
胞由 1 个能分裂成多少个?
3
2
1 个细胞 30 min 后分裂成 2 个,1 h 后分裂成 2 × 2 个, h后
分裂成 2 × 2 × 2个……5 h 后要分裂 10 次,分裂成
。
。
知识讲解
一般地,n个相同的因数a相乘,记作an,读作“a
的n次幂(或a的n次方)”,即
a×a×…×a = an
n个
第二章 有理数及其运算
第二章 有理数及其运算
4 有理数的乘方
第1课时 有理数的乘方及其运算
学习目标
1 理解并掌握有理数的乘方、幂、底数、指数的概念及意义。(重点)
2 能够正确进行有理数的乘方运算。(难点)