第五章定积分综合练习题

合集下载

高等数学第五章定积分试题

高等数学第五章定积分试题

第五章 定 积 分§5—1 定积分概念一、填空题1. )(x f 在[a,b]上可积的充分条件是 。

2. nn knk n ∑=∞→1lim用定积分表示可表示成 。

3. 由定积分的几何意义知⎰-ππxdx sin = ,⎰-ππxdx sin = 。

4. 定积分dx x a aa⎰--22的几何意义是 。

二.判断题。

1.若f(x)在[ a,b]上有界,则f(x)在[a,b]上可积。

( ) 2.若f(x)在[a,b]上可积,则f(x)在[ a,b]上有界。

( ) 3.若f(x)、g(x)在[a,b]上都不可积,则f(x)+g(x)在[a,b]上必不可积。

( ) 5. 若f(x)在[a,b]上可积,则g(x) )在[a,b]上不可积,则f(x)+g(x)在[a,b]上一定不可积。

( ) 三.单项选择题。

1. 定积分⎰badx x f )(表示和式的极限是 。

(A )、))((1l i ma b nkf n a b n k n --∑=∞→ (B )、))(1(1l i ma b nk f n a b n k n ---∑=∞→ (C )∑=∞→∆nk k kn x f 1)(l i m ξ(i ξ为i x ∆中任一点)(D )、∑=∞→∆nk k kx f 1)(l i m ξλ(}{max 1i ni x ∆=≤≤λ,i ξ为i x ∆中任一点)2.定积分⎰badx x f )(=∑=∞→∆nk kkxf 1)(l i m ξλ表明(A )、[b a ,]必须n 等分,k ξ是[x k-1,x k ]的端点。

(B )、[b a ,]可以任意分,ξk必是[x k-1,x k ]的端点。

(C )、[b a ,]可以任意分, }m ax{1x k nk ∆≤≤=λ,k ξ可在[x k-1,x k ]上任取。

(D )、[b a ,]必须等分, }m ax{1x k nk ∆≤≤=λ,k ξ可在[x k-1,x k ]上任取四.利用定积分定义计算 ⎰baxdx )(b a <§5—2 定积分的性质 中值定理一、判断题1.若函数)(x f 在[b a ,]上连续,且0)(2=⎰dx x f ba则在[b a ,]上f(x)0≡ ( )2.若f(x),g(x)在[b a ,]上可积且f(x)<g(x),则dx x g dx x f baba⎰⎰<)()( ( )3.若函数)(x f 在[b a ,]上可积且[d c ,]⊂ [b a ,] 则⎰⎰≤badcdx x f dx x f )()( ( )4.若函数)(x f 在[b a ,]上可积,则至少有一点∈δ[b a ,],使⎰-baa b f ))((δ ( )5.不等式 32a r c t a n 9331ππ≤≤⎰x d x x 成立。

高等数学题库第05章(定积分)

高等数学题库第05章(定积分)

第五章 定积分习题一一.选择题 1.⎰b xt dt e dx d 2的结果为( ) A.2x e B. 2x e - C. 22x b e e - D. 22x xe - 2.设()x f 连续,则()⎰=-→xa ax dt t f ax x lim( ) A.0 B.a C.()a af D. ()a f 3.设函数()⎰-=xdt t y 01,则y 有( )A.极小值21 B. 极小值21- C. 极大值21 D. 极大值21- 4.若()()⎰-=xdt x t dxd x f 0cos ,则()=x f ( ) A.x cos B. x cos - C.x sin D.x sin -5.若()⎰=+122dx k x ,则=k ( )A.0B.-1C.1D.21 6.曲线x y -=42与y 轴所围图形的面积为( ) A.()⎰--2224dy y B. ()⎰-224dy y C.dx x ⎰-44 D. dx x ⎰--444二.填空题1.若物体以速度()()()0≥=t v t v v 作直线运动,用定积分表示从时刻1t 到时刻2t 所经过的路程S,则S= .2.设平面图形由直线)1(,>==b b x x y 和曲线1=xy 所围(第一象限部分),该图形的面积I 的定积分表达式为 .3.()()[]=--⎰-dx x f x f a a.4.⎰-=-11221sin dx xx arc x .5.⎰=bdx x 0.6.设()x f '在[]b a ,连续,且()()1,0==b f a f ,则()()[]⎰=+badx x f x f 2'1 .7.设()x f 在()+∞∞-,一阶可导,()()()⎰≠=x x dt t xf x F 1,0则()=x F '' . 8.⎰=++∞→10421limdx x n nxn .9.若广义积分()⎰+∞2ln kx x dx发散,则k 的取值为 .10.由0,1,4>≥≤x y xy 所夹图形绕y 轴旋转所成旋转体体积V = . 三、计算题 1. 计算⎰+1313arctan dx xx x .2. 计算⎰+∞-0sin xdx e x .3. 求⎰-=xt dt e x f 02)(对x 的导数.4. 计算⎰-⎪⎪⎭⎫⎝⎛-++112)2ln(cos 3tan sin dx x x x x . 5. 计算⎰--22232)1(dx x .6. ⎰e dx x 13)(ln 7. ⎰-1)1(arcsin dx x x x习题二一.选择题1.()x f 在[]b a ,上连续是()⎰ba dx x f 存在的( )A.必要条件B.充分条件C. 充分必要条件D.以上A 、B 、C 都不对 2.在积分中值定理()()()a b f dx x f ba -=⎰ξ中,ξ是( )A. []b a ,内任意一点B. []b a ,的中点C. []b a ,内某一点D. []b a ,内至少存在的某一点3.若()x f 可导,()()20,00'==ff ,则()2limxdt t f xx ⎰→的值为( )A.0B.1C.2D.不存在4.设()()⎪⎩⎪⎨⎧=≠-=⎰0,0,122x a x x dte xf x t 若()x f 在0=x 连续则必有( ) A.1=a B.2=a C.0=a D.1-=a 5.⎰=+b a dx xdx d 211( D ) A.211x + B. 211b + C. 211a+- D.0 6.设()()⎰-=x x f dt t f 02121,且()10=f ,则()x f =( )A.2xe B.x e 21 C.x e 2 D.x e 2217.若()()()⎰+==xtxCdt t e x f e x x g 02122213,,且()()23lim '=+∞→x g x f x ,则必有( ) A.C=0 B.C=1 C.C=-1 D.C=2 8.=⎰-112dx x ( )A.0B.21C.1D.2 9.设()x f ''在[]b a ,连续,且()()b a f a b f =='',,则()()⎰∙b adx x f x f '''=( )A.b a -B. )(21b a -C.22b a -D.)(2122b a -10.若10=⎰+∞-dx ae x 收敛,则=a ( )A.1B.2C.21D. 21- 二.填空题1.设()x f 在积分区间上连续,则()()[]=--⎰-dx x f x f x aa2 .2.定积分⎰-=22cos ππxdx x .3.定积分⎰-=22cos ππxdx x .4.定积分()⎰-=+ππdx x xsin 2.5.定积分⎰-=+222cos 1sin ππdx x x.6.设()⎰=x tdt x f 0tan ,则()=x f ' . 7.设()⎰+∙=20321x dt t t x f ,则()=x f ' .8.设()⎰=xtdt x f 1arctan ,则()=x f ' .9.设()⎰=x tdt x f 0sin ,则=⎪⎭⎫⎝⎛2'πf .10.⎰+∞-=02dx e x .三、计算题1. 设⎪⎩⎪⎨⎧≤<+≤≤-=-10 ,1101 ,)(2x x x xe x f x ,求⎰-2 0.)1(dx x f2. 求极限)cos 1()1arctan(lim 0002x x du dt t xu x -⎥⎥⎦⎤⎢⎢⎣⎡+⎰⎰→. 3. ⎰+1)1ln(dx x .4. 将2)(2--=x x xx f 展成x 的幂级数.5. 已知⎪⎩⎪⎨⎧≥+<=+0,)1ln(0,)1(2x x x x xe x f x,求⎰-41)2(dx x f .6.求定积分⎰------6)6)(5)(4)(3)(2)(1(dx x x x x x x x .7. 设连续函数)(x f 满足方程x xe dt tf x f +=⎰0)()(,求)(x f .习题三一.选择题1.设()x f 在区间[]b a ,上连续,则()()⎰⎰-babadt t f dx x f 的值( )A.小于0B.大于0C.等于0D.不能确定2.设()x f 在[]b a ,上连续,x 是[]b a ,上的任一点,则下式中是()x f 的一个原函数的是( )A.()⎰dx x fB.()⎰badx x f C.()⎰xadt t f D.()⎰xadt t f '3.设函数()x f 在区间[]b a ,上连续,则下列结论不正确的是( ) A.()⎰badx x f 是()x f 的一个原函数 B.()⎰xadt t f 是()x f 的一个原函数()b x a <<C.()⎰bxdt t f 是-()x f 的一个原函数 D. ()x f 在[]b a ,上是可积的4.设函数()x f 在[]1,0上连续,令x t 4=,则()⎰=14dx x f ( )A.()⎰40dt t f B.()⎰1041dt t f C. ()⎰404dt t f D. ()⎰441dt t f 5.广义积分⎰+∞-+222x x dx( )A.收敛于2ln 32B. 收敛于2ln 23C. 收敛于41ln 31 D.发散6.⎰baxdx dx d arctan 等于( ) A.x arctan B.211x + C.a b arctan arctan - D.07.若函数()x x x f +=3,则()⎰-22dx x f 的值等于( )A.0B.8C. ()⎰20dx x f D. ()⎰22dx x f8.下列定积分等于零的是( )A.⎰-112cos xdx x B. ⎰-11sin xdx x C. ⎰-+11)sin (dx x x D. ⎰-+11)(dx x e x9.变上限积分()⎰xadt t f 是( )A.()x f ' 的一个原函数B.()x f '的全体原函数C.()x f 的一个原函数D.()x f 的全体原函数10.极限⎰⎰→x xx tdttdtsin lim等于( )A.-1B.0C.1D.2二.填空题1.根据定积分的几何意义,有()⎰=-101dx x .2.设(),sin 12dt t x x⎰=ϕ则导数()=x 'ϕ .3.⎰--=121dx x . 4.()⎰=xa dt t f dx d . 5.()⎰=2x a dt t f dx d . 6.()⎰=ua dt t f du d . 7.()⎰=badx x f dx d . 8.=++⎰4122dx x x .9.=⎰210arcsin xdx .10.设()()⎪⎩⎪⎨⎧<+≥+=+,0,1,0,111x e x x x x f x 则定积分()=-⎰201dx x f .三、计算题1. 计算⎰++102132dx x x . 2. 设xxe x f =+)12(, 求⎰53)(dt t f .3. 已知⎰+=+12)1ln()()(2x x f dx x f x , 求⎰1)(dx x f .4. 讨论级数∑∞=-⎪⎭⎫ ⎝⎛--111co s 1)1(n n n 的敛散性, 若收敛,指出其条件收敛或绝对收敛.5. 计算⎰-20)2sin(1πdx x .6. 已知⎪⎩⎪⎨⎧≥<=1,ln 1,)(2x x x x xe x f x ,求.)2(41⎰-dx x f7. 求.)2()1ln(102⎰-+dx x x习题四一.选择题 1.()⎰=+xdt t dx d 021ln ( ) A .()1ln 2+x B.()1ln 2+t C.()1ln 22+x x D.()1ln 22+t t 2.=⎰→320sin limx dt t xx ( )A.0B.1C.31D.∞3.下列积分中,使用变换正确的是( )A.⎰+π03,sin 1dx xdx 令t x arctan = B.⎰-3023,1dx x x 令t x sin = C.()⎰-++2122,11ln dx xx x 令21x u += D.⎰--112,1dx x 令31t x = 4.下列积分中,值为零的是( )A.⎰-112dx x B.⎰-213dx x C.⎰-11dx D.⎰-112sin xdx x二.填空题1. 若2x e -为)(x f 的一个原函数,则='⎰1)(dx x f x .2. 函数⎰--=xdt t t y 02)2()1(的极小值点是 .3. 若)(x f 在R 上连续,则=⎰-aadt x f x )(cos 3 .4. 若⎰+=yx t dt e y x f 402),(,则='),(y x f x .5. 若⎰=x t dt xe x f 0)(,则=dxdf. 6. ⎰+∞-=04dx e x x .7. 若平面区域{}0,4),(22≥≤+=y y x y x D ,则=⎰⎰Ddxdy .8. =⎰∞→32sin limt xdx x tt . 9. 设,sin )(C xxdx x f +=⎰则=⎰362)(ππdx x xf .10. 设,)sin 3()( 02⎰+=x dt t t x f 则=→23)(limx x f x . 三、计算题1. 求连续函数),(x f 使其满足20)(2)(x dt t f x f x=+⎰.2. 计算⎰-12112dx ex .3. 计算⎰-0|cos sin |πdx x x .4. 讨论⎰+∞dx e ax 的敛散性.5. 设x e x f -=)(, (1)求dx x f ⎰)(;(2)若)()(x f x F =',且1)0(=F ,求)(x F 的表达式; (3)计算⎰ba dx x f )(;(4)判别⎰+∞1)(dx x f 的收敛性,若收敛,求其值; (5)求202)(lim2xdt t f x x ⎰→;6. 计算⎰-12112dx ex .7. 可微函数)(x f y =满足⎰-=-xdt t f x f 0]1)(2[1)(,求:(1))0(f ; (2))(x f答案习题一一.选择题 1.⎰b xt dt e dx d 2的结果为( B ) A.2x e B. 2x e - C. 22x b e e - D. 22x xe - 2.设()x f 连续,则()⎰=-→xa ax dt t f ax x lim( C ) A.0 B.a C.()a af D. ()a f 3.设函数()⎰-=xdt t y 01,则y 有( B )A.极小值21 B. 极小值21- C. 极大值21 D. 极大值21-4.若()()⎰-=xdt x t dx d x f 0cos ,则()=x f ( A ) A.x cos B. x cos - C.x sin D.x sin -5.若()⎰=+122dx k x ,则=k ( C )A.0B.-1C.1D.21 6.曲线x y -=42与y 轴所围图形的面积为( A ) A.()⎰--2224dy y B. ()⎰-224dy y C.dx x ⎰-44 D. dx x ⎰--444二.填空题1.若物体以速度()()()0≥=t v t v v 作直线运动,用定积分表示从时刻1t 到时刻2t 所经过的路程S,则S= . ()⎰21t t dt t v2.设平面图形由直线)1(,>==b b x x y 和曲线1=xy 所围(第一象限部分),该图形的面积I 的定积分表达式为 . ⎰⎪⎭⎫⎝⎛-b dx x x 113.()()[]=--⎰-dx x f x f aa. 04.⎰-=-11221sin dx xx arc x . 05.⎰=b dx x 0 . 221b ± 6.设()x f '在[]b a ,连续,且()()1,0==b f a f ,则()()[]⎰=+badx x f x f 2'1 .4π 7.设()x f 在()+∞∞-,一阶可导,()()()⎰≠=x x dt t xf x F 1,0则()=x F '' . ⎪⎭⎫⎝⎛x f x 11'3 8.⎰=++∞→10421limdx x n nx n . 4π9.若广义积分()⎰+∞2ln kx x dx发散,则k 的取值为 . 1>k10.由0,1,4>≥≤x y xy 所夹图形绕y 轴旋转所成旋转体体积V = . π 三、计算题 1. 计算⎰+1313arctan dx xx x .2. 计算⎰+∞-0sin xdx e x .3. 求⎰-=xt dt e x f 02)(对x 的导数.4. 计算⎰-⎪⎪⎭⎫⎝⎛-++112)2ln(cos 3tan sin dx x x x x . 5. 计算⎰--22232)1(dx x .6. ⎰e dx x 13)(ln 7. ⎰-1)1(arcsin dx x x x习题二一.选择题1.()x f 在[]b a ,上连续是()⎰ba dx x f 存在的( B )A.必要条件B.充分条件C. 充分必要条件D.以上A 、B 、C 都不对 2.在积分中值定理()()()a b f dx x f ba -=⎰ξ中,ξ是( D )A. []b a ,内任意一点B. []b a ,的中点C. []b a ,内某一点D. []b a ,内至少存在的某一点 3.若()x f 可导,()()20,00'==ff ,则()2limx dt t f xx ⎰→的值为( B ) A.0 B.1 C.2 D.不存在4.设()()⎪⎩⎪⎨⎧=≠-=⎰0,0,122x a x x dte xf x t 若()x f 在0=x 连续则必有( C ) A.1=a B.2=a C.0=a D.1-=a 5.⎰=+b a dx x dx d 211( D ) A.211x + B. 211b + C. 211a+- D.06.设()()⎰-=xx f dt t f 02121,且()10=f ,则()x f =( C ) A.2xe B.x e 21 C.x e 2 D.x e 2217.若()()()⎰+==xtxCdt t e x f e x x g 02122213,,且()()23lim '=+∞→x g x f x ,则必有( B ) A.C=0 B.C=1 C.C=-1 D.C=2 8.=⎰-112dx x ( C )A.0B.21C.1D.2 9.设()x f ''在[]b a ,连续,且()()b a f a b f =='',,则()()⎰∙b adx x f x f '''=( D )A.b a -B. )(21b a -C.22b a -D.)(2122b a -10.若10=⎰+∞-dx ae x 收敛,则=a ( C )A.1B.2C.21D. 21- 二.填空题1.设()x f 在积分区间上连续,则()()[]=--⎰-dx x f x f x aa2 . 02.定积分⎰-=22cos ππxdx x . 03.定积分⎰-=22cos ππxdx x . 04.定积分()⎰-=+ππdx x xsin 2. 332π5.定积分⎰-=+222cos 1sin ππdx x x. 06.设()⎰=x tdt x f 0tan ,则()=x f ' . x tan7.设()⎰+∙=20321x dt t t x f ,则()=x f ' . 34312x x +∙8.设()⎰=xtdt x f 1arctan ,则()=x f ' . x arctan9.设()⎰=x tdt x f 0sin ,则=⎪⎭⎫⎝⎛2'πf . 110.⎰+∞-=02dx e x .21三、计算题1. 设⎪⎩⎪⎨⎧≤<+≤≤-=-10 ,1101 ,)(2x x x xe x f x ,求⎰-2 0.)1(dx x f2. 求极限)cos 1()1arctan(lim0002x x du dt t xu x -⎥⎥⎦⎤⎢⎢⎣⎡+⎰⎰→. 3. ⎰+1)1ln(dx x .4. 将2)(2--=x x xx f 展成x 的幂级数.5. 已知⎪⎩⎪⎨⎧≥+<=+0,)1ln(0,)1(2x x x x xe x f x,求⎰-41)2(dx x f .6.求定积分⎰------6)6)(5)(4)(3)(2)(1(dx x x x x x x x .7. 设连续函数)(x f 满足方程x xe dt tf x f +=⎰0)()(,求)(x f .习题三一.选择题1.设()x f 在区间[]b a ,上连续,则()()⎰⎰-babadt t f dx x f 的值( C )A.小于0B.大于0C.等于0D.不能确定2.设()x f 在[]b a ,上连续,x 是[]b a ,上的任一点,则下式中是()x f 的一个原函数的是( C )A.()⎰dx x fB.()⎰badx x f C.()⎰xadt t f D.()⎰xadt t f '3.设函数()x f 在区间[]b a ,上连续,则下列结论不正确的是( A ) A.()⎰b adx x f 是()x f 的一个原函数 B.()⎰xadt t f 是()x f 的一个原函数()b x a <<C.()⎰b xdt t f 是-()x f 的一个原函数 D. ()x f 在[]b a ,上是可积的 4.设函数()x f 在[]1,0上连续,令x t 4=,则()⎰=104dx x f ( D )A.()⎰4dt t f B. ()⎰1041dt t f C. ()⎰404dt t f D. ()⎰441dt t f5.广义积分⎰+∞-+222x x dx( A )A.收敛于2ln 32B. 收敛于2ln 23C. 收敛于41ln 31 D.发散6.⎰baxdx dx d arctan 等于( D ) A.x arctan B.211x + C.a b arctan arctan - D.07.若函数()x x x f +=3,则()⎰-22dx x f 的值等于( A )A.0B.8C. ()⎰20dx x f D. ()⎰22dx x f8.下列定积分等于零的是( C )A.⎰-112cos xdx x B. ⎰-11sin xdx x C. ⎰-+11)sin (dx x x D. ⎰-+11)(dx x e x9.变上限积分()⎰xadt t f 是( C )A.()x f ' 的一个原函数B.()x f '的全体原函数C.()x f 的一个原函数D.()x f 的全体原函数10.极限⎰⎰→x xx tdttdtsin lim等于( C )A.-1B.0C.1D.2二.填空题1.根据定积分的几何意义,有()⎰=-101dx x .21 2.设(),sin 12dt t x x⎰=ϕ则导数()=x 'ϕ . 2sin x3.⎰--=121dx x . 2ln - 4.()⎰=xa dt t f dx d . ()x f 5.()⎰=2x a dt t f dx d . ()22x xf 6.()⎰=ua dt t f du d . ()u f 7.()⎰=badx x f dx d . 0 8.=++⎰4122dx x x .322 9.=⎰210arcsin xdx .12312-+π10.设()()⎪⎩⎪⎨⎧<+≥+=+,0,1,0,111x e x x x x f x 则定积分()=-⎰201dx x f . 2ln 1+三、计算题1. 计算⎰++102132dx x x . 2. 设x xe x f =+)12(, 求⎰53)(dt t f .3. 已知⎰+=+12)1ln()()(2x x f dx x f x , 求⎰1)(dx x f .4. 讨论级数∑∞=-⎪⎭⎫ ⎝⎛--111co s 1)1(n n n 的敛散性, 若收敛,指出其条件收敛或绝对收敛.5. 计算⎰-20)2sin(1πdx x .6. 已知⎪⎩⎪⎨⎧≥<=1,ln 1,)(2x x x x xe x f x ,求.)2(41⎰-dx x f7. 求.)2()1ln(102⎰-+dx x x习题四一.选择题 1.()⎰=+xdt t dx d 021ln ( A ) A .()1ln 2+x B.()1ln 2+t C.()1ln 22+x x D.()1ln 22+t t2.=⎰→320sin limx dt t xx ( C )A.0B.1C.31D.∞3.下列积分中,使用变换正确的是( C )A.⎰+π03,sin 1dx xdx 令t x arctan = B.⎰-3023,1dx x x 令t x sin =C.()⎰-++2122,11ln dx xx x 令21x u += D.⎰--112,1dx x 令31t x = 4.下列积分中,值为零的是( A )A.⎰-112dx x B.⎰-213dx x C.⎰-11dx D.⎰-112sin xdx x二.填空题1. 若2x e -为)(x f 的一个原函数,则='⎰1)(dx x f x .2. 函数⎰--=xdt t t y 02)2()1(的极小值点是 .3. 若)(x f 在R 上连续,则=⎰-aadt x f x )(cos 3 .4. 若⎰+=yx t dt e y x f 402),(,则='),(y x f x .5. 若⎰=x t dt xe x f 0)(,则=dxdf. 6. ⎰+∞-=04dx e x x .7. 若平面区域{}0,4),(22≥≤+=y y x y x D ,则=⎰⎰Ddxdy .8. =⎰∞→32sin limt xdx x tt . 9. 设,sin )(C xxdx x f +=⎰则=⎰362)(ππdx x xf .10. 设,)sin 3()( 02⎰+=x dt t t x f 则=→23)(limx x f x . 三、计算题1. 求连续函数),(x f 使其满足20)(2)(x dt t f x f x=+⎰.2. 计算⎰-12112dx ex .3. 计算⎰-20|cos sin |πdx x x .4. 讨论⎰+∞dx e ax 的敛散性.5. 设x e x f -=)(, (1)求dx x f ⎰)(;(2)若)()(x f x F =',且1)0(=F ,求)(x F 的表达式; (3)计算⎰ba dx x f )(;(4)判别⎰+∞1)(dx x f 的收敛性,若收敛,求其值;(5)求202)(lim2xdt t f x x ⎰→;6. 计算⎰-12112dx ex .7. 可微函数)(x f y =满足⎰-=-xdt t f x f 0]1)(2[1)(,求:(1))0(f ; (2))(x f。

(完整版)定积分习题及答案

(完整版)定积分习题及答案

第五章 定积分(A 层次)1.⎰203cos sin πxdx x ; 2.⎰-adx x a x222; 3.⎰+31221xxdx ;4.⎰--1145x xdx ; 5.⎰+411x dx ; 6.⎰--14311x dx ;7.⎰+21ln 1e xx dx; 8.⎰-++02222x x dx; 9.dx x ⎰+π02cos 1; 10.dx x x ⎰-ππsin 4; 11.dx x ⎰-224cos 4ππ; 12.⎰-++55242312sin dx x x xx ;13.⎰342sin ππdx x x; 14.⎰41ln dx x x ; 15.⎰10xarctgxdx ; 16.⎰202cos πxdx e x ; 17.()dx x x ⎰π2sin ; 18.()dx x e⎰1ln sin ;19.⎰--243cos cos ππdx x x ; 20.⎰+4sin 1sin πdx xx ; 21.dx x xx ⎰+π02cos 1sin ;22.⎰-+2111ln dx xxx ; 23.⎰∞+∞-++dx x x 4211; 24.⎰20sin ln πxdx ; 25.()()⎰∞+++0211dx x x dxα()0≥α。

(B 层次)1.求由0cos 0=+⎰⎰xyttdt dt e 所决定的隐函数y 对x 的导数dxdy 。

2.当x 为何值时,函数()⎰-=xt dt te x I 02有极值?3.()⎰x x dt t dxd cos sin 2cos π。

4.设()⎪⎩⎪⎨⎧>≤+=1,211,12x x x x x f ,求()⎰20dx x f 。

5.()1lim22+⎰+∞→x dt arctgt xx 。

6.设()⎪⎩⎪⎨⎧≤≤=其它,00,sin 21πx x x f ,求()()⎰=x dt t f x 0ϕ。

7.设()⎪⎪⎩⎪⎪⎨⎧<+≥+=时当时当0,110,11x e x xx f x,求()⎰-21dx x f 。

第五章“定积分及其应用”练习题

第五章“定积分及其应用”练习题

第五章“定积分及其应用”练习题一、 填空题 1、函数()f z 在区间[,]a b 上有界是()f z 在区间[,]a b 上可积的 条件,而()f z 在区间[,]a b 上连续是()f z 在区间[,]a b 上可积的 条件.2、设2()() (1)a f x x f x dx a =-≠-⎰,则0()af x dx ⎰= .3、1lim nn k →+∞== .4、222(sin)sin x x xdx ππ-+=⎰ .5、21cos 2limt xx e dt x-→⎰= .6、当k 满足 时,反常积分2(ln )kdxx x +∞⎰发散;当k = 时,反常积分2(ln )kdxx x +∞⎰取得最小值.7.=++⎰-dx x xx 11231sin ;8. 由曲线y x y y x 2,422==+及直线4=y 所围成图形的面积为 ;9.=⎰-dt e dx d xt 1cos 2 xxe 2cos sin - 10.=-⎰ax a dx 0222π11.4sin x xdx ππ-=⎰____________12. 设⎰+=3221)(x xtdt x f ,则=')(x f2-13.∑=∞→+n i n n in 111lim=14.若()f x 为[1,1]-上的连续的奇函数,则11()f x dx -=⎰。

15.=⎰-22223cos )sinππdx x x x +( .二、选择题 1、设()f z 在区间[,]a b 上连续,若()f z 为偶函数,则0()xf t dt ⎰是( ).A 、偶函数B 、奇函数C 、非奇非偶D 、不存在 2、设()f z 在上具有一阶连续导数,则下列等式中正确的是( ).A 、()()f x dx f x '=⎰B 、()()xaf x dx f x '=⎰C 、()()b x d f x dx f x dx =-⎰ D 、()()ba d f x dx f x dx=⎰ 3、设()f x 在[a ,b]上连续,则220()xd tf x t dt dx -=⎰( ).A 、2()xfx B 、2()xf x - C 、22()xf x D 、22()xf x -4、若1lim axa t x x te dt x -∞→∞+⎛⎫= ⎪⎝⎭⎰,则a =( ). A 、0 B 、1 C 、-1 D 、25、=⎰( ).A 、2πB 、πC 、2π D 、4π6. 下列反常积分中收敛的是 ( ) A.⎰∞+exx dx ln B.⎰-103)1(x dxC.dx x x⎰∞++021 D.⎰∞+1xx dx7.等于则a a dx x a a),0(022>=-⎰π( )A 、41B 、21 C 、4 D 、28.20t x d te dt dx=⎰ ( ). A 、2x xe - B 、2x xeC -+ C 、212x e C +D 、212x e9.2111dx x+∞+⎰=( B ).A 、2π B 、4πC 、0D 、发散 10. 函数)(x f 在],[b a 上连续是函数⎰=Φxadt t f x )()(在],[b a 上可导的( A )A.充分条件B.必要条件C.充分必要条件D.既不是充分条件也不是必要条件 10.设,sin )(0dt ttx f x⎰-=π则=⎰dx x f π0)(( )A.-1B.0C.1D.23.计算题1)、4⎰ 2)、20sin xdx π⎰ 3)、120arcsin xdx ⎰4)、2201cos dx xπ+⎰5)、1+∞⎰ 6). ⎰-+62321x dx7).⎰-21221x xdx 8).1⎰9). ⎰+11dx xx10)求1arctan x xdx ⎰.4.求极限1).1020ln(1)limarctan x x t dttdt→+⎰⎰. 2). 02ln(1)limxx t dt x→+⎰ 3). 求.)sin (lim2302⎰⎰-+→x x x dtt t t dtt5.设2,01(),,12x x f x x x ⎧≤<=⎨≤≤⎩求0()()x F x f t dt =⎰在[0,2]上的表达式,并讨论()F x 在(0,2)内的连续性. 6.设()f x 在区间[,]a b 上连续,在(,)a b 内可导,且()0f x '≤,1()()xa F x f t dt x a=-⎰,证明:在(,)a b 内有()0F x '≤.7.设()f x 在区间[,]a b 上连续,且()0f x >,()(),[,]()xxabdtF x f t dt x a b f t =+∈⎰⎰.证明: (1)()2F x '≥; (2)方程()0F x =在区间(,)a b 内有且仅有一个根.8.求曲线22,2,4x y x xy y ===所围成的平面图像的面积.9.由3,2,0y x x y ===所围成的图形,分别绕x 轴及y 轴旋转,计算所得两个旋转体的体积.10.设有一锥形水池,深15米,口径20米,盛满水,今要将水抽尽,要做多少功?11.求212()ed x t f x t t-=⎰的单调区间、极值和极值点.12.轴与求抛物线x x x y 22-=所围成的图形绕y 轴旋转所成的旋转体体积13. 求sin ,cos y x y x ==与0,2x x π==所围图形的面积14. 求由x y e =,1y x =-及直线1x =所围成平面图形的面积.15. 计算心形线)0()cos 1(>+=a x a r所围成的图形的面积16.洒水车上的水箱是一个横放的椭圆柱体,其端面是一个横轴为2m, 短轴为1.5m 的椭圆面.计算当水箱装满水时,一个端面所受到的压力(水的比重)/(8.93m kN =γ).17.设)(x f 在]1,0[上连续,证明dx x f dx x xf ⎰⎰=πππ)(sin 2)(sin18.设⎰-=22)(x t dt e x F ,求:1))(x F 的极值;2)曲线)(x F y =的拐点的横坐标;3)⎰-'322)(dx x F x 的值。

(完整版)高等数学第五章定积分综合测试题

(完整版)高等数学第五章定积分综合测试题
二、选择题
1.(B);2.(B); 3.(A); 4(D); 5.(B).
三、解答题
1.解:
.
2.解:
3.解:
.
4.解:反常积分,被积函数求出后,方可代入或取极限.
.
5.解:令 ,则
.
6.解:令 ,则 .
因为 ,故 ,

由于 在 上单调递减, ,
因此 ,即 .
6、(10分)设 在 可积且单调递减,试证对任一 ,有
.
综合测试A卷答案
一、填空题
1.解:设函数 , ,则 = .应填 .
2.解:在区间 内 , ,由积分的性质可知 .应填<.
3.解: .应填 .
4.解: .
应填 .
5.解: .从而 =3.应填3.
二、选择题
1.(C);2.(B); 3.(C); 4(C); 5.(D).
第五章 定积分测试题B卷
一、是非题正确者画√,错者画 (每小题3分共30分)
1、设 在 上有界,且 存在,则
.[]
2、设 在 上可积且有连续点,当 时, .[]
3、设 在 上连续,且 ,则 时,
[]
4、设 是奇函数,则 .[]
5、因为 是奇函数,因此 []
6、设 ,由积分中值定理,存在 ,使 ,
从而证出 []
使 ,由于 ,
.
3.【√】,因为 , ,故 .
4.【√】, 是奇函数,则 也是奇函数,令 , .
5.【 】, 是无穷间断点且积分发散.
6.【 】, 不一定存在.
7.【 】,函数在其每个有定义的区间上不一定有界的,区间也不一定是闭区间,故不能保证可积.
8.【√】,令 .
9.【√】, 是奇函数.

第五章 定积分(完整资料).doc

第五章 定积分(完整资料).doc

【最新整理,下载后即可编辑】高等数学练习题 第五章 定积分系 专业 班 姓名学号第一节 定积分的概念与性质一、选择题: 1、1lim n n →∞+ ⎪⎝⎭=[ B ](A )⎰212ln xdx (B )⎰21ln 2xdx (C )⎰+212)1(ln dx x (D )⎰+21)1ln(2dx x2、设函数)(x f 在[b a ,]上连续,则曲线)(x f y =与直线0,,===y b x a x 所围成的平面图形的面积等于 [ C ] (A )⎰ba dx x f )( (B )⎰badxx f )( (C )dx x f ba⎰)( (D ))())((b a a b f <<-'ξξ3、设定积分⎰+=141dxxx I ,则I的值[ A ](A )220≤≤I (B )151≤≤I (C )51102≤≤I (D )1≥I4、设⎰=401πxdxI ,⎰=402πdxx I ,⎰=403sin πxdxI ,则[ D ](A )321I I I >> (B )213I I I >> (C )231I I I >> (D )312I I I >>二、填空题:1、利用定积分的几何意义,填写下列定积分的结果: (1)⎰-224dx x = π(2)⎰-ππxdx sin = 0(3)⎰-22cos ππxdx = 2⎰20cos πxdx (4)⎰--02)1(dx x = 4-2、利用定积分的性质,填写下列各题: (1)6≤+≤⎰412)1(dx x 51 (2)9π≤≤⎰331arctan xdx x 23π 3、利用定积分的性质,比较下列各题两各积分的大小(填写 ≤ 或≥) (1)⎰102dx x≥ ⎰103dxx(2)⎰21ln xdx ≥⎰212)(ln dx x(3)⎰10dxex≥ ⎰+10)1(dx x (4)⎰+20321πdx x ≥⎰+2032sin 1πdx x三、计算题:1、用定积分表示极限)321(lim 2222222n n nn n n n n n n ++++++++∞→ 解:原式=1102021111141lim [arctan]()nn k dx k nx nπ→+∞====++∑⎰ 2、利用定积分定义计算有抛物线21y x =+,两直线,()x a x b a b ==<及x 轴所围成的图形的面积。

微积分第五章 定积分 单元测试

微积分第五章 定积分 单元测试

第五章 定积分 单元测试一、选择题1.若24(5)10f x x x-=-,则积分40(21)f x dx +=⎰( ) A .0 B .4πC .是发散的广义积分D .是收敛的广义积分 2.若已知(0)1(2)3(2)5f f f '===,,,则10(2)xf x dx ''=⎰( )A .0B .1C .2D .-2 3.设()f x 是以l 为周期的连续函数,则(1)()a k la klf x dx +++⎰之值( )A .仅与a 有关B .仅与a 无关C .与a 及k 均无关D .与a 和k 都有关 4.若0x →时,220()()()xF x x t f t dt ''=-⎰的导数与2x 是等价无穷小,则必有( )(其中f 有二阶连续导数)A .(0)1f ''=B .1(0)2f ''=C .(0)0f ''=D .(0)f ''不存在5.若221()lim1nnn x f x x x →∞-=+,且设20()f x dx k =⎰,则必有( ) A .k =0 B .k =1 C .k =-1 D .k =2 6.设2sin ()sin x t xf x e tdt π+=⎰,则()f x =( )A .正常数B .负常数C .恒为0D .不是常数 7.已知()f t 是()-∞+∞,内的连续函数,则211()()x xf t dt t dt ϕ=⎰⎰恒成立时,必有()t ϕ=( )A .2()f t B .33()t f t C .23()t f t D .233()t f t8.设()f x 在[]a a -,上连续且为偶函数,0()()xx f t dt φ=⎰,则( )A .()x φ是奇函数B .()x φ是偶函数C .()x φ是非奇非偶函数D .()x φ可能是奇函数,也可能是偶函数 9.设y 是由方程2sin 0yxt e dt tdt π+=⎰⎰所确定的x 的函数,则dydx=( )A .sin 1cos x x - B .sin cos 1x x -+ C .cos y y e D .cos y ye-10.222(1)dxx -=+⎰( )A .43-B .43C .23- D .不存在 11.设636322-22sin cos (sin cos )1x M xdx N x x dx x ππππ-==++⎰⎰,,23622(sin cos )P x x x dx ππ-=-⎰则有( )A .N P M <<B .M P N <<C .N M P <<D .P M N << 12.下列广义积分发散的是( ) A .11sin dxx-⎰ B.1-⎰ C .20x e dx +∞-⎰ D .22ln dxx x+∞⎰13.若()f x 是具有连续导数的函数,且(0)0f =,设02()0()00x tf t dt x x x x ϕ⎧⎪ ≠=⎨⎪=⎩⎰ 则(0)ϕ'=( )A .(0)f 'B .1(0)3f ' C .1 D .1314.若设0()sin()xd f x t x dt dx =-⎰,则必有( )A .()sin f x x =-B .()1cos f x x =-+C .()sin f x x = 1D .()1sin f x x =- 15.若()x x t =是由方程2110x t t e dt +--=⎰所确定,则22t d ydx=之值为( )A .0B .1C .2e D .22e 16.设2211(1)0x x a e dx b e dx -==⎰⎰,,则( )A .a b >B .a b <C .a b =D .b e > 17.设0()()()xF x xf x t dt f x =-⎰,为连续函数,且(0)0()0f f x '=>,,则()y F x =在(0)+∞,内是( )A .单调增加且为向上凹的B .单调增加且为单调凸的C .单调减少且为向上凹的D .单调减少且为向上凸的 18.设()f x 在()-∞+∞,内连续,则( )为正确的 A .若()f x 为偶函数,则()0aa f x dx -≠⎰ B .若()f x 为奇函数,则0()2()aaaf x dx f x dx -≠⎰⎰C .若()f x 为非奇非偶函数,则()0aaf x dx -≠⎰D .若()f x 为以T 为周期的奇函数,则0()()xF x f t dt =⎰也是以T 为周期的函数19.下列式中正确的是( ),其中21sin 0()00x x f x xx ⎧ ≠⎪=⎨⎪ =⎩ A .0π=⎰B .21xdx x +∞-∞+⎰C .1310dxx -=⎰ D .11()0f x dx -=⎰ 20.设()f x 连续,且1()f tx dx x =⎰,则()f x =( )A . 2x B .x C . 2x D .2x二、填空题 1.214n n →∞++=-_____________。

定积分专项习题

定积分专项习题

第五章 定积分(A)1.利用定积分定义计算由抛物线12+=x y ,两直线)(,a b b x a x >==及横轴所围成的图形的面积。

2.利用定积分的几何意义,证明下列等式: ⎰=112)1x d x 41)212π=-⎰dx x⎰-=ππ0s i n )3x d x ⎰⎰-=2220cos 2cos )4πππxdx xdx3.估计下列各积分的值 ⎰331a r c t a n )1x d x x dx exx ⎰-022)24.根据定积分的性质比较下列各对积分值的大小 ⎰21ln )1xdx 与dx x ⎰212)(ln dx e x ⎰10)2与⎰+1)1(dx x5.计算下列各导数dt t dx d x ⎰+2021)1 ⎰+3241)2x x t dt dx d⎰xxdt t dx d cos sin 2)cos()3π6.计算下列极限xdt t xx ⎰→020cos lim)1 xdt t xx cos 1)sin 1ln(lim)20-+⎰→2220)1(lim)3x xt x xedt e t ⎰+→7.当x 为何值时,函数⎰-=xt dt tex I 02)(有极值?8.计算下列各积分 dx xx )1()12142⎰+dx x x )1()294+⎰⎰--21212)1()3x dx ⎰+ax a dx3022)4⎰---+211)5e x dx⎰π20sin )6dx xdx x x ⎰-π3sin sin )7⎰2)()8dx x f ,其中⎪⎩⎪⎨⎧+=2211)(x x x f11>≤x x9.设k ,l 为正整数,且l k ≠,试证下列各题:⎰-=ππ0c o s )1k x d x πππ=⎰-kxdx 2cos )2⎰-=⋅ππ0s i n c o s )3l x d x kx ⎰-=ππ0sin sin )4lxdx kx10.计算下列定积分 ⎰-πθθ03)s i n 1()1d ⎰262cos )2ππududx xx ⎰-121221)3 dx x a x a 2202)4-⎰ ⎰+31221)5xxdx dx x ⎰-2132)1(1)6⎰-2221)7x x dx ⎰--1145)8xxdx⎰-axa x d x 20223)9 dt tet ⎰-1022)10⎰-++02222)11x x dx⎰-222cos cos )12ππxdx x⎰--223c o s c o s )13ππdx x x ⎰-++2221)(cos )14xdxx x x ⎰+π2c o s 1)15dx x11.利用函数的奇偶性计算下列积分⎰-224c o s 4)1ππθθd dx xx ⎰--2121221)(arcsin )2dx x x xx ⎰-++55242312sin )312.设f (x )在[]b a ,上连续,证明:⎰⎰-+=babadx x b a f dx x f )()(13.证明:)0(1111212>+=+⎰⎰x x dx x dx xx14.计算下列定积分⎰-10)1dx xe x⎰342sin )2ππdx x xdx xx⎰41ln )3 ⎰10arctan )4xdx x⎰202c o s )5πx d x e x dx x x ⎰π2)sin ()6⎰edx x 1)sin(ln )7 dx x ee⎰1ln )815.判定下列反常积分的收敛性,如果收敛,计算反常积分的值。

大一高等数学第五章定积分习题

大一高等数学第五章定积分习题

THANKS FOR WATCHING
感谢您的观看
基础题目解析
总结词:计算能力
详细描述:基础题目中还包括一些简单的计算题,主要考察学生的计算能力。这些题目通常涉及定积分的计算、求导和微分 等基本运算。
基础题目解析
总结词:应用能力
详细描述:基础题目中还有一些应用题,主要考察学生运用定积分解决实际问题的能力。这些题目通 常涉及几何、物理等领域的实际问题,要求学生能够建立数学模型并运用定积分求解。
03 定积分的应用
平面图形的面积
直角三角形面积
定积分可用于计算直角三 角形的面积,只需计算三 角形的底和对应的高,然 后使用公式计算面积。
矩形面积
矩形面积可以通过计算其 长度和宽度,然后使用公 式计算面积。
梯形面积
梯形面积可以通过计算其 两个平行边和斜边,然后 使用公式计算面积。
体积
圆柱体体积
大一高等数学第五章定积分习
目录
• 定积分的基本概念 • 定积分的计算方法 • 定积分的应用 • 定积分习题解析 • 总结与思考
01 定积分的基本概念
定积分的定义
积分上限函数
定积分定义为积分上限函数在积分区间上的增量。
微积分基本定理
定积分可以通过微积分基本定理计算,即通过原函数计算。
牛顿-莱布尼茨公式
对定积分习题的反思与建议
反思解题方法
反思解题思路
在解决定积分习题时,我经常采用的 方法是利用微积分基本定理将定积分 转换为求和的形式,然后利用函数的 性质进行计算。这种方法虽然有效, 但在处理复杂函数时可能会遇到困难 。因此,我需要更加深入地理解定积 分的概念和性质,以便更好地应用其 他解题方法。
在解决定积分习题时,我有时会陷入 思维僵化的状态,导致解题思路不清 晰。为了避免这种情况,我需要更加 注重培养自己的思维灵活性和创造性 ,尝试从不同的角度去思考问题。

(完整版)定积分习题及答案

(完整版)定积分习题及答案

第五章定积分(A 层次)1.203cos sin xdx x ;2.a dx x ax222;3.31221xxdx ;4.1145x xdx ;5.411xdx ;6.14311xdx ;7.21ln 1e xx dx ;8.02222xxdx ;9.dx x 02cos 1;10.dx x x sin 4;11.dx x 224cos 4;12.55242312sin dx xxx x ;13.342sin dx xx ;14.41ln dx xx ;15.1xarctgxdx ;16.202cosxdx e x ;17.dx x x 02sin ;18.dx x e 1ln sin ;19.243cos cos dx x x ;20.40sin 1sin dx x x ;21.dx xxx 02cos 1sin ;22.2111lndx xx x ;23.dx xx 4211;24.20sin ln xdx ;25.211dx xxdx0。

(B 层次)1.求由0cos 0x y ttdtdte 所决定的隐函数y 对x 的导数dxdy 。

2.当x 为何值时,函数x tdt tex I 02有极值?3.x xdt t dxd cos sin 2cos 。

4.设1,211,12xx x x xf ,求20dx x f 。

5.1lim22xdtarctgt xx 。

6.设其它,00,sin 21xx xf ,求x dt t f x。

7.设时当时当0,110,11xex xxf x,求201dx xf 。

8.2221limnn nnn。

9.求nk nknknnen e 12lim 。

10.设x f 是连续函数,且12dt t f x x f ,求x f 。

11.若2ln 261xtedt ,求x 。

12.证明:212121222dxeex。

13.已知axxx dx ex axa x 224lim,求常数a 。

定积分习题及答案

定积分习题及答案

(A层次)1. 4.7. 兀f 。

2 s in x cos3 xdx ; r xdx -1✓5-4x ,e 2dx f 1 x ✓l +I n x ;10. f 一冗九x 4s in 汕; 冗13. f f-�dx; 4 Sill X 冗16. f 。

2产co sx dx ;冗第五章定积分2. f 。

a x 2✓a 2—x 2dx; 5.「I✓x dx +l ;8. f -o 2 x 2 + d 2xx + 2 ; 冗11. f� 冗4c os 4xdx ;14. 17. 2f14 Jn X`dx ;f 。

兀(xsinx)2dx ;冗19. f� ✓cosx-cos 3 xdx;20. f 。

4 smx dx · 1 + S lll . X , 22. 4If 0 2 xln l +x dx ; l -x25. f +00dx0 (1 + x 2 XI + xa \ (B层次)23. f +oo l +x 2 dx · -oo 1 +X 4' 心(a�o )。

3. 6.9. 厂dx1 X 飞l +x2 r dx`3 斤言-1;f。

冗✓1+ c os2xdx;3· 212 fs x sm xdx · ·-5 x 4 + 2x 2 + 1' 15. f 。

1 xa rct gxdx ; 18. {es in(lnx 雇21. 24. f 。

冗xs mx dx .1 +C OS 2X 冗f 。

2 ln sin x dx ;d y 1. 求由f 。

:e r dt+f x costd t=O所确定的隐函数对x 的导数odx 2. 当x 为何值时,函数I(x)= f x t e -t 2dt有极值?。

3.d厂cos矿t。

dx si n x(}Ix+l, x�14. 设八x )�{归,X > 1'求l。

勹(x )dx 。

2f x(a rc tg t) 2d t5. lirn 。

高等数学(同济五版)第五章 定积分 练习题册

高等数学(同济五版)第五章 定积分 练习题册

42文档来源为:从网络收集整理.word 版本可编辑.第五章 定积分第一节 定积分的概念与性质一、填空题: 在⎰+1031dx x 与⎰+141dx x 中值比较大的是 .二、选择题(单选): 1.积分中值定理⎰-=baa b f dx x f ))(()(ξ,其中:(A) ξ是[]b a ,上任一点; (B) ξ是[]b a ,上必定存在的某一点; (C) ξ是[]b a ,唯一的某点; (D) ξ是[]b a ,的中点.答:( )2.曲线xe y =与该曲线过原点的切线及y 轴所围成图形的面积值为: (A) ⎰-10)(dx ex e x ; (B)⎰-edy y y y 1)ln (ln ;(C)⎰-e xx dx xe e 1)(; (D)⎰-1)ln (ln dy y y y .答:( )第二节 微积分基本公式一、填空题: 1.=-⎰-2121211dx x.2.0)32(02=-⎰kdx xx )0(>k ,则=k .二、选择题(单选):若)(x f 为可导函数,且已知0)0(=f ,2)0(='f ,则2)(limxdt t f x x ⎰→(A)0; (B)1; (C)2; (D)不存在.答:( )三、试解下列各题:1.设⎪⎩⎪⎨⎧>≤+=1,211,1)(32x x x x x f ,求⎰20)(dx x f .43文档来源为:从网络收集整理.word 版本可编辑.2.设⎪⎩⎪⎨⎧><≤≤=ππx x x x x f ,0,00,sin 21)(,求⎰=x dt t f x 0)()(ϕ在),(∞+-∞上的表达式.四、设)(x f 在],[b a 上连续,且0)(>x f ,⎰⎰+=x axbt f dtdt t f x F )()()(.证明: (1)2)('≥x F ;(2)方程0)(=x f 在),(b a 内有且仅有一个根.第三节 定积分的换元法和分部积分法一、填空题: 1.=-⎰-212121arcsin dx xx .2.⎰-=++43432cos 1)arctan 1(ππdx x x .3.{}=⎰-222,1max dx x .4.设)(x f 是连续函数,且⎰+=1)(2)(dt t f x x f ,则=)(x f .二、选择题(单选):⎰>=aa dx x f x I 023)0()(,则I 为:(A)⎰20)(a dx x xf ;(B) ⎰adx x xf 0)(; (C) ⎰20)(21a dx x xf ; (D) ⎰a dx x xf 0)(21.答:( )三、试解下列各题: 1.⎰+21ln 1e xx dx.2.)0(0222⎰>-a a dx x a x .3.设⎩⎨⎧≥<+=-0,0,1)(2x e x x x f x ,求⎰-31)2(dx x f .五、计算下列定积分:44文档来源为:从网络收集整理.word 版本可编辑.1.⎰e xdx x 2ln .2.⎰20cos πxdx e x .六、已知1)(=πf ,)(x f 二阶连续可微.且3sin )]()([0=''+⎰πxdx x f x f ,求)0(f .第四节 反常积分一、填空题: 1.=⎰∞+12ln dx x x. 2.=-⎰121)1(arcsin dx x x x .二、选择题(单选): 1.若⎰∞+adx x f )(及⎰∞+adx x g )(均发散,则dx x g x f a⎰∞++)]()([一定:(A)收敛; (B)发散; (C)敛散性不能确定.答:( )2.若⎰∞-a dx x f )(发散,⎰∞+adx x f )(发散,则⎰∞+∞-dx x f )(一定:(A)收敛; (B)发散; (C)敛散性不能确定. 答:( )三、判别下列各反常积分的敛散性,如果收敛,则计算反常积分的值: 1.⎰-202)1(x dx.2.⎰∞++0)1(1dx xx .四、利用递推公式计算反常积分⎰∞+-=dx e x I x n n (n 为自然数).第五章自测题一、填空题(每小题5分,共20分):1.a ,b 为正常数,且1sin 1lim20=+-⎰→x x dt ta t x bx ,则=a ,=b . 2.=-⎰201dx x .45文档来源为:从网络收集整理.word 版本可编辑.3.=+⎰-ππdx xxx 21cos . 4.=⎰→xdt t x x 020cos lim.二、选择题(单选)(每小题5分,共10分): 1.⎰-x dt t dxd sin 021等于: (A) x cos ; (B) x x cos cos ; (C) x 2cos -; (D) x cos .答:( )2.设)(x f 连续,则⎰+ba dy y x f dxd )(等于: (A)⎰+'bady y x f )(;(B) )()(a x f b x f +-+;(C) )(a x f +;(D) )(b x f +.答:( )三、试解下列各题(每小题10分,共40分): 1.⎰-21224dx x x . 2.设⎪⎪⎩⎪⎪⎨⎧<+≥+=0,110,11)(x e x xx f x,求⎰-20)1(dx x f .3.设⎪⎪⎩⎪⎪⎨⎧≤≤<=πππx x x x f 2,02,cos )(,求dt t f x F ⎰-=ππ)()(在],[ππ-上的表达式.4.求位于曲线21xy =)1(≥x 的下方,x 轴上方的图形的面积. 四、试解下列各题(每小题15分,共30分): 1.设)(x f 在],[b a 上连续,证明⎰⎰-+-=badx x a b a f a b dx x f 1])([)()(.2.证明:⎰⎰-=aaadx x dx x 022)(2)(ϕϕ,其中)(u ϕ为连续函数.。

定积分练习参考答案

定积分练习参考答案

第五章 定积分一.判断题 1.定积分的定义=⎰badx x f )(ini ix x f i ∆∑=→∆)(10lim ξ说明[]b a ,可任意分法,iξ必须是[]i i x x ,1-的端点.( ⨯ ) 2.定积分的几何意义是相应各曲边梯形的面积之和. ( ⨯ ) 3.xdx x xdx x 2sin 22sin 022⎰⎰=-πππ( ⨯ ) 4. 定积分的值是一个确定的常数.( √ )5 若(),()f x g x 均可积,且()()f x g x <,则()()bbaaf x dxg x dx <⎰⎰ ( ⨯ )6. 若()f x 在[],a b 上连续,且2()0baf x dx =⎰,则在[],a b 上()0f x ≡ ( √ )7.若[][],,c d a b ⊂,则()()db caf x dx f x dx <⎰⎰ ( ⨯ )8. 若()f x 在[],a b 上可积,则()f x 在[],a b 上有界 ( √ )9. 21111112-=-=--⎰xdx x ( × )10. ⎰⎰==+ππ20200cos 22cos 1xdx dx x ( × )11.()()1ln 2ln ln 11212---==----⎰x dx x ( × ) 12. 若被积函数是连续的奇函数,积分区间关于原点对称,则定积分值必为零。

( √ )二.选择题1.下列等式中正确的是(B )(A) ()()x f dx x f dx d ba =⎰ (B) ()()x f dx x f dxd =⎰ (C)()()()xa d f x dx f x f a dx=-⎰ (D) ()()x f dx x f ='⎰ 2.已知()dt t x f x⎰+=222,则()='1f ( A )(A)3- (B)36- (C)3 (D)63- 3.设函数()dt t y x⎰-=1,则y 有( B )(A) 极小值21 (B) 极小值21- (C) 极大值21(D)极大值21- 4.设b a ,为常数,若1sin 1lim 02220=+-⎰→dt ta t x bx x x ,则( B )(A)1,4==b a (B) 1,2==b a (C)0,4==b a (D)1,2==b a 5.1-=⎰( B ); A .3π B .23π C .43π D .53π6.524x dx -=⎰( C ); A .11 B .12 C .13 D .14 7.设()f x '连续,则变上限积分()xa f t dt ⎰是( C );A .()f x '的一个原函数B .()f x '的全体原函数C .()f x 的一个原函数D .()f x 的全体原函数8.设函数()f x 在[,]a b 上连续,则由曲线()y f x =与直线,,0x a x b y ===所围平面图形的面积为( C );A .()ba f x dx ⎰ B .()baf x dx ⎰C .()baf x dx ⎰D .()(),f b a a b εε-<<9.定积分()baf x dx ⎰是( A ); A 、一个常数 B 、()f x 的的一个原函数 C 、一个函数族 D 、一个非负常数10.下列命题中正确的是( D )(其中()f x ,()g x 均为连续函数)。

第五章 定积分 典型例题及习题 答案

第五章 定积分 典型例题及习题 答案

二 、证 明不 等式:
1
1
2 6 1 x 三 、求 下列 函数 的导数 : 3 x dt 1、 F ( x ) x 2 ; 4 1 t
0 n


2
dx


,
(n 2) .
2.、 由 方 程 0 e dt
t
2
y

x
2
sin t t
0
dt 1 , 确定 y 为 x 的
函数, 求
0
1 2


2
dx

测验题
一 、选择题: n n n 2 2 ( 1、 lim 2 2 2 n n 1 n 2 n n 1 0; ( A) ( B) ; 2 ( C) ; ( D) . 4 2 d x 2 ln( t 1 ) dt =( 2、 ) 0 dx 2 2 ( A) ln( x 1 ) ; ( B) ln( t 1 ) ; 2 2 ( C) 2 x ln( x 1 ) ; ( D) 2 t ln( t 1 ) .
ln 2 .
1
例5
求 [
2 1 2
sin x x 1
8
1

ln (1 x ) ]dx .
2

原式 0

2 1 2
ln( 1 x ) dx
1

0

1 ln( 1 x )dx 2

2
ln( 1 x )dx
0

3 2
ln
3
ln . 2 2
1
例6
求 min{
1 1 x , x 0 2 8、 设 f ( x ) , 则 定 积 分 f ( x 1 ) dx 0 1 , x0 1 e x =( ) 1 2 2 ln( 1 e ) ln 3 ; ( A ) 1 ln( 1 ) ; ( B) e 1 1 ( C ) 1 ln( 1 ) ln 2 ; ( D) 1 ln( 1 ) . e e

5答案定积分的计算

5答案定积分的计算

第五章 定积分的计算测试题一、选择题(7×4分)1.下列等式哪个不正确-----------------------------( C )A ⎰⎰=ba ba dt t f dx x f )()( B ⎰=xa x f dt t f dxd )()(C ⎰=b a x f dx x f dx d )()(D ⎰=ba dx x f dxd 0)( 2.设)(x f 是],[a a -上的连续函数,则⎰-=aa dx x f )(--------------( D ) A 0 B ⎰adx x f 0)(2 C ⎰-0)(2a dx x f D⎰⎰-+00)()(aadx x f dx x f3.设⎰=202sin )(x dt t x F ,则=')(x F --------------------------( C ) A 22sin x x B 2sin 2x x C 4sin 2x x D42sin x x4.⎰=-30|1|dx x --25---------------------------------------------------( C ) A 0 B 1 C25D 25.⎰--=22cos 2xdx e x ----------------------------( B ) A 0 B ⎰-20cos 22xdx ex C ⎰-1cos 42xdx ex D⎰-20cos 22xdx e x*6.下列反常积分中发散的是------------------------------------( B ) Adx x ⎰+∞1231B dx x ⎰1231C ⎰1321dx xDdx x⎰117.=⎰eedx xx f 1)(ln ----------------------------------------------( C )A⎰eedt t f 1)( B⎰-11)(dt tt f C ⎰-11)(dt t f D⎰eedt tt f 1)( 二、填空题(3×4分)1.设⎰=xx x dt t f 0cos )(,则=)(x f x s i n x x c o s - 2.⎰-=11||3dx e x x _0___ 3.⎰∞+=+0241dx x4221210ππ==∞+x a r c t a n 三、计算题(4×7分)1.⎰-πθθθ03sin sin d x sin d x sin x sin d x sin dx x cos x sin ⎰⎰⎰-==ππππ2200=-202332π)x (sin ππ223)(sin 32x=34)10(3201(32=---) 2.⎰++4122dx x x解:令 tdt dx t x t x =-==+),1(21,1222dt t tdt t t dx x x )2321(2)1(211222313124+=+-=++⎰⎰⎰313231)2361()2321(t t dt t +=+=⎰ 3173626)2361()29627(=+=+-+= 3.⎰10arctan xdx x 解:dx x x x x dx x xdx x ⎰⎰⎰+-==221022101121arctan 21.arctan 21arctan dx xx x x ⎰+-=22102121arctan 21dx x x ⎰+-+-=102211)1(211arctan 21 10)arctan (218x x --=π214)41(218-=--=πππ 4.dx x x⎰+∞12ln 解:dx xx ⎰+∞12ln dx x x x x xd ⎰⎰∞+∞++∞+-=-=12111ln 1)1(ln 1=四、(8分)设⎪⎩⎪⎨⎧≥<+=-0,0,1)(2x e x x x f x ,求⎰-31.)2(dx x f解: [][]1,13,12-∈⇒∈==-t x dtdx t x⎰⎰⎰⎰--+==-0113111)()()()2(dt t f dt t f dt t f dx x f⎰⎰--++=01102)1(dx e dt x x{10013)31(x e x x ---+=1137)1()311(0---=--⎥⎦⎤⎢⎣⎡---=e e 五、求证:⎰⎰+=+202cos sin cos cos sin sin ππdx xx x x x xdx ,并求出⎰+20cos sin sin πdx x x x 的值。

第5章 定积分 习题 5- (1)

第5章 定积分 习题  5- (1)
第五章
第一节
定积分
定积分的概念及性质
习题 5-1
1.
利用定积分的定义计算由曲线 y = x 2 + 1 和直线 x = 1 、 x = 3 及 x 轴所围成
的图形的面积. 解 所求的面积为
S = ∫ ( x 2 + 1)dx = lim ∑ f (ξi )Δxi
1
3
n
λ →0
i =1
= lim ∑ (ξi2 + 1)
∫0
1 x
e dx = lim ∑ f (ξi )Δxi = lim ∑ eξi Δxi
λ →0
i =1
n
n
λ →0
i =1
= lim ∑ e n ⋅
n →∞ i =1
n
i
1 n
1 2
i 1 (其中 ξi = , Δxi = ) n n
n
n 1 = lim ∑ (e n + e n + L + e n ) n →∞ i =1 n
c2 c1
a
c2
矛盾, 于是 f (ξ ) > 0 不成立, 得证. (2)
b
因为在 [ a, b] 上, f ( x) ≥ 0 , 所以 ∫ f ( x)dx ≥ 0 , 亦即或者 ∫ f ( x)dx > 0, 或
b b a a b a
者 ∫ f ( x)dx = 0 . 若 ∫ f ( x)dx = 0 , 则由(1) 的证明知 f ( x) ≡ 0, 但这与条件 f ( x) ≠ 0
5
反证法. 设 ∃ξ ∈ [a, b] 使 f (ξ ) > 0 , 因为 f ( x) 在 [ a, b] 连续, 所以由极限的局部保号性定 理 , 必有含有 ξ 的区间 [c1 , c2 ] 存在 , 使得 [c1 , c2 ] 上 f ( x) > 0 , 从而 ∫ f ( x)dx > 0 .

高等数学(同济五版)第五章 定积分 练习题册---精品管理资料

高等数学(同济五版)第五章 定积分 练习题册---精品管理资料

第五章 定积分第一节 定积分的概念与性质一、填空题: 在⎰+1031dx x 与⎰+141dx x 中值比较大的是 .二、选择题(单选): 1.积分中值定理⎰-=baa b f dx x f ))(()(ξ,其中:(A ) ξ是[]b a ,上任一点; (B ) ξ是[]b a ,上必定存在的某一点; (C) ξ是[]b a ,唯一的某点; (D ) ξ是[]b a ,的中点.答:( )2.曲线x e y =与该曲线过原点的切线及y 轴所围成图形的面积值为: (A ) ⎰-10)(dx ex e x; (B)⎰-edy y y y 1)ln (ln ;(C )⎰-e x x dx xe e 1)(; (D)⎰-10)ln (ln dy y y y .答:( )第二节 微积分基本公式一、填空题: 1.=-⎰-2121211dx x.2.0)32(02=-⎰kdx x x )0(>k ,则=k .二、选择题(单选):若)(x f 为可导函数,且已知0)0(=f ,2)0(='f ,则2)(limxdt t f x x ⎰→(A )0; (B )1; (C)2; (D )不存在.答:( )三、试解下列各题:1.设⎪⎩⎪⎨⎧>≤+=1,211,1)(32x x x x x f ,求⎰20)(dx x f .2.设⎪⎩⎪⎨⎧><≤≤=ππx x x x x f ,0,00,sin 21)(,求⎰=x dt t f x 0)()(ϕ在),(∞+-∞上的表达式.四、设)(x f 在],[b a 上连续,且0)(>x f ,⎰⎰+=x axbt f dtdt t f x F )()()(.证明: (1)2)('≥x F ;(2)方程0)(=x f 在),(b a 内有且仅有一个根.第三节 定积分的换元法和分部积分法 一、填空题: 1.=-⎰-212121arcsin dx xx .2.⎰-=++43432cos 1)arctan 1(ππdx x x .3.{}=⎰-222,1max dx x .4.设)(x f 是连续函数,且⎰+=1)(2)(dt t f x x f ,则=)(x f .二、选择题(单选):⎰>=aa dx x f x I 023)0()(,则I 为:(A )⎰20)(a dx x xf ;(B) ⎰adx x xf 0)(; (C) ⎰20)(21a dx x xf ; (D) ⎰a dx x xf 0)(21.答:( )三、试解下列各题: 1.⎰+21ln 1e xx dx.2.)0(0222⎰>-a a dx x a x .3.设⎩⎨⎧≥<+=-0,0,1)(2x e x x x f x ,求⎰-31)2(dx x f .五、计算下列定积分: 1.⎰e xdx x 2ln .2.⎰20cos πxdx e x .六、已知1)(=πf ,)(x f 二阶连续可微.且3sin )]()([0=''+⎰πxdx x f x f ,求)0(f .第四节 反常积分一、填空题: 1.=⎰∞+12ln dx x x. 2.=-⎰121)1(arcsin dx x x x.二、选择题(单选): 1.若⎰∞+adx x f )(及⎰∞+adx x g )(均发散,则dx x g x f a⎰∞++)]()([一定:(A )收敛; (B)发散; (C )敛散性不能确定.答:( )2.若⎰∞-a dx x f )(发散,⎰∞+adx x f )(发散,则⎰∞+∞-dx x f )(一定:(A)收敛; (B )发散; (C)敛散性不能确定.答:( )三、判别下列各反常积分的敛散性,如果收敛,则计算反常积分的值: 1.⎰-202)1(x dx.2.⎰∞++0)1(1dx xx .四、利用递推公式计算反常积分⎰∞+-=0dx e x I x n n (n 为自然数).第五章自测题一、填空题(每小题5分,共20分):1.a ,b 为正常数,且1sin 1lim 020=+-⎰→x x dt ta t x bx ,则=a ,=b .2.=-⎰201dx x .3.=+⎰-ππdx x xx 21cos .4.=⎰→xdt t x x 020cos lim.二、选择题(单选)(每小题5分,共10分): 1.⎰-x dt t dxd sin 021等于:(A) x cos ; (B ) x x cos cos ; (C) x 2cos -; (D ) x cos .答:( )2.设)(x f 连续,则⎰+ba dy y x f dxd )(等于: (A)⎰+'bady y x f )(;(B ) )()(a x f b x f +-+;(C ) )(a x f +;(D) )(b x f +. 答:( )三、试解下列各题(每小题10分,共40分): 1.⎰-21224dx x x .2.设⎪⎪⎩⎪⎪⎨⎧<+≥+=0,110,11)(x ex xx f x ,求⎰-20)1(dx x f .3.设⎪⎪⎩⎪⎪⎨⎧≤≤<=πππx x x x f 2,02,cos )(,求dt t f x F ⎰-=ππ)()(在],[ππ-上的表达式.4.求位于曲线21x y =)1(≥x 的下方,x 轴上方的图形的面积.四、试解下列各题(每小题15分,共30分): 1.设)(x f 在],[b a 上连续,证明⎰⎰-+-=badx x a b a f a b dx x f 1])([)()(.2.证明:⎰⎰-=aaadx x dx x 022)(2)(ϕϕ,其中)(u ϕ为连续函数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章定积分综合练习题
一、填空:
1、函数)(x f 在],[b a 上有界是
)(x f 在],[b a 上可积的 条件,而)
(x f 在],[b a 上连续是)(x f 在],[b a 上可积的 条件; 2、由定积分的几何意义,则

-1
21dx x = ;
3、设
,18)(31
1
=⎰
-dx x f ,4)(3
1
=⎰-dx x f 则=⎰3
1
)(dx x f ;
4、正弦曲线
x
y sin =在
],0[π上与x
轴所围成的平面图形的面积
是 ;
5、某汽车开始刹车,其运动规律为,510)(t t v -=问从刹车开始到停车,汽车驶过的距离是 ;
6、⎰=x
tdt y 02sin ,则4
π=
'x y = ;
7、估计定积分⎰
+4
/54
/2)sin 1(ππdx x 的值的范围是: ;
8、比较下列两个积分值的大小:⎰
2
1
ln xdx ⎰2
1
2)(ln dx x ;
9、)(x f ''在],[b a 上连续,则=''⎰
b
a
dx x f x )( ;
10、无穷积分⎰
+∞
1
dx x p 收敛,则p 的取值范围是 .
二、计算下列各导数.
1、
⎰+2
211x x
dt t
dx d 2、⎪⎩
⎪⎨⎧==⎰⎰t t udu y udu
x 00sin cos ,求dx dy
. 三、计算下列各定积分.
1、
dx x x )1(2
1
+⎰
2、dx x ⎰+3
31211 3、dx x
⎰--2121211
4、
dx x ⎰
40
2
tan π 5、dx x
x x ⎰-+++0
122
41133 6、dx x ⎰π20sin 四、求极限
2
)sin(0
2lim
x tdt
x x ⎰→.
五、用换元积分法求下列定积分:
1、⎰-+1
12
)
511(1
dx x 2、⎰2
/6
/2
cos ππ
udu 3、⎰+2
1
ln 1e x
x dx
4、


θθ0
3
)sin 1(d 5、⎰
-2
2
2dx x 6、⎰
+41
1x
dx
六、用分部积分法求下列定积分:
1、

e
xdx x 1
ln 2、⎰
2
/30
arcsin xdx 3、⎰-1
dt te t
七、求定积分
⎰10
dx e x
八、求定积分
⎰2
/0
cos πxdx e x
九、求定积分

π
3cos 2sin xdx x .
十、求定积分

4
/0
4tan πxdx .
十一、设
,0
,0,1)(2⎩⎨⎧≥<+=-x e x x x f x 求⎰-2
)1(dx x f .
十二证明:若函数)(x f 在],[a a -上连续,则⎰-=--a
a dx x f x f 0)]()([.
十三证明:⎰⎰+=+1
1
12211x x
t dt t
dt .
十四、判定无穷积分

+∞
1
41
dx x
的收敛性,如果收敛,计算其值.
十五、判定瑕积分⎰
-1
2
1dx x
x 的收敛性,如果收敛,计算其值.
选做题:
1、设
,10,101,1)(2⎩
⎨⎧<≤-<<-+=x e x x x f x 求⎰-=x
dt t f x F 1)()(的表达式,并讨论)(x F 的连续性、可导性.
2、计算)1
...2111(lim n
n n n n ++++++∞→. (提示:利用定积分的定义) 3、设)1(,tan )(4
≥=

n xdx n f n π
,试证:
(1))()1(n f n f <+; (2))2(1
1
)2()(>-=
-+n n n f n f
4、设)(x f 为连续函数,证明:
dt du u f dt t x t f x
x t
))(())((0

⎰⎰=-
5、计算定积分⎰x
dt t t 023}1,,max{
.。

相关文档
最新文档