用样本频率分布体分布

合集下载

人教版高中数学必修3(A版) 用样本的频率分布估计总体分布 PPT课件

人教版高中数学必修3(A版) 用样本的频率分布估计总体分布  PPT课件
0.16
0.08 0.12 0.08 0.04 0.3 0.5 0.44
有数无形欠直观, 在频率直 有形无数难入微 方图中,
0.28
12%
3.5 4 4.5
0 .1
0
各小矩形 的面积的 总和等于1
0.5
1
1.5
2
2 .5
3
88%
月均用水量/t
探究:
同样一组数据,如果组距不同,横轴、纵轴的单位 不同,得到的图的形状也会不同。不同的形状给人以不 同的印象,这种印象有时会影响我们对总体的判断。观 察分别以1和0.1为组距的图象,谈谈你对图的印象。
0.036 0.032 0.028 0.024 0.020 0.016 0.012 0.008 0.004 o 90 100 110 120 130 140 150
次数
频率= 频数
第二小组频数 12 样本容量 150 样本容量 第二小组频率 0.08
频率分布折线图.
频率/组距 (取各小长方形上端中点, 并连线 )
0.6 0.5 0.4 0.3
0.3
0.16 0.12 0.08 0.04 0.28 0.5 0.44
0.2
0.1 0.08 0 0.5 1 1.5 2 2.5 3
3.5 4
4.5
月均用水量/t
利用样本频分布对总体分布进行相应估计 用样本分布直方图去估计相应的总体分布时, (1)样本容量越大,这种估计越精确。 一般样本容量越大,频率分布直方图就会越接 (2)当样本容量无限增大,组距无限缩小,那么相应的 近总体密度曲线,就越精确地反映了总体的分 频率折线图会无限接近于一条光滑曲线 ———总体密度曲线 布规律,即越精确地反映了总体在各个范围内 取值百分比。 (3)总体密度曲线反映了总体在各个范围内取值的百

用样本的频率分布估计总体的频率分布

用样本的频率分布估计总体的频率分布

用样本的频率分布估计总体的频率分布频率分布是一种用于描述数据集中频次分布情况的统计工具,它描述了每个数值或数值范围出现的频率。

在样本中,我们可以利用频率分布来估计总体的频率分布,从而了解总体的特征。

为了确切估计总体的频率分布,我们需要采取一定的统计方法,下面将介绍一种常用的方法,直方图。

一、直方图的构建构建频率分布的首要任务是将数据分为不同的组或区间。

一般来说,我们会根据数据的特点选择合适的组距,然后根据不同的组距将数据分组。

例如,假设我们有一组数据代表了一些班级学生的测试成绩,我们选择了组距为10,那么我们可以将数据分为以下几个组:然后,我们统计每个组内数据出现的次数,即频次,得到每个组的频次数。

二、计算频率频率是频次的一个重要衍生指标,它反映的是不同数据值或数据范围在总体中的比例。

频率的计算公式为:频率=频次/总样本量在直方图中,我们通常将频率表示为每个组的相对频率。

这样可以更好地反映出组与组之间的差异。

三、绘制直方图绘制直方图是一种直观地表现频率分布的方法。

在直方图上,x轴表示不同的组或区间,y轴表示频率。

我们可以用矩形的高度来表示每个组的频率,矩形的宽度表示组距。

通过绘制多个矩形,可以将频率分布更直观地展示出来。

在绘制直方图时,需要注意以下几点:1.组距应该选择合适,既不过小也不过大,以保证直方图的直观性和准确性。

2.直方图的高度应该符合频率的大小,即高度越高表示频率越大。

3.直方图的矩形之间应该没有间隙,以保证数据的完整性。

四、利用样本频率分布估计总体频率分布样本的频率分布可以提供总体频率分布的一种估计方法。

我们可以基于样本数据构建直方图,并计算每个组的频率。

然后,我们可以将样本频率分布与总体的频率分布进行比较。

如果两个分布形状相似并且没有明显的偏差,那么我们可以认为样本的频率分布可以很好地估计总体的频率分布。

当然,在使用样本频率分布进行总体频率分布估计时,还需要注意以下几点:1.样本的选取应该具有代表性,以避免样本偏差对估计结果的影响。

用样本估计总体

用样本估计总体

用样本估计总体一、用样本的频率分布估计总体分布(1)频数、频率将一批数据按要求分为若干个组,各组内数据的个数,叫做该组的频数。

每组数除以全体数据的个数的商叫做该组的频率。

频率反映数据在每组中所占比例的大小。

(2)样本的频率分布根据随机所抽样本的大小,分别计算某一事件出现的频率,这些频率的分布规律(取值状况),就叫做样本的频率分布。

为了能直观地显示样本的频率分布情况,通常我们会将样本的容量、样本中出现该事件的频数以及计算所得的频率列在一张表中,叫做样本频率分布表。

(3)用样本频率分布估计总体的分布从一个总体得到一个包含大量数据的样本时,我们很难从一个个数字中直接看出样本所含的信息。

如果把这些数据形成频数分布或频率分布,就可以比较清楚地看出样本数据的特征,从而估计总体的分布情况。

用样本估计总体,是研究统计问题的一个基本思想方法,而对于总体分布,我们总是用样本的频率分布对它进行估计。

(4)频率分布直方图的特点从频率分布直方图可以清楚地看出数据分布的总体态势,但是从直方图本身得不出原始的数据内容,所以,把数据表示成直方图后,原有的具体数据信息就被抹掉了。

(5)频率分布折线图把频率分布直方图各个长方形上边的中点用线段连接起来,就得到频率分布折线图,如图所示。

为了方便看图,一般习惯于把频率分布折线图画成与横轴相连,所以横轴上的左右两端点没有实际意义。

(6)总体密度曲线①如果样本容量越大,所分组数越多,频率分布直方图中表示的频率分布就越接近于总体在各个小组内所取值的个数与总数比值的大小。

设想如果样本容量不断增大,分组的组距不断缩小,则频率分布直方图实际上是越来越接近于总体的分布,它可以用一条光滑曲线来描绘,这条光滑曲线就叫做总体密度曲线。

y f x()②总体密度曲线精确地反映了一个总体在各个区域内取值的百分比。

a b内的百分比就是图中带斜线部分的面积。

对本例来说,总体密度曲线呈产品尺寸落在(,)中间高两边低的“钟”形分布,总体的数据大致呈对称分布,并且大部分数据都集中在靠近中间的区间内。

人教高中数学必修三2.2.1用样本的频率分布估计总体分布课件

人教高中数学必修三2.2.1用样本的频率分布估计总体分布课件

频率散布直方图以面积的情势反应了数据落在 各个小组的频率的大小.
作业
1、课时训练 P73 2、探究咱班学生的身高
散布情况 3、探究频率散布折线图和
总密度曲线
频率 组距 0.5 0.4 0.3 0.2 0.1
宽度:组距
高度:
频率 组距
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/t
画频率散布直方图
频率/组距
注意:
① 这里的纵坐标不是频率, 而是频率/组距;
0.50 0.40
0.50 ② 某个区间上的频率用
0.44
这个区间矩形的面积表示;
2.2.1用样本的频率散布 估计总体散布
学习目标
1、理解并学会画频率散布表; 2、掌握频率散布直方图的画法,
并能理解在频率散布直方图 中用面积表示频率。
一、复习回顾
1.我们已经学习了哪些抽样的方法?
简单随机抽样
系统抽样
分层抽样
随机抽样是收集数据的方法,如何通过 样本数据所包含的信息,估计总体的基 本特征,即用样本估计总体,是我们需 要进一步学习的内容.
二、样本估计总体的方法
一般分成两种: ①用样本的频率散布估计总体的散布. ②用样本的数字特征(如平均数、标准差 等)估计总体的数字特征.
• 我国是世界上严重缺水的国家之一。
如何划在本市试
行居民生活用水定额管理,即确定一个居民月用 水量标准a , 用水量不超过a的部分按平价收费,超 过a的部分按议价收费。
思考:由上表,大家可以得到什么信息?
三、样本分析
一般通过表、图、计算来分析 数据,帮助我们找出样本数据中的 规律,使数据所包含的信息转化成 直观的容易理解的情势。

高一必修3 2.2.2用样本的频示范课率分布估计总体的分布

高一必修3  2.2.2用样本的频示范课率分布估计总体的分布

不足:
当样本数据较多或数据位数较多时,茎叶图就 显得不太方便。
P71练习3、下面一组数据是某生产车间30名工人 某日加工零件的个数,请设计适当的茎叶图表示 这组数据,并由这图出发说明一下这个车间此日 的生产情况。 134 112 117 126 128 124 122 116 113 107 116 132 127 128 126 121 120 118 108 110 133 130 124 116 117 123 122 120 112 112
甲:13, 51, 23, 8, 26, 38, 16, 33, 14, 28, 39 乙:49, 24, 12, 31, 50, 31, 44, 36, 15, 37, 25, 36, 39 用茎叶图表示两人成绩,并比较甲、乙成绩并得出统计 结论 甲 乙 8 4, 6, 3 3, 6, 8 3, 8, 9 1 0 1 2 3 4 5 2, 5, 1, 4, 0 5 4 6, 1, 6, 7, 9 9



统计结论:
1、乙运动员的得分基本是对称的,叶的分布 是“单峰”的,有10/13集中在茎2,3,4上, 中位数是36;甲运动员的得分除一个特殊得 分(51分)外,中位数是2பைடு நூலகம்.
2、乙运动员的平均得分大于甲运动员的平均 得分(乙运动员得分普遍大于甲运动员的得 分)。
3、乙运动员的得分比甲运动员的得分更集 中。乙运动员更稳定。
频率分布直方图如下:
频率
组距
0.50 0.40 0.30 0.20 0.10 月均用水量 /t 4.5
0.5
1 1.5 2 2.5 3
3.5 4
作用:
能反映数据的变化趋势
二、总体密度曲线 利用样本频率分布对总体分布进行相应估计

高一数学人教A版必修3课件:2.2.1-2用样本的频率分布估计整体分布

高一数学人教A版必修3课件:2.2.1-2用样本的频率分布估计整体分布

知识迁移
例1 在某小学500名学生中随机抽样得到 100人的身高如下表(单位cm) :
身高区间
[122,126) [126,130) [130,134) [134,138) [138,142)


2
8
9
[150,154)
18
[154,158)
28
身高区间
[142,146) [146,150)


15
思考5:当总体中的个体数比较少或样 本数据不密集时,是否存在总体密度曲 线?为什么?
不存在,因为组距不能任意缩小. 思考6:对于一个总体,如果存在总体密 度曲线,这条曲线是否惟一?能否通过 样本数据准确地画出总体密度曲线?
探究(二):茎叶图
频率分布表、频率分布直方图和折 线图的主要作用是表示样本数据的分布 情况,此外,我们还可以用茎叶图来表 示样本数据的分布情况.
小结作业
1.用样本的频率分布估计总体分布,当总体 中的个体数取值很少时,可用茎叶图估计总 体分布;当总体中的个体数取值较多时,可 将样本数据适当分组,用频率分布表或频率 分布直方图估计总体分布. 2.总体密度曲线可看成是函数的图象,对一 些特殊的密度曲线,其函数解析式是可求的. 3.茎叶图中数据的茎和叶的划分,可根据 样本数据的特点灵活决定.
10
6
4
(1)列出样本频率分布表; (2)画出频率分布直方图; (3)估计该校学生身高小于134cm的人数约 为多少?
(1)频率分布表:
分 组 频数 频率
[122,126) [126,130) [130,134) [134,138) [138,142) [142,146) [146,150) [150,154) [154,158)

用样本的频率分布估计总体的分布》教学设计

用样本的频率分布估计总体的分布》教学设计

必修3《2.2.1 用样本的频率分布估计总体的分布》教学设计北京师范大学附属实验中学曹付生一、教学内容分析1.教学主要内容:本节课选自人教B版必修三,第二章第二小节,《用样本的频率分布估计总体的分布》,需要2课时完成,本节课是第一课时。

主要是画出样本的频率分布直方图,并能通过频率分布直方图对总体进行简单的估计。

2.教材编写特点本节是本章教材的第二小节,前面研究了随机抽样的方法及数据收集。

本节课主要研究对收集样本如何进行处理,突出对数据描述、处理的方法,特别是频率分布直方图画法,后面接着研究总体密度曲线、用样本的数字特征估计总体的数字特征以及正态曲线等,可以说本节课内容承上启下,地位非常重要。

从教材编写的角度来看,也正是要体现这一特点。

教材编写,通过对样本分析和总体估计的过程,突出了统计的实用性,从实际出发,收集数据,进行分析整理,再回到实际问题,感受数学对实际生活的需要,体现了统计的思想及其在实际问题中的应用价值,真正体会数学知识与现实生活的联系。

3.教材内容的数学核心思想教材内容的数学核心思想是用样本的频率分布直方图估计总体的统计思想方法。

4.我的思考:本节课重在教会学生绘制频率分布直方图,引导学生通过频率分布直方图分析总体的分布,体会统计的思想、方法。

在通读了教材的基础上,与人教A版的相应内容作了比较,再结合学生的情况,最终选择A版内容,更利于完成教学目标。

(1)人教A版教材中的例子与学生关系紧密,提出的问题更切合学生实际。

背景的熟悉使学生易于课堂参与。

(2)教材中问题的设计利于学生统计思想的建立等。

统计思想方法是数学的一个重要的思想方法,中学学习统计,除了掌握必要的统计知识之处,关键是让学生建立统计在现实生活中具有重要的作用,具有统计意识,同时体会到统计结果随机性、科学性,能作为总体的分布的合理性,是生活中某些问题决策必不可少的依据。

统计教学的核心目标正是让学生体会统计思维的特点和作用。

因此在设计中,从实际问题出发,再回到实际问题的决策,前后呼应,使学生真正体会数据处理的全过程、统计应用于现实生活的全过程,突出统计的思想、方法。

用样本的频率分布估计总体的分布

用样本的频率分布估计总体的分布
33
142,146
20
146,150
11
150,154
6
154,158
5
(1)列出样本频率分布表; (2)画出频率分布直方图; (3)估计身高小于 134cm的人数占总人数者智不达。——《墨子· 修身》
例 2、甲、乙两个小组各 10 名学生的英语口语测试成绩如下(单位:分) : 甲组 76 90 84 86 81 87 86 82 85 83 乙组 82 84 85 89 79 80 91 89 79 74 试用茎叶图表示两个小组的成绩,找出中位数。
三、当堂检测 1. 在频率分布直方图中,所有矩形的总面积( ) A.大于 1 B.小于 1 C.等于 1 D.不能确定 2. 下列关于频率分布直方图的说法中,正确的是( ) A 直方图的高表示取某数的频率 B 直方图的高表示该组上的个体在样本中出现频数与组距的比值 C 直方图的高表示该组上的个体在样本中出现的频率 D 直方图的高表示该组上的个体在样本中出现频率与组距的比值 3. 为了了解初三学生女生身高情况,某中学对初三女生身高进行了一次测量,所得 数据整理后列出了频率分布表如下: 组 别 频数 1 4 20 15 8 m
用样本的频率分布估计总体的分布
【使用说明及学法指导】 1.先精读一遍教材, 用红色笔勾画; 再针对导学案问题导学部分阅读并回答, 时间不超过 15 分钟; 2.限时完成导学案合作探究部分,书写规范;3.找出自己的疑惑点;4.必须记住的内容。 【学习目标】
规律总结
1. 学会列频率分布表,画频率分布直方图、频率折线图和茎叶图。 2. 通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选 择上述方法分析样本的分布,准确地做出总体估计。
四、课后巩固 1.若一个样本的极差为 12.4,组距为 2,则该组数据分成的组数是( ) A.5 B.6 C.7 D.8 2.将一组数据分成 6 组, 若第 1,2,3,5,6 组的频率分别为 0.1, 0.15, 0.2, 0.2, 0.15, 0.05,则第 4 组的频率是( ) A.0.1 B.0.15 C.0.2 D.0.05 3.有 100 名学生,每人只能参加一个运动队,其中参加足球队的有 30 人,参加篮球队的 有 27 人,参加排球队的有 23 人,参加乒乓球队的有 20 人. (1)列出学生参加运动队的频率分布表. (2)画出频率分布直方图.

2.2.1用样本的频率分布估计总体的分布课件(刘爱娟,2014.2.26)

2.2.1用样本的频率分布估计总体的分布课件(刘爱娟,2014.2.26)

• • • • • • • • • •
25.39 25.41 25.40 25.37 25.35 25.40 25.36 25.41 25.47 25.40
25.36 25.43 25.39 25.44 25.32 25.43 25.42 25.32 25.34 25.35
25.34 25.44 25.41 25.33 25.45 25.44 25.39 25.38 25.30 25.41
1.将每个数据分为茎(高位)和叶(低位) 两部分,在此例中,茎为十位上的数字, 叶为个位上的数字. 2.将最小茎和最大茎之间的数按大小次序 排成一列,写在中间. 3.将各个数据的叶按大小次序写在其茎的 左(右)侧.
用茎叶图表示数据的优点
一是从统计图上没有原始信息的损失,所 有的数据信息都可以从茎叶图中得到; 二是茎叶图可以在比赛是随时记录,方便 记录与表示。但茎叶图只便于表示两位有 效数字的数据,虽然可以表示两个人以上 的比赛结果(或两个以上的记录),但没 有表示两个记录那么直观、清晰
二、频率分布折线图
把频率分布直方图各个长方形上边的中点用线段 连接起来,就得到分布折线图。
三、总体密度曲线
• 频率分布直方图表明了所抽取的100件产品中, 尺寸落在各个小组内的频率大小.样本容量越大, 所分组数越多,各组的频率就越接近于总体在相 应各组取值的概率.设想样本容量无限增大,分
组的组距无限缩小,则频率分布直方图就会无限 接近于一条光滑曲线——总体密度曲线.它反映 了总体在各个范围内取值的规率.总体密度曲线
3、甲乙两个小组各10名学生的英语口语测试成绩如下(单位:分)
甲组 76 乙组 82 90 84 84 85 86 89 81 79 87 80 86 91 82 89 85 79 83 74

用样本的频率分布估计总体分布

用样本的频率分布估计总体分布

2.2
用样本估计总体
2.2.1用样本的频率分布估计总体分布
第二课时
问题提出
1.列出一组样本数据的频率分布表 可以分哪几个步骤进行? 第一步,求极差.
第二步,决定组距与组数.
第三步,确定分点,将数据分组.
第四步,统计频数,计算频率,制成 表格.
2.频率分布直方图是在平面直角坐标 系中画若干个依次相邻的小长方形,这 些小长方形的宽、高和面积在数量上分 别表示什么? 组距、频率除以组距、频率.
0.5 1 1.5 2 2.5 3 3.5 4 4.5
月均用水量/t
频率 组距
总体密度曲线
总体在区间 (a,b)内取 值的百分比.
O
a b 月均用水量/t
思考4:在上述背景下,相应的频率分布折线 图越来越接近于一条光滑曲线,统计中称这 条光滑曲线为总体密度曲线.那么图中阴影部 分的面积有何实际意义?
思考5:当总体中的个体数比较少或样 本数据不密集时,是否存在总体密度曲 线?为什么?
不存在,因为组距不能任意缩小. 思考6:对于一个总体,如果存在总体密 度曲线,这条曲线是否惟一?能否通过 样本数据准确地画出总体密度曲线?
探究(二):茎叶图
频率分布表、频率分布直方图和折 线图的主要作用是表示样本数据的分布 情况,此外,我们还可以用茎叶图来表 示样本数据的分布情况.
思考5:上表称为样本数据的频率分布表, 由此可以推测该市全体居民月均用水量 分布的大致情况,给市政府确定居民月 用水量标准提供参考依据,这里体现了 一种什么统计思想?
用样本的频率分布估计总体分布.
思考6:如果市政府希望85%左右的居民每 月的用水量不超过标准,根据上述频率分 布表,你对制定居民月用水量标准(即a的 取值)有何建议? 88%的居民月用水量在3t以下,可建议取a=3. 思考7:在实际中,取a=3t一定能保证85%以 上的居民用水不超标吗?哪些环节可能会导 致结论出现偏差? 分组时,组距的大小可能会导致结论出现偏 差,实践中,对统计结论是需要进行评价的.

12用样本的频率分布估计总体的分布

12用样本的频率分布估计总体的分布

5.画频率分布直方图
由学科班长对本节课进行总结。 总结的内容主要是回扣目标、总结 收获,评出优秀小组和个人!
目标: 1、(BC层)搞清画频率分布直方图和茎叶图的方法, 力争将预习检测及解答题的前两问弄明白. 2、(A层)在上面的基础上总结频率分布直方图和茎 叶图的画法和应用并搞好拓展.
【积极讨论、高效展示】7分钟
例1,例2,问题导学3、5 (1)通过例1总结频率分布直方图的画法和应用 (2)通过例2探讨茎叶图的画法和应用
地点
前黑板 前黑板 口头展 示 后黑板 后黑板
展示
8 6 7 5 1 9
点评
4组 7组 2组 2组 3组
例1(2)(3) 后黑板 例2
巩固落实 要求: 整理巩固探究问题 落实基础知识 完成知识结构图
课堂总结:
频率分布直方图 估计 总体分布 茎叶图 步骤
1.求极差 2.决定组距与组数 3.将数据分组 4.列频率分布表
分组时,通常对组内数值所在区间取左 闭右开区间,最后一组取闭区间。
④登记频数,计算频率,列出频率分布表
⑤ 绘制频率分布直方图
茎叶图的制作方法
制作茎叶图的方法是:将所有两位数的十位数字 作为“茎”,个位数字作为“叶”,茎相同者共 用一个茎,茎按从小到大的顺序从上向下列出, 共茎的叶一般按从大到小(或从小到大)的顺序 同行列出. 注意:在制作茎叶图时,重复出现的数据要重复 记录,不能遗漏,特别是“叶”部分;同一数据 出现几次,就要在图中体现几次.
(1)小组长搞好调控,组内先一对一讨论,再集中 讨论。安排同学展示,组织未展示的同学及时整理 总结。 (2)力争全部达成目标:A层多拓展,B层注重总结, C层力争全部掌握。
展示内容
问题导学3及思考

高一数学必修3课件:2-2-1用样本的频率分布估计总体分布

高一数学必修3课件:2-2-1用样本的频率分布估计总体分布

统计
成才之路 ·数学 ·人教A版 · 必修3
课前自主预习
随堂应用练习 方法警示探究
思路方法技巧 课后强化作业 名师辩误做答
第二章
2.2
2.2.1
成才之路 ·数学 ·人教A版 · 必修3
课前自主预习
第二章
2.2
2.2.1
成才之路 ·数学 ·人教A版 · 必修3
温故知新 1.一个单位有职工160人,其中有业务人员112人,管 理人员16人,后勤服务人员32人,为了了解职工的某种情况 要从中抽取一个容量为20的样本,用分层抽样的方法抽取样 本,需抽取后勤人员 4 人.
命题方向
[例1]
利用频率分布直方图解题
为了解某校高一年级学生的体能情况,抽取部
分学生进行一分钟跳绳测试,将所得数据整理后,画出频率 分布直方图(如下图),图中从左到右各小长方形的面积之比 为2:4:17:15:9:3,第二小组的频数为12.
第二章
2.2
2.2.1
成才之路 ·数学 ·人教A版 · 必修3
从图中可以看出:鲁斯分布的整体形状是大致对称的, 中位数大约是46个全垒打.鲁斯在1927年著名的60个全垒打 和其他值相比并不特别突出.与此相反,马利斯在1961年的 全叠打记录是偏离中心的.除了这个特殊的点外,他的整体 模式也大致对称,中位数大约是23.这两个分布可以表明鲁斯 作为全垒打的总体优势. 同学们可能不是很懂!通过本节的学习你就明白了!
成才之路 ·数学 ·人教A版 · 必修3
(3)频率分布的估计:频率分布是指各个小组数据在容量 中所占 比例 的大小,可以用 样本 的频率分布估计总体的频 率分布,频率分布表是反映样本的频率分布的表格.通过频 率分布直方图和频率分布表可以看到样本的频率分布.

用样本的频率分布估计总体的分布

用样本的频率分布估计总体的分布

频率分布表和频率分布直方图频率分布表和频率分布直方图教学目标:1、知识与技能目标①使学生会列出频率分布表,画出频率分布直方图,理解频率分布表和频率分布直方图及其特点。

用频率分布直方图解决简单实际问题。

②能根据样本频率分布表和频率分布直方图估计总体分布,了解样本频率分布表和频率分布直方图的随机性和规律性。

2、过程与方法目标通过绘制频率分布直方图体会利用频率分布直方图研究样本数据的方法。

经历用频率分布表和频率分布直方图估计总体分布情况的过程。

3、情感、态度与价值观目标在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解样本分布与总体分布的关系,初步体会样本频率分布的随机性。

体会统计思维与确定性思维的差异。

初步形成对数据与数据处理过程的评价意识。

教学重点:列频率分布表,画频率分布直方图,用样本估计总体的思想,用样本的频率分布估计总体的分布。

教学难点:样本频率分布表、频率分布直方图的具体绘制方法;对总体分布的理解;统计思维的建立。

教学方法:以教师为主导,学生为主体,以能力发展为目标,从学生的认识规律出发,进行启发、诱导、探索,让学生充分阅读、练习、讨论,教师适时讲授,充分调动学生的学习积极性,层层设疑,发挥学生的主体作用,引导学生在自主学习与分组讨论过程中体会知识的价值,感受知识的无穷魅力。

教学准备:1、教学课件2、学案教学流程图:教学过程:一、复习回顾,引入新课1、什么是频数?什么是频率?2、什么是极差?极差与组数、组距的关系如何?3、随机抽样的原则是什么?抽取方法有哪些?4、我们抽样的目的是什么?如引例中的样本,从这些数据中你可以获得什么信息?学生思考回答。

教师总结:1、频数:在某个范围内数据出现的次数。

2、频率:某一数据在某个范围出现频率计算方法是频数除以数据的总数(即样本容量)。

3、极差=最大值-最小值,极差又称为全距。

组数=组距极差4、抽样是为了从样本中获取信息,来估计总体的一些性质和特点,但是面对杂乱无章的数据,我们无法直接看出原始数据包含的更多信息。

数学:2.2.1《用样本的频率分布估计总体分布》课件(新人教B版必修3)

数学:2.2.1《用样本的频率分布估计总体分布》课件(新人教B版必修3)

2.2.1 用样本的频率分布估计总 体分布
探究: 我国是世界上严重缺水的 国家之一,城市 缺水问题较为突出。某市政府为了节约用 水,计划在 本市试行居民生活用水定额管 理,即确定一个居民月用水量标准a,用水 量不超过a的按平价收费,超过 a的按议价 收费。如果希望大部分居民的 日常生活不 受影响,那么标准a定为多少比较合理? 你认为,为了较为合理地确定出这个标准, 需要做什么工作?
茎是指中间的一列 数,表示得分的十位 甲 数
茎叶图
叶就是从茎的旁边 生长出来的数,表示得 分的个位数。 乙
8
0 1
4 6 3
3 6 8
2 5
5 4
2
3
3 8 9
1 6 1 6 7 9
4 9
4 1
5
0
茎叶图不仅能够保留原始数据,而且能够 展示数据的分布情况。 从运动员的成绩的分布来看,乙运动员的 成绩更好;从叶在茎上的分布情况来看,乙运 动员的得分更集中于峰值附近,说明乙运动员 的发挥更稳定。
0.50 0.40 0.30 0.20 0.10
0.5
1 1.5 2 2.5 3
3.5 4
月均用水量 /t 4.5
频率分布直方图如下:
频率
组距
直方图有那些 优点和缺点?
0.50 0.40 0.30 0.20 0.10 月均用水量 /t 4.5
0.5
1 1.5 2 2.5 3
3.5 4
频率/组距 0.50 0.40 0.30 0.20
2.3 2.3 1.8 1.3 1.3 1.6 0.9 2.3 2.4 2.1 1.7 1.4 1.2 1.5 0.5 2.4 2.3 2.1 1.6 1.0 1.0 1.7 0.8 2.4 2.2 2.0 1.5 1.0 1.2 1.8 0.6 2.2

9.5 用样本的频率分布估计总体分布课件-2023届广东省高职高考数学第一轮复习第九章概率与统计初步

9.5 用样本的频率分布估计总体分布课件-2023届广东省高职高考数学第一轮复习第九章概率与统计初步

A.甲
B.乙
C.丙
D.丁
【解析】 因为丙的平均数最大,方差最小,故选 C.
8.在学校组织的一次技能竞赛中,某班学生
成绩的频率分布直方图如图所示,若低于 60
分的有 12 人,则该班学生的人数为( B )
A.35
B.40
C.45
D.50
第 8 题图
【解析】 如图所知:低于 60 分的频率为 20×(0.005+0.010)=0.3, 设该班有学生 n 人,则1n2=0.3,解得 n=40,故选 B.
=0.4×40=16,故选 D.
4.某同学进行技能训练,录得近五次的训练成绩分别为:88,84,86,
85,87,则这组数据的方差为( A )
A.2
B.3
C.4
D.9
【解析】 因为x-=x1+x2+x53+x4+x5=86,所以,方差 s2=n1[(x1-x-)2

(x2


x
)2



(xn


二、填 空 题
9.将一个容量为 m 的样本分成 3 组,已知第 1 组的频数为 8,第 2 和第 3 组的频率为 0.15 和 0.45,则 m=___2_0__. 【解析】 由题意得,第一组的频率为m8 ,则m8 +0.15+0.45=1,解得 m=20.
10.容量为 100 的样本数据,按从小到大的顺序分为 8 组,如下表: 组号 1 2 3 4 5 6 7 8 频数 10 13 14 14 15 13 12 9
9.5 用样本的频率分布估计总体分布
知识点1 知识点2
1.用样本的频率分布估计总体 (1)频数与频率 将一组数据按要求分成若干个组,各组内数据的个数叫做该组的频 数,每组的频数除以全体数据的个数的商叫做该组的频率,频率反 映数据在每组中所占比例的大小.

2.2.1用样本的频率分布估计总体的分布

2.2.1用样本的频率分布估计总体的分布

⑤上例中,如果规定,钢管内径的尺寸在 区间25.325~25.475内为优等品,我们可依 据抽样分析统计出产品中优等品的比例, 也就是它的频率。从上表或上图容易看出, 这个频率值等于0.12+0.18+0.25+0.16 +0.13=0.84,于是可以估计出所有生产的 钢管中有84%的优等品。工厂可以根据质 量规范,看看是否达到优等品率的要求, 如果没有达到,就需要进一步分析原因, 解决问题。
分组时,通常对组内数值所在区间取左 闭右开区间,最后一组取闭区间,当然也 可以采用其他分组方法。
④登记频数,计算频率,列出频率分布表 频数 频率= —————,如第1小组的频率 样本容量 1 为——— =0.01. 100
频率分布表:
⑤ 绘制频率分布直方图 利用直方图反映样本的频率分布规律, 这样的直方图称为频率分布直方图,简称 频率直方图。 下面仍以上例中的数据加 以说明。 (1)频率分布直方图的绘制方法与步骤 S1 先制作频率分布表,然后作直角坐标 系,以横轴表示产品内径尺寸,纵轴表示 频率/组距.
运用上面的算法得出这组样本数据的最 大值是25.56,用类似的算法可以得出最 小值是25.24它们的差为 25.56-25.24= 0.32,所以极差等于0.32mm. ②决定组距与组数 样本数据有100个,由上面算得极差为 0.32,取组距为0.03, 极差 那么组数= ——— =10.67,于是分成11组。 组距
4.列频率分布表的步骤
下面我们通过一个具体的实例来阐述这 一方法。 某钢铁加工厂生产内径为25.40mm的钢 管,为了掌握产品的生产状况,需定期对 产品进行检测,下面的数据是一次抽样中 的100件钢管的内径尺寸:
最大值
最小值
列频率分布表的方法步骤: ①求极差(也称全距,即一组数据中最 大值与最小值的差): 计算极差时,需要找出这组数据的最 大值和最小值,当数据很多时,可借助 如下算法(最大值): S1 把这100个数据命名为A(1)、A(2)、 A(3)、……、A(100); S2 设变量x=A(1); S3 把A(i) (i=2,3,……,100)逐个与x比 较,如果A(i)>x,则x=A(i);

2.2.1用样本的频率分布估计总体分布

2.2.1用样本的频率分布估计总体分布
(1)列出样本频率分布表﹔ )列出样本频率分布表﹔ (2)一画出频率分布直方图 一画出频率分布直方图; 一画出频率分布直方图 (3)估计身高小于 134cm的人数占总人数的百分比 。 cm的人数占总人数的百分比 估计身高小于 cm的人数占总人数的百分比.。 分析:根据样本频率分布表、频率分布直方图的一般步骤解题。 分析:根据样本频率分布表、频率分布直方图的一般步骤解题。 (1 样本频率分布表如下: 解: 1)样本频率分布表如下: (
1
板出课题 1 分钟
让学生展开讨论 2 分钟
填空 2 分钟
以课本 P66 制定 居民用水标准问 题为例, 题为例,经过以 上几个步骤画出 频率分布直方 图。 学生动手作 ( 图)10 分钟 让学生仔细观察 表和图, 表和图,得出结 论 2 分钟
心灵寄语 :后悔过去,不如奋斗将来。——马克思 (1) 从频率分布直方图可以清楚的看出数据分布的总体趋势。 ) 从频率分布直方图可以清楚的看出数据分布的总体趋势。 不出原始的数据内容, (2) 从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有 ) 从频率分布直方图得不出原始的数据内容 把数据表示成直方图后, 的具体数据信息就被抹掉了。 的具体数据信息就被抹掉了。 探究〗 同样一组数据,如果组距不同,横轴、纵轴的单位不同,得到的图和形状也会不同。 :同样一组数据 〖探究〗 同样一组数据,如果组距不同,横轴、纵轴的单位不同,得到的图和形状也会不同。 : 不同的形状给人以不同的印象,这种印象有时会影响我们对总体的判断, 不同的形状给人以不同的印象,这种印象有时会影响我们对总体的判断,分别以 0.1 和 1 为组距 重新作图,然后谈谈你对图的印象? 重新作图,然后谈谈你对图的印象? 思考〗 :如果当地政府希望使 以上的居民每月的用水量不超出标准, 〖思考〗 如果当地政府希望使 85%以上的居民每月的用水量不超出标准,根据频率分布表 2-2 : 以上的居民每月的用水量不超出标准 和频率分布直方图 2.2-1,你能对制定月用水量标准提出建议吗? ,你能对制定月用水量标准提出建议吗? 频率分布折线图、 〈二〉频率分布折线图、总体密度曲线 1.频率分布折线图的定义: .频率分布折线图的定义: 连接频率分布直方图中各小长方形上端的中点 就得到频率分布折线图。 中各小长方形上端的中点, 连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图。 2.总体密度曲线的定义: .总体密度曲线的定义: 在样本频率分布直方图中, 相应的频率折线图会越来越接近于一条光滑曲线, 在样本频率分布直方图中, 相应的频率折线图会越来越接近于一条光滑曲线, 统计中 称这条光滑曲线为总体密度曲线。它能够精确地反映了总体在各个范围内取值的百分比, 称这条光滑曲线为总体密度曲线。它能够精确地反映了总体在各个范围内取值的百分比, 它能给我们提供更加精细的信息。 它能给我们提供更加精细的信息。 思考〗 〖思考〗 : 对于任何一个总体,它的密度曲线是不是一定存在?为什么? 1.对于任何一个总体,它的密度曲线是不是一定存在?为什么? 对于任何一个总体,它的密度曲线是否可以被非常准确地画出来? 2.对于任何一个总体,它的密度曲线是否可以被非常准确地画出来?为什么 实际上,尽管有些总体密度曲线是饿、客观存在的, 实际上,尽管有些总体密度曲线是饿、客观存在的,但一般很难想函数图象那样准确 地画出来,我们只能用样本的频率分布对它进行估计 一般来说,样本容量越大, 进行估计, 地画出来,我们只能用样本的频率分布对它进行估计,一般来说,样本容量越大,这种估 计就越精确. 计就越精确. 〈三〉茎叶图 茎叶图的概念: 1.茎叶图的概念: 当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字, 当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数 字表示个位数,即第二个有效数字,它的中间部分像植物的茎, 字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出 来的叶子,因此通常把这样的图叫做茎叶图。 来的叶子,因此通常把这样的图叫做茎叶图。 2.茎叶图的特征: .茎叶图的特征: 用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失, (1)用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据 信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加, 信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记 录与表示。 录与表示。 茎叶图只便于表示两位有效数字的数据, 且茎叶图只方便记录两组的数据, (2)茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个 以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰。 以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰。 三、典型例题 例题精析】 【例题精析】 人的身高(单位cm cm) 例 1 下表给出了某校 500 名 12 岁男孩中用随机抽样得出的 120 人的身高(单位cm) 观察表和图, 观察表和图,得 出结论 2 分钟

用样本频率分布估计总体分布

用样本频率分布估计总体分布

25.295 25.355
产品尺寸
离散型随机变量,指变量的取值是有限个 或 离散型随机变量 指变量的取值是有限个,或 指变量的取值是有限个 者无限可列个.有限个 比如你身边有10个朋 有限个,比如你身边有 者无限可列个 有限个 比如你身边有 个朋 那么你要得到他们的身高,他们身高作为 友,那么你要得到他们的身高 他们身高作为 那么你要得到他们的身高 一个变量的时候只能有10个取值 个取值,这十个值 一个变量的时候只能有 个取值 这十个值 就是离散的,你可以把它们一一写出来 你可以把它们一一写出来;对于 就是离散的 你可以把它们一一写出来 对于 无限可列个,比如有个随机变量 比如有个随机变量x,x可以取得 无限可列个 比如有个随机变量 可以取得 值是自然数,也就是说 可以取到1,2,3,..,n,..., 也就是说x可以取到 值是自然数 也就是说 可以取到 虽然有无穷多,但是你可以把它们按照某种 虽然有无穷多 但是你可以把它们按照某种 规律列出来,或者说 存在这样的两个x取值 或者说,存在这样的两个 取值, 规律列出来 或者说 存在这样的两个 取值 按照某种规律排定之后,它们之间不允许再 按照某种规律排定之后 它们之间不允许再 存在x其它取值 那么x也是离散的 如果x的 其它取值,那么 也是离散的.如果 存在 其它取值 那么 也是离散的 如果 的 取值是实数的话,那么就是不可列的 那么就是不可列的,x就变 取值是实数的话 那么就是不可列的 就变 成了连续性变量. 成了连续性变量
频率
0
1
试验结果
注意点: ①各直方长条的宽度要相同, 宽窄与频率无关; ②相邻长条之间的间隔要适当;
频率
③条形图的高度就是频率;
0.5
试验结果 正面向上 反面向上
0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用样本频率分布体分布————————————————————————————————作者:————————————————————————————————日期:2.2.1 用样本的频率分布估计总体的分布荣成二中宋海燕目的要求通过实例体会分布的意义和作用,在表示数据的过程中,学会列出频率分布表、画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点。

教学过程1.实例引课为了解某地区女中学生的身体发育情况,不仅要了解其平均身高,还要了解身高在哪个范围内的学生多,哪个范围内的学生少.为了解某次考试成绩,不仅应知道平均成绩,还应知道90分以上占多少,80分~90分占多少,……,不及格占多少等.要解决上面的两个问题,需要从总体中得到一个包含大量数据的样本,并且把这些数据形成频率分布,就可以比较清楚地看出样本数据的特征,从而估计总体的分布情况。

2.引出课题:用样本的频率分布估计总体的分布看下面的例子某钢铁加工厂生产内径为25.40mm的钢管,为了掌握产品的生产状况,需要定期对产品进行检测。

又由于产品的数量巨大,不可能一一检测所有的钢管,因而通常采用随机抽样的办法。

如果把这些钢管的内径看成总体,我们可以从中随机抽取的100件钢管进行检测,把这100件钢管的质量分布情况作为总体的质量分布情况来看待。

根据规定,钢管内径的尺寸在区间25.325~25.475内为优等品,我们特别希望知道所有生产的钢管中优等品所占的比例,这时就可以用样本的分布情况估计总体的分布情况。

下面的数据是一次抽样中的100件钢管的内径尺寸:(幻灯示).25.39 25.36 25.34 25.42 25.45 25.38 25.39 25.42 25.47 25.3525.41 25.43 25.44 25.48 25.45 25.43 25.46 25.40 25.51 25.4525.40 25.39 25.41 25.36 25.38 25.31 25.56 25.43 25.40 25.3825.37 25.44 25.33 25.46 25.40 25.49 25.34 25.42 25.50 25.3725.35 25.32 25.45 25.40 25.27 25.43 25.54 25.39 25.45 25.4325.40 25.43 25.44 25.41 25.53 25.37 25.38 25.24 25.44 25.4025.36 25.42 25.39 25.46 25.38 25.35 25.31 25.34 25.40 25.3625.41 25.32 25.38 25.42 25.40 25.33 25.37 25.41 25.49 25.3525.47 25.34 25.30 25.39 25.36 25.46 25.29 25.40 25.37 25.3325.40 25.35 25.41 25.37 25.47 25.39 25.42 25.47 25.38 25.39上面的100个数据有点散乱,从中很难看出产品质量的分布情况,必须对样本数据用统计的方法加以概括和整理。

下面我们列出这组样本数据的频率分布表、频率分布直方图,步骤如下:(1)计算级差(一组数据中最大值与最小值的差)25.26-25.24=0.32(2)决定组距与组数(样本容量不超过100时,组数常分为5~12组)如果组距定为0.03,那么级差/组距=0.32/0.03=10 2/3于是应将样本数据分成11组(组距还可以定为其他的数值)(3)决定分点将第1组的起点定为25.235,组距为0.03,这样所分的11个组是:[25.235,25.265][25.265,25.295]……(4)列频率分布表分组个数累计频数频率25.235~25.265 1 1 0.0125.265~25.295 2 2 0.0225.295~25.325 5 5 0.0525.325~25.355 12 12 0.1225.355~25.385 18 18 0.1825.385~25.415 25 25 0.2525.415~25.445 16 16 0.1625.445~25.475 13 13 0.1325.475~25.505 4 4 0.0425.505~25.535 2 2 0.0225.535~25.565 2 2 0.02合计100 100 1.00(5)绘制频率分布直方图注:(1)小长方形的面积=组距×频率/组距=频率各长方形的面积总和等于1(2)从频率分布表或频率分布直方图容易看出,优等品所占的比例等于0.12+0.18+0.25+0.16+0.13=0.84,于是可以估计出所有生产的钢管中有84%的优等品。

(3)用样本的频率分布估计总体的分布时,要使样本能够很好的反映总体的特性,必须随机抽样。

由于抽样的随机性,可以想到,如果随机抽取另外一个容量为100的样本,所形成的样本频率分布一般会与前一个样本频率分布有所不同。

但是,它们都可以近似地看作总体的分布。

(4)从频率分布直方图可以清楚的看出数据分布的总体态势,但是直方图本身得不出原始的数据内容。

所以,把数据表示成直方图后,原有的具体数据信息就被抹掉了。

3.频率分布折线图把频率分布直方图各个长方形上边的中点用线段连接起来,就得到分布折线图。

4.总体密度曲线频率分布直方图表明了所抽取的100件产品中,尺寸落在各个小组内的频率大小.样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,则频率分布直方图就会无限接近于一条光滑曲线——总体密度曲线.它反映了总体在各个范围内取值的概率.总体密度曲线能够更好的反映总体在各个范围内的百分比,能够提供更准确的信息。

根据这条曲线,可求出总体在区间(a,b)内取值的概率等于总体密度曲线,直线x=a,x=b及x轴所围图形的面积.5.茎叶图常用的统计图表还有茎叶图,下面的例子就是用茎叶图表示数据。

例:某赛季甲、乙两名篮球运动员每场比赛的得分情况如下:甲的得分:12,15,24,25,31,31,36,36,37,39,44,49,50。

乙的得分:8,13,14,16,23,26,28,33,38,39,51。

注:中间的数字表示得分的十位数字。

旁边的数字分别表示两个人得分的个位数字从上面这个茎叶图上可以看出,甲运动员的得分情况是大致对称的,中位数是36;乙运动员的得分情况除一个特殊得分外,也大致对称,中位数是26。

因此甲运动员的发挥比较稳定,总体得分情况比乙运动员好。

用茎叶图表示数据有两个突出的优点,一是从统计图上没有原始信息的损失,所有的数据信息都可以从茎叶图中得到;二是茎叶图可以在比赛是随时记录,方便记录与表示。

但茎叶图只便于表示两位有效数字的数据,虽然可以表示两个人以上的比赛结果(或两个以上的记录),但没有表示两个记录那么直观、清晰。

6.课堂练习1)、对于样本频率分布直方图与总体密度曲线的关系,下列说法中正确的是( ) (A )频率分布直方图与总体密度曲线无关 (B )频率分布直方图就是总体密度曲线(C )样本容量很大的频率分布直方图就是总体密度曲线(D )如果样本容量无限增大,分组的组距无限减小,那么频率分布直方图就会无限接近于总体密度曲线2)、在用样本频率估计总体分布的过程中,下列说法中正确的是( ) (A )总体容量越大,估计越精确 (B )总体容量越小,估计越精确 (C )样本容量越大,估计越精确 (D )样本容量越小,估计越精确3)、10个小球分别编有号码1,2,3,4,其中1号球4个,2号球2个,3号球3个,4号球1个,数0.4是指1号球占总体分布的( )(A )频数 (B )概率 (C )频率 (D )累计频率4)、已知样本:12 7 11 12 11 12 10 10 9 8 13 12 10 9 6 11 8 9 8 10那么频率为0.25的样本的范围是( )(A ) (B ) (C ) (D )5)、频率分布直方图中,小长方体的面积等于( )(A )相应各组的频数 (B )相应各组的频率 (C )组数 (D )组距6)、在总体密度曲线中,总体在区间(a ,b )内取值的概率就是直线______、_______、_______和总体密度曲线围成的图形的面积.7)、对100位大学毕业生在该年七月份求职录取情况调查结果如下:20人录取在行政机关,31人录取在公司,3人录取在银行,18人录取在学校,其余的还在求职中.那么七月0 1 2 38 34 52 54甲 乙份这100位大学生还未被录取的概率为_______________.8)、一个容量为n的样本分成若干组,已知某组的频数和频率分别为30和0.25,则n=_______________.9)分组频数频率[10.75, 10.85) 3[10.85, 10.95) 9[10.95, 11.05) 13[11.05, 11.15) 16[11.15, 11.25) 26[11.25, 11.35) 20[11.35, 11.45) 7[11.45, 11.55) 4[11.55, 11.65) 2合计 100(1)完成上面的频率分布表.(2)根据上表,画出频率分布直方图.(3)根据上表,估计数据落在[10.95,11.35)范围内的概率约为多少?解:(1)(2)略.(3)数据落在[10.95,11.35]范围的频率为0.13+0.16十0.26+0.20落在[10.95,11.35]内的概率约为0.75.10)教科书第67页练习B第2、3题.7.归纳小结①获得样本的频率分布的步骤:(1)求最大值与最小值的差;(2)确定组距与组数;(3)决定分点;(4)列频率分布表;(5)绘制频率分布直方图.②图形优点缺点频率分布直方图1)易表示大量数据都是一些信息2)直观的反映分布的情况茎叶图1)无信息损失只能处理样本容量较小数据2)随时记录,方便记录和表示8.布置做业教科书第69页练习A第3、4题。

相关文档
最新文档