中考数学方程与方程组(4)

合集下载

中考数学专题练习四 方程与方程组

中考数学专题练习四 方程与方程组

专题四方程与方程组(时间:90分钟满分:100分)一、选择题(每小题2分,共20分)1.(2011年铜仁)小明从家里骑自行车到学校,每小时骑15 km,可早到10分钟,每小时骑12 km就会迟到5分钟,问他家到学校的路程是多少千米?设他家到学校的路程是x km,则据题意列出的方程是( )A.10515601260x x+=- B.10515601260x x-=+C.10515601260x x-=- D.1051512x x+=-2.(2011年宿迁)方程21xx+的解是 ( )A.-1 B.2C.1 D.03.(2011年福州)一元二次方程x(x-2)=0根的情况是 ( )A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根 D.没有实数根4.(2011年哈尔滨)若x=2是关于x的一元二次方程x2-m x+8=0的一个解,则m的值是 ( )A.6 B.5 C. 2 D.-65.(2011年安徽)一元二次方程x(x-2)=2-x的根是 ( )A.-1 B.2C.1和2 D.-1和26.(2011年江西)已知x=1是方程x2+bx-2-0的一个根,则方程的另一个根是 ( )A.1 B.2 C.-2 D.-17.(2011年滨州)某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率均为x,则下面所列方程中正确的是 ( )A.289(1-x)2=256 B.256(1-x)2=289 C.289(1-2x)=256 D.256(1-2x)=2898.(2011年威海)关于x的一元二次方程x2+(m-2)x+m+1=0有两个相等的实数根,则m的值是( )A.0 B.8C.4± D.0或89.(2011年黄石)设一元二次方程(x-1)(x-2)=m(m>0)的两根分别为α、β,且a<β,则a,β满足( )A.1<a<β<2 B.1<a<2<βC.a<1<β<2 D.a<1且β>210.(2011年成都)已知关于x的一元二次方程m x2+n x+k=0(m≠0)有两个实数根,则下列关于判别式n2-4mk的判断正确的是 ( )A.n2-4mk<0 B.n2-4mk=0C.n2-4mk>0 D.n2-4mk≥0二、填空题(每小题3分,共30分)11.(2011年成都)已知x=1是分式方程131kx x=+的根,则实数k=______.12.(2011年潍坊)方程组524050x y x y --=⎧⎨+-=⎩的解是_______. 13.(2011年滨州)若x =2是关于x 的方程x 2-x -a 2+5=0的一个根,则a 的值为______.14.(2011年襄阳)我国从2011年5月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记5分.小明参加本次竞赛得分要超过100分,他至少要答对______一道题. 15.(2011年临沂)方程113262x x x -=--的解是______. 16.(2011年达州)已知关于x 的方程x 2-m x +n =0的两个根是0和-3,则m =_______,n =______.17.(2011年重庆)某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了_______朵.18.(2011年宜宾)已知一元二次方程x 2-6x -5=0的两根为a 、b ,则11a b +的值是______. 19.(2011年十堰)关于x 、y 的二元一次方程组5323x y x y p +=⎧⎨+=⎩的解是正整数,则整数p 的值为______.20.(2011年日照)如图,在以AB 为直径的半圆中,有一个边长为1的内接正方形CDEF ,则以AC 和BC 的长为两根的一元二次方程是______.三、解答题(共50分)21.(8分)(2011年孝感)已知关于x 的方程x 2-2(k -1)x +k 2=0有两个实数根x 1、x 2.(1)求k 的取值范围;(2)若12x x +=x 1x 2-1,求k 的值.22.(8分)(2011年北京)列方程或方程组解应用题:京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米,他用乘公交车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的37.小王用自驾车方式上班平均每小时驶多少千米?23.(10分)(2011年舟山)期间目前“自驾游”已成为人们出游的重要方式.“五一”期间,林老师驾轿车从舟山出发,上高速公路途经舟山跨海大桥和杭州湾跨海大桥到嘉兴下高速,其间用了4.5小时;返回时平均速度提高了10千米/时,比去时少用了半小时回到舟山.(1)求舟山与嘉兴两地间的高速公路路程长;(2)两座跨海大桥的长度及过桥费见下表:我省交通部门规定:轿车的高速公路通行费y (元)的计算方法为:y =ax +b +5,其中a (元/千米)为高速公路里程费,x (千米)为高速公路里程(不包括跨海大桥长),b (元)为跨海大桥过桥费,若林老师从舟山到嘉兴所花的高速公路通行费为295.4元,求轿车的高速公路里程费a .24.(12分)(2011年宜昌)随着经济的发展,尹进所在的公司每年都在元月一次性的提高员工当年的月工资.尹进2008年的月工资为2000元,在2010年时他的月工资增加到2420元,他2011年的月工资按2008到2010年的月工资的平均增长率继续增长.(1)尹进2011年的月工资为多少?(2)尹进看了甲、乙两种工具书的单价,认为用自己2011年6月份的月工资刚好购买若干本甲种工具书和一些乙种工具书,当他拿着选定的这些工具书去付书款时,发现自己计算书款时把这两种工具书的单价弄对换了,故实际付款比2011年6月份的月工资少了242元,于是他用这242元又购买了甲、乙两种工具书各一本,并把购买的这两种工具书全部捐献给西部山区的学校.请问,尹进总共捐献了多少本工具书?25.(12分)(2011年扬州)古运河是扬州的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务由A 、B 两工程队先后接力....完成.已知A 工程队每天整治12米,B 工程队每天整治8米,共用时20天.(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:甲:128x y x+=⎧⎨+⎩ 乙:128x y x y +⎧⎪⎨+=⎪⎩根据甲、乙两名同学所列的方程组,请你分别指出未知数x 、y 表示的意义,然后在方框中补全甲、乙两名同学所列的方程组:甲:x 表示___________________________________________________________ ,y 表示____________________________________________________________;乙:x 表示___________________________________________________________ ,y 表示____________________________________________________________;(2)求A 、B 两工程队分别整治河道多少米.(写出完整..的解答过程)参考答案1~5 ABAAD 6~10 CADDD 11.16 12.23x y =⎧⎨=⎩ 13.x =-216.-3 0 17.4380 18.-65 19.5或7 20.x 2+1 21.(1)12k ≤ (2)k =-3 22.27千米 23.(1)360千米 (2)0.4元/千米 24.(1)2662元 (2)23本25.(1)A 工程队工作的天数 B 工程队工作的天数A 工程队整治河道的米数B 工程队整治河道的米数甲:20 180乙:180 20(2)A ,B 两工程队分别整治了60米和120米.。

2023年湖南省中考数学专练方程及其解法(含解析)

2023年湖南省中考数学专练方程及其解法(含解析)

2023年湖南省中考数学专练:4方程及其解法一.选择题(共12小题)1.(2021•安徽)设a ,b ,c 为互不相等的实数,且b =45a +15c ,则下列结论正确的是( ) A .a >b >c B .c >b >aC .a ﹣b =4(b ﹣c )D .a ﹣c =5(a ﹣b )2.(2022•定远县校级模拟)新冠肺炎传染性很强,曾有1人同时患上新冠肺炎,在一天内一人平均能传染x 人,经过两天传染后64人患上新冠肺炎,则x 的值为( ) A .4B .5C .6D .73.(2022•肥东县校级模拟)春节期间,阜阳市商务局组织举办了“皖美消费,乐享阜阳”﹣2022年跨年迎新购物季”列促销活动,某超市对一款原价位a 元的商品降价x %销售一段时间后,为了加大促销力度,再次降价x %,此时售价共降低了b 元,则( ) A .b =a (1﹣2x %) B .b =a ﹣a (1﹣x %)2 C .b =a (1﹣x %)2D .b =a ﹣a (1﹣2x %)4.(2022•蜀山区校级三模)当b +c =1时,关于x 的一元二次方程x 2+bx ﹣c =0的根的情况为( ) A .有两个实数根 B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根5.(2022•长丰县校级模拟)若关于x 的一元二次方程x 2﹣(a ﹣2)x +4=0有两个相等的实数根,则实数a 的值为( ) A .2B .﹣2C .﹣2或6D .﹣6或26.(2022•和县二模)已知三个实数a 、b 、c 满足a +b +c =0,ac +b +1=0(c ≠1),则( ) A .a =1,b 2﹣4ac >0 B .a ≠1,b 2﹣4ac ≥0C .a =1,b 2﹣4ac <0D .a ≠1,b 2﹣4ac ≤07.(2022•定远县校级模拟)已知关于x ,y 的方程组{4x −y =−5ax +by =−1和{3x +y =−93ax +4by =18有相同的解,那么√a +b 的平方根是( ) A .0B .±1C .±√2D .±28.(2022•南谯区校级模拟)把1~9这九个数填入3×3方格中,使其任意一行,任意一列及任意一条对角线上的数之和都相等,这样便构成了一个“九宫格”,它源于我国古代的“洛書”(图1),是世界上最早的“幻方”.图2是仅可以看到部分数值的“九宫格”,则x y 的值为( )A .1B .8C .9D .﹣89.(2022•定远县二模)下列变形正确的是( ) A .若ac =bc ,则a =b B .若a =b ,则a c=bcC .若ca=cb ,则a =bD .若3﹣4b =3﹣4a ,则a =b10.(2022•合肥模拟)一种商品,先提价20%,再降价10%,这时的价格是2160元.则该商品原来的价格是( ) A .2400元B .2200元C .2000元D .1800元11.(2022•裕安区校级一模)一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天,如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?设要用x 天可以铺好这条管线,则可列方程为( ) A .12x +24x =1 B .(112+124)x =1C .12x+24x=1 D .(12+24)x =112.(2022•定远县模拟)方程(7﹣a )x 2+ax ﹣8=0是关于x 的一元一次方程,那么a 的值是( ) A .0B .7C .8D .10二.填空题(共8小题)13.(2022•安徽)若一元二次方程2x 2﹣4x +m =0有两个相等的实数根,则m = . 14.(2022•定远县模拟)一元二次方程x 2﹣px +q =0的两根分别为x 1=1和x 2=2,那么将x 2+px +q 分解因式的结果为 .15.(2022•合肥模拟)定义新运算“*”,规则:a *b ={a(a ≥b)b(a <b),如1*2=2,(−√5)*√2=√2.若x 2+x ﹣2=0的两根为x 1,x 2,则x 1*x 2= .16.(2022•肥西县模拟)设a、b是方程x2﹣x﹣2021=0的两实数根,则a3+2022b﹣2021=.17.(2022•凤阳县一模)已知关于x的方程x2﹣3x+k=0有两个不相等的实数根,则k的取值范围是.18.(2022•芜湖一模)为推进“书香芜湖”建设,让市民在家门口即可享受阅读和休闲服务,某社区开办了社区书屋.2021年9月份书屋共接待了周边居民200人次,11月份共接待了648人次,假定9月至11月每月接待人次增长率相同设为x,则可列方程.19.(2022•镜湖区校级一模)关于x的方程kx2﹣2x﹣1=0有实数根,则k的取值范围是.20.(2022•安徽二模)一小船由A港到B港顺流需要6小时,由B港到A港逆流需要8小时,小船从上午7时由A港到B港时,发现一救生圈在中途落水,立即返航,1小时后找到救生圈,救生圈是时掉入水中的.三.解答题(共11小题)21.(2022•安徽)某地区2020年进出口总额为520亿元,2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.注:进出口总额=进口额+出口额.(1)设2020年进口额为x亿元,出口额为y亿元,请用含x,y的代数式填表:年份进口额/亿元出口额/亿元进出口总额/亿元2020x y5202021 1.25x 1.3y(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额分别是多少亿元?22.(2022•定远县校级模拟)如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个实数根.(1)求k的取值范围;(2)若方程有一个根是1,求k的值及方程的另一个根.23.(2022•定远县校级模拟)如图,用同样规格的黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题.(1)在第n个图中,第一横行共块瓷砖,第一竖列共有块瓷砖;(均用含n的代数式表示)(2)设铺设地面所用瓷砖的总块数为y,请写出y与(1)中的n的函数;(3)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求此时n的值;(4)是否存在黑瓷砖与白瓷砖块数相等的情形请通过计算说明理由.24.(2022•来安县二模)为进一步提高某届学生的阅读量,学校积极开展课外阅读活动,目标将该届学生人均阅读量从刚上七年级的80万字增加到八年级结束时的115.2万字.(1)求该届学生人均阅读量这两年中每年的平均增长率;(2)若按这两年中每年的平均增长率增长,学校能否实现九年级结束时该届学生人均阅读量达到140万字的目标,请计算说明.25.(2022•定远县模拟)如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根比另一个根大1,那么称这样的方程为“邻根方程”.例如,一元二次方程x2+x=0的两个根是x1=0,x2=﹣1,则方程x2+x=0是“邻根方程”.(1)通过计算,判断下列方程是否是“邻根方程”:①x2﹣x﹣6=0;②2x2−2√3x+1=0.(2)已知关于x的方程x2﹣(m﹣1)x﹣m=0(m是常数)是“邻根方程”,求m的值;(3)若关于x的方程mx2+nx+2=0(m,n是常数,m>0)是“邻根方程”,令t=n2﹣4m2,试求t的最大值.26.(2022•蜀山区校级模拟)我国南宋数学教杨辉曾经提出这样的一个问题,“直田积,八百六十四,只云阔不及长十二步,问阔及长各几步”.大意:矩形田地的面积为864平方步,宽比长少12步,问矩形田地的长与宽各几步?(请你利用所学知识解决以上问题)27.(2022•博望区校级一模)已知实数a1,a2,…,a n,(其中n是正整数)满足:{ a 1=13(1×2×3)=2a 1+a 2=13(2×3×4)=8a 1+a 2+a 3=13(3×4×5)=20⋯⋯a 1+a 2+⋯⋯+a n−1=13(n −1)n(n +1)a 1+a 2+⋯⋯+a n−1+a n =13n(n +1)(n +2) (1)求a 3,的值;(2)求a n 的值(用含n 的代数式表示); (3)求2022a1+2022a2+2022a3+⋯+2022a2021的值.28.(2022•肥东县二模)《九章算术》是我国古代数学经典著作,书中记载着这个问题:“今有黄金九枚,白银一十一枚,称之重,适等,交易其一,金轻十三两,问金、银一枚各重几何?“大意是:甲袋中装有9枚重量相等的黄金,乙袋中装有11枚重量相等的白银,两袋重量相等.两袋互相交换一枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?29.(2022•肥东县校级模拟)《增删算法统宗》是清代珠算书,明程大位原编纂,清梅敏增删,共十卷,成书于1760年.其中有这样一道题,原文如下:有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,问他第一天读了多少个字? 请解答上述问题.30.(2022•埇桥区校级模拟)寒假期间,小亮同学想跟着父母一起从合肥乘坐高铁去宣城,已知普通快车从合肥站到宣城站全程的平均速度为70km /h ,刚开通的高铁从合肥站到宣城站全程的平均速度为140km /h ,行完全程高铁比普通快车节省了90min .求合肥站到宣城站的距离为多少千米?31.(2022•马鞍山二模)某奶茶店的一款主打奶茶分为线上和线下两种销售模式,消费者从线上下单,每次可使用“满30减28”消费券一张(线下下单没有该消费券),同规格的一杯奶茶,线上价格比线下高20%,外卖配送费为4元/次,订单显示用券后线上一次性购买6杯实际支付金额和线下购买6杯支付金额一样多,求该款奶茶线下销售价格.2023年湖南省中考数学专练:4方程及其解法参考答案与试题解析一.选择题(共12小题)1.(2021•安徽)设a,b,c为互不相等的实数,且b=45a+15c,则下列结论正确的是()A.a>b>c B.c>b>a C.a﹣b=4(b﹣c)D.a﹣c=5(a﹣b)【解答】解:∵b=45a+15c,∴5b=4a+c,在等式的两边同时减去5a,得到5(b﹣a)=c﹣a,在等式的两边同时乘﹣1,则5(a﹣b)=a﹣c.故选:D.2.(2022•定远县校级模拟)新冠肺炎传染性很强,曾有1人同时患上新冠肺炎,在一天内一人平均能传染x人,经过两天传染后64人患上新冠肺炎,则x的值为()A.4B.5C.6D.7【解答】解:依题意得:(1+x)2=64,解得:x1=7,x2=﹣9(不合题意,舍去).故选:D.3.(2022•肥东县校级模拟)春节期间,阜阳市商务局组织举办了“皖美消费,乐享阜阳”﹣2022年跨年迎新购物季”列促销活动,某超市对一款原价位a元的商品降价x%销售一段时间后,为了加大促销力度,再次降价x%,此时售价共降低了b元,则()A.b=a(1﹣2x%)B.b=a﹣a(1﹣x%)2C.b=a(1﹣x%)2D.b=a﹣a(1﹣2x%)【解答】解:根据题意得,b=a﹣a(1﹣x%)2,故选:B.4.(2022•蜀山区校级三模)当b+c=1时,关于x的一元二次方程x2+bx﹣c=0的根的情况为()A.有两个实数根B.有两个不相等的实数根C.有两个相等的实数根D.没有实数根【解答】解:∵b+c=1,∴c =1﹣b ,∴Δ=b 2﹣4×(﹣c )=b 2+4(1﹣b )=(b ﹣2)2≥0, ∴方程有两个实数解. 故选:A .5.(2022•长丰县校级模拟)若关于x 的一元二次方程x 2﹣(a ﹣2)x +4=0有两个相等的实数根,则实数a 的值为( ) A .2B .﹣2C .﹣2或6D .﹣6或2【解答】解:∵关于x 的一元二次方程x 2﹣(a ﹣2)x +4=0有两个相等的实数根, ∴Δ=(a ﹣2)2﹣16=0, 即(a ﹣2)2=16,开方得:a ﹣2=4或a ﹣2=﹣4, 解得:a =6或﹣2. 故选:C .6.(2022•和县二模)已知三个实数a 、b 、c 满足a +b +c =0,ac +b +1=0(c ≠1),则( ) A .a =1,b 2﹣4ac >0 B .a ≠1,b 2﹣4ac ≥0C .a =1,b 2﹣4ac <0D .a ≠1,b 2﹣4ac ≤0【解答】解:{a +b +c =0①ac +b +1=0②.由②﹣①,得ac ﹣a ﹣c +1=0, 整理,得(a ﹣1)(c ﹣1)=0. ∵c ≠1,∴a ﹣1=0,即a =1.由ac +b +1=0得到:b =﹣(ac +1).则:b 2﹣4ac =[﹣(ac +1)]²﹣4ac =(ac ﹣1)². 当b 2﹣4ac =0,即(ac ﹣1)²=0时,ac =1. 由a =1得到c =1,与c ≠1相矛盾, 故a =1,b 2﹣4ac >0.方法二:{a +b +c =0①ac +b +1=0②.由②﹣①,得ac ﹣a ﹣c +1=0,整理,得(a ﹣1)(c ﹣1)=0. ∵c ≠1,∴a ﹣1=0,即a =1.b 2﹣4ac =[﹣(ac +1)]²﹣4ac =(ac ﹣1)². ∵a =1,c ≠1,∴b 2﹣4ac =(ac ﹣1)2>0. 故选:A .7.(2022•定远县校级模拟)已知关于x ,y 的方程组{4x −y =−5ax +by =−1和{3x +y =−93ax +4by =18有相同的解,那么√a +b 的平方根是( ) A .0B .±1C .±√2D .±2【解答】解:根据题意得{4x −y =−53x +y =−9,解得{x =−2y =−3,把{x =−2y =−3代入含有a ,b 的两个方程得{−2a −3b =−1−6a −12b =18, 解得{a =11b =−7,则√a +b =2,2的平方根是±√2. 故选:C .8.(2022•南谯区校级模拟)把1~9这九个数填入3×3方格中,使其任意一行,任意一列及任意一条对角线上的数之和都相等,这样便构成了一个“九宫格”,它源于我国古代的“洛書”(图1),是世界上最早的“幻方”.图2是仅可以看到部分数值的“九宫格”,则x y 的值为( )A .1B .8C .9D .﹣8【解答】解:依题意得,x +8=2+7,∴x =1∵1+y +5=8+2+5, ∴y =9, 解得:{x =1y =9,∴x y =19=1, 故选:A .9.(2022•定远县二模)下列变形正确的是( ) A .若ac =bc ,则a =b B .若a =b ,则a c=bcC .若ca=cb ,则a =bD .若3﹣4b =3﹣4a ,则a =b【解答】解:若ac =bc ,c ≠0,则a =b ,故A 错误,不符合题意; 若a =b ,c ≠0,则ac=bc ,故B 错误,不符合题意;若c a=cb,c ≠0,则a =b ,故C 错误,不符合题意;若3﹣4b =3﹣4a ,则a =b ,故D 正确,符合题意; 故选:D .10.(2022•合肥模拟)一种商品,先提价20%,再降价10%,这时的价格是2160元.则该商品原来的价格是( ) A .2400元B .2200元C .2000元D .1800元【解答】解:设该商品原来的价格是x 元,依题意有: (1+20%)×(1﹣10%)x =2160, 解得x =2000.故该商品原来的价格是2000元. 故选:C .11.(2022•裕安区校级一模)一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天,如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?设要用x 天可以铺好这条管线,则可列方程为( ) A .12x +24x =1 B .(112+124)x =1C .12x+24x=1 D .(12+24)x =1【解答】解:设要用x天可以铺好这条管线,则可列方程:(112+124)x=1.故选:B.12.(2022•定远县模拟)方程(7﹣a)x2+ax﹣8=0是关于x的一元一次方程,那么a的值是()A.0B.7C.8D.10【解答】解:∵方程(7﹣a)x2+ax﹣8=0是关于x的一元一次方程,∴7﹣a=0且a≠0,解得:a=7,故选:B.二.填空题(共8小题)13.(2022•安徽)若一元二次方程2x2﹣4x+m=0有两个相等的实数根,则m=2.【解答】解:∵一元二次方程2x2﹣4x+m=0有两个相等的实数根,∴Δ=16﹣8m=0,解得:m=2.∴m=2.故答案为:2.14.(2022•定远县模拟)一元二次方程x2﹣px+q=0的两根分别为x1=1和x2=2,那么将x2+px+q分解因式的结果为(x+1)(x+2).【解答】解:由根与系数的关系可知:x1+x2=p,x1•x2=q,即1+2=p,1×2=q,∴p=3,q=2,∴x2+px+q=x2+3x+2=(x+1)(x+2).故答案为(x+1)(x+2).15.(2022•合肥模拟)定义新运算“*”,规则:a*b={a(a≥b)b(a<b),如1*2=2,(−√5)*√2=√2.若x2+x﹣2=0的两根为x1,x2,则x1*x2=1.【解答】解:解方程x2+x﹣2=0得:x1=1,x2=﹣2.∵a*b={a(a≥b) b(a<b),∴x1*x2=1.故答案为:1.16.(2022•肥西县模拟)设a、b是方程x2﹣x﹣2021=0的两实数根,则a3+2022b﹣2021=2022.【解答】解:∵a,b是方程x2﹣x﹣2021=0的两实数根,∴a2=a+2021,a+b=1,∴a3+2022b﹣2021=a(a+2021)+2022b﹣2021=a2+2021a+2022b﹣2021=a+2021+2021a+2022b﹣2021=2022(a+b)=2022×1=2022.故答案为:2022.17.(2022•凤阳县一模)已知关于x的方程x2﹣3x+k=0有两个不相等的实数根,则k的取值范围是k<94.【解答】解:根据题意得Δ=(﹣3)2﹣4k>0,解得k<9 4,即k的取值范围为k<9 4.故答案为:k<9 4,18.(2022•芜湖一模)为推进“书香芜湖”建设,让市民在家门口即可享受阅读和休闲服务,某社区开办了社区书屋.2021年9月份书屋共接待了周边居民200人次,11月份共接待了648人次,假定9月至11月每月接待人次增长率相同设为x,则可列方程200(1+x)2=648.【解答】解:依题意得:200(1+x)2=648.故答案为:200(1+x)2=648.19.(2022•镜湖区校级一模)关于x的方程kx2﹣2x﹣1=0有实数根,则k的取值范围是k≥﹣1 .【解答】解:①当k =0时,﹣2x ﹣1=0,解得x =−12;②当k ≠0时,此方程是一元二次方程,∵关于x 的方程kx 2+3x ﹣1=0有实数根,∴Δ=(﹣2)2﹣4×k ×(﹣1)≥0,解得k ≥﹣1;由①②得,k 的取值范围是k ≥﹣1.故答案为:k ≥﹣1.20.(2022•安徽二模)一小船由A 港到B 港顺流需要6小时,由B 港到A 港逆流需要8小时,小船从上午7时由A 港到B 港时,发现一救生圈在中途落水,立即返航,1小时后找到救生圈,救生圈是 12 时掉入水中的.【解答】解:设小船按水流速度由A 港漂流到B 港需要x 小时,由题意得:16−1x =18+1x , 解得:x =48.经检验,x =48是原方程的解,且符合题意.即小船按水流速度由A 港漂流到B 港需要48小时.设救生圈是在y 点钟落下水中的,救生圈每小时顺水漂流的距离等于全程的148, 由题意得:(7+6﹣y )(16−148)=1×(18+148),解得:y =12.即救生圈是在中午12点钟掉下水的,故答案为:12.三.解答题(共11小题)21.(2022•安徽)某地区2020年进出口总额为520亿元,2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.注:进出口总额=进口额+出口额.(1)设2020年进口额为x 亿元,出口额为y 亿元,请用含x ,y 的代数式填表: 年份 进口额/亿元 出口额/亿元 进出口总额/亿元2020x y 520 2021 1.25x 1.3y 1.25x +1.3y(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额分别是多少亿元?【解答】解:(1)由表格可得,2021年进出口总额为:1.25x +1.3y ,故答案为:1.25x +1.3y ;(2)由题意可得,{x +y =5201.25x +1.3y =520+140, 解得{x =320y =200, ∴1.25x =400,1.3y =260,答:2021年进口额是400亿元,出口额是260亿元.22.(2022•定远县校级模拟)如果关于x 的一元二次方程k 2x 2﹣(2k +1)x +1=0有两个实数根.(1)求k 的取值范围;(2)若方程有一个根是1,求k 的值及方程的另一个根.【解答】解:(1)∵关于x 的一元二次方程k 2x 2﹣(2k +1)x +1=0有两个实数根, ∴Δ≥0,且k ≠0,∴(2k +1)2﹣4k 2≥0,∴k ≥−14,∴k 的取值范围k ≥−14且k ≠0;(2)把x =1代入k 2x 2﹣(2k +1)x +1=0中,可得k 2﹣(2k +1)+1=0解得:k =2,或k =0当k =0时方程为一元一次方程,不符合题意∴k =2∴原方程为4x 2﹣5x +1=0,解方程得:x 1=1,x 2=14综上所述k =2,x 2=14.23.(2022•定远县校级模拟)如图,用同样规格的黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题.(1)在第n个图中,第一横行共(n+3)块瓷砖,第一竖列共有(n+2)块瓷砖;(均用含n的代数式表示)(2)设铺设地面所用瓷砖的总块数为y,请写出y与(1)中的n的函数;(3)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求此时n的值;(4)是否存在黑瓷砖与白瓷砖块数相等的情形请通过计算说明理由.【解答】解:(1)每﹣横行有(n+3)块,每﹣竖列有(n+2)块;故答案为:(n+3),(n+2)块;(2)y=(n+3)(n+2);(3)由题意,得(n+3)(n+2)=506,解之n1=20,n2=﹣25(舍去).答:此时n的值为20;(4)当黑白砖块数相等时,有方程n(n+1)=(n2+5n+6)﹣n(n+1).整理得n2﹣3n﹣6=0.解之得n1=3+√332,n2=3−√332.由于n1的值不是整数,n2的值是负数,故不存在黑砖白块数相等的情形.24.(2022•来安县二模)为进一步提高某届学生的阅读量,学校积极开展课外阅读活动,目标将该届学生人均阅读量从刚上七年级的80万字增加到八年级结束时的115.2万字.(1)求该届学生人均阅读量这两年中每年的平均增长率;(2)若按这两年中每年的平均增长率增长,学校能否实现九年级结束时该届学生人均阅读量达到140万字的目标,请计算说明.【解答】解:(1)设该届学生人均阅读量这两年中每年的平均增长率为x,依题意得:80(1+x )2=115.2,解得:x 1=﹣2.2(不符合题意,舍去),x 2=0.2=20%.∴该届学生人均阅读量这两年中每年的平均增长率为20%.(2)学校的目标不能实现,理由如下:按照(1)中的阅读量增长率,九年级结束时该届学生人均阅读量为115.2×(1+20%)=138.24(万字),∵140>138.24,∴学校的目标不能实现.答:(1)该届学生人均阅读量这两年中每年的平均增长率为20%;(2)学校的目标不能实现.25.(2022•定远县模拟)如果关于x 的一元二次方程ax 2+bx +c =0(a ≠0)有两个实数根,且其中一个根比另一个根大1,那么称这样的方程为“邻根方程”.例如,一元二次方程x 2+x =0的两个根是x 1=0,x 2=﹣1,则方程x 2+x =0是“邻根方程”.(1)通过计算,判断下列方程是否是“邻根方程”:①x 2﹣x ﹣6=0;②2x 2−2√3x +1=0.(2)已知关于x 的方程x 2﹣(m ﹣1)x ﹣m =0(m 是常数)是“邻根方程”,求m 的值;(3)若关于x 的方程mx 2+nx +2=0(m ,n 是常数,m >0)是“邻根方程”,令t =n 2﹣4m 2,试求t 的最大值.【解答】解:(1)①解方程x 2﹣x ﹣6=0得:x =3或x =﹣2,∵3﹣(﹣2)=5,∴x 2﹣x ﹣6=0不是“邻根方程”;②解方程2x 2−2√3x +1=0得:x =2√3±√12−84=√3±12, ∵√3+12−√3−12=1, ∴x 2﹣x ﹣6=0是“邻根方程”;(2)由方程x 2﹣(m ﹣1)x ﹣m =0解得:x =m 或x =﹣1,由于方程x 2﹣(m ﹣1)x ﹣m =0(m 是常数)是“邻根方程”,则m ﹣(﹣1)=1或﹣1﹣m =1,解得m =0或﹣2;(3)解方程mx 2+nx +2=0得:x =−n±√n 2−8m 2m , ∵关于x 的方程mx 2+nx +2=0(m ,n 是常数,m >0)是“邻根方程”,∴−n+√n 2−8m 2m −−n−√n 2−8m 2m =1,∴n 2=m 2+8m ,∵t =n 2﹣4m 2,∴t =﹣3m 2+8m =−3(m −43)2+163, ∴当m =43时,t 有最大值163. 26.(2022•蜀山区校级模拟)我国南宋数学教杨辉曾经提出这样的一个问题,“直田积,八百六十四,只云阔不及长十二步,问阔及长各几步”.大意:矩形田地的面积为864平方步,宽比长少12步,问矩形田地的长与宽各几步?(请你利用所学知识解决以上问题)【解答】解:设矩形田地的宽为x 步,则长为(x +12)步,依题意得:(x +12)x =864,整理得:x 2+12x ﹣864=0,解得:x 1=24,x 2=﹣36(不合题意,舍去),∴x +12=24+12=36.答:矩形田地的长为36步,宽为24步.27.(2022•博望区校级一模)已知实数a 1,a 2,…,a n ,(其中n 是正整数)满足: { a 1=13(1×2×3)=2a 1+a 2=13(2×3×4)=8a 1+a 2+a 3=13(3×4×5)=20⋯⋯a 1+a 2+⋯⋯+a n−1=13(n −1)n(n +1)a 1+a 2+⋯⋯+a n−1+a n =13n(n +1)(n +2)(1)求a 3,的值;(2)求a n 的值(用含n 的代数式表示);(3)求2022a1+2022a2+2022a3+⋯+2022a2021的值.【解答】解:①∵a 1+a 2=8,a 1+a 2+a 3=20,∴(a 1+a 2+a 3)﹣(a 1+a 2)=20﹣8=12,∴a 3=12;②a n =13(a 1+a 2+a 3+…+a n )−13(a 1+a 2+a 3+…+a n ﹣1)=13n n (n +1)(n +2)−13(n ﹣1)n (n +1)=13n (n +1)[n +2﹣(n ﹣1)]=n (n +1),即a n =n (n +1);③2022a 1+2022a 2+2022a 3+•+2022a 2021 =2022×(11×2+12×3+13×4+⋯+12020×2021) =1−12+12−13+13−14+⋯+12020−12021=20202021.28.(2022•肥东县二模)《九章算术》是我国古代数学经典著作,书中记载着这个问题:“今有黄金九枚,白银一十一枚,称之重,适等,交易其一,金轻十三两,问金、银一枚各重几何?“大意是:甲袋中装有9枚重量相等的黄金,乙袋中装有11枚重量相等的白银,两袋重量相等.两袋互相交换一枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?【解答】解:设黄金每枚重a 两,白银每枚重b 两,根据题意列方程组:{9a =11b 8a +b =10b +a −13解得:{a =1434b =1174 答:黄金每枚重1434两,白银每枚重1174两.29.(2022•肥东县校级模拟)《增删算法统宗》是清代珠算书,明程大位原编纂,清梅敏增删,共十卷,成书于1760年.其中有这样一道题,原文如下:有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,问他第一天读了多少个字? 请解答上述问题.【解答】解:设他第一天读了x 个字,根据题意得x +2x +4x =34685,解得x =4955,答:他第一天读了4955个字.30.(2022•埇桥区校级模拟)寒假期间,小亮同学想跟着父母一起从合肥乘坐高铁去宣城,已知普通快车从合肥站到宣城站全程的平均速度为70km/h,刚开通的高铁从合肥站到宣城站全程的平均速度为140km/h,行完全程高铁比普通快车节省了90min.求合肥站到宣城站的距离为多少千米?【解答】解:设合肥站到宣城站的距离为x千米,依题意得:x70−x140=9060,解得:x=210.答:合肥站到宣城站的距离为210千米.31.(2022•马鞍山二模)某奶茶店的一款主打奶茶分为线上和线下两种销售模式,消费者从线上下单,每次可使用“满30减28”消费券一张(线下下单没有该消费券),同规格的一杯奶茶,线上价格比线下高20%,外卖配送费为4元/次,订单显示用券后线上一次性购买6杯实际支付金额和线下购买6杯支付金额一样多,求该款奶茶线下销售价格.【解答】解:设该款奶茶线下销售价格为x元/杯,则线上销售价格为(1+20%)x元/杯,依题意得:6×(1+20%)x﹣28+4=6x,解得:x=20.答:该款奶茶线下销售价格为20元/杯.。

考点04 一次方程(组)与其应用-备战2023届中考数学一轮复习考点梳理(原卷版)

考点04 一次方程(组)与其应用-备战2023届中考数学一轮复习考点梳理(原卷版)

考点04 一次方程(组)与其应用一元一次方程与二元一次方程组在初中数学中因为未知数的最高次数都是一次,且都是整式方程,所以常放在一起统称为“一次方程”,而在数学中考中,对于这两个方程的解法及其应用一直都有考察,其中对于两个方程的解法以及注意事项是必须掌握的,而在其应用上也是中考代数部分结合型较强的一类考点,需要考生在一轮复习中把该考点熟练掌握。

考向一·等式的基本性质考向二·一元一次方程的解法考向三·二元一次方程组的解法考向四·一次方程(组)的简单应用考向一:等式的基本性质等式的基本性质【易错警示】1.下列判断错误的是( )A .如果a =b ,那么a +c =b +c B .如果ac =bc ,那么a =b C .如果a =b ,那么ac =bcD .如果a =b ,那么=(c ≠0)2.已知3a =2b +5,下列等式不一定成立的是( )A .3ab =2b 2+5b B .3a +1=2b +6C .=+D .a =b +3.若,则x 与y 的等量关系是 (结果不含a ,b ).4.规定两数a ,b 之间的一种运算,记作(a ,b ):如果a c =b ,那么(a ,b )=c .例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,9)= ,= ,(﹣2,﹣32)= .(2)令(2,6)=x ,(2,7)=y ,(2,42)=z ,试说明下列等式成立的理由:(2,6)+(2,7)=(2,42).5.(1)观察下面的点阵图与等式的关系,并填空:(2)通过猜想,写出第n 个点阵相对应的等式: .,那么考向二:一元一次方程的解法1.一元一次方程的概念:只含有1个未知数(元),未知数的最高次数是1次的整式方程叫做一元一次方程。

2.一元一次方程解法:上表仅说明了在解一元一次方程时经常用到的几个步骤,但并不是说解每一个方程都必须经过五个步骤;解方程时,一定要先认真观察方程的形式,再选择步骤和方法;去分母①不含分母的项也要乘以最小公倍数;②分子是多项式的一定要先用括号括起来去括号括号外是负因数时,一是要注意变号,二是要注意各项都不要漏乘公因数移项移项要变号步骤名 称方 法1去分母在方程两边同时乘以所有分母的最小公倍数(即把每个含分母的部分和不含分母的部分都乘以所有分母的最小公倍数)2去括号去括号法则(可先分配再去括号)3移项把未知项移到议程的一边(左边),常数项移到另一边(右边)4合并同类项分别将未知项的系数相加、常数项相加5系数化为“1”在方程两边同时除以未知数的系数(即方程两边同时乘以未知数系数的倒数)*6检根x =a方法:把x =a 分别代入原方程的两边,分别计算出结果。

中考数学知识点方程与方程组考前复习

中考数学知识点方程与方程组考前复习

中考数学知识点方程与方程组考前复习聪明出于勤奋,天才在于积累。

我们要振作精神,下苦功学习。

小编准备了中考数学知识点方程与方程组,希望能帮助到大家。

一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

解二元一次方程组的方法:代入消元法/加减消元法。

一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程1)一元二次方程的二次函数的关系大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。

那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与_轴的交点。

也就是该方程的解了2)一元二次方程的解法大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解(1)配方法利用配方,使方程变为完全平方公式,在用直接开平方法去求出解(2)分解因式法提取公因式,套用公式法,和十字相乘法。

在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解(3)公式法这方法也可以是在解一元二次方程的万能方法了,方程的根_1={-b+[b2-4ac)]}/2a,_2={-b-[b2-4ac)]}/2a3)解一元二次方程的步骤:(1)配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式(2)分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(3)公式法就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c4)韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a也可以表示为_1+_2=-b/a,_1_2=c/a。

人教版九年级数学第二单元《方程(组)与不等式(组)》中考知识点梳理

人教版九年级数学第二单元《方程(组)与不等式(组)》中考知识点梳理

第二单元《方程(组)与不等式(组)》中考知识点梳理第5讲一次方程(组)第6讲一元二次方程第7讲分式方程三、知识清单梳理第8讲一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a与b的差不大于1”用不等式表示为a-b≤1.2.不等式的基本性质性质1:若a>b,则a±c>b±c;性质2:若a>b,c>0,则ac>bc,ac>bc;性质3:若a>b,c<0,则ac<bc,ac<bc.牢记不等式性质3,注意变号.如:在不等式-2x>4中,若将不等式两边同时除以-2,可得x<2.知识点二:一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x<1-a 的解集是x>-1,则a的取值范围是a<1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a<b解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大x ax b≤⎧⎨≤⎩x≤a小小取小x ax b≥⎧⎨≤⎩a≤x≤b大小,小大中间找x ax b≤⎧⎨≥⎩无解大大,小小取不了知识点四:列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.。

中考数学专题4一元一次方程与二元一次方程(全国通用原卷版)

中考数学专题4一元一次方程与二元一次方程(全国通用原卷版)

一元一次方程与二元一次方程(组)一、单选题1.(2022·海南)若代数式1x +的值为6,则x 等于( )A .5B .5-C .7D .7- 2.(2022·山东滨州)在物理学中,导体中的电流Ⅰ跟导体两端的电压U ,导体的电阻R 之间有以下关系:U I R=去分母得IR U =,那么其变形的依据是( ) A .等式的性质1 B .等式的性质2 C .分式的基本性质 D .不等式的性质2 3.(2021·吉林)古埃及人的“纸草书”中记载了一个数学问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,若设这个数是x ,则所列方程为( )A .213337x x x ++=B .21133327x x x ++= C .21133327x x x x +++= D .21133372x x x x ++-= 4.(2021·黑龙江牡丹江)已知某商店有两件进价不同的运动衫都卖了160元,其中一件盈利60%,另一件亏损20%,在这次买卖中这家商店( ) A .不盈不亏 B .盈利20元 C .盈利10元 D .亏损20元 5.(2021·四川绵阳)近年来,网购的蓬勃发展方便了人们的生活.某快递分派站现有包裹若干件需快递员派送,若每个快递员派送10件,还剩6件;若每个快递员派送12件,还差6件,那么该分派站现有包裹( ) A .60件 B .66件 C .68件 D .72件 6.(2022·江苏苏州)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术,其中方程术是其最高的代数成就.《九章算术》中有这样一个问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”译文:“相同时间内,走路快的人走100步,走路慢的人只走60步.若走路慢的人先走100步,走路快的人要走多少步才能追上?(注:步为长度单位)”设走路快的人要走x 步才能追上,根据题意可列出的方程是( )A .60100100x x =-B .60100100x x =+C .10010060x x =+D .10010060x x =- 7.(2022·湖南岳阳)我国古代数学著作《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?在这个问题中,城中人家的户数为( )A .25B .75C .81D .908.(2022·贵州铜仁)为了增强学生的安全防范意识,某校初三(1)班班委举行了一次安全知识抢答赛,抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分.小红一共得70分,则小红答对的个数为( ) A .14 B .15 C .16 D .179.(2022·辽宁营口)我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x 天可以追上慢马,则下列方程正确的是( )A .24015015012x x +=⨯B .24015024012x x -=⨯C .24015024012x x +=⨯D .24015015012x x -=⨯10.(2021·广西梧州)在ⅠABC 中,ⅠA =20°,ⅠB =4ⅠC ,则ⅠC 等于( ) A .32° B .36° C .40° D .128°11.(2021·湖南株洲)《九章算术》之“粟米篇”中记载了中国古代的“粟米之法”:“粟率五十,粝米三十……”(粟指带壳的谷子,粝米指糙米),其意为:“50单位的粟,可换得30单位的粝米……”.问题:有3斗的粟(1斗=10升),若按照此“粟米之法”,则可以换得粝米为( )A .1.8升B .16升C .18升D .50升 12.(2020·辽宁辽宁)我市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工2天后,乙工程队加入两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米?设甲工程队每天施工x米,乙工程队每天施工y米,根据题意,所列方程组正确的是()A.223400x yx y=-⎧⎨+=⎩B.223()40050x yx x y=-⎧⎨++=-⎩C.22340050x yx y=+⎧⎨+=-⎩D.223()40050x yx x y=+⎧⎨++=-⎩13.(2020·黑龙江齐齐哈尔)母亲节来临,小明去花店为妈妈准备节日礼物.已知康乃馨每支2元,百合每支3元.小明将30元钱全部用于购买这两种花(两种花都买),小明的购买方案共有()A.3种B.4种C.5种D.6种14.(2020·山东临沂)《孙子算经》是中国古代重要的数学著作,纸书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车:若每辆车乘坐2人,则有9人步行,问人与车各多少?设有x人,y辆车,可列方程组为()A.2392xyxy⎧=+⎪⎪⎨⎪+=⎪⎩B.2392xyxy⎧=-⎪⎪⎨-⎪=⎪⎩C.2392xyxy⎧=+⎪⎪⎨-⎪=⎪⎩D.2392xyxy⎧=-⎪⎪⎨⎪-=⎪⎩15.(2020·浙江嘉兴)用加减消元法解二元一次方程组3421x yx y+=⎧⎨-=⎩①②时,下列方法中无法消元的是()A.Ⅰ×2﹣ⅠB.Ⅰ×(﹣3)﹣ⅠC.Ⅰ×(﹣2)+ⅠD.Ⅰ﹣Ⅰ×3 16.(2022·广东深圳)张三经营了一家草场,草场里面种植上等草和下等草.他卖五捆上等草的根数减去11根,就等下七捆下等草的根数;卖七捆上等草的根数减去25根,就等于五捆下等草的根数.设上等草一捆为x根,下等草一捆为y 根,则下列方程正确的是()A.51177255y xy x-=⎧⎨-=⎩B.51177255x yx y+=⎧⎨+=⎩C.51177255x yx y-=⎧⎨-=⎩D.71155257x yx y-=⎧⎨-=⎩17.(2022·山东聊城)关于x,y的方程组2232x y kx y k-=-⎧⎨-=⎩的解中x与y的和不小于5,则k的取值范围为()A .8k ≥B .8k >C .8k ≤D .8k <18.(2022·黑龙江)国家“双减”政策实施后,某校开展了丰富多彩的社团活动.某班同学报名参加书法和围棋两个社团,班长为参加社团的同学去商场购买毛笔和围棋(两种都购买)共花费360元.其中毛笔每支15元,围棋每副20元,共有多少种购买方案?( )A .5B .6C .7D .819.(2022·黑龙江齐齐哈尔)端午节前夕,某食品加工厂准备将生产的粽子装入A 、B 两种食品盒中,A 种食品盒每盒装8个粽子,B 种食品盒每盒装10个粽子,若现将200个粽子分别装入A 、B 两种食品盒中(两种食品盒均要使用并且装满),则不同的分装方式有( )A .2种B .3种C .4种D .5种20.(2021·四川德阳)关于x ,y 的方程组3212331x y k x y k +=-⎧⎨+=+⎩的解为x a y b =⎧⎨=⎩,若点P (a ,b )总在直线y =x 上方,那么k 的取值范围是( )A .k >1B .k >﹣1C .k <1D .k <﹣1 21.(2021·黑龙江)为迎接2022年北京冬奥会,某校开展了以迎冬奥为主题的演讲活动,计划拿出180 元钱全部用于购买甲、乙两种奖品(两种奖品都购买),奖励表现突出的学生,已知甲种奖品每件15元,乙种奖品每件10元,则购买方案有( )A .5种B .6种C .7种D .8种22.(2021·黑龙江齐齐哈尔)周末,小明的妈妈让他到药店购买口罩和酒精湿巾,已知口罩每包3元,酒精湿巾每包2元,共用了30元钱(两种物品都买),小明的购买方案共有( )A .3种B .4种C .5种D .6种23.(2020·湖南张家界)《孙子算经》中有一道题,原文是:今有三人共车,二车空:二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车:若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,可列方程( )A .2932x x +=-B .9232xx -+= C .9232x x +-= D .2932x x -=+ 24.(2020·内蒙古呼和浩特)中国古代数学著作《算法统宗》中有这样一段记载,“三百七十八里关;初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是;有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到关口,则此人第一和第六这两天共走了( )A .102里B .126里C .192里D .198里 25.(2022·湖北武汉)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x 与y 的和是( )A .9B .10C .11D .1226.(2021·湖北武汉)一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返同,且往返速度的大小不变,两车离甲地的距离y (单位:km )与慢车行驶时间t (单位:h )的函数关系如图,则两车先后两次相遇的间隔时间是( )A .5h 3 B .3h 2 C .7h 5 D .4h 327.(2020·四川绵阳)《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为()A.160钱B.155钱C.150钱D.145钱28.(2020·黑龙江鹤岗)学校计划用200元钱购买A、B两种奖品,A种每个15元,B种每个25元,在钱全部用完的情况下,有多少种购买方案()A.2种B.3种C.4种D.5种29.(2020·黑龙江牡丹江)若21ab=⎧⎨=⎩是二元一次方程组3522ax byax by⎧+=⎪⎨⎪-=⎩的解,则x+2y的算术平方根为()A.3B.3,-3C3D33 30.(2020·浙江绍兴)同型号的甲、乙两辆车加满气体燃料后均可行驶210km.它们各自单独行驶并返回的最远距离是105km.现在它们都从A地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A地,而乙车继续行驶,到B地后再行驶返回A地.则B地最远可距离A地()A.120km B.140km C.160km D.180km二、填空题31.(2020·广西柳州)一元一次方程2x﹣8=0的解是x=_____.32.(2020·湖南永州)方程组422x yx y+=⎧⎨-=⎩的解是_________.33.(2022·辽宁大连)我国古代著作《九章算术》中记载了这样一个问题:“今有共买豕,人出一百,盈一百;人出九十,适足.”其大意是:“今有人合伙买猪,每人出100钱,则会多出100钱;每人出90钱,恰好合适.”若设共有x人,根据题意,可列方程为____________.34.(2021·贵州遵义)已知x,y满足的方程组是22237x yx y+=⎧⎨+=⎩,则x+y的值为___.35.(2022·湖北随州)已知二元一次方程组2425x yx y+=⎧⎨+=⎩,则x y-的值为______.36.(2021·黑龙江大庆)某酒店客房都有三人间普通客房,双人间普通客房,收费标准为:三人间150元/间,双人间140元/间.为吸引游客,酒店实行团体入住五折优惠措施,一个46人的旅游团,优惠期间到该酒店入住,住了一些三人间普通客房和双人间普通客房,若每间客房正好住满,且一天共花去住宿费1310元,则该旅游团住了三人间普通客房和双人间普通客房共________间;37.(2021·湖南邵阳)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价值是多少?该问题中物品的价值是______钱.38.(2020·甘肃金昌)暑假期间,亮视眼镜店开展学生配镜优惠活动,某款式眼镜的广告如图,请你为广告牌填上原价.原价:_________元39.(2022·吉林长春)《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.其大意为:今有若干人住店,若每间住7人,则余下7人无房可住;若每间住9人,则余下一间无人住,设店中共有x间房,可求得x的值为________.40.(2022·内蒙古呼和浩特)某超市糯米的价格为5元/千克,端午节推出促销活动:一次购买的数量不超过2千克时,按原价售出,超过2千克时,超过的部分打8折.若某人付款14元,则他购买了_______千克糯米;设某人的付款金额x x 的函数解析式为为x元,购买量为y千克,则购买量y关于付款金额(10)______.41.(2020·湖北省直辖县级单位)篮球联赛中,每玚比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了_________场.42.(2020·黑龙江牡丹江)某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打________折.43.(2022·浙江嘉兴)某动物园利用杠杆原理称象:如图,在点P处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A ,B 处,当钢梁保持水平时,弹簧秤读数为k (N ).若铁笼固定不动,移动弹簧秤使BP 扩大到原来的n (1n >)倍,且钢梁保持水平,则弹簧秤读数为_______(N )(用含n ,k 的代数式表示).44.(2021·山东日照)关于x 的方程220x bx a ++=(a 、b 为实数且0a ≠),a 恰好是该方程的根,则a b +的值为_______.45.(2021·山东枣庄)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则m 的值为______.46.(2021·江苏扬州)扬州雕版印刷技艺历史悠久,元代数学家朱世杰的《算学启蒙》一书曾刻于扬州,该书是中国较早的数学著作之一,书中记载一道问题:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天追上慢马?答:快马_______天追上慢马.47.(2020·内蒙古呼和浩特)公司以3元/kg 的成本价购进10000kg 柑橘,并希望出售这些柑橘能够获得12000元利润,在出售柑橘(去掉损坏的柑橘)时,需要先进行“柑橘损坏率”统计,再大约确定每千克柑橘的售价,右面是销售部通过随机取样,得到的“柑橘损坏率”统计表的一部分,由此可估计柑橘完好的概率为_______(精确到0.1);从而可大约确定每千克柑橘的实际售价为_______元时(精确到0.1),可获得12000元利润. 柑橘总质量/kg n 损坏柑橘质量/kg m 柑橘损坏的频率mn (精确到0.001)…... (250)24.75 0.099 30030.93 0.103 35035.12 0.100 45044.54 0.099 50050.62 0.10148.(2022·福建)推理是数学的基本思维方式、若推理过程不严谨,则推理结果可能产生错误.例如,有人声称可以证明“任意一个实数都等于0”,并证明如下:设任意一个实数为x ,令x m =,等式两边都乘以x ,得2x mx =.Ⅰ等式两边都减2m ,得222x m mx m -=-.Ⅰ等式两边分别分解因式,得()()()x m x m m x m +-=-.Ⅰ 等式两边都除以x m -,得x m m +=.Ⅰ等式两边都减m ,得x =0.Ⅰ所以任意一个实数都等于0.以上推理过程中,开始出现错误的那一步对应的序号是______.49.(2022·贵州贵阳)“方程”二字最早见于我国《九章算术》这部经典著作中,该书的第八章名为“方程”如: 从左到右列出的算筹数分别表示方程中未知数x ,y 的系数与相应的常数项,即可表示方程423x y +=,则表示的方程是_______.50.(2022·四川雅安)已知12x y =⎧⎨=⎩是方程ax +by =3的解,则代数式2a +4b ﹣5的值为 _____.51.(2022·湖北武汉)有大小两种货车,3辆大货车与4辆小货车一次可以运货22吨,5辆大货车与2辆小货车一次可以运货25吨,则4辆大货车与3辆小货车一次可以运货___________吨.52.(2021·贵州黔西)有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5t ,5辆大货车与6辆小货车一次可以运货35t ,则3辆大货车与2辆小货车一次可以运货______t .53.(2021·北京)某企业有,A B 两条加工相同原材料的生产线.在一天内,A 生产线共加工a 吨原材料,加工时间为()41a +小时;在一天内,B 生产线共加工b 吨原材料,加工时间为()23b +小时.第一天,该企业将5吨原材料分配到,A B 两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到A 生产线的吨数与分配到B 生产线的吨数的比为______________.第二天开工前,该企业按第一天的分配结果分配了5吨原材料后,又给A 生产线分配了m 吨原材料,给B 生产线分配了n 吨原材料.若两条生产线都能在一天内加工完各自分配到的所有原材料,且加工时间相同,则m n的值为______________. 54.(2022·黑龙江绥化)在长为2,宽为x (12x <<)的矩形纸片上,从它的一侧,剪去一个以矩形纸片宽为边长的正方形(第一次操作);从剩下的矩形纸片一侧再剪去一个以宽为边长的正方形(第二次操作);按此方式,如果第三次操作后,剩下的纸片恰为正方形,则x 的值为________.55.(2021·山东烟台)幻方历史悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方.将数字1~9分别填入如图所示的幻方中,要求每一横行,每一竖行以及两条对角线上的数字之和都是15,则a 的值为____________.56.(2020·湖北)对于实数,m n ,定义运算2*(2)2m n m n =+-.若2*4*(3)a =-,则=a _____.57.(2020·湖北随州)幻方是相当古老的数学问题,我国古代的《洛书》中记载了最早的幻方---九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则m 的值为______.58.(2021·四川绵阳)端午节是中国传统节日,人们有吃粽子的习俗.某商场从6月12日起开始打折促销,肉粽六折,白粽七折,打折前购买4盒肉粽和5盒白粽需350元,打折后购买5盒肉粽和10盒白粽需360元.轩轩同学想在今天中考结束后,为敬老院送肉粽和白粽各5盒,则他6月13日购买的花费比在打折前购买节省_____元.59.(2021·内蒙古呼伦贝尔)《九章算术》是我国东汉初年编订的一部数学经典著作,其中一次方程组是用算筹布置而成,如图(1)所示的算筹图用我们现在所熟悉的方程组表示出来,就是3217423x yx y+=⎧⎨+=⎩,类似的,图(2)所示的算筹图用方程组表示出来,就是______________.60.(2022·北京)甲工厂将生产的I号、II号两种产品共打包成5个不同的包裹,编号分别为A,B,C,D,E,每个包裹的重量及包裹中I号、II号产品的重量如下:包裹编号I号产品重量/吨II号产品重量/吨包裹的重量/吨A516B325C235D437E358甲工厂准备用一辆载重不超过19.5吨的货车将部分包裹一次运送到乙工厂.(1)如果装运的I号产品不少于9吨,且不多于11吨,写出一种满足条件的装运方案________(写出要装运包裹的编号);(2)如果装运的I号产品不少于9吨,且不多于11吨,同时装运的II号产品最多,写出满足条件的装运方案________(写出要装运包裹的编号).61.(2022·山东威海)幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方(如图1),将9个数填在3×3(三行三列)的方格中,如果满足每个横行、每个竖列、每条对角线上的三个数字之和都相等,就得到一个广义的三阶幻方.图2的方格中填写了一些数字和字母,若能构成一个广义的三阶幻方,则mn=_____.三、解答题62.(2022·广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?63.(2022·四川德阳)习近平总书记对实施乡村振兴战略作出重要指示强调:实施乡村振兴战略,是党的十九大作出的重大决策部署,是新时代做好“三农”工作的总抓手.为了发展特色产业,红旗村花费4000元集中采购了A种树苗500株,B种树苗400株,已知B种树苗单价是A种树苗单价的1.25倍.(1)求A、B两种树苗的单价分别是多少元?(2)红旗村决定再购买同样的树苗100株用于补充栽种,其中A种树苗不多于25株,在单价不变,总费用不超过480元的情况下,共有几种购买方案?哪种方案费用最低?最低费用是多少元?64.(2021·黑龙江哈尔滨)君辉中学计划为书法小组购买某种品牌的A、B两种型号的毛笔.若购买3支A种型号的毛笔和1支B种型号的毛笔需用22元;若购买2支A种型号的毛笔和3支B种型号的毛笔需用24元.(1)求每支A种型号的毛笔和每支B种型号的毛笔各多少元;(2)君辉中学决定购买以上两种型号的毛笔共80支,总费用不超过420元,那么该中学最多可以购买多少支A种型号的毛笔?65.(2021·广西柳州)如今,柳州螺蛳粉已经成为名副其实的“国民小吃”,螺蛳粉小镇对A、B两种品牌的螺蛳粉举行展销活动.若购买20箱A品牌螺蛳粉和30箱B品牌螺蛳粉共需要4400元,购买10箱A品牌螺蛳粉和40箱B品牌螺蛳粉则需要4200元.(1)求A、B品牌螺蛳粉每箱售价各为多少元?(2)小李计划购买A、B品牌螺蛳粉共100箱,预算总费用不超过9200元,则A品牌螺蛳粉最多购买多少箱?66.(2022·湖南永州)受第24届北京冬季奥林匹克运动会的影响,小勇爱上了雪上运动.一天,小勇在滑雪场训练滑雪,第一次他从滑雪道A端以平均()2x+米/秒的速度滑到B端,用了24秒;第二次从滑雪道A端以平均()3x+米/秒的速度滑到B端,用了20秒.(1)求x的值;(2)设小勇从滑雪道A端滑到B瑞的平均速度为v米/秒,所用时间为t秒,请用含t 的代数式表示v(不要求写出t的取值范围).67.(2022·广西贵港)为了加强学生的体育锻炼,某班计划购买部分绳子和实心球,已知每条绳子的价格比每个实心球的价格少23元,且84元购买绳子的数量与360元购买实心球的数量相同.(1)绳子和实心球的单价各是多少元?(2)如果本次购买的总费用为510元,且购买绳子的数量是实心球数量的3倍,那么购买绳子和实心球的数量各是多少?68.(2022·四川内江)为贯彻执行“德、智、体、美、劳”五育并举的教育方针,内江市某中学组织全体学生前往某劳动实践基地开展劳动实践活动.在此次活动中,若每位老师带队30名学生,则还剩7名学生没老师带;若每位老师带队31名学生,就有一位老师少带1名学生.现有甲、乙两型客车,它们的载客量和租金如表所示:甲型客车乙型客车载客量(人/辆)3530租金(元/400320辆)学校计划此次劳动实践活动的租金总费用不超过3000元.(1)参加此次劳动实践活动的老师和学生各有多少人?(2)每位老师负责一辆车的组织工作,请问有哪几种租车方案?(3)学校租车总费用最少是多少元?69.(2022·湖南长沙)电影《刘三姐》中,有这样一个场景,罗秀才摇头晃脑地吟唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得匀?”该歌词表达的是一道数学题.其大意是:把300条狗分成4群,每个群里,狗的数量都是奇数,其中一个群,狗的数量少:另外三个群,狗的数量多且数量相同.问:应该如何分?请你根据题意解答下列问题:(1)刘三姐的姐妹们以对歌的形式给出答案:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条给财主.”请你根据以上信息,判断以下三种说法是否正确,在题后相应的括号内,正确的打“√”,错误的打“×”.Ⅰ刘三姐的姐妹们给出的答案是正确的,但不是唯一正确的答案.()Ⅰ刘三姐的姐妹们给出的答案是唯一正确的答案.()Ⅰ该歌词表达的数学题的正确答案有无数多种.()(2)若罗秀才再增加一个条件:“数量多且数量相同的三个群里,每个群里狗的数量比数量较少的那个群里狗的数量多40条”,求每个群里狗的数量.70.(2021·贵州黔西)甲、乙两家水果商店,平时以同样的价格出售品质相同的樱桃.春节期间,甲、乙两家商店都让利酬宾,甲商店的樱桃价格为60元/kg;乙商店的樱桃价格为65元/kg.若一次购买2kg以上,超过2kg部分的樱桃价格打8折.(1)设购买樱桃x kg,y甲,y乙(单位:元)分别表示顾客到甲、乙两家商店购买樱桃的付款金额,求y甲,y乙关于x的函数解析式;(2)春节期间,如何选择甲、乙两家商店购买樱桃更省钱?71.(2021·广西桂林)为了美化环境,建设生态桂林,某社区需要进行绿化改造,现有甲、乙两个绿化工程队可供选择,已知甲队每天能完成的绿化改造面积比乙队多200平方米,甲队与乙队合作一天能完成800平方米的绿化改造面积.(1)甲、乙两工程队每天各能完成多少平方米的绿化改造面积?(2)该社区需要进行绿化改造的区域共有12000平方米,甲队每天的施工费用为600元,乙队每天的施工费用为400元,比较以下三种方案:Ⅰ甲队单独完成;Ⅰ乙队单独完成;Ⅰ甲、乙两队全程合作完成.哪一种方案的施工费用最少?72.(2021·广西贺州)为了提倡节约用水,某市制定了两种收费方式:当每户每月用水量不超过312m时,按一级单价收费;当每户每月用水量超过312m时,超过部分按二级单价收费.已知李阿姨家五月份用水量为310m,缴纳水费32元.七月份因孩子放假在家,用水量为314m,缴纳水费51.4元.(1)问该市一级水费,二级大费的单价分别是多少?(2)某户某月缴纳水费为64.4元时,用水量为多少?73.(2021·湖南益阳)为了改善湘西北地区的交通,我省正在修建长(沙)-益(阳)-常(德)高铁,其中长益段将于2021年底建成.开通后的长益高铁比现在运行的长益城际铁路全长缩短了40千米,运行时间为16分钟;现乘坐某次长益城际列车全程需要60分钟,平均速度是开通后的高铁的13 30.(1)求长益段高铁与长益城际铁路全长各为多少千米?(2)甲、乙两个工程队同时对长益段高铁全线某个配套项目进行施工,每天对其施工的长度比为7:9,计划40天完成.施工5天后,工程指挥部要求甲工程队提高工效,以确保整个工程提早3天以上(含3天)完成,那么甲工程队后期每天至少施工多少千米?。

湖南省2019年、2020年数学中考试题分类(4)——方程的解法和应用(含解析)

湖南省2019年、2020年数学中考试题分类(4)——方程的解法和应用(含解析)

湖南省2019年、2020年数学中考试题分类(4)——方程的解法和应用一.选择题(共19小题) 1.(2020•张家界)《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,可列方程( )A .2932x x +=-B .9232x x -+=C .9232x x +-=D .2932x x -=+2.(2019•怀化)一元一次方程20x -=的解是( ) A .2x = B .2x =- C .0x = D .1x = 3.(2020•益阳)同时满足二元一次方程9x y -=和431x y +=的x ,y 的值为( ) A .45x y =⎧⎨=-⎩ B .45x y =-⎧⎨=⎩ C .23x y =-⎧⎨=⎩ D .36x y =⎧⎨=-⎩4.(2019•邵阳)某出租车起步价所包含的路程为0~2km ,超过2km 的部分按每千米另收费.津津乘坐这种出租车走了7km ,付了16元;盼盼乘坐这种出租车走了13km ,付了28元.设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则下列方程正确的是( )A .7161328x y x y +=⎧⎨+=⎩B .(72)161328x y x y +-=⎧⎨+=⎩C .716(132)28x y x y +=⎧⎨+-=⎩D .(72)16(132)28x y x y +-=⎧⎨+-=⎩5.(2019•长沙)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( ) A . 4.50.51y x y x =+⎧⎨=-⎩B . 4.521y x y x =+⎧⎨=-⎩C . 4.50.51y x y x =-⎧⎨=+⎩D . 4.521y x y x =-⎧⎨=-⎩6.(2020•邵阳)设方程2320x x -+=的两根分别是1x ,2x ,则12x x +的值为( )A .3B .32-C .32D .2-7.(2020•张家界)已知等腰三角形的两边长分别是一元二次方程2680x x -+=的两根,则该等腰三角形的底边长为( ) A .2 B .4 C .8 D .2或4 8.(2020•衡阳)如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形.为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为600平方米,则小道的宽为多少米?若设小道的宽为x 米,则根据题意,列方程为( )A .2352035202600x x x ⨯--+=B .352035220600x x ⨯--⨯=C .(352)(20)600x x --=D .(35)(202)600x x --=9.(2020•怀化)已知一元二次方程240x kx -+=有两个相等的实数根,则k 的值为( ) A .4k = B .4k =- C .4k =± D .2k =± 10.(2019•湘潭)已知关于x 的一元二次方程240x x c -+=有两个相等的实数根,则(c = )A .4B .2C .1D .4- 11.(2019•湘西州)一元二次方程2230x x -+=根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .无法判断 12.(2019•郴州)一元二次方程22350x x +-=的根的情况为( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .只有一个实数根 D .没有实数根13.(2019•淄博)若123x x +=,22125x x +=,则以1x ,2x 为根的一元二次方程是( ) A .2320x x -+= B .2320x x +-= C .2320x x ++=D .2320x x --=14.(2019•怀化)一元二次方程2210x x ++=的解是( )A .11x =,21x =-B .121x x ==C .121x x ==-D .11x =-,22x = 15.(2019•衡阳)国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x ,根据题意列方程得( )A .9(12)1x -=B .29(1)1x -=C .9(12)1x +=D .29(1)1x += 16.(2020•长沙)随着5G 网络技术的发展,市场对5G 产品的需求越来越大,为满足市场需求,某大型5G 产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同.设更新技术前每天生产x 万件产品,依题意得( )A .40050030x x =-B .40050030x x =+C .40050030x x =-D .40050030x x=+ 17.(2019•湘潭)现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,湘潭某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x 个物件,则可列方程为( )A .1209020x x =-B .1209020x x =+C .1209020x x =-D .1209020x x =+ 18.(2019•益阳)解分式方程232112x x x+=--时,去分母化为一元一次方程,正确的是( )A .23x +=B .23x -=C .23(21)x x -=-D .23(21)x x +=-19.(2019•株洲)关于x 的分式方程2503x x -=-的解为( )A .3-B .2-C .2D .3 二.填空题(共13小题) 20.(2020•株洲)关于x 的方程38x x -=的解为x = . 21.(2020•衡阳)某班有52名学生,其中男生人数是女生人数的2倍少17人,则女生有 名. 22.(2019•湘西州)若关于x 的方程320x kx -+=的解为2,则k 的值为 . 23.(2020•岳阳)我国古代数学名著《九章算术》上有这样一个问题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?”其大意是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现用30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x 斗,行酒为y 斗,根据题意,可列方程组为 . 24.(2020•常德)今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是 次.25.(2020•永州)方程组422x y x y +=⎧⎨-=⎩的解是 .26.(2020•邵阳)中国古代数学家杨辉的《田亩比类乘除捷法》中记载:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?翻译成数学问题是:一块矩形田地的面积为864平方步,它的宽比长少12步,问它的长与宽各多少步?利用方程思想,设宽为x 步,则依题意列方程为 . 27.(2020•娄底)一元二次方程220x x c -+=有两个相等的实数根,则c = . 28.(2020•郴州)已知关于x 的一元二次方程2250x x c -+=有两个相等的实数根,则c = . 29.(2020•永州)若关于x 的一元二次方程240x x m --=有两个不相等的实数根,则实数m 的取值范围是 .30.(2019•娄底)已知方程230x bx ++=,则方程的另一根为 . 31.(2019•张家界)《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何”.意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?根据题意得,长比宽多 步. 32.(2019•邵阳)关于x 的一元二次方程220x x m --=有两个不相等的实数根,则m 的最小整数值是 . 三.解答题(共8小题)(2)该商场售完这500箱矿泉水,可获利多少元?34.(2019•怀化)解二元一次方程组:37,31x y x y +=⎧⎨-=⎩35.(2020•湘西州)某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少? 36.(2019•邵阳)2019年1月14日,国新办举行新闻发布会,海关总署新闻发言人李魁文在会上指出:在2018年,我国进出口规模创历史新高,全年外贸进出口总值为30万亿元人民币.有望继续保持全球货物贸易第一大国地位.预计2020年我国外贸进出口总值将达36.3万亿元人民币.求这两年我国外贸进出口总值的年平均增长率. 37.(2020•益阳)“你怎么样,中国便是怎么样;你若光明,中国便不黑暗”.2019年,一场新冠肺炎疫情牵扯着人们的心灵,各界人士齐心协力,众志成城.针对资源急需问题,某医疗设备公司紧急复工,但受疫情影响,医用防护服生产车间仍有7人不能到厂生产.为了应对疫情,已复产的工人加班生产,由原来每天工作8小时增加到10小时,每小时完成的工作量不变.原来每天能生产防护服800套,现在每天能生产防护服650套.(1)求原来生产防护服的工人有多少人?(2)复工10天后,未到的工人同时到岗加入生产,每天生产时间仍然为10小时.公司决定将复工后生产的防护服14500套捐献给某地,则至少还需要生产多少天才能完成任务? 38.(2020•永州)某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和95N 口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,95N 口罩花费9600元.已知购进一次性医用外科口罩的单价比95N 口罩的单价少10元.(1)求该药店购进的一次性医用外科口罩和95N 口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?39.(2020•郴州)解方程:24111x x x =+--.40.(2020•张家界)今年疫情防控期间,某学校花2000元购买了一批消毒液以满足全体师生的需要.随着疫情的缓解以及各种抗疫物资供应更充足,消毒液每瓶下降了2元,学校又购买了一批消毒液,花1600元购买到的数量与第一次购买到的数量相等,求第一批购进的消毒液的单价.湖南省2019年、2020年数学中考试题分类(4)——方程的解法和应用一.选择题(共19小题) 1.(2020•张家界)《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,可列方程( )A .2932x x +=-B .9232x x -+=C .9232x x +-=D .2932x x -=+【解答】解:依题意,得:9232x x -+=.故选:B . 2.(2019•怀化)一元一次方程20x -=的解是( ) A .2x = B .2x =- C .0x = D .1x = 【解答】解:20x -=, 解得:2x =. 故选:A . 3.(2020•益阳)同时满足二元一次方程9x y -=和431x y +=的x ,y 的值为( ) A .45x y =⎧⎨=-⎩B .45x y =-⎧⎨=⎩C .23x y =-⎧⎨=⎩D .36x y =⎧⎨=-⎩【解答】解:由题意得:9431x y x y -=⎧⎨+=⎩①②,由①得,9x y =+③,把③代入②得,4(9)31y y ++=,解得,5y =-,代入③得,954x =-=,∴方程组的解为45x y =⎧⎨=-⎩,故选:A . 4.(2019•邵阳)某出租车起步价所包含的路程为0~2km ,超过2km 的部分按每千米另收费.津津乘坐这种出租车走了7km ,付了16元;盼盼乘坐这种出租车走了13km ,付了28元.设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则下列方程正确的是( )A .7161328x y x y +=⎧⎨+=⎩B .(72)161328x y x y +-=⎧⎨+=⎩C .716(132)28x y x y +=⎧⎨+-=⎩D .(72)16(132)28x y x y +-=⎧⎨+-=⎩【解答】解:设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则所列方程组为(72)16(132)28x y x y +-=⎧⎨+-=⎩,故选:D . 5.(2019•长沙)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( ) A . 4.50.51y x y x =+⎧⎨=-⎩B . 4.521y x y x =+⎧⎨=-⎩C . 4.50.51y x y x =-⎧⎨=+⎩D . 4.521y x y x =-⎧⎨=-⎩【解答】解:由题意可得, 4.50.51y x y x =+⎧⎨=-⎩, 故选:A . 6.(2020•邵阳)设方程2320x x -+=的两根分别是1x ,2x ,则12x x +的值为( )A .3B .32-C .32D .2-【解答】解:由2320x x -+=可知,其二次项系数1a =,一次项系数3b =-,由根与系数的关系:12331b x x a -+=-=-=.故选:A . 7.(2020•张家界)已知等腰三角形的两边长分别是一元二次方程2680x x -+=的两根,则该等腰三角形的底边长为( ) A .2 B .4 C .8 D .2或4 【解答】解:2680x x -+= (4)(2)0x x --=解得:4x =或2x =,当等腰三角形的三边为2,2,4时,不符合三角形三边关系定理,此时不能组成三角形;当等腰三角形的三边为2,4,4时,符合三角形三边关系定理,此时能组成三角形,此时三角形的底边长为2,故选:A . 8.(2020•衡阳)如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形.为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为600平方米,则小道的宽为多少米?若设小道的宽为x 米,则根据题意,列方程为( )A .2352035202600x x x ⨯--+=B .352035220600x x ⨯--⨯=C .(352)(20)600x x --=D .(35)(202)600x x --= 【解答】解:依题意,得:(352)(20)600x x --=. 故选:C . 9.(2020•怀化)已知一元二次方程240x kx -+=有两个相等的实数根,则k 的值为( ) A .4k = B .4k =- C .4k =± D .2k =±【解答】解:一元二次方程240x kx -+=有两个相等的实数根, ∴△2()4140k =--⨯⨯=, 解得:4k =±. 故选:C . 10.(2019•湘潭)已知关于x 的一元二次方程240x x c -+=有两个相等的实数根,则(c = ) A .4 B .2 C .1 D .4- 【解答】解:方程240x x c -+=有两个相等的实数根, ∴△2(4)411640c c =--⨯⨯=-=, 解得:4c =. 故选:A . 11.(2019•湘西州)一元二次方程2230x x -+=根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根C .没有实数根D .无法判断 【解答】解:1a =,2b =-,3c =, 244441380b ac ∴-==-⨯⨯=-<, ∴此方程没有实数根. 故选:C . 12.(2019•郴州)一元二次方程22350x x +-=的根的情况为( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .只有一个实数根 D .没有实数根 【解答】解:一元二次方程22350x x --=中, △23429(5)0=-⨯⨯->, ∴有两个不相等的实数根. 故选:B .13.(2019•淄博)若123x x +=,22125x x +=,则以1x ,2x 为根的一元二次方程是( ) A .2320x x -+= B .2320x x +-=C .2320x x ++=D .2320x x --=【解答】解:22125x x +=, 21212()25x x x x ∴+-=, 而123x x +=, 12925x x ∴-=, 122x x ∴=,∴以1x ,2x 为根的一元二次方程为2320x x -+=.故选:A .14.(2019•怀化)一元二次方程2210x x ++=的解是( ) A .11x =,21x =- B .121x x ==C .121x x ==-D .11x =-,22x =【解答】解:2210x x ++=, 2(1)0x ∴+=, 则10x +=,解得121x x ==-, 故选:C . 15.(2019•衡阳)国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x ,根据题意列方程得( )A .9(12)1x -=B .29(1)1x -=C .9(12)1x +=D .29(1)1x += 【解答】解:设这两年该地区贫困人口的年平均下降率为x ,根据题意得: 29(1)1x -=, 故选:B . 16.(2020•长沙)随着5G 网络技术的发展,市场对5G 产品的需求越来越大,为满足市场需求,某大型5G 产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同.设更新技术前每天生产x 万件产品,依题意得( )A .40050030x x =-B .40050030x x =+C .40050030x x =-D .40050030x x=+ 【解答】解:设更新技术前每天生产x 万件产品,则更新技术后每天生产(30)x +万件产品,依题意,得:40050030x x =+. 故选:B . 17.(2019•湘潭)现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,湘潭某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x 个物件,则可列方程为( )A .1209020x x =-B .1209020x x =+C .1209020x x =-D .1209020x x =+ 【解答】解:由题意可得, 1209020x x =+, 故选:B .18.(2019•益阳)解分式方程232112x x x+=--时,去分母化为一元一次方程,正确的是( )A .23x +=B .23x -=C .23(21)x x -=-D .23(21)x x +=- 【解答】解:方程两边都乘以(21)x -,得 23(21)x x -=-, 故选:C .19.(2019•株洲)关于x 的分式方程2503x x -=-的解为( )A .3-B .2-C .2D .3 【解答】解:去分母得:2650x x --=, 解得:2x =-,经检验2x =-是分式方程的解, 故选:B .二.填空题(共13小题) 20.(2020•株洲)关于x 的方程38x x -=的解为x = 4 . 【解答】解:方程38x x -=, 移项,得38x x -=, 合并同类项,得28x =. 解得4x =. 故答案为:4. 21.(2020•衡阳)某班有52名学生,其中男生人数是女生人数的2倍少17人,则女生有 23 名. 【解答】解:设女生有x 名,则男生人数有(217)x -名,依题意有 21752x x -+=, 解得23x =. 故女生有23名. 故答案为:23. 22.(2019•湘西州)若关于x 的方程320x kx -+=的解为2,则k 的值为 4 . 【解答】解:关于x 的方程320x kx -+=的解为2, 32220k ∴⨯-+=, 解得:4k =. 故答案为:4. 23.(2020•岳阳)我国古代数学名著《九章算术》上有这样一个问题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?”其大意是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现用30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x 斗,行酒为y 斗,根据题意,可列方程组为 2501030x y x y +=⎧⎨+=⎩ .【解答】解:依题意,得:2501030x y x y +=⎧⎨+=⎩.故答案为:2501030x y x y +=⎧⎨+=⎩.24.(2020•常德)今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是 4 次. 【解答】解:设李红出门没有买到口罩的次数是x ,买到口罩的次数是y ,由题意得: 1015110535x y y +=⎧⎨-⨯+=⎩, 整理得:10530x y y +=⎧⎨=⎩,解得:46x y =⎧⎨=⎩.故答案为:4.25.(2020•永州)方程组422x y x y +=⎧⎨-=⎩的解是 22x y =⎧⎨=⎩.【解答】解:422x y x y +=⎧⎨-=⎩①②,①+②得:36x =,即2x =, 把2x =代入①得:2y =, 则方程组的解为22x y =⎧⎨=⎩,故答案为:22x y =⎧⎨=⎩26.(2020•邵阳)中国古代数学家杨辉的《田亩比类乘除捷法》中记载:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?翻译成数学问题是:一块矩形田地的面积为864平方步,它的宽比长少12步,问它的长与宽各多少步?利用方程思想,设宽为x 步,则依题意列方程为 (12)864x x += . 【解答】解:矩形的宽为x (步),且宽比长少12(步), ∴矩形的长为(12)x +(步). 依题意,得:(12)864x x +=. 故答案为:(12)864x x +=.27.(2020•娄底)一元二次方程220x x c -+=有两个相等的实数根,则c = 1 . 【解答】解:一元二次方程220x x c -+=有两个相等的实数根, ∴△224(2)40b ac c =-=--=, 解得1c =. 故答案为1.28.(2020•郴州)已知关于x 的一元二次方程2250x x c -+=有两个相等的实数根,则c =258. 【解答】解:根据题意得△2(5)420c =--⨯⨯=,解得258c =.故答案为:258.29.(2020•永州)若关于x 的一元二次方程240x x m --=有两个不相等的实数根,则实数m 的取值范围是 4m >- .【解答】解:由已知得:△224(4)41()1640b ac m m =-=--⨯⨯-=+>, 解得:4m >-. 故答案为:4m >-.30.(2019•娄底)已知方程230x bx ++=【解答】解:设方程的另一个根为c , (52)3c +=,c ∴. 31.(2019•张家界)《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何”.意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?根据题意得,长比宽多 12 步. 【解答】解:设长为x 步,宽为(60)x -步, (60)864x x -=,解得,136x =,224x =(舍去), ∴当36x =时,6024x -=,∴长比宽多:362412-=(步), 故答案为:12. 32.(2019•邵阳)关于x 的一元二次方程220x x m --=有两个不相等的实数根,则m 的最小整数值是 0 . 【解答】解:一元二次方程220x x m --=有两个不相等的实数根, ∴△440m =+>, 1m ∴>-; 故答案为0;三.解答题(共8小题)(2)该商场售完这500箱矿泉水,可获利多少元? 【解答】解:(1)设购进甲矿泉水x 箱,购进乙矿泉水y 箱, 依题意,得:500253514500x y x y +=⎧⎨+=⎩,解得:300200x y =⎧⎨=⎩.答:购进甲矿泉水300箱,购进乙矿泉水200箱.(2)(3525)300(4835)2005600-⨯+-⨯=(元). 答:该商场售完这500箱矿泉水,可获利5600元.34.(2019•怀化)解二元一次方程组:37,31x y x y +=⎧⎨-=⎩【解答】解:3731x y x y +=⎧⎨-=⎩①②,①+②得: 28x =,解得:4x =, 则431y -=, 解得:1y =,故方程组的解为:41x y =⎧⎨=⎩.35.(2020•湘西州)某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少? 【解答】解:(1)设口罩日产量的月平均增长率为x ,根据题意,得 220000(1)24200x +=解得1 2.1x =-(舍去),20.110%x ==, 答:口罩日产量的月平均增长率为10%. (2)24200(10.1)26620+=(个).答:预计4月份平均日产量为26620个. 36.(2019•邵阳)2019年1月14日,国新办举行新闻发布会,海关总署新闻发言人李魁文在会上指出:在2018年,我国进出口规模创历史新高,全年外贸进出口总值为30万亿元人民币.有望继续保持全球货物贸易第一大国地位.预计2020年我国外贸进出口总值将达36.3万亿元人民币.求这两年我国外贸进出口总值的年平均增长率.【解答】解:设平均增长率为x ,根据题意列方程得 230(1)36.3x +=解得10.1x =,2 2.1x =-(舍)答:我国外贸进出口总值的年平均增长率为10%. 37.(2020•益阳)“你怎么样,中国便是怎么样;你若光明,中国便不黑暗”.2019年,一场新冠肺炎疫情牵扯着人们的心灵,各界人士齐心协力,众志成城.针对资源急需问题,某医疗设备公司紧急复工,但受疫情影响,医用防护服生产车间仍有7人不能到厂生产.为了应对疫情,已复产的工人加班生产,由原来每天工作8小时增加到10小时,每小时完成的工作量不变.原来每天能生产防护服800套,现在每天能生产防护服650套.(1)求原来生产防护服的工人有多少人?(2)复工10天后,未到的工人同时到岗加入生产,每天生产时间仍然为10小时.公司决定将复工后生产的防护服14500套捐献给某地,则至少还需要生产多少天才能完成任务? 【解答】解:(1)设原来生产防护服的工人有x 人,由题意得,800650810(7)x x =-, 解得:20x =.经检验,20x =是原方程的解.答:原来生产防护服的工人有20人;(2)设还需要生产y 天才能完成任务. 8005820=⨯(套), 即每人每小时生产5套防护服.由题意得,106502051014500y ⨯+⨯⨯, 解得8y .答:至少还需要生产8天才能完成任务. 38.(2020•永州)某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和95N 口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,95N 口罩花费9600元.已知购进一次性医用外科口罩的单价比95N 口罩的单价少10元.(1)求该药店购进的一次性医用外科口罩和95N 口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?word 可编辑文档11 【解答】解:(1)设一次性医用外科口罩的单价是x 元,则95N 口罩的单价是(10)x +元,依题意有 1600960010x x =+, 解得2x =,经检验,2x =是原方程的解,1021012x +=+=.故一次性医用外科口罩的单价是2元,95N 口罩的单价是12元;(2)设购进一次性医用外科口罩y 只,依题意有212(2000)10000y y +-,解得1400y .故至少购进一次性医用外科口罩1400只.39.(2020•郴州)解方程:24111x x x =+--. 【解答】解:24111x x x =+--, 方程两边都乘(1)(1)x x -+,得(1)4(1)(1)x x x x +=+-+,解得3x =,检验:当3x =时,(1)(1)80x x -+=≠.故3x =是原方程的解.40.(2020•张家界)今年疫情防控期间,某学校花2000元购买了一批消毒液以满足全体师生的需要.随着疫情的缓解以及各种抗疫物资供应更充足,消毒液每瓶下降了2元,学校又购买了一批消毒液,花1600元购买到的数量与第一次购买到的数量相等,求第一批购进的消毒液的单价.【解答】解:设第一批购进的消毒液的单价为x 元,则第二批购进的消毒液的单价为(2)x -元, 依题意,得:200016002x x =-, 解得:10x =,经检验,10x =是原方程的解,且符合题意.答:第一批购进的消毒液的单价为10元.。

中考数学复习重要知识点专项总结—方程和方程组

中考数学复习重要知识点专项总结—方程和方程组

中考数学复习重要知识点专项总结—方程和方程组一、方程有关概念1、方程:含有未知数的等式叫做方程。

2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。

3、解方程:求方程的解或方判断方程无解的过程叫做解方程。

4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。

二、一元方程1、一元一次方程(1)一元一次方程的标准形式:ax+b=0(其中x是未知数,a、b是已知数,a≠0)(2)一玩一次方程的最简形式:ax=b(其中x是未知数,a、b是已知数,a≠0)(3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。

(4)一元一次方程有唯一的一个解。

2、一元二次方程(1)一元二次方程的一般形式:(其中x是未知数,a、b、c 是已知数,a≠0)(2)一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法(3)一元二次方程解法的选择顺序是:先特殊后一般,如果没有要求,一般不用配方法。

(4)一元二次方程的根的判别式:当Δ>0时方程有两个不相等的实数根;当Δ=0时方程有两个相等的实数根;当Δ<0时方程没有实数根,无解;当Δ≥0时方程有两个实数根(5)一元二次方程根与系数的关系:若是一元二次方程的两个根,那么:,(6)以两个数为根的一元二次方程(二次项系数为1)是:三、分式方程(1)定义:分母中含有未知数的方程叫做分式方程。

(2)分式方程的解法:一般解法:去分母法,方程两边都乘以最简公分母。

特殊方法:换元法。

(3)检验方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就是原方程的根;使得最简公分母为0的就是原方程的增根,增根必须舍去,也可以把求得的未知数的值代入原方程检验。

四、方程组1、方程组的解:方程组中各方程的公共解叫做方程组的解。

2、解方程组:求方程组的解或判断方程组无解的过程叫做解方程组3、一次方程组:(1)二元一次方程组:一般形式:(不全为0)解法:代入消远法和加减消元法解的个数:有唯一的解,或无解,当两个方程相同时有无数的解。

中考数学专题复习四--分式方程和不等式

中考数学专题复习四--分式方程和不等式

中考数学专题复习四--分式方程和不等式(组)(总6页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除中考数学专题复习(四)分式方程和不等式(组)【知识梳理】1.分式方程:分母中含有的方程叫分式方程.2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以,约去分母,化成整式方程;(2)解这个整式方程;(3)验根,把整式方程的根代入,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3. 用换元法解分式方程的一般步骤:①设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;②解所得到的关于辅助未知数的新方程,求出辅助未知数的值;③把辅助未知数的值代入原设中,求出原未知数的值;④检验作答.4.分式方程的应用:分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解是否是所列;(2)检验所求的解是否 . 5.易错知识辨析:(1)去分母时,不要漏乘没有分母的项.(2)解分式方程的重要步骤是检验,检验的方法是可代入最简公分母, 使最简公分母为0的值是原分式方程的增根,应舍去,也可直接代入原方程验根.(3)如何由增根求参数的值:①将原方程化为整式方程;②将增根代入变形后的整式方程,求出参数的值.6.不等式的有关概念:用连接起来的式子叫不等式;使不等式成立的的值叫做不等式的解;一个含有的不等式的解的叫做不等式的解集.求一个不等式的的过程或证明不等式无解的过程叫做解不等式.7.不等式的基本性质:(1)若a <b ,则a +c c b +; (2)若a >b ,c >0则ac bc (或ca cb ); (3)若a >b ,c <0则ac bc (或c a cb ). 8.一元一次不等式:只含有 未知数,且未知数的次数是 且系数 的不等式,称为一元一次不等式;一元一次不等式的一般形式为 或ax b <;解一元一次不等式的一般步骤:去分母、 、移项、 、系数化为1.9.一元一次不等式组:几个 合在一起就组成一个一元一次不等式组.一般地,几个不等式的解集的 ,叫做由它们组成的不等式组的解集.10.由两个一元一次不等式组成的不等式组的解集有四种情况:(已知a b <)x a x b <⎧⎨<⎩的解集是x a <,即“小小取小”; x a x b >⎧⎨>⎩的解集是x b >,即“大大取大”;x a x b >⎧⎨<⎩的解集是a x b <<,即“大小小大中间找”; x a x b <⎧⎨>⎩的解集是空集,即“大大小小取不了”.11.易错知识辨析:(1)不等式的解集用数轴来表示时,注意“空心圆圈”和“实心点”的不同含义.(2)解字母系数的不等式时要讨论字母系数的正、负情况.如不等式ax b >(或ax b <)(0a ≠)的形式的解集: 当0a >时,b x a >(或b x a <); 当0a <时,b x a <(或b x a>); 当0a <时,b x a <(或b x a>). 12.求不等式(组)的特殊解:不等式(组)的解往往有无数多个,但其特殊解在某些范围内是有限的,如整数解,非负整数解,求这些特殊解应先确定不等式(组)的解集,然后再找到相应答案.13.列不等式(组)解应用题的一般步骤:①审:审题,分析题中已知什么、求什么,明确各数量之间的关系;②设:设未知数(一般求什么,就设什么为x );③找:找出能够表示应用题全部含义的一个不等关系;④列:根据这个不等关系列出需要的代数式,从而列出不等式(组);⑤解:解所列出的不等式(组),写出未知数的值或范围;⑥验:检验所求解是否符合题意;⑦答:写出答案(包括单位).14.易错知识辨析:判断不等式是否成立,关键是分析不等号的变化,其根据是不等式的性质.【真题回顾】一、选择题1.(2010年山东菏泽全真模拟1)下列运算中,错误..的是( ) A.(0)a ac c b bc =≠ B.1a b a b--=-+2(4)4-= D.x y y x x y y x --=++ 2.(2010年江西省统一考试样卷)若分式21x x +有意义,则x 的取值范围是( )A .x >1B .x >-1C .x ≠0D .x ≠-13.(2009年孝感)关于x 的方程211x a x +=- 的解是正数,则a 的取值范围是( ) A .a >-1 B .a >-1且a≠0 C .a <-1 D .a <-1且a≠-24.(2011.鸡西)分式方程)2)(1(11+-=--x x m x x 产生增根,则m 的值是( ) A. 0和3 B. 1 C. 1和-2 D. 35.(2009年安徽)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( )A .8 B.7 C .6 D .5二、填空题1.(2010年西湖区月考)若分式22221x x x x --++的值为0,则x 的值等于 2.(2010年江苏省泰州市中考模拟题)使代数式43--x x 有意义的x 的取值范围是 . 3.(2009年滨州)解方程2223321x x x x --=-时,若设21x y x =-,则方程可化为 . 4.(2011襄阳)已知关于x 的分式方程1131=-+-xx m 的解是正数,则m 的取值范围为 5.(2010新疆乌鲁木齐)在数轴上,点A 、B 对应的数分别为2 ,15+-x x ,且A 、B 两点关于原点对称,则x 的值为 。

中考数学专题04分式与分式方程-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版)

中考数学专题04分式与分式方程-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版)

专题04.分式与分式方程一、单选题1.(2021·河北中考真题)由1122c c +⎛⎫- ⎪+⎝⎭值的正负可以比较12c A c +=+与12的大小,下列正确的是( )A .当2c =-时,12A =B .当0c 时,12A ≠C .当2c <-时,12A > D .当0c <时,12A <2.(2021·湖南中考真题)为响应习近平总书记“坚决打赢关键核心技术攻坚战”的号召,某科研团队最近攻克了7nm 的光刻机难题,其中1nm 0.000000001m =,则7nm 用科学记数法表示为( ) A .80.710m ⨯B .8710m -⨯C .80.710m -⨯D .9710m -⨯3.(2021·四川眉山市·中考真题)化简221111a a a ⎛⎫+÷ ⎪--⎝⎭的结果是( ) A .1a +B .1a a+ C .1a a- D .21a a + 4.(2021·天津中考真题)计算33a ba b a b---的结果是( ) A .3B .33a b +C .1D .6aa b- 5.(2021·山东临沂市·中考真题)计算11()()a b b a-÷-的结果是( )A .ab-B .a bC .b a-D .b a6.(2021·江西中考真题)计算11a a a+-的结果为( ) A .1B .1-C .2a a+D .2a a- 7.(2021·江苏扬州市·中考真题)不论x 取何值,下列代数式的值不可能为0的是( ) A .1x +B .21x -C .11x + D .()21x +8.(2021·湖北恩施土家族苗族自治州·中考真题)分式方程3111x x x +=--的解是( ) A .1x =B .2x =-C .34x =D .2x =9.(2021·湖南怀化市·中考真题)定义12a b a b⊗=+,则方程342x ⊗=⊗的解为( )A .15x =B .25x =C .35x =D .45x =10.(2021·山东临沂市·中考真题)某工厂生产A 、B 两种型号的扫地机器人.B 型机器人比A 型机器人每小时的清扫面积多50%;清扫2100m 所用的时间A 型机器人比B 型机器人多用40分钟. 两种型号扫地机器人每小时分别清扫多少面积?若设A 型扫地机器人每小时清扫2m x ,根据题意可列方程为( ) A .10010020.53x x =+ B .10021000.53x x += C .10021003 1.5x x += D .10010021.53x x =+11.(2021·四川成都市·中考真题)分式方程21133x x x-+=--的解为( ) A .2x =B .2x =-C .1x =D .1x =-12.(2021·重庆中考真题)若关于x 的一元一次不等式组()322225x x a x ⎧-≥+⎨-<-⎩的解集为6x ≥,且关于y 的分式方程238211y a y y y+-+=--的解是正整数,则所有满足条件的整数a 的值之和是( ) A .5B .8C .12D .1513.(2021·重庆中考真题)关于x 的分式方程331122ax x x x--+=--的解为正数,且使关于y 的一元一次不等式组32122y y y a-⎧≤-⎪⎨⎪+>⎩有解,则所有满足条件的整数a 的值之和是( )A .5-B .4-C .3-D .2-14.(2020·辽宁朝阳市·中考真题)某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买键球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x 名学生,依据题意列方程得( ) A .807250405x x ⨯=⨯+ B .807240505x x ⨯=⨯+ C .728040505x x ⨯=⨯- D .728050405x x⨯=⨯- 15.(2020·四川绵阳市·中考真题)甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为( )A .1.2小时B .1.6小时C .1.8小时D .2小时16.(2020·黑龙江鹤岗市·中考真题)已知关于x 的分式方程433x kx x-=--的解为非正数,则k 的取值范围是( ) A .12k ≤-B .12k -≥C .12k >-D .12k <-17.(2020·湖北荆门市·中考真题)已知关于x 的分式方程2322(2)(3)x k x x x +=+--+的解满足41x -<<-,且k 为整数,则符合条件的所有k 值的乘积为( ) A .正数B .负数C .零D .无法确定18.(2020·四川广元市·中考真题)按照如图所示的流程,若输出的=6M -,则输入的m 为( )A .3B .1C .0D .-119.(2020·四川成都市·中考真题)已知2x =是分式方程311k x x x -+=-的解,那么实数k 的值为( ) A .3B .4C .5D .620.(2020·四川遂宁市·中考真题)关于x 的分式方程2mx -﹣32x-=1有增根,则m 的值( ) A .m =2B .m =1C .m =3D .m =﹣321.(2020·浙江金华市·中考真题)分式52x x +-的值是零,则x 的值为( ) A .5B .5-C .2-D .222.(2020·湖北孝感市·中考真题)已知1x =,1y =,那么代数式()32x xy x x y --的值是( )A .2B C .4D .23.(2020·河北中考真题)若a b ,则下列分式化简正确的是( )A .22a a b b +=+B .22a a b b -=-C .22a a b b=D .1212aa b b = 24.(2020·贵州贵阳市·中考真题)当1x =时,下列分式没有意义的是( ) A .1x x+ B .1x x - C .1x x- D .1x x + 25.(2019·河北中考真题)如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④26.(2019·湖南娄底市·中考真题)2018年8月31日,华为正式发布了全新一代自研手机SoC 麒麟980,这款号称六项全球第一的芯片,随着华为Mate 20系列、荣耀Magic 2相继搭载上市,它的强劲性能、出色能效比、卓越智慧、顶尖通信能力,以及为手机用户带来的更强大、更丰富、更智慧的使用体用,再次被市场和消费者所认可.麒麟980是全球首颗()97110nm nm m -=手机芯片.7nm 用科学记数法表示为( ) A .8710m -⨯B .9710m -⨯C .80.710m -⨯D .10710m -⨯27.(2019·湖北孝感市·中考真题)已知二元一次方程组1249x y x y +=⎧⎨+=⎩,则22222x xy y x y -+-的值是( ) A .5-B .5C .6-D .628.(2019·北京中考真题)如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3B .-1C .1D .329.(2019·四川中考真题)一辆货车送上山,并按原路下山.上山速度为a 千米/时,下山速度为b 千米/时.则货车上、下山的平均速度为( )千米/时. A .1()2a b + B .aba b+ C .2a bab+ D .2aba b+ 30.(2019·湖南益阳市·中考真题)解分式方程232112x x x+=--时,去分母化为一元一次方程,正确的是( )A .x+2=3B .x ﹣2=3C .x ﹣2=3(2x ﹣1)D .x+2=3(2x ﹣1)31.(2019·广东中考真题)定义一种新运算:1an n nbn xdx a b -⋅=-⎰,例如:222khxdx k h ⋅=-⎰,若m252mx dx --=-⎰,则m =( )A .-2B .25-C .2D .25二、填空题目32.(2021·四川资阳市·中考真题)若210x x +-=,则33x x-=_________. 33.(2021·四川南充市·中考真题)若3n m n m +=-,则2222m n n m+=_________ 34.(2021·四川达州市·中考真题)若分式方程22411x a x ax x --+-=-+的解为整数,则整数a =___________. 35.(2021·湖南常德市·中考真题)分式方程1121(1)x x x x x ++=--的解为__________. 36.(2021·湖南衡阳市·中考真题)“绿水青山就是金山银山”.某地为美化环境,计划种植树木6000棵.由于志愿者的加入,实际每天植树的棵树比原计划增加了25%,结果提前3天完成任务.则实际每天植树__________棵.37.(2021·四川凉山彝族自治州·中考真题)若关于x 的分式方程2311x mx x-=--的解为正数,则m 的取值范围是_________.38.(2020·内蒙古呼和浩特市·中考真题)分式22x x -与282x x -的最简公分母是_______,方程228122-=--x x x x的解是____________. 39.(2020·山东潍坊市·中考真题)若关于x 的分式方程33122x m x x +-=--有增根,则m 的值为_____. 40.(2020·湖北黄冈市·中考真题)计算:221yx x y x y ⎛⎫÷- ⎪-+⎝⎭的结果是____________.41.(2020·山东滨州市·中考真题)观察下列各式:1234523101526,,,,,357911a a a a a =====, 根据其中的规律可得n a =________(用含n 的式子表示).42.(2020·山东济宁市·中考真题)已知m+n=-3.则分式222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭的值是____________. 43.(2019·江西中考真题)斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A B C --横穿双向行驶车道,其中6AB BC ==米,在绿灯亮时,小明共用11秒通过AC ,其中通过BC 的速度是通过AB 速度的1.2倍,求小明通过AB 时的速度.设小明通过AB 时的速度是x 米/秒,根据题意列方程得:_____________________.三、解答题44.(2021·湖北随州市·中考真题)先化简,再求值:2141122x x x -⎛⎫+÷⎪++⎝⎭,其中1x =.45.(2021·山东菏泽市·中考真题)先化简,再求值:22221244m n n m m n m mn n--+÷--+,其中m ,n 满足32m n =-.46.(2021·湖北宜昌市·中考真题)先化简,再求值:2211111x x x ÷--+-,从1,2,3这三个数中选择一个你认为适合的x 代入求值.47.(2021·四川达州市·中考真题)化简求值:231041244a a a a a --⎛⎫⎛⎫-÷ ⎪ ⎪--+⎝⎭⎝⎭,其中a 与2,3构成三角形的三边,且a 为整数.48.(2021·湖南株洲市·中考真题)先化简,再求值:2223142x x x x ⎛⎫⋅-- ⎪-+⎝⎭,其中2x =.49.(2021·四川成都市·中考真题)先化简,再求值:2269111a a a a ++⎛⎫+÷⎪++⎝⎭,其中3=a .50.(2021·四川资阳市·中考真题)先化简,再求值:222211111x x x x x x ⎛⎫++-÷ ⎪---⎝⎭,其中30x -=.51.(2021·四川凉山彝族自治州·中考真题)已知112,1x y x y-=-=,求22x y xy -的值.52.(2021·四川遂宁市·中考真题)先化简,再求值:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭,其中m 是已知两边分别为2和3的三角形的第三边长,且m 是整数.53.(2021·江苏连云港市·中考真题)解方程:214111x x x +-=--.54.(2021·陕西中考真题)解方程:213111x x x --=+-.55.(2021·山西中考真题)太原武宿国际机场简称“太原机场”,是山西省开通的首条定期国际客运航线.游客从太原某景区乘车到太原机场,有两条路线可供选择,路线一:走迎宾路经太输路全程是25千米,但交通比较拥堵;路线二:走太原环城高速全程是30千米,平均速度是路线一的53倍,因此到达太原机场的时间比走路线一少用7分钟,求走路线一到达太原机场需要多长时间.56.(2021·四川自贡市·中考真题)随着我国科技事业的不断发展,国产无人机大量进入快递行业.现有A ,B 两种型号的无人机都被用来运送快件,A 型机比B 型机平均每小时多运送20件,A 型机运送700件所用时间与B 型机运送500件所用时间相等,两种无人机平均每小时分别运送多少快件?57.(2020·辽宁鞍山市·中考真题)先化简,再求值:2344111x x x x x ++⎛⎫--÷⎪++⎝⎭,其中2x =-.58.(2020·山东烟台·中考真题)先化简,再求值:222y y x y x y ⎛⎫- ⎪--⎝⎭÷2x xy y +,其中x +1,y 1.59.(2020·山西中考真题)(1)计算:321(4)(41)2⎛⎫-⨯---+ ⎪⎝⎭(2)下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务.229216926x x x x x -+-+++ 2(3)(3)21(3)2(3)x x x x x +-+=-++ 第一步 32132(3)x x x x -+=-++ 第二步 2(3)212(3)2(3)x x x x -+=-++ 第三步26(21)2(3)x x x --+=+ 第四步26212(3)x x x --+=+ 第五步526x =-+ 第六步任务一:填空:①以上化简步骤中,第_____步是进行分式的通分,通分的依据是____________________或填为_____________________________;②第_____步开始出现错误,这一步错误的原因是_____________________________________;任务二:请直接写出该分式化简后的正确结果;任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议.60.(2020·四川乐山市·中考真题)已知2yx=,且x y≠,求()x yx y x y x y+÷-+-22211的值.61.(2020·黑龙江大庆市·中考真题)解方程:24111 xx x-=--62.(2020·山东淄博市·中考真题)如图,著名旅游景区B位于大山深处,原来到此旅游需要绕行C地,沿折线A→C→B方可到达.当地政府为了增强景区的吸引力,发展壮大旅游经济,修建了一条从A地到景区B的笔直公路.请结合∠A=45°,∠B=30°,BC=100≈1.4≈1.7等数据信息,解答下列问题:(1)公路修建后,从A地到景区B旅游可以少走多少千米?(2)为迎接旅游旺季的到来,修建公路时,施工队使用了新的施工技术,实际工作时每天的工效比原计划增加25%,结果提前50天完成了施工任务.求施工队原计划每天修建多少千米?63.(2020·湖南郴州市·中考真题)解方程:24111x x x =+--64.(2020·陕西中考真题)解分式方程:2312x x x --=-.65.(2019·台湾中考真题)市面上贩售的防晒产品标有防晒指数SPF ,而其对抗紫外线的防护率算法为:防护率1100%SPF SPF⨯=-,其中1SPF . 请回答下列问题:(1)厂商宣称开发出防护率90%的产品,请问该产品的SPF 应标示为多少? (2)某防晒产品文宣内容如图所示.请根据SPF 与防护率的转换公式,判断此文宣内容是否合理,并详细解释或完整写出你的理由.66.(2019·河南中考真题)先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中x =67.(2019·湖北鄂州市·中考真题)先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭.68.(2019·湖南湘潭市·中考真题)阅读材料:运用公式法分解因式,除了常用的平方差公式和完全平方公式以外,还可以应用其他公式,如立方和与立方差公式,其公式如下:立方和公式:()()3322x y x y x xy y +=+-+ ;立方差公式:()3322()x y x y x xy y -=-++ ; 根据材料和已学知识,先化简,再求值:22332428x x x x x x ++---,其中3x =.69.(2019·浙江杭州市·中考真题)化简:242142x x x 圆圆的解答如下:2224214224242xx x x x x x x 圆圆的解答正确吗?如果不正确,写出正确的解答.祝你考试成功!祝你考试成功!。

人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第四节 一元一次不等式(组)及其应用

人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第四节 一元一次不等式(组)及其应用

有 3 个整数解,则 a 的取值范围为
( A)
A.1<a≤2
B.1<a<2
C.1≤a<2
D.1≤a≤2
6 . (2019 · 鄂 州 第 12 题 3 分 ) 若 关 于 x , y 的 二 元 一 次 方 程 组
x-3y=4m+3,
x+5y=5
的解满足 x+y≤0,则 m
的取值范围是__mm≤≤--22__.
③学校购买篮球和足球共 40 个.
(1)
若④购买篮球的个数不少于足球个数的23,则最少可购买篮球
116 6
个;
【分层分析】(1)设购买篮球 x 个,则由题干③可得购买足球((440 0--x)
个,由题干④可列不等式为

2 xx≥≥3((4400--xx)),解此不等式得
x) xx≥≥1166.
(2)若⑤购买篮球的费用不超过购买足球的费用,则最多可购买篮球115
(2)若此不等式组的解集为-4≤x<1,则 a 的值为--22; 【分层分析】(2)由题意得1a.-25168=0--m4 m,即 a=--22;
重难点 2:一元一次不等式的应用
(一题多设问)某校为举行体育比赛活动,准备购买若干个足球和篮
球作为奖品,已知①篮球的单价为 100 元/个,②足球的单价为 60 元/个,
第四节 一元一次不等式 (组)及其应用
【考情分析】湖北近 3 年主要考查:1.一元一次不等式(组)的解法及解集 表示,考查形式有:①求不等式(组)的解集;②求不等式(组)的解集并在 数轴上表示;③求不等式组的整数解;④确定不等式组中字母参数的取 值范围.2.一元一次不等式的应用,考查形式有:①利用不等式判断哪种 方案合算;②与方程(组)、函数结合确定方案问题,设题背景有购买问题、 销售费用问题,以解答题为主

中考总复习:《一次方程及方程组》知识网络及经典例题解析

中考总复习:《一次方程及方程组》知识网络及经典例题解析

中考总复习:《一次方程及方程组》知识网络及经典例题解析【考纲要求】1.了解等式、方程、一元一次方程的概念,会解一元一次方程;2.了解二元一次方程组的定义,会用代入消元法、加减消元法解二元一次方程组;3.能根据具体问题中的数量关系列出方程(组),体会方程思想和转化思想.【知识网络】【考点梳理】考点一、一元一次方程 1.等式性质(1)等式的两边都加上(或减去)同一个数(或式子),结果仍是等式. (2)等式的两边都乘以(或除以)同一个数(除数不为零),结果仍是等式. 2.方程的概念(1)含有未知数的等式叫做方程.(2)使方程两边相等的未知数的值,叫做方程的解(一元方程的解也叫做根). (3)求方程的解的过程,叫做解方程. 3.一元一次方程(1)只含有一个未知数,且未知数的次数是一次的整式方程叫做一元一次方程.(2)一元一次方程的一般形式:0(0)ax b a +=≠.(3)解一元一次方程的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化成1;⑥检验(检验步骤可以不写出来). 要点诠释:解一元一次方程的一般步骤 步骤名 称 方 法依 据注 意 事 项1去分母在方程两边同时乘以所有分母的最小公倍数(即把每个含分母的部分和不含分母的部分都乘以所有分母的最小公倍数)等式性质21、不含分母的项也要乘以最小公倍数;2、分子是多项式的一定要先用括号括起来.2 去括号 去括号法则(可先分配再去括号)乘法分配律 注意正确的去掉括号前带负数的括号3移项把未知项移到方程的一边(左边),常数项移到另一边等式性质1移项一定要改变符号说明:(1)上表仅说明了在解一元一次方程时经常用到的几个步骤,但并不是说,解每一个方程都必须经过六个步骤;(2)解方程时,一定要先认真观察方程的形式,再选择步骤和方法;(3)对于形式较复杂的方程,可依据有效的数学知识将其转化或变形成我们常见的形式,再依照一般方法解.考点二、二元一次方程组 1. 二元一次方程组的定义两个含有两个未知数,且未知数的次数是一次的整式方程组成的一组方程,叫做二元一次方程组. 要点诠释:判断一个方程组是不是二元一次方程组应从方程组的整体上看,若一个方程组内含有两个未知数,并且未知数的次数都是1次,这样的方程组都叫做二元一次方程组. 2.二元一次方程组的一般形式111222a xb yc a x b y c +=⎧⎨+=⎩ 要点诠释:a 1、a 2不同时为0,b 1、b 2不同时为0,a 1、b 1不同时为0,a 2、b 2不同时为0. 3. 二元一次方程组的解法(1) 代入消元法; (2) 加减消元法. 要点诠释:(1)二元一次方程组的解有三种情况,即有唯一解、无解、无限多解.教材中主要是研究有唯一解的情况,对于其他情况,可根据学生的接受能力给予渗透.(2)一元一次方程与一次函数、一元一次不等式之间的关系:当二元一次方程中的一个未知数的取值确定范围时,可利用一元一次不等式组确定另一个未知数的取值范围,由于任何二元一次方程都可以转化为一次函数的形式,所以解二元一次方程可以转化为:当y =0时,求x 的值.从图象上看,这相当于已知纵坐标,确定横坐标的值.考点三、一次方程(组)的应用列方程(组)解应用题的一般步骤:1.审:分析题意,找出已知、未知之间的数量关系和相等关系;2.设:选择恰当的未知数(直接或间接设元),注意单位的统一和语言完整;3.列:根据数量和相等关系,正确列出代数式和方程(组);4.解:解所列的方程(组);5.验: (有三次检验 ①是否是所列方程(组)的解;②是否使代数式有意义;③是否满足实际意义);6.答:注意单位和语言完整.要点诠释:列方程应注意:(1)方程两边表示同类量;(2)方程两边单位一定要统一;(3)方程两边的数值相等.【典型例题】类型一、一元一次方程及其应用1.如果方程2n 731x 157--=是关于x 的一元一次方程,则n 的值为( ). A.2 B.4 C.3 D.1 【思路点拨】未知数x 的指数是1即可. 【答案】B ;【解析】由题意可知2n-7=1,∴n=4.【总结升华】根据一元一次方程的定义求解. 举一反三:【变式1】已知关于x 的方程4x-3m=2的解是x=5,则m 的值为 . 【答案】由题意可知4×5-3m =2,∴m=6.【变式2】若a ,b 为定值,关于x 的一元一次方程2632=--+bxx x ka 无论k 为何值时,它的解总是1,求a ,b 的值.【答案】a=0,b=11.2.一收割机收割一块麦田,上午收割了麦田的25%,下午收割了剩下麦田的20%,结果还剩下6公顷麦田未收割.这块麦田一共有多少公顷?【思路点拨】设这块麦田一共有x 公顷,根据上午收割了麦田的25%,则剩余x (1﹣25%)公顷,再利用下午收割了剩下麦田的20%,则剩余x (1﹣25%)(1﹣20%)公顷,进而求出即可. 【答案与解析】解:设这块麦田一共有x 公顷, 根据题意得出:x (1﹣25%)(1﹣20%)=6, 解得:x=10,答:这块麦田一共有10公顷.【总结升华】此题主要考查了一元一次方程的应用,正确表示出两次剩余小麦的亩数是解题关键.举一反三:【变式】“五一”期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( ) A .()130%80%2080x +⨯= B . 30%80%2080x ⋅⋅= C . 208030%80%x ⨯⨯= D . 30%208080%x ⋅=⨯【答案】成本价提高30%后标价为()130%x +,打8折后的售价为()130%80%x +⨯.根据题意,列方程得()130%80%2080x +⨯=,故选A .类型二、二元一次方程组及其应用3.解下列方程组. (1)(2).【思路点拨】代入消元法或加减消元法均可. 【答案与解析】 解:(1),将②代入①得:2(﹣2y+3)+3y=7, 去括号得:﹣4y+6+3y=7, 解得:y=﹣1,将y=﹣1代入②得:x=2+3=5, 则方程组的解;(2),①×4+②×3得:17m=34, 解得:m=2,将m=2代入①得:4+3n=13, 解得:n=3, 则方程组的解为.【总结升华】解方程组要善于观察方程组的特点,灵活选用适当的方法,提高解题速度.举一反三:① ②【变式1解方程组【答案】方程②化为,再用加减法解,答案:【变式2】解方程组⎩⎨⎧=++=.36,5:4:3::c b a c b a【答案】a=9,b=12,c=15.4.小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m ),解答下列问题:(1)写出用含x 、y 的代数式表示的地面总面积;(2)已知客厅面积比卫生间面积多21m 2,且地面总面积是卫生间面积的15倍,铺1m 2地砖的平均费用为80元,求铺地砖的总费用为多少元?【思路点拨】根据题意找出等量关系式,列出方程或方程组解题. 【答案与解析】(1)地面总面积为:(6x +2y +18)m 2; (2)由题意,得6221,6218152.x y x y y -=⎧⎨++=⨯⎩解之,得4,3.2x y =⎧⎪⎨=⎪⎩∴地面总面积为:6x +2y +18=6×4+2×32+18=45(m 2). ∵铺1m 2地砖的平均费用为80元,∴铺地砖的总费用为:45×80=3600(元). 【总结升华】注意不要丢掉题中的单位. 举一反三:【变式】利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是( )A.73cm B.74cm C.75cm D.76cm【答案】设桌子高度为acm,木块竖放为bcm,木块横放为ccm.则80,a=7570a b ca c b+-=⎧⎨+-=⎩解得.故选C.类型三、一次方程(组)的综合运用5.某县为鼓励失地农民自主创业,在2012年对60位自主创业的失地农民进行奖励,共计划奖励10万元.奖励标准是:失地农民自主创业连续经营一年以上的给予1000元奖励;自主创业且解决5人以上失业人员稳定就业一年以上的,再给予2000元奖励.问:该县失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民分别有多少人?【思路点拨】根据失地农民自主创业连续经营一年以上的给予1000元奖励:自主创业且解决5人以上失业人员稳定就业一年以上的,再给予2000元奖励列方程求解.【答案与解析】方法一:设失地农民中自主创业连续经营一年以上的有x人,则根据题意列出方程 1000x+(60–x)(1000+2000)=100000,解得:x=40,∴60-x =60-40=20答:失地农民中自主创业连续经营一年以上的有40人,自主创业且解决5人以上失业人员稳定就业一年以上的农民有20人.方法二:设失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民有分别有x,y人,根据题意列出方程组:601000(10002000)100000 x yx y+=⎧⎨++=⎩解得:2040 yx=⎧⎨=⎩答:失地农民中自主创业连续经营一年以上的有40,自主创业且解决5人以上失业人员稳定就业一年以上的农民有20人.【总结升华】本题考查理解题意的能力,关键是找到人数和钱数作为等量关系.举一反三:【变式】某公园的门票价格如下表所示:购票人数1~50人51~100人100人以上票价10元/人8元/人5元/人某校七年级甲、乙两班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人.如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一团体购票,一共只要付515元.问:甲、乙两班分别有多少人? 【答案】设甲班有x 人,乙班有y 人,由题意得:8109205()515x y x y +=⎧⎨+=⎩ 解得:5548x y =⎧⎨=⎩. 答:甲班有55人,乙班有48人.6.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“二环路车流量为每小时10000辆”; 乙同学说:“四环路比三环路车流量每小时多2000辆”;丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”; 请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少? 【思路点拨】根据甲、乙、丙三位同学提供的信息找出等量关系列出方程组求解. 【答案与解析】设高峰时段三环路的车流量为每小时辆,四环路的车流量为每小时辆,根据题意得:解得答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13000辆. 【总结升华】通过甲、乙、丙三位同学调查结果找到车流量的等量关系式是解题的关键.。

4【中考复习】第四章:等式方程(等量关系)

4【中考复习】第四章:等式方程(等量关系)

3.
解 一 元 二 次方程( 配 方法 、 因 式 分 解 法 、 公 式 法 )
4.
一元二次方程根与系数关系
三、分数方程结构和转换(解方程)
1.
分式方程(结构及转换)
2.
解 分 式 方 程及增根
四、方程组结构及转换
1.
方程组结构
2.
解方程组
3.
方 程 组 和 方程的相互 转换
五、中考真题(出题形式)
(合并同类项)
(去括号)
(去括号)
(合并同类项)
(系数化1)
(合并同类项)
中考复习
(系数化1)
9
3 、 解 一 元 二 次 方 程— — 配 方 法
解一元二次方程的方法——将一元二次方程转换为一元一次方程
将ax2+bx+c=0转换为(x+m)2=n(m、n是常数)
当n>0转换为两个一元一次方程 :x+m=√n、 x+m=-√n,有两个解(或有两个不同实数根)
中考复习
2
1、两个数量比较什么?有几种结果?
● 代数式中数量之间的关系是——运算(+-×÷)关系,新的数
量关系是什么?
● 比较(动作)两个数量(感知)大小的结果是什么?
● 相等和不相等
● 两个代数式的数量相等的关系是等量关系,是等式

● 两个代数式的数量不相Байду номын сангаас的关系是不等量关系,是不等式
✓ 表示数量相等的数学符号:
2)等式加(减)等式,结果仍然是等式
a
c
a=b,c=d → a+c=b+d ,a-c=b-d
b
d
例:5×4=20 ,6=(2×3)

山东省2019年、2020年数学中考试题分类(4)——方程的解法与应用(含解析)

山东省2019年、2020年数学中考试题分类(4)——方程的解法与应用(含解析)

山东省2019年、2020年数学中考试题分类(4)——方程的解法与应用一.选择题(共16小题) 1.(2020•东营)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.则此人第三天走的路程为( ) A .96里 B .48里 C .24里 D .12里 2.(2020•临沂)《孙子算经》是中国古代重要的数学著作,成书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车;若每辆车乘坐2人,则有9人步行.问人与车各多少?设有x 人,y 辆车,可列方程组为( )A .2392x y x y ⎧=+⎪⎪⎨⎪+=⎪⎩B .2392x y x y ⎧=-⎪⎪⎨-⎪=⎪⎩C .2392x y x y ⎧=+⎪⎪⎨-⎪=⎪⎩D .2392x y x y ⎧=-⎪⎪⎨⎪-=⎪⎩3.(2019•东营)篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分,某队在10场比赛中得到16分.若设该队胜的场数为x ,负的场数为y ,则可列方程组为( )?A .10216x y x y +=⎧⎨+=⎩B .10216x y x y +=⎧⎨-=⎩C .10216x y x y +=⎧⎨-=⎩D .10216x y x y +=⎧⎨+=⎩4.(2019•菏泽)已知32x y =⎧⎨=-⎩是方程组23ax by bx ay +=⎧⎨+=-⎩的解,则a b +的值是( )A .1-B .1C .5-D .5 5.(2019•德州)《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A . 4.5112y x y x -=⎧⎪⎨-=⎪⎩B . 4.5112x y y x -=⎧⎪⎨-=⎪⎩ C . 4.5112x y x y -=⎧⎪⎨-=⎪⎩ D . 4.5112y x x y -=⎧⎪⎨-=⎪⎩6.(2020•潍坊)关于x 的一元二次方程2(3)10x k x k +-+-=根的情况,下列说法正确的是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根 D .无法确定 7.(2020•菏泽)等腰三角形的一边长是3,另两边的长是关于x 的方程240x x k -+=的两个根,则k 的值为( ) A .3 B .4 C .3或4 D .7 8.(2020•临沂)一元二次方程2480x x --=的解是( )A.12x =-+,22x =--B.12x =+22x =-C .1222x =+,2222x =-D .123x =,223x =-9.(2020•聊城)用配方法解一元二次方程22310x x --=,配方正确的是( )A .2317()416x -=B .231()42x -=C .2313()24x -=D .2311()24x -=10.(2020•滨州)对于任意实数k ,关于x 的方程221(5)22502x k x k k -++++=的根的情况为( )A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .无法判定 11.(2019•威海)已知a ,b 是方程230x x +-=的两个实数根,则22019a b -+的值是( ) A .2023 B .2021 C .2020 D .2019 12.(2019•聊城)若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0kB .0k 且2k ≠C .32kD .32k 且2k ≠13.(2019•潍坊)关于x 的一元二次方程2220x mx m m +++=的两个实数根的平方和为12,则m 的值为( )A .2m =-B .3m =C .3m =或2m =-D .3m =-或2m =14.(2020•枣庄)对于实数a 、b ,定义一种新运算“⊗”为:21a b a b =-⊗,这里等式右边是实数运算.例如:21113138==--⊗.则方程2(2)14x x -=--⊗的解是( )A .4x =B .5x =C .6x =D .7x =15.(2019•淄博)解分式方程11222x x x-=---时,去分母变形正确的是( )A .112(2)x x -+=---B .112(2)x x -=--C .112(2)x x -+=+-D .112(2)x x -=--- 16.(2019•济宁)世界文化遗产“三孔”景区已经完成5G 基站布设,“孔夫子家”自此有了5G 网络.5G 网络峰值速率为4G 网络峰值速率的10倍,在峰值速率下传输500兆数据,5G 网络比4G 网络快45秒,求这两种网络的峰值速率.设4G 网络的峰值速率为每秒传输x 兆数据,依题意,可列方程是( )A .5005004510x x -=B .5005004510x x -=C .500050045x x -=D .500500045x x-=二.填空题(共18小题)17.(2020•泰安)方程组16,5372x y x y +=⎧⎨+=⎩的解是 .18.(2020•枣庄)各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S 可用公式11(2S a b a =+-是多边形内的格点数,b 是多边形边界上的格点数)计算,这个公式称为“皮克()Pick 定理”.如图给出了一个格点五边形,则该五边形的面积S = .19.(2019•临沂)用1块A 型钢板可制成4件甲种产品和1件乙种产品;用1块B 型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A 、B 两种型号的钢板共 块.20.(2019•泰安)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意可列方程组为 .21.(2020•东营)如果关于x 的一元二次方程260x x m -+=有实数根,那么m 的取值范围是 . 22.(2020•威海)一元二次方程4(2)2x x x -=-的解为 . 23.(2020•淄博)已知关于x 的一元二次方程220x x m -+=有两个不相等的实数根,则实数m 的取值范围是 . 24.(2020•烟台)关于x 的一元二次方程2(1)210m x x -+-=有两个不相等的实数根,则m 的取值范围是 . 25.(2020•德州)菱形的一条对角线长为8,其边长是方程29200x x -+=的一个根,则该菱形的周长为 .26.(2019•莱芜区)已知1x ,2x 是方程230x x --=的两根,则1211x x += .27.(2019•威海)一元二次方程2342x x =-的解是 . 28.(2019•青岛)若关于x 的一元二次方程220x x m -+=有两个相等的实数根,则m 的值为 . 29.(2019•枣庄)已知关于x 的方程2230ax x +-=有两个不相等的实数根,则a 的取值范围是 . 30.(2019•济宁)已知1x =是方程220x bx +-=的一个根,则方程的另一个根是 .31.(2020•潍坊)若关于x 的分式方程33122x m x x +=+--有增根,则m = .32.(2020•菏泽)方程111x x x x -+=-的解是 . 33.(2019•德州)方程631(1)(1)1x x x -=+--的解为 .34.(2019•滨州)方程33122x x x-+=--的解是 . 三.解答题(共6小题)35.(2020•淄博)解方程组:138,21222x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩36.(2019•东营)为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元? 37.(2020•威海)在“旅游示范公路”建设的过程中,工程队计划在海边某路段修建一条长1200m 的步行道.由于采用新的施工方式,平均每天修建步行道的长度是计划的1.5倍,结果提前5天完成任务.求计划平均每天修建步行道的长度. 38.(2020•泰安)中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界 共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A 种茶叶若干盒,用8400元购进B 种茶叶若干盒,所购B 种茶叶比A 种茶叶多10盒,且B 种茶叶每盒进价是A 种茶叶每盒进价的1.4倍.(1)A ,B 两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A ,B 两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B 种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A ,B 两种茶叶各多少盒? 39.(2019•日照)“一带一路”战略给沿线国家和地区带来很大的经济效益,某企业的产品对沿线地区实行优惠,决定在原定价基础上每件降价40元,这样按原定价需花费5000元购买的产品,现在只花费了4000元,求每件产品的实际定价是多少元?40.(2019•菏泽)列方程(组)解应用题:德上高速公路巨野至单县段正在加速建设,预计2019年8月竣工.届时,如果汽车行驶高速公路上的平均速度比在普通公路上的平均速度提高80%,那么行驶81千米的高速公路比行驶同等长度的普通公路所用时间将会缩短36分钟,求该汽车在高速公路上的平均速度.山东省2019年、2020年数学中考试题分类(4)——方程的解法与应用一.选择题(共16小题)1.(2020•东营)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.则此人第三天走的路程为()A.96里B.48里C.24里D.12里【解答】解:设此人第三天走的路程为x里,则其它五天走的路程分别为4x里,2x里,12x里,14x里,18x里,依题意,得:11142378248x x x x x x+++++=,解得:48x=.故选:B.2.(2020•临沂)《孙子算经》是中国古代重要的数学著作,成书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车;若每辆车乘坐2人,则有9人步行.问人与车各多少?设有x人,y辆车,可列方程组为()A.2392xyxy⎧=+⎪⎪⎨⎪+=⎪⎩B.2392xyxy⎧=-⎪⎪⎨-⎪=⎪⎩C.2392xyxy⎧=+⎪⎪⎨-⎪=⎪⎩D.2392xyxy⎧=-⎪⎪⎨⎪-=⎪⎩【解答】解:依题意,得:2392xyxy⎧=-⎪⎪⎨-⎪=⎪⎩.故选:B.3.(2019•东营)篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分,某队在10场比赛中得到16分.若设该队胜的场数为x,负的场数为y,则可列方程组为()?A.10216x yx y+=⎧⎨+=⎩B.10216x yx y+=⎧⎨-=⎩C.10216x yx y+=⎧⎨-=⎩D.10216x yx y+=⎧⎨+=⎩【解答】解:设这个队胜x场,负y场,根据题意,得10 216x yx y+=⎧⎨+=⎩.故选:A.4.(2019•菏泽)已知32xy=⎧⎨=-⎩是方程组23ax bybx ay+=⎧⎨+=-⎩的解,则a b+的值是()A.1-B.1C.5-D.5【解答】解:将32xy=⎧⎨=-⎩代入23ax bybx ay+=⎧⎨+=-⎩,可得:322323a b b a -=⎧⎨-=-⎩,两式相加:1a b +=-, 故选:A . 5.(2019•德州)《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A . 4.5112y x y x -=⎧⎪⎨-=⎪⎩ B . 4.5112x y y x -=⎧⎪⎨-=⎪⎩ C . 4.5112x y x y -=⎧⎪⎨-=⎪⎩D . 4.5112y x x y -=⎧⎪⎨-=⎪⎩【解答】解:设绳长x 尺,木长为y 尺,依题意得 4.5112x y y x -=⎧⎪⎨-=⎪⎩, 故选:B . 6.(2020•潍坊)关于x 的一元二次方程2(3)10x k x k +-+-=根的情况,下列说法正确的是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根 D .无法确定 【解答】解:△2(3)4(1)k k =---26944k k k =-+-+ 225k k =-+ 2(1)4k =-+,2(1)40k ∴-+>,即△0>,∴方程总有两个不相等的实数根. 故选:A . 7.(2020•菏泽)等腰三角形的一边长是3,另两边的长是关于x 的方程240x x k -+=的两个根,则k 的值为( ) A .3 B .4 C .3或4 D .7【解答】解:当3为腰长时,将3x =代入240x x k -+=,得:23430k -⨯+=, 解得:3k =,当3k =时,原方程为2430x x -+=, 解得:11x =,23x =, 134+=,43>, 3k ∴=符合题意;当3为底边长时,关于x 的方程240x x k -+=有两个相等的实数根, ∴△2(4)410k =--⨯⨯=, 解得:4k =,当4k =时,原方程为2440x x -+=, 解得:122x x ==, 224+=,43>, 4k ∴=符合题意. k ∴的值为3或4. 故选:C .8.(2020•临沂)一元二次方程2480x x --=的解是( )A .12x =-+,22x =--B .12x =+,22x =-C .12x =+22x =-D .1x =,2x =-【解答】解:一元二次方程2480x x --=, 移项得:248x x -=,配方得:24412x x -+=,即2(2)12x -=,开方得:2x -=±解得:12x =+,22x =- 故选:B . 9.(2020•聊城)用配方法解一元二次方程22310x x --=,配方正确的是( )A .2317()416x -=B .231()42x -=C .2313()24x -=D .2311()24x -=【解答】解:由原方程,得23122x x -=,23919216216x x -+=+,2317()416x -=,故选:A .10.(2020•滨州)对于任意实数k ,关于x 的方程221(5)22502x k x k k -++++=的根的情况为( )A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .无法判定【解答】解:221(5)22502x k x k k -++++=,△2222214[(5)]4(225)625(3)162b ac k k k k k k =-=-+-⨯⨯++=-+-=---,不论k 为何值,2(3)0k --,即△2(3)160k =---<, 所以方程没有实数根, 故选:B . 11.(2019•威海)已知a ,b 是方程230x x +-=的两个实数根,则22019a b -+的值是( ) A .2023 B .2021 C .2020 D .2019 【解答】解:a ,b 是方程230x x +-=的两个实数根, 23b b ∴=-,1a b +=-,3ab =-,2222201932019()220161620162023a b a b a b ab ∴-+=-++=+-+=++=; 故选:A . 12.(2019•聊城)若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0kB .0k 且2k ≠C .32kD .32k 且2k ≠【解答】解:2(2)260k x kx k --+-=,关于x 的一元二次方程2(2)26k x kx k --+=有实数根, ∴220(2)4(2)(6)0k k k k -≠⎧⎨=----⎩,解得:32k且2k ≠. 故选:D . 13.(2019•潍坊)关于x 的一元二次方程2220x mx m m +++=的两个实数根的平方和为12,则m 的值为( )A .2m =-B .3m =C .3m =或2m =-D .3m =-或2m = 【解答】解:设1x ,2x 是2220x mx m m +++=的两个实数根, ∴△40m =-, 0m ∴, 122x x m ∴+=-,212x x m m =+,222222121212()24222212x x x x x x m m m m m ∴+=+-=--=-=, 3m ∴=或2m =-; 2m ∴=-; 故选:A .14.(2020•枣庄)对于实数a 、b ,定义一种新运算“⊗”为:21a b a b =-⊗,这里等式右边是实数运算.例如:21113138==--⊗.则方程2(2)14x x -=--⊗的解是( )A .4x =B .5x =C .6x =D .7x =【解答】解:根据题意,得12144x x =---,去分母得:12(4)x =--, 解得:5x =, 经检验5x =是分式方程的解.故选:B .15.(2019•淄博)解分式方程11222x x x-=---时,去分母变形正确的是( ) A .112(2)x x -+=--- B .112(2)x x -=-- C .112(2)x x -+=+- D .112(2)x x -=--- 【解答】解:去分母得:112(2)x x -=---, 故选:D . 16.(2019•济宁)世界文化遗产“三孔”景区已经完成5G 基站布设,“孔夫子家”自此有了5G 网络.5G 网络峰值速率为4G 网络峰值速率的10倍,在峰值速率下传输500兆数据,5G 网络比4G 网络快45秒,求这两种网络的峰值速率.设4G 网络的峰值速率为每秒传输x 兆数据,依题意,可列方程是( )A .5005004510x x -=B .5005004510x x -=C .500050045x x -=D .500500045x x-=【解答】解:设4G 网络的峰值速率为每秒传输x 兆数据,依题意,可列方程是: 5005004510x x -=. 故选:A .二.填空题(共18小题)17.(2020•泰安)方程组16,5372x y x y +=⎧⎨+=⎩的解是 124x y =⎧⎨=⎩ .【解答】解:165372x y x y +=⎧⎨+=⎩①②②3-⨯①,得224x =, 12x ∴=.把12x =代入①,得1216y +=, 4y ∴=.∴原方程组的解为124x y =⎧⎨=⎩.故答案为:124x y =⎧⎨=⎩.18.(2020•枣庄)各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S 可用公式11(2S a b a =+-是多边形内的格点数,b 是多边形边界上的格点数)计算,这个公式称为“皮克()Pick 定理”.如图给出了一个格点五边形,则该五边形的面积S = 6 .【解答】解:a 表示多边形内部的格点数,b 表示多边形边界上的格点数,S 表示多边形的面积, 通过图象可知4a =,6b =,∴该五边形的面积146162S =+⨯-=,故答案为:6. 19.(2019•临沂)用1块A 型钢板可制成4件甲种产品和1件乙种产品;用1块B 型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A 、B 两种型号的钢板共 11 块.【解答】解:设需用A 型钢板x 块,B 型钢板y 块,依题意,得:4337218x y x y +=⎧⎨+=⎩①②,(①+②)5÷,得:11x y +=. 故答案为:11. 20.(2019•泰安)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意可列方程组为 911(10)(8)13x yy x x y =⎧⎨+-+=⎩. 【解答】解:设每枚黄金重x 两,每枚白银重y 两,由题意得: 911(10)(8)13x yy x x y =⎧⎨+-+=⎩, 故答案为:911(10)(8)13x y y x x y =⎧⎨+-+=⎩.21.(2020•东营)如果关于x 的一元二次方程260x x m -+=有实数根,那么m 的取值范围是 9m . 【解答】解:关于x 的一元二次方程260x x m -+=有实数根,∴△3640m =-, 解得:9m ,则m 的取值范围是9m . 故答案为:9m .22.(2020•威海)一元二次方程4(2)2x x x -=-的解为 12x =,214x =. 【解答】解:4(2)2x x x -=- 4(2)(2)0x x x ---= (2)(41)0x x --= 20x -=或410x -=解得12x =,214x =.故答案为:12x =,214x =.23.(2020•淄博)已知关于x 的一元二次方程220x x m -+=有两个不相等的实数根,则实数m 的取值范围是 18m < .【解答】解:方程有两个不相等的实数根,1a =,1b =-,2c m = ∴△224(1)4120b ac m =-=--⨯⨯>,解得18m <,故答案为18m <.24.(2020•烟台)关于x 的一元二次方程2(1)210m x x -+-=有两个不相等的实数根,则m 的取值范围是 0m >且1m ≠ .【解答】解:根据题意得10m -≠且△224(1)(1)0m =--⨯->, 解得0m >且1m ≠.故答案为:0m >且1m ≠. 25.(2020•德州)菱形的一条对角线长为8,其边长是方程29200x x -+=的一个根,则该菱形的周长为 20 . 【解答】解:如图所示: 四边形ABCD 是菱形, AB BC CD AD ∴===, 29200x x -+=,因式分解得:(4)(5)0x x --=, 解得:4x =或5x =, 分两种情况:①当4AB AD ==时,448+=,不能构成三角形; ②当5AB AD ==时,558+>, ∴菱形ABCD 的周长420AB ==. 故答案为:20.26.(2019•莱芜区)已知1x ,2x 是方程230x x --=的两根,则1211x x += 13- . 【解答】解:1x ,2x 是方程230x x --=的两根, 121x x ∴+=,123x x =-,∴121212111133x x x x x x ++===--. 故答案为:13-. 27.(2019•威海)一元二次方程2342x x =-的解是 1x =,2x = . 【解答】解:2342x x =-23240x x +-=,则24443(4)520b ac -=-⨯⨯-=>,故x=解得:1x=2x= 故答案为:1x 2x = 28.(2019•青岛)若关于x 的一元二次方程220x x m -+=有两个相等的实数根,则m 的值为18. 【解答】解:根据题意得:△1420m =-⨯=,整理得:180m -=,解得:18m =, 故答案为:18. 29.(2019•枣庄)已知关于x 的方程2230ax x +-=有两个不相等的实数根,则a 的取值范围是 13a >-且0a ≠ .【解答】解:由关于x 的方程2230ax x +-=有两个不相等的实数根得△244430b ac a =-=+⨯>,解得13a >- 则13a >-且0a ≠ 故答案为13a >-且0a ≠ 30.(2019•济宁)已知1x =是方程220x bx +-=的一个根,则方程的另一个根是 2- .【解答】解:1x =是方程220x bx +-=的一个根,122c x x a∴==-, 212x ∴⨯=-,则方程的另一个根是:2-,故答案为2-.31.(2020•潍坊)若关于x 的分式方程33122x m x x +=+--有增根,则m = 3 . 【解答】解:去分母得:33(2)x m x =++-,整理得:21x m =+,关于x 的分式方程33122x m x x +=+--有增根,即20x -=, 2x ∴=,把2x =代入到21x m =+中得:221m ⨯=+,解得:3m =;故答案为:3.32.(2020•菏泽)方程111x x x x -+=-的解是 13x = . 【解答】解:方程111x x x x -+=-, 去分母得:2(1)(1)x x x -=+,整理得:2221x x x x -+=+, 解得:13x =, 经检验13x =是分式方程的解. 故答案为:13x =. 33.(2019•德州)方程631(1)(1)1x x x -=+--的解为 4x =- . 【解答】解:631(1)(1)1x x x -=+--, 63(1)1(1)(1)(1)(1)x x x x x +-=+--+, 331(1)(1)x x x -=+-, 311x -=+, 13x +=-,4x =-,经检验4x =-是原方程的根;故答案为4x =-;34.(2019•滨州)方程33122x x x-+=--的解是 1x = . 【解答】解:去分母,得323x x -+-=-,移项、合并,得22x =,解得1x =,检验:当1x =时,20x -≠,所以,原方程的解为1x =,故答案为:1x =.三.解答题(共6小题)35.(2020•淄博)解方程组:138,21222x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩ 【解答】解:13821222x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩①②, ①+②,得:510x =,解得2x =,把2x =代入①,得:1682y +=, 解得4y =, 所以原方程组的解为24x y =⎧⎨=⎩. 36.(2019•东营)为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?【解答】解:设降价后的销售单价为x 元,则降价后每天可售出[3005(200)]x +-个,依题意,得:(100)[3005(200)]32000x x -+-=,整理,得:2360324000x x -+=,解得:12180x x ==.180200<,符合题意.答:这种电子产品降价后的销售单价为180元时,公司每天可获利32000元.37.(2020•威海)在“旅游示范公路”建设的过程中,工程队计划在海边某路段修建一条长1200m 的步行道.由于采用新的施工方式,平均每天修建步行道的长度是计划的1.5倍,结果提前5天完成任务.求计划平均每天修建步行道的长度.【解答】解:设计划平均每天修建步行道的长度为xm ,则采用新的施工方式后平均每天修建步行道的长度为1.5xm , 依题意,得:1200120051.5x x-=, 解得:80x =,经检验,80x =是原方程的解,且符合题意.答:计划平均每天修建步行道的长度为80m .38.(2020•泰安)中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界 共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A 种茶叶若干盒,用8400元购进B 种茶叶若干盒,所购B 种茶叶比A 种茶叶多10盒,且B 种茶叶每盒进价是A 种茶叶每盒进价的1.4倍.(1)A ,B 两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A ,B 两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B 种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A ,B 两种茶叶各多少盒?【解答】解:(1)设A 种茶叶每盒进价为x 元,则B 种茶叶每盒进价为1.4x 元, 依题意,得:84004000101.4x x-=, 解得:200x =,经检验,200x =是原方程的解,且符合题意,1.4280x ∴=.答:A 种茶叶每盒进价为200元,B 种茶叶每盒进价为280元.(2)设第二次购进A 种茶叶m 盒,则购进B 种茶叶(100)m -盒,依题意,得:100100(300200)(3000.7200)(400280)(4000.7280)58002222m m m m ---⨯+⨯-⨯+-⨯+⨯-⨯=, 解得:40m =,10060m ∴-=.答:第二次购进A 种茶叶40盒,B 种茶叶60盒.39.(2019•日照)“一带一路”战略给沿线国家和地区带来很大的经济效益,某企业的产品对沿线地区实行优惠,决定在原定价基础上每件降价40元,这样按原定价需花费5000元购买的产品,现在只花费了4000元,求每件产品的实际定价是多少元?【解答】解:设每件产品的实际定价是x 元,则原定价为(40)x +元,由题意,得5000400040x x=+. 解得160x =.经检验160x =是原方程的解,且符合题意.答:每件产品的实际定价是160元.40.(2019•菏泽)列方程(组)解应用题:德上高速公路巨野至单县段正在加速建设,预计2019年8月竣工.届时,如果汽车行驶高速公路上的平均速度比在普通公路上的平均速度提高80%,那么行驶81千米的高速公路比行驶同等长度的普通公路所用时间将会缩短36分钟,求该汽车在高速公路上的平均速度.【解答】解:设汽车行驶在普通公路上的平均速度是x 千米/分钟,则汽车行驶在高速公路上的平均速度是1.8x 千米/分钟, 由题意,得8181361.8x x+=. 解得1x =.经检验,1x =是所列方程的根,且符合题意.所以1.8 1.8x =(千米/分钟).答:汽车行驶在高速公路上的平均速度是1.8千米/分钟.。

中考数学方程和方程式基础知识

中考数学方程和方程式基础知识

中考数学方程和方程式基础知识基础知识点:一、方程有关概念1、方程:含有未知数的等式叫做方程。

2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。

3、解方程:求方程的解或方判断方程无解的过程叫做解方程。

4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。

二、一元方程1、一元一次方程(1)一元一次方程的标准形式:ax+b=0(其中x 是未知数,a 、b 是已知数,a ≠0)(2)一玩一次方程的最简形式:ax=b (其中x 是未知数,a 、b 是已知数,a ≠0)(3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。

(4)一元一次方程有唯一的一个解。

2、一元二次方程(1)一元二次方程的一般形式:02=++c bx ax (其中x 是未知数,a 、b 、c 是已知数,a ≠0)(2)一元二次方程的解法: 直接开平方法、配方法、公式法、因式分解法(3)一元二次方程解法的选择顺序是:先特殊后一般,如果没有要求,一般不用配方法。

(4)一元二次方程的根的判别式:ac b 42-=∆ 当Δ>0时⇔方程有两个不相等的实数根;当Δ=0时⇔方程有两个相等的实数根;当Δ< 0时⇔方程没有实数根,无解;当Δ≥0时⇔方程有两个实数根(5)一元二次方程根与系数的关系:若21,x x 是一元二次方程02=++c bx ax 的两个根,那么:a bx x -=+21,a cx x =⋅21(6)以两个数21,x x 为根的一元二次方程(二次项系数为1)是:0)(21212=++-x x x x x x三、分式方程(1)定义:分母中含有未知数的方程叫做分式方程。

(2)分式方程的解法:一般解法:去分母法,方程两边都乘以最简公分母。

特殊方法:换元法。

(3)检验方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就是原方程的根;使得最简公分母为0的就是原方程的增根,增根必须舍去,也可以把求得的未知数的值代入原方程检验。

中考数学总复习《方程(组)与不等式(组)》专项测试卷(带有答案)

中考数学总复习《方程(组)与不等式(组)》专项测试卷(带有答案)

中考数学总复习《方程(组)与不等式(组)》专项测试卷(带有答案)学校:___________班级:___________姓名:___________考号:___________1.下列方程变形中①方程3-2x 3-x -22=1去分母,得2(3-2x)-3(x -2)=1 ②方程3x +8=-4x -7移项,得3x +4x =7-8③方程7(3-x)-5(x -3)=8去括号,得21-7x -5x +15=8 ④方程37x =73,得x =1 错误的有( )A .4个B .3个C .1个D .0个2.(2023·无锡)下列4组数中,不是二元一次方程2x +y =4的解的是( )A.⎩⎪⎨⎪⎧x =1,y =2B.⎩⎪⎨⎪⎧x =2,y =0C.⎩⎪⎨⎪⎧x =0.5,y =3 D.⎩⎪⎨⎪⎧x =-2,y =4 3.二元一次方程x +3y =7的非负整数解的个数是( )A .1B .2C .3D .44.(2023·南充)关于x ,y 的方程组⎩⎪⎨⎪⎧3x +y =2m -1,x -y =n 的解满足x +y =1,则4m÷2n 的值是( )A .1B .2C .4D .85.(2023·温州)一瓶牛奶的营养成分中,碳水化合物含量是蛋白质的1.5倍,碳水化合物、蛋白质与脂肪的含量共30 g .设蛋白质、脂肪的含量分别为x(g),y(g),可列出方程为( )A.52x +y =30 B .x +52y =30 C.32x +y =30 D .x +32y =30 6.(2023·齐齐哈尔)为提高学生学习兴趣,增强动手实践能力,某校为物理兴趣小组的同学购买了一根长度为150 cm 的导线,将其全部截成10 cm 和20 cm 两种长度的导线用于实验操作(每种长度的导线至少一根),则截取方案共 有( )A .5种B .6种C .7种D .8种7.(2023春·合川区期末)已知⎩⎪⎨⎪⎧x =2,y =3是关于x ,y 的方程组⎩⎪⎨⎪⎧mx +ny =23,nx -my =-2的解,则5m +n 的平方根为( )A .-4和4B .-5和5C .-13和13D .-27和27 8.(2023·绍兴)《九章算术》中有一题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”译文:今有大容器5个,小容器1个,总容量为3斛(斛:古代容量单位);大容器1个,小容器5个,总容量为2斛.问大容器、小容器的容量各是多少斛?设大容器的容量为x 斛,小容器的容量为y 斛,则可列方程组是( )A.⎩⎪⎨⎪⎧x +5y =3,5x +y =2 B.⎩⎪⎨⎪⎧5x +y =3,x +5y =2 C.⎩⎪⎨⎪⎧5x =y +3,x =5y +2 D.⎩⎪⎨⎪⎧5x =y +2,x =5y +39.我国的《九章算术》中记载道:“今有共买物,人出八,盈三;人出七,不足四.问有几人.”大意是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数有多少.设有x 人,则可列方程为 .10.(2023·丽水)古代中国的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两.今有干丝一十二斤,问生丝几何?”意思是:“今有生丝30斤,干燥后耗损3斤12两(古代中国1斤等于16两).今有干丝12斤,问原有生丝多少?”则原有生丝 斤.11.解方程:x -x -12=x +23+1.12.(2023·辽宁)某超市销售甲、乙两种驱蚊手环,某天卖出3个甲种驱蚊手环和1个乙种驱蚊手环,收入128元;另一天,以同样的价格卖出1个甲种驱蚊手环和2个乙种驱蚊手环,收入76元.(1)每个甲种驱蚊手环和每个乙种驱蚊手环的售价分别是多少元?(2)某幼儿园欲购买甲、乙两种驱蚊手环共100个,总费用不超过2 500元,那么最多可购买甲种驱蚊手环多少个?13.(2023·宜昌)为纪念爱国诗人屈原,人们有了端午节吃粽子的习俗.某顾客端午节前在超市购买豆沙粽10个,肉粽12个,共付款136元,已知肉粽单价是豆沙粽的2倍.(1)求豆沙粽和肉粽的单价;(2)超市为了促销,购买粽子达20个及以上时实行优惠,表格列出了小欢妈妈、小乐妈妈的购买数量(单位:个)和付款金额(单位:元);豆沙粽数量 肉粽数量 付款金额 小欢妈妈20 30 270小乐妈妈 30 20 230①根据表格,求豆沙粽和肉粽优惠后的单价;②为进一步提升粽子的销量,超市将两种粽子打包成A ,B 两种包装销售,每包都是40个粽子(包装成本忽略不计),每包的销售价格按其中每个粽子优惠后的单价合计.A ,B 两种包装中分别有m 个豆沙粽,m 个肉粽,A 包装中的豆沙粽数量不超过肉粽的一半.端午节当天统计发现,A ,B 两种包装的销量分别为(80-4m)包,(4m +8)包,A ,B 两种包装的销售总额为17 280元.求m 的值.参考答案1.下列方程变形中①方程3-2x 3-x -22=1去分母,得2(3-2x)-3(x -2)=1 ②方程3x +8=-4x -7移项,得3x +4x =7-8③方程7(3-x)-5(x -3)=8去括号,得21-7x -5x +15=8④方程37x =73,得x =1 错误的有( B )A .4个B .3个C .1个D .0个2.(2023·无锡)下列4组数中,不是二元一次方程2x +y =4的解的是( D )A.⎩⎪⎨⎪⎧x =1,y =2B.⎩⎪⎨⎪⎧x =2,y =0C.⎩⎪⎨⎪⎧x =0.5,y =3D.⎩⎪⎨⎪⎧x =-2,y =4 3.二元一次方程x +3y =7的非负整数解的个数是( C )A .1B .2C .3D .44.(2023·南充)关于x ,y 的方程组⎩⎪⎨⎪⎧3x +y =2m -1,x -y =n 的解满足x +y =1,则4m÷2n 的值是( D )A .1B .2C .4D .85.(2023·温州)一瓶牛奶的营养成分中,碳水化合物含量是蛋白质的1.5倍,碳水化合物、蛋白质与脂肪的含量共30 g .设蛋白质、脂肪的含量分别为x(g),y(g),可列出方程为( A ) A.52x +y =30 B .x +52y =30 C.32x +y =30 D .x +32y =30 6.(2023·齐齐哈尔)为提高学生学习兴趣,增强动手实践能力,某校为物理兴趣小组的同学购买了一根长度为150 cm 的导线,将其全部截成10 cm 和20 cm 两种长度的导线用于实验操作(每种长度的导线至少一根),则截取方案共 有( C )A .5种B .6种C .7种D .8种7.(2023春·合川区期末)已知⎩⎪⎨⎪⎧x =2,y =3是关于x ,y 的方程组⎩⎪⎨⎪⎧mx +ny =23,nx -my =-2的解,则5m +n 的平方根为( B )A .-4和4B .-5和5C .-13和13D .-27和27 8.(2023·绍兴)《九章算术》中有一题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”译文:今有大容器5个,小容器1个,总容量为3斛(斛:古代容量单位);大容器1个,小容器5个,总容量为2斛.问大容器、小容器的容量各是多少斛?设大容器的容量为x 斛,小容器的容量为y 斛,则可列方程组是( B )A.⎩⎪⎨⎪⎧x +5y =3,5x +y =2 B.⎩⎪⎨⎪⎧5x +y =3,x +5y =2 C.⎩⎪⎨⎪⎧5x =y +3,x =5y +2 D.⎩⎪⎨⎪⎧5x =y +2,x =5y +3 9.我国的《九章算术》中记载道:“今有共买物,人出八,盈三;人出七,不足四.问有几人.”大意是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数有多少.设有x 人,则可列方程为8x -3=7x +4.10.(2023·丽水)古代中国的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两.今有干丝一十二斤,问生丝几何?”意思是:“今有生丝30斤,干燥后耗损3斤12两(古代中国1斤等于16两).今有干丝12斤,问原有生丝多少?”则原有生丝 967斤. 11.解方程:x -x -12=x +23+1. 解:去分母,得6x -3(x -1)=2(x +2)+6去括号,得6x -3x +3=2x +4+6移项合并,得x =7.12.(2023·辽宁)某超市销售甲、乙两种驱蚊手环,某天卖出3个甲种驱蚊手环和1个乙种驱蚊手环,收入128元;另一天,以同样的价格卖出1个甲种驱蚊手环和2个乙种驱蚊手环,收入76元.(1)每个甲种驱蚊手环和每个乙种驱蚊手环的售价分别是多少元?(2)某幼儿园欲购买甲、乙两种驱蚊手环共100个,总费用不超过2 500元,那么最多可购买甲种驱蚊手环多少个?解:(1)设每个甲种驱蚊手环的售价是x 元,每个乙种驱蚊手环的售价是y 元根据题意,得 ⎩⎪⎨⎪⎧3x +y =128,x +2y =76, 解得⎩⎪⎨⎪⎧x =36,y =20,答:每个甲种驱蚊手环的售价是36元,每个乙种驱蚊手环的售价是20元;(2)设购买甲种驱蚊手环m 个,则购买乙种驱蚊手环(100-m)个根据题意,得36m +20(100-m)≤2 500解得m ≤1254又∵m 为正整数∴m 的最大值为31.答:最多可购买甲种驱蚊手环31个.13.(2023·宜昌)为纪念爱国诗人屈原,人们有了端午节吃粽子的习俗.某顾客端午节前在超市购买豆沙粽10个,肉粽12个,共付款136元,已知肉粽单价是豆沙粽的2倍.(1)求豆沙粽和肉粽的单价;(2)超市为了促销,购买粽子达20个及以上时实行优惠,表格列出了小欢妈妈、小乐妈妈的购买数量(单位:个)和付款金额(单位:元);豆沙粽数量 肉粽数量 付款金额 小欢妈妈20 30 270 小乐妈妈 30 20 230①根据表格,求豆沙粽和肉粽优惠后的单价;②为进一步提升粽子的销量,超市将两种粽子打包成A ,B 两种包装销售,每包都是40个粽子(包装成本忽略不计),每包的销售价格按其中每个粽子优惠后的单价合计.A ,B 两种包装中分别有m 个豆沙粽,m 个肉粽,A 包装中的豆沙粽数量不超过肉粽的一半.端午节当天统计发现,A ,B 两种包装的销量分别为(80-4m)包,(4m +8)包,A ,B 两种包装的销售总额为17 280元.求m 的值. 解:(1)设豆沙粽的单价为x 元,肉粽的单价为2x 元由题意,得10x +12×2x =136解得x =4∴2x =8(元)答:豆沙粽的单价为4元,肉粽的单价为8元;(2)①设豆沙粽优惠后的单价为a 元,肉粽优惠后的单价为b 元由题意,得⎩⎪⎨⎪⎧20a +30b =270,30a +20b =230, 解得⎩⎪⎨⎪⎧a =3,b =7,答:豆沙粽优惠后的单价为3元,肉粽优惠后的单价为7元;②由题意,得[3m +7(40-m)]·(80-4m)+[3(40-m)+7m]·(4m +8)=17 280解得m =19或m =10∵m ≤12(40-m) ∴m ≤403∴m =10.。

2024届中考数学一次方程(组)天天练(4)及答案

2024届中考数学一次方程(组)天天练(4)及答案

2024届中考数学一次方程(组)天天练(4)1.《四元玉鉴》是一部成就辉煌的数学名著,在中国古代数学史上有着重要地位.其中有一个“酒分醇醨”问题:务中听得语吟吟,亩道醇醨酒二盆.醇酒一升醉三客,醨酒三升醉一人.共通饮了一斗七,一十九客醉醺醺.欲问高明能算士,几何醨酒几多醇?其大意为:有好酒和薄酒分别装在瓶中,好酒1升醉了3位客人,薄酒3升醉了1位客人,现在好酒和薄酒一共饮了17升,醉了19位客人,试问好酒、薄酒各有多少升?若设好酒有升,薄酒有升,根据题意列方程组为( )A. B. C. D.2.方程组的解是( )A. B. C. D.3.一段直跑道长,两端分别记为点A,B.甲、乙两人分别从A,B两端同时出发,在这段跑道上来回练习跑步,甲跑步的速度是,乙跑步的速度是,练习了足够长的时间,他们多次相遇,则相遇点离A端不可能是( )A. B. C. D.4.一辆汽车从甲地匀速开往乙地需要,匀速返回时每小时比来时少行驶,结果多用了,则甲、乙两地间的距离是___________km.5.定义一种运算:(a,b为常数).若,则_________.6.A,B两地相距,甲车从A地驶往B地,乙车同时从B地以的速度匀速驶往A地,乙车出发1小时后,中途休息.设甲车行驶的时间为,甲、乙两车离A地的距离分别为、,图中线段表示与x的函数关系.(1)甲车的速度为____________;(2)若两车同时到达目的地,则甲车行驶几小时后与乙车相遇;(3)若甲、乙两车在距A地至(包括和)之间的某处相遇,求m的取值范围.答案以及解析1.答案:A解析:根据好酒1升醉了3位客人,薄酒3升醉了1位客人,现在好酒和薄酒一共饮了17升,醉了19位客人,列出方程组得:故选:A.2.答案:C解析:∵,将①代入②得:,解得:,把代入①得:,则方程组的解为,故选:C.3.答案:B解析:设甲、乙两人第一次相遇距A端,则,解得,所以甲、乙两人第一次相遇距A端,故A项不符合题意;当甲、乙两人在距A端处第一次相遇后,每过(秒)就会相遇一次,即甲每跑,乙每跑就会相遇一次,所以甲、乙两人在甲到达B端返回,距A端处第二次相遇,故C项不符合题意;甲、乙两人第二次相遇后,甲到达A端又返回,在B端刚好与乙第三次相遇,此时距A端,故D项不符合题意.4.答案:450解析:设甲、乙两地间的距离是,根据题意,得,解得.5.答案:-2解析:根据题意,得解得所以.6.答案:(1)60(2)甲乙相遇时,乙正在中途休息,所以相遇(3)解析:(1)由图可得,甲车的速度为,故答案为:60;(2)若甲、乙同时到达目的地,即均用时3小时,则,得,即乙休息了小时,甲、乙同时出发小时,甲行驶,此时乙还在休息,乙行驶,甲在乙休息时与其相遇,小时,甲行驶小时与乙相遇;(3)如图,甲、乙同时从A、B出发,1小时后甲、乙分别到达点D、点C,,,乙在点C休息m小时的同时甲行驶到了点E,,当甲、乙分别在E、C同时出发,在点M相遇,若,则,,甲、乙同时从E、C出发到点M相遇,用时小时,,,,;若,则,,甲、乙同时从E、C出发到点M相遇,用时小时,,故m的范围是.。

最新届中考数学方程(组)与不等式(组)复习知识点总结及经典考题选编

最新届中考数学方程(组)与不等式(组)复习知识点总结及经典考题选编

中考数学方程(组)与不等式(组)复习知识点总结一、方程【知识梳理】1、知识结构方程分式方程的应用分式方程的解法分式方程的概念分式方程的关系根的判别式,根与系数一元二次方程的解法念一元二次方程的有关概一元二次方程二元一次方程组的应用二元一次方程组的解法二元一次方程组一元一次方程的应用一元一次方程的解法一元一次方程整式方程2、知识扫描(1)只含有一个未知数,并且未知数的次数是1的整式方程,叫做一元一次方程。

(2)含有2个未知数,并且所含未知数的项的次数都是1次,这样的方程叫二元一次方程.(3)含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.(4)二元一次方程组的解法有法和法.(5)只含有1 个未知数,并且未知数的最高次数是2且系数不为0的整式方程,叫做一元二次方程,其一般形式为)0(02a cbx ax。

(6)解一元二次方程的方法有:①直接开平方法;②配方法;③公式法;④因式分解法例:(1)042x(2)0342x x(3)4722x x (4)0232x x(7)一元二次方程的根的判别式:ac b42叫做一元二次方程的根的判别式。

对于一元二次方程)0(02a cbx ax当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;当△<0时,没有实数根;反之也成立。

(8)一元二次方程的根与系数的关系:如果)0(02acbx ax的两个根是21,x x 那么ab x x 21,ac x x 21(9)一元二次方程)0(02a cbx ax的求根公式:)04(2422ac baacb bx(10)分母中含有未知数的方程叫分式方程.(11)解分式方程的基本思想是将分式方程通过去分母转化为整式方程.◆解分式方程的步骤◆1、去分母,化分式方程为整式方程;◆2、解这个整式方程;◆3、验根。

注意:(1)解分式方程的基本思想是“转化”,即把分式方程化为我们熟悉的整式方程,转化的途径是“去分母”,即方程两边都乘以最简公分母.(2)因为解分式方程时可能产生增根,所以解分式方程必须检验,检验是解分式方程必要的步骤.二、不等式【知识梳理】1、知识结构解法性质概念不等式2、知识扫描(1) 只含有一个未知数,并且未知数的次数是1,系数不为 0 的不等式,叫做一元一次不等式。

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第四节 一元一次不等式(组)及其应用

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第四节 一元一次不等式(组)及其应用

重难点 2:一元一次不等式的应用 在某次篮球联赛初赛阶段,每队共有 10 场比赛,每场比赛都要分出
胜负,每队胜一场得 2 分,负一场得 1 分,积分超过 15 分才能获得参加 决赛资格. (1)已知甲队在初赛阶段的积分为 18 分,求甲队初赛阶段胜、负各多少 场; (2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少 场?
4.对于带有单位的应用题,设未知数和答时要带单位. 评分说明: (1)正确地设未知数并列出方程或方程组得 2 分; (2)方程或方程组解答正确得 1 分,解答的具体过程不是得分点,可以省 略;
(3)写出“答”得 1 分; (4)正确地设未知数并列出不等式得 2 分; (5)解不等式的过程不是得分点,可以省略,正确地写出不等式的解得 1 分; (6)正确地写出“答”得 1 分.
(1)【教你审题】设甲队初赛阶段胜 x 场,负 y 场.
原题信息
整理后的信息
在某次篮球联赛初赛阶段,每队共 x+y=10
有 10 场比赛
每队胜一场得 2 分,负一场得 1 分, 2x+y=18
甲队在初赛阶段的积分为 18 分
解:设甲队初赛阶段胜 x 场,负 y 场,由题意得,
x+y=10, 2x+y=18,(2 分)
积分超过 15 分才能获得参加决赛 2a+(10-a)>15
资格,乙队要获得参加决赛资格
解:设乙队初赛阶段胜 a 场,则负(10-a)场,由题意得, 2a+(10-a)>15,(6 分) 解得 a>5.(7 分) 答:乙队在初赛阶段至少要胜 6 场.(8 分)
1.设未知数时,表示不等关系的文字如“至少”等不能出现,即应给出 肯定的未知数的设法. 2.对于不等式的应用,应注意一些关键词语,从而建立不等式模型,例 如“不少于≥”“不超过≤”“至少≥”“最多≤”“不高于≤”等. 3.不等式的应用还需要验根,题目中用字母表示的量要符合实际意义, 如人数是正整数,时间不能为负数等.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4课时 一元二次方程
一级训练
1.(2011年江苏泰州)一元二次方程x 2=2x 的根是( )
A .x =2
B .x =0
C .x 1=0, x 2=2
D .x 1=0, x 2=-2
2.(2012年贵州安顺)已知1是关于x 的一元二次方程(m -1)x 2+x +1=0的一个根,则m 的值是( )
A .1
B .-1
C .0
D .无法确定
3.(2012年湖北荆门)用配方法解关于x 的一元二次方程x 2-2x -3=0,配方后的方程可以是( )
A .(x -1)2=4
B .(x +1)2=4
C .(x -1)2=16
D .(x +1)2=16
4.(2012年湖北武汉)若x 1,x 2是一元二次方程x 2-3x +2=0的两根,则x 1+x 2的值是
( )
A .-2
B .2
C .3
D .1
5.(2011年福建福州)一元二次方程x (x -2)=0根的情况是( )
A .有两个不相等的实数根
B .有两个相等的实数根
C .只有一个实数根
D .没有实数根
6.(2012年湖南常德)若一元二次方程x 2+2x +m =0有实数解,则m 的取值范围是( )
A .m ≤-1
B .m ≤1
C .m ≤4
D .m ≤12
X| k |B| 1 . c|O |m 7.当m 满足__________时,关于x 的方程x 2-4x +m -12
=0有两个不相等的实数根. 8.(2012年贵州铜仁)一元二次方程x 2-2x -3=0的解是______________.
9.(2011年江苏镇江)已知关于x 的方程x 2+mx -6=0的一个根为2,则m =________,另一根是_____________________________________________________________________.
10.(2011年四川宜宾)某城市居民最低生活保障在2009年是240元,经过连续两年的增加,到2011年提高到345.6元,则该城市两年来最低生活保障的平均年增长率是________.
11.(2011年山东滨州)某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x, 可列方程为____________________.
12.解方程: (x -3)2+4x (x -3)=0.
13.(2010年广东茂名)已知关于x 的一元二次方程x 2-6x -k 2=0(k 为常数).
(1)求证:方程有两个不相等的实数根;
(2)设x 1,x 2为方程的两个实数根,且x 1+2x 2=14,试求出方程的两个实数根和k 的值.
w W w .x K b 1.c o M
二级训练
14.(2012年四川攀枝花)已知一元二次方程x 2-3x -1=0的两个根分别是x 1,x 2,则x 21x 2+x 1x 22的值为( )
A .-3
B .3
C .-6
D .6
15.(2011年四川宜宾)已知一元二次方程x 2-6x -5=0的两根为a ,b ,则1a +1b
的值是__________.
16.(2011年江苏宿迁)如图2-1-5,邻边不等的矩形花圃ABCD ,它的一边AD 利用已有的围墙,另外三边所围的栅栏的总长度是 6 m .若矩形的面积为4 m 2,则AB 的长度是______m(可利用的围墙长度超过6 m).
图2-1-5
17.(2012年黑龙江绥化)先化简,再求值:
m -33m 2-6m ÷⎝⎛⎭
⎫m +2-5m -2,其中m 是方程x 2+3x -1=0的根.
新课 标第 一 网
三级训练
18.在国家政策的宏观调控下,某市的商品房成交均价由今年3月份的14 000元/m 2下降到5月份的12 600元/m 2.问:
(1)4,5两月平均每月降价的百分率约是多少(参考数据:0.9≈0.95)?
(2)如果房价继续回落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌破10 000元/m 2?请说明理由.
19.(2012年湖北黄石)解方程组:⎩⎪⎨⎪⎧
2x -y =2,x 2-y 24=1.
第4课时 一元二次方程
【分层训练】
1.C 2.B 3.A 4.C 5.A 6.B
7.m <4.5 8.x 1=3,x 2=-1
9.1 -3 10.20%
11.289(1-x )2=256
12.解:(x -3)2+4x (x -3)=0,
(x -3)(x -3+4x )=0,
(x -3)(5x -3)=0.
解得x 1=3,x 2=35
. 13.(1)证明:∵Δ=b 2-4ac =(-6)2-4×1×(-k 2)
=36+4k 2>0,
∴方程有两个不相等的实数根.
(2)解:由根与系数的关系,知:x 1+x 2=6,x 1x 2=-k 2.
∵x 1+2x 2=14,∴x 1=-2,x 2=8.
∴-k 2=-16,∴k =±4. 新 课 标 第 一 网
14.A 15.-65
16.1或2 17.解:原式=m -33m (m -2)÷m 2-9m -2
=m -33m (m -2)·m -2(m +3)(m -3)
=13m (m +3)或13(m 2+3m )或13m 2+9m
. ∵m 是方程x 2+3x -1=0的根,∴m 2+3m -1=0.
∴m 2+3m =1或m (m +3)=1,
∴原式=13
. 18.解:(1)设4、5两月平均每月降价的百分率为x ,根据题意,得14 000(1-x )2=12 600. 化简,得(1-x )2=0.9,
解得x 1≈0.05,x 2≈1.95(不合题意,舍去).
因此,4、5两月平均每月降低的百分率约为5%.
(2)如果房价按此降价的百分率继续回落,预测7月份该市的商品房成交均价为12 600(1-x )2=12 600×0.9=11 340>10 000,
因此可知,7月份该市的商品房成交均价不会跌破10 000元/m 2.
19.解:依题意,得⎩⎨⎧
y =2(x -1)y 2=4x 2-4
将①代入②中化简,得x 2+2x -3=0,新|课 | 标|第 |一| 网
解得:x =-3或x =1 . 所以,原方程的解为:⎩⎨⎧ x =-3,y =-4 2
或⎩⎨⎧
x =1,y =0.。

相关文档
最新文档