抗氧化酶的作用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重要的抗氧化酶和抗氧化剂的作用

超氧化物歧化酶(SOD)是美国的McCord和Fridovich在1969年发现的一种清除超氧阴离子自由基的酶。SOD是一种广泛存在于生物体内的金属酶,按金属辅基的成分不同主要分成三类,第一类含铜和锌,称为CuZn-SOD,是最常见的一种,呈蓝绿色,主要存在于真核细胞的细胞浆内。第二类含锰,称为Mn-SOD,呈粉红色,主要存在于原核细胞体、真核细胞的细胞浆和线粒体内。第三类含铁,称为Fe-SOD,呈黄褐色,主要存在于原核细胞中。另外,在牛肝中还发现一种CoZn-SOD[8]。

正常生理状态下,机体产生的自由基和清除自由基的速率处于动态平衡状态。但当机体内自由基产生增多,就会对机体的蛋白质、脂质和DNA造成损伤,导致机体疾病的发生。SOD是生物体内对抗氧自由基的一种最重要的抗氧化酶,是专门清除超氧阴离子自由基的。它的作用是将氧自由基歧化,发生

2O

2-+2H+SOD H

2

O

2

+ O

2

的反应。由于H

2

O

2

在SOD活性部位生成,会对SOD

本身产生杀伤。催化产生的H

2O

2

如果不被及时清除,它会与O

2

-反应生成毒性

更大的羟基自由基。衰老自由基学说认为,代谢产生的自由基对机体造成的损害可引起衰老,SOD可有效的清除自由基,在一定程度上延缓衰老。此外,SOD还具有增强机体免疫力,提高机体对自由基引发的疾病的抵抗力,消除运动性疲劳等生理功能[3]。

过氧化氢酶(CAT)是一种末端氧化酶,广泛存在于动植物和微生物体内,酶分子结构中含有铁卟啉环,1个分子酶蛋白中含有四个铁原子[9]。CAT的生

物学功能是催化过氧化氢分解为水和氧,2 H

2O

2

CAT 2H

2

O + O

2

。过氧化氢

酶(CAT),广泛存在于动植物和微生物体内的一种末端氧化酶。它的生物功能是

催化细胞内的过氧化氢分解,起抗氧化作用,即2H

2O

2

2H

2

O+O

2

,它可防

止过氧化氢含量过高对机体组织造成损伤,对细胞起到保护作用。

本研究结果显示,力竭运动后,大鼠的心组织、肝组织和肺组织中CAT活性均表现出升高,这可能是由于运动应激造成大鼠组织过氧化物质增多,使得组织CAT活性对应升高。同时,结果显示,联合补充谷氨酰胺和番茄红素对力竭运动大鼠肝组织和肺组织的抗氧化能力提高的效果最为明显,而单纯补充番茄红素对心脏组织的抗氧化能力提高优明显作用。这说明对于力竭运动大鼠的肝和肺组织,联合补充这两种物质起到协同抗氧化的作用。对于心脏组织,联合补充的效果不如单独补充一种的效果好,此机理尚待探讨。

谷胱甘肽过氧化物酶(GSH-PX),为水溶性四聚体蛋白,含有四个亚基,每个亚基含有一个硒原子[10]。主要存在生物体的线粒体和细胞液中,它的生理功能是不仅可以清除过氧化氢,同时还可以清除脂质过氧化物,所以说它也是机体内重要的抗氧化酶之一,在反应过程中还原性谷胱甘肽作为还原物

质提供H+。反应如下:

2H

2O

2

+2GSH GSH-PX 2H

2

O+GSSG

ROOH +2GSH GSH-PX ROH +GSSG +H

2

O

(有机过氧化物) (无毒醇类)

由于硒是GSH-PX的组成成分,因此机体的含硒量与GSH-PX活性有密切关系。

谷胱甘肽(GSH)是由谷氨酸、半胱氨酸和甘氨酸三种氨基酸组成的,存在于大多数微生物、动植物细胞内。GSH作为GSH-PX清除脂质过氧化物反应中的还原物质,是必不可少的。庞阳康,孙炎华通过对大鼠注射GSH观察一次性力竭运动后对大鼠自由基的影响,结果显示:补充GSH组的SOD活性显著高于力竭运动组,说明GSH能够有效的清除自由基[11]。

乳酸脱氢酶(LDH)是机体糖酵解供能系统的关键酶之一,它是催化糖酵解过程的最后一个反应步骤,即催化丙酮酸生成乳酸的可逆反应。LDH活性的变化可以反映机体组织在缺氧条件下的糖酵解能力,LDH的活性大小可以用来评价无氧代谢能力的高低,它可作为组织无氧代谢能力的标志酶。

丙二醛(MDA)为膜上多不饱和脂肪酸受自由基攻击而产生的脂质过氧化物的代谢产物。由于自由基极不稳定,很难在体内直接测到,因而在实验中常以MDA含量来反映体内自由基反应的程度,同时也间接反映细胞损伤的程度[59]。

肌酸激酶CK又称磷酸肌酸激酶,属于转移酶,它将高能磷酸键迅速转移到ADP进而生成ATP,来保证剧烈运动肌肉的供能,是骨骼肌细胞中一种关键的代谢酶。有研究表明,运动后血清CK升高可能与运动后组织损伤有关。李一玉[65]对高校游泳运动员补充谷氨酰胺,研究结果发现补充谷氨酰胺组血清CK值在一周后下降20%,一个月后下降43%,说明,口服谷氨酰胺随着服用时间的延长,血清CK水平逐渐下降,运动员疲劳恢复速度加快,同时谷氨酰胺是纤维原细胞的能量来源,补充谷氨酰胺有利于保护纤维原细胞,降低运动对骨骼肌的损伤。本实验结果显示,大运动量训练后,大鼠血清CK活性明显高于安静对照组,变化原因可能是一方面因为运动过程中大量能量消耗,需要大量ATP来供能,造成CK活性增强。另一方面可能由于运动造成组织损伤,CK大量进入血液,造成血清CK升高。然而运动补充谷氨酰胺一方面降低了组织损伤,另一方面作为能源物质提供运动所需能量,使得机体利用内部ATP量减少,从而使得血清CK发生适应性变化。

当机体进行剧烈运动时,机体供氧不足导致三羧酸循环不能顺利进行,糖酵解作用加快,糖酵解终产物乳酸大量堆积,乳酸堆积过多严重影响内环境的相对稳定和机体的正常代谢,同时,乳酸增多,使得H+增多,进而干扰Ca2+的生理作用,影响肌肉收缩力量,使肌肉产生疲劳现象。因此,一般将血乳酸水平作为反映机

相关文档
最新文档