专题电磁感应现象中有关电容器类问题及答案
高中物理小专题—《电磁感应》中电容器充电、放电问题
《电磁感应》中电容器充电、放电问题一、电容器充电问题1.如图所示,水平放置的两根平行光滑金属导轨相距40cm ,质量为0.1kg 的金属杆ab 垂直于导轨放于其上,导轨间接入电阻R =20Ω和电容C =500pF ,匀强磁场方向垂直于导轨平面竖直向下,磁感应强度B =1.0T ,现有水平向右的外力使ab 从静止开始以加速度a =5.0m /s 2向右做匀加速运动,不计其他电阻和阻力,求:(1)电容器中的电流; (2)t =2s 时外力的大小.解析:(1)电容器中电流I C =t Q ∆∆ ① △Q =C·△U ②△U =BL △V ③a =tV ∆∆ ④ 由上四式可得:I C =CBLa =1×10-9A(2)当t =2s 时,V =at =10m/s ,电动势E =BLV =4V ,通过R 的电流I =E/R =0.2A ,远大于电容器的充电电流。
所以电容器电流可忽略不计。
由牛顿第二定律:F -BIL =ma 解得:F =0. 58N2.如图所示,两光滑导轨相距为L ,倾斜放置,与水平地面夹角为θ,上端接一电容为C 的电容器。
导轨上有一质量为m ,长为L 的导体棒平行于地面放置,导体棒离地面的高度为h ,磁感应强度为B 的匀强磁场与两导轨所决定的平面垂直,开始时电容器不带电。
将导体棒由静止释放,整个电路电阻不计,则:( )A .导体棒先做加速运动,后作匀速运动B .导体棒一直做匀加速直线运动,加速度为a =22sin L CB m mg +α C .导体棒落地时瞬时速度v=222L CB m mgh + D .导体棒下落中减少的重力势能转化为动能,机械能守恒解析:设Δt 时间内电容器的带电量增加Δq ,则:I=CBLa t v CBL t q =∆∆=∆∆ (1)又因为ma BIL mg =-αsin 得I=BL mamg -αsin (2)由(1)(2)得CBLa BL ma mg =-αsin解得a =22sin L CB m mg +α,所以B 选项正确R C a bF 图3-3-4由22222sin sin 22L CB m mgh h L CB m mg aL v +=∙+==αα,所以C 选项正确。
高考物理压轴题之电磁感应现象的两类情况(高考题型整理,突破提升)及详细答案
代入数据解得:P=1W
棒MN最终做匀速运动,设棒最大速度为vm,棒受力平衡,则有:
代入数据解得:
(2)解除棒PQ后,两棒运动过程中动量守恒,最终两棒以相同的速度做匀速运动,设速度大小为v′,则有:
设从PQ棒解除锁定,到两棒达到相同速度,这个过程中,两棒共产生的焦耳热为Q,由能量守恒定律可得:
(1)前2s时间内流过MN杆的电量(设EF杆还未离开水平绝缘平台);
(2)至少共经多长时间EF杆能离开平台。
【答案】(1)5C;(2)4s
【解析】
【分析】
【详解】
解:(1)t=2s内MN杆上升的距离为
此段时间内MN、EF与导轨形成的回路内,磁通量的变化量为
产生的平均感应电动势为
产生的平均电流为
流过MN杆的电量
(1)导线框匀速穿出磁场的速度;
(2)导线框进入磁场过程中产生的焦耳热;
(3)若在导线框进入磁场过程对其施加合适的外力F则可以使其匀加速地进入磁场区域,且之后的运动同没施加外力F时完全相同。请写出F随时间t变化的函数表达式.
【答案】(1)2m/s (2)0.15J (3)F=0.75-1.25t(0<t<0.4s)
联立①②③式பைடு நூலகம்得: ④
(2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I,根据欧姆定律:I= ⑤
式中R为电阻的阻值.金属杆所受的安培力为: ⑥
因金属杆做匀速运动,由牛顿运动定律得:F–μmg–f=0⑦
联立④⑤⑥⑦式得:R=
5.如图所示空间存在有界匀强磁场,磁感应强度B=5T,方向垂直纸面向里,上下宽度为d=0.35m.现将一边长L=0.2m的正方形导线框自磁场上边缘由静止释放经过一段时间,导线框到达磁场下边界,之后恰好匀速离开磁场区域.已知导线框的质量m=0.1kg,电阻 .(g取10m/s2)求:
专题:电磁感应现象中有关电容器类问题 及答案
专题:电磁感应现象中有关电容器类问题1、电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制新武器和航天运载器。
电磁轨道炮示意如图,图中直流电源电动势为E,电容器的电容为C。
两根固定于水平面内的光滑平行金属导轨间距为L,电阻不计。
炮弹可视为一质量为m、电阻为R的金属棒MN,垂直放在两导轨间处于静止状态,并与导轨良好接触。
首先开关S接1,使电容器完全充电。
然后将S接至2,导轨间存在垂直于导轨平面、磁感应强度大小为B的匀强磁场(图中未画出),MN 开始向右加速运动。
当MN上的感应电动势与电容器两极板间的电压相等时,回路中电流为零,MN达到最大速度,之后离开导轨。
问:(1)磁场的方向;(2)MN刚开始运动时加速度a的大小;(3)MN离开导轨后的最大速度v m的大小。
试题分析:(1)根据通过MN电流的方向,结合左手定则得出磁场的方向.(2)根据欧姆定律得出MN刚开始运动时的电流,结合安培力公式,根据牛顿第二定律得出MN刚开始运动时加速度a的大小.(3)开关S接2后,MN开始向右加速运动,速度达到最大值时,根据电动势和电荷量的关系,以及动量定理求出MN 离开导轨后最大速度.解:(1)电容器上端带正电,通过MN的电流方向向下,由于MN向右运动,根据左手定则知,磁场方向垂直于导轨平面向下.2、一对无限长平行导轨位于竖直平面内,轨道上串联一电容器C(开始未充电).另一根质量为m的金属棒ab可沿导轨下滑,导轨宽度为L,在讨论的空间范围内有磁感应强度为B、方向垂直整个导轨平面的匀强磁场,整个系统的电阻可以忽略,ab棒由静止开始下滑,求它下滑h高度时的速度v.解:设ab 棒下滑过程中某一瞬时加速度为a i ,则经过一微小的时间间隔Δt ,其速度的增加量为Δv=a i ·Δt.棒中产生的感应电动势的增加量为:ΔE=BL Δv=BLa i ·Δt电容器的极板间电势差的增加量为:ΔU i =ΔE=BLa i ·Δt电容器电荷量的增加量为:ΔQ=C ·ΔU=CBLa i ·Δt电路中的充电电流为:I=t Q ∆∆=CBLa i ab 棒所受的安培力为:F=BLI=CB 2L 2a i由牛顿第二定律得:mg-F=ma i ,即mg-CB 2L 2a i =ma i ,所以,a i =22LCB m mg +,可见,棒的加速度与时间无关,是一个常量,即棒ab 向下做匀加速直线运动.所以要求的速度为v=2222LCB m mgh ah +=.3、如图所示,处于匀强磁场中的两根足够长且电阻不计的平行金属导轨相距L ,导轨平面与水平面重合,左端用导线连接电容为C 的电容器(能承受的电压足够大).已知匀强磁场的磁感应强度大小为B 、方向竖直向上.一质量为m 、电阻不计的直金属棒垂直放在两导轨上,一根绝缘的、足够长的轻绳一端与棒的中点连接,另一端跨过定滑轮挂一质量为m 的重物.现从静止释放重物并通过轻绳水平拖动金属棒运动(金属棒始终与导轨垂直并保持良好接触,不计滑轮质量和所有摩擦).求:(1)若某时刻金属棒速度为v ,则电容器两端的电压多大?(2)求证:金属棒的运动是匀加速直线运动;(3)当重物从静止开始下落一定高度时,电容器带电量为Q ,则这个高度h 多大?解:(1)电容器两端的电压U 等于导体棒上的电动势E ,有:U=E=BLv(2)金属棒速度从v 增大到v+△v 的过程中,用时△t (△t →0),加速度为a ,有:电容器两端的电压为:U=BLv电容器所带电量为:式中各量都是恒量,加速度保持不变,故金属棒的运动是匀加速直线运动.(3)由于金属棒做匀加速直线运动,且电路中电流恒定4、如图所示,有一间距为L且与水平方向成θ角的光滑平行轨道,轨道上端接有电容器和定值电阻,S为单刀双掷开关,空间存在垂直轨道平面向上的匀强0磁场,磁感应强度为B。
电磁感应中的电容器问题
电磁感应中的电容器与金属棒相结合的问题黄德利山东省兖州一中272100摘要:部分导体做变速运动产生变化的电流时,高中阶段的闭合电路欧姆定律就无法列式计算,学生感觉无从下手,从而这一类的问题成为高三复习的难点。
通过最近全国各地的一模考试发现,这类问题在各地一模中均有体现。
关键词:电磁感应;电容器;金属棒电容器是一个储存电荷的容器,它可以进行无数次的充放电.在充放电的过程中,可以理解为变化的电流可以通过电容器。
因此,在一些含有电容器的电磁感应电路中,当一部分导体做变速运动产生变化的电流时,高中阶段的闭合电路欧姆定律就无法列式计算,学生感觉无从下手,从而这一类的问题成为高三复习的难点。
通过最近全国各地的一模考试发现,这类问题在各地一模中均有体现。
实际上这类问题,只要认真分析,寻找其中的规律,这类问题其实也很好解决。
下面通过几个例题对与电容器相关的问题分类解决。
一、金属棒做匀加速直线运动例1、。
如图所示,位于同一水平面的两根平行导轨间的距离是L,导线的左端连接一个耐压足够大的电容器,电容器的电容为C.放在导轨上的导体杆cd与导轨接触良好,cd杆在平行导轨平面的水平力作用下从静止开始匀加速运动,加速度为a,磁感强度为B的匀强磁场垂直轨道平面竖直向下,导轨足够长,不计导轨和连接电容器导线的电阻,导体杆的摩擦也可忽略.求从导体杆开始运动经过时间t电容器吸收的能量E=?解析:据题意,导体杆MN加速切割磁感线,产生的感应电动势且不断增大,电容器两极板间电压随着增大,储存的电能增加,同时由于电容器处于连续充电状态中,电路中有持续的充电电流,故导体杆受到向左的安培力.因电容器在时间t 内吸收的电能可以用克服安培力做的功来量度,所以弄清楚充电电流及安培力的变化规律,就成为解答本题的关键。
设某时刻导体杆切割磁感线的速度为v,产生的感应电动势为E,电容器所带的电荷量为q,两极板间的电压为u,则有:u=E=BLv,q=Cu=CBLv。
电磁感应与电容器的结合
电磁感应与电容器的结合1.如图所示,两光滑导轨相距为L ,倾斜放置,与水平地面夹角为θ,上端接一电容为C 的电容器。
导轨上有一质量为m 长为L 的导体棒平行地面放置,导体棒离地面的高度为h ,磁感强度为B 的匀强磁场与两导轨所决定的平面垂直,开始时电容器不带电。
将导体棒由静止释放,整个电路电阻不计,则( BC )A .导体棒先做加速运动,后作匀速运动B .导体棒一直做匀加速直线运动,加速度为a =22sin L CB m mg +αC .导体棒落地时瞬时速度v=222L CB m mgh + D .导体棒下落中减少的重力势能转化为动能,机械能守恒分析:设Δt 时间内电容器的带电量增加Δq则有I=CBLa tv CBL t q =∆∆=∆∆…………………(1) 又因为ma BIL mg =-αsin 得I=BLma mg -αsin ………(2) 由(1)(2)得CBLa BLma mg =-αsin 解得a =22sin L CB m mg +α所以B 正确 由22222sin sin 22L CB m mgh h L CB m mg aL v +=•+==αα 所以C 选项2.如图所示,光滑平行金属导轨固定在绝缘水平面上,轨道间距为0. 2 m ,金属杆ab 的质量为0. 1 kg ,电容器电容为0.5F ,耐压足够大,A 为理想电流表,导轨与金属杆接触良好.各自的电阻忽略不计.整个装置处于磁感应强度大小为0. 5T ,方向垂直导轨平面向下的匀强磁场中,现用水平外力F 拉ab 向右运动,使电流表示数恒为0.5A ,求:(1)t=2s 时电容器的带电荷量;(2)说明金属杆做什么运动?(3)t=2s 时外力做功的功率.答案:(1)q=It=1C(2)I=CBLa t v CBL t q =∆∆=∆∆ a=CBLI =10m/s 2所以杆做a=10m/s 2的匀加速直线运动(3)F-BIL=ma F=BIL+ma=1.05NV=at=20m/sP=Fv=1.05×20=21W如有侵权请联系告知删除,感谢你们的配合!。
2025高考物理总复习电磁感应中的含电容器问题模型
此时电容器的电荷量q=CU=1×10-2 C。
(2)导体棒在 F1 作用下运动,根据牛顿第二定律可得 F1-mgsin α-BId=ma1
又有
Δ
I=
Δ
=
Δ
Δ
,a=
Δ
Δ
联立解得
1 - sin
a1=
=20
+ 2 2 2
由功能关系 W=E-E0 及 W=qU,结合 Q-U 关系图线,可知电容器所储存的电能
与其极板间的电压及电容间的关系式为
1
1
1
E= QU= CU·
U= CU2。
2
2
2
(2)当导体棒获得向右的初速度v0时,切割磁感线产生动生电动势给电容器
充电,设充电电流为I,则导体棒所受安培力大小为
FA=BIL,方向水平向左
恒力F1=0.54 N作用于导体棒,使导体棒从静止开始运动,经t时间后到达B
处,速度v=5 m/s。此时,突然将拉力方向变为沿导轨向下,大小变为F2,又经
2t时间后导体棒返回到初始位置A处,整个过程电容器未被击穿。求:
(1)导体棒运动到B处时,电容器C上的电荷量;
(2)t的大小;
(3)F的大小。
答案 (1)1×10-2 C (2)0.25 s (3)0.45 N
以恒定的加速度匀加速运动。
,所以杆
安=ma,a=
+ 2 2
典题1 如图所示,间距为L的平行光滑金属导轨水平固定,导轨平面处在竖
直向下、磁感应强度大小为B的匀强磁场中。导轨左端连接有电容为C的
平行板电容器,质量为m、电阻不可忽略的导体棒垂直导轨放置在导轨上,
高三高考物理复习专题练习:电磁感应
电磁感应1.[多选]如图甲所示,电阻R1=R, R 2=2 R,电容为C的电容器,圆形金属线圈半径为广2,线圈的电阻为R半径为r1(r1<r2)的圆形区域内存在垂直线圈平面向里的匀强磁场,磁感应强度B随时间t 变化的关系图象如图乙所示,t「12时刻磁感应强度分别为B「B2,其余导线的电阻不计,闭合开关S,至11时刻电路中的电流已稳定,下列说法正确的是 ()图甲图乙A.电容器上极板带正电B.11时刻,电容器的带电荷量为:孙而C.11时刻之后,线圈两端的电压为;D.12时刻之后,R1两端的电压为■ ■2.[多选]如图甲所示,abcd是位于竖直平面内的正方形闭合金属线框,在金属线框的下方有一磁感应强度为B的匀强磁场区域,MN和M W是匀强磁场区域的水平边界并与线框的bc 边平行,磁场方向与线框平面垂直现金属线框由距MN的某一高度从静止开始下落,图乙是金属线框由开始下落到完全穿过匀强磁场区域的v-t图象.已知金属线框的质量为m,电阻为R,当地的重力加速度为g,图象中坐标轴上所标出的匕、v2、v3、t p 12、13、14均为已知量(下落过程中线框abcd始终在竖直平面内,且bc边始终水平).根据题中所给条件,以下说法正确的是()图甲图乙A.可以求出金属线框的边长B.线框穿出磁场时间(t4-t3)等于进入磁场时间(t2-t1)C.线框穿出磁场与进入磁场过程所受安培力方向相同D.线框穿出磁场与进入磁场过程产生的焦耳热相等3.[多选]如图所示,x轴上方第一象限和第二象限分别有垂直纸面向里和垂直纸面向外的匀强磁场,且磁感应强度大小相同,现有四分之一圆形线框。
〃乂绕。
点逆时针匀速转动,若规定线框中感应电流/顺时针方向为正方向,从图示时刻开始计时,则感应电流I及ON边所受的安培力大小F随时间t的变化示意图正确的是()A BCD4.[多选]匀强磁场方向垂直纸面,规定垂直纸面向里的方向为正方向,磁感应强度B随时间t的变化规律如图甲所示.在磁场中有一细金属圆环,圆环平面位于纸面内,如图乙所示.令11、12、13分别表示Oa、ab、bc段的感应电流工、力、力分别表示感应电流为11、12、13时,金属环上很小一段受到的安培力.则()A.11沿逆时针方向,12沿顺时针方向B.12沿逆时针方向,13沿顺时针方向C f1方向指向圆心石方向指向圆心D外方向背离圆心向外右方向指向圆心5.[多选]如图所示,光滑水平面上存在有界匀强磁场,磁感应强度大小为B,方向垂直纸面向里, 质量为m、边长为a的正方形线框ABCD斜向穿进磁场,当AC刚进入磁场时线框的速度大小为%方向与磁场边界所成夹角为45°,若线框的总电阻为凡则()A.线框穿进磁场的过程中,框中电流的方向为D T C T B T A T DB AC刚进入磁场时线框中感应电流为一,镇铲。
电磁感应和电容测试题(第二次月考)
电磁感应和电容器测试题(第二次月考)时间:60分钟满分:150分班级:姓名:分数:答题卡(请将正确的答案填写在相应的题号下)一、选择题(每小题3分, 40个小题,共120分)二、选择题:(每题2分,共30分)试题一、选择题(每小题3分, 40个小题,共120分)1.条形磁铁磁场最强的地方是()。
(容易)A.磁铁两极B.磁铁中心点C.磁感线中间位置D.无法确定2.关于磁场和磁力线的描述,正确的说法是()。
(中等难度)A.磁极之间存在着相互作用力,同名磁极互相吸引,异名磁极互相排斥B.磁力线可以形象地表示磁场的强弱与方向C.磁力线总是从磁极的北极出发,终止于南极D.磁力线的疏密反映磁场的强弱,磁力线越密表示磁场越弱,磁力线越疏表示磁场越强3.关于磁感线下列说法正确的是()(容易)A.磁感线是客观存在的有方向的曲线。
B.磁感线总是始于N极而终于S极。
C.磁感线上的箭头表示磁场方向。
D.磁感线上某处小磁针静止时,N极所指方向应与该处曲线的切线方向一致。
4.空心线圈被插入铁芯后()(中等难度)A.磁性将大大增强。
B.磁性将减弱。
C.磁性基本不变。
D.不能确定。
5.关于磁力线的说法下列正确的是()(容易)A.磁力线是磁场中客观存在的有方向曲线B.磁力线始于磁铁北极而终于磁铁南极C.磁力线上的箭头表示磁场方向D.磁力线上某点处于小磁针静止时北极所指的方向于该点曲线方向一定一致.6.如图所示,通电的导体在磁场中受电磁力作用,正确的是()(容易)7.如图所示,通电导体受力方向为()(容易)A.垂直向上B.垂直向下C.水平向左D.水平向右8.右手螺旋定则是判断()方向(容易)A.电流产生的磁场B.电压C. 载流导体在磁场中受力D.以上都对9.如图所示,在电磁铁的左侧放置了一根条形磁铁,当合上开关S 以后,电磁铁与条形磁铁之间()。
(较难)A.互相排斥B.互相吸引C.静止不动D.无法判断10.判定通电线圈产生磁场的方向用()(中等难度)A.右手定则B.右手螺旋定则C.左手定则D.楞次定律11.通电直导体在磁场中受力方向可用()判断。
专题:电磁感应现象中有关电容器类问题 及答案
专题:电磁感应现象中有关电容器类问题1、电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制新武器和航天运载器。
电磁轨道炮示意如图,图中直流电源电动势为E,电容器的电容为C。
两根固定于水平面内的光滑平行金属导轨间距为L,电阻不计。
炮弹可视为一质量为m、电阻为R的金属棒MN,垂直放在两导轨间处于静止状态,并与导轨良好接触。
首先开关S接1,使电容器完全充电。
然后将S接至2,导轨间存在垂直于导轨平面、磁感应强度大小为B的匀强磁场(图中未画出),MN 开始向右加速运动。
当MN上的感应电动势与电容器两极板间的电压相等时,回路中电流为零,MN达到最大速度,之后离开导轨。
问:(1)磁场的方向;(2)MN刚开始运动时加速度a的大小;(3)MN离开导轨后的最大速度v m的大小。
试题分析:(1)根据通过MN电流的方向,结合左手定则得出磁场的方向.(2)根据欧姆定律得出MN刚开始运动时的电流,结合安培力公式,根据牛顿第二定律得出MN刚开始运动时加速度a的大小.(3)开关S接2后,MN开始向右加速运动,速度达到最大值时,根据电动势和电荷量的关系,以及动量定理求出MN 离开导轨后最大速度.解:(1)电容器上端带正电,通过MN的电流方向向下,由于MN向右运动,根据左手定则知,磁场方向垂直于导轨平面向下.2、一对无限长平行导轨位于竖直平面内,轨道上串联一电容器C(开始未充电).另一根质量为m的金属棒ab可沿导轨下滑,导轨宽度为L,在讨论的空间范围内有磁感应强度为B、方向垂直整个导轨平面的匀强磁场,整个系统的电阻可以忽略,ab棒由静止开始下滑,求它下滑h高度时的速度v.解:设ab 棒下滑过程中某一瞬时加速度为a i ,则经过一微小的时间间隔Δt ,其速度的增加量为Δv=a i ·Δt.棒中产生的感应电动势的增加量为:ΔE=BL Δv=BLa i ·Δt电容器的极板间电势差的增加量为:ΔU i =ΔE=BLa i ·Δt电容器电荷量的增加量为:ΔQ=C ·ΔU=CBLa i ·Δt电路中的充电电流为:I=t Q ∆∆=CBLa i ab 棒所受的安培力为:F=BLI=CB 2L 2a i由牛顿第二定律得:mg-F=ma i ,即mg-CB 2L 2a i =ma i ,所以,a i =22LCB m mg +,可见,棒的加速度与时间无关,是一个常量,即棒ab 向下做匀加速直线运动.所以要求的速度为v=2222LCB m mgh ah +=.3、如图所示,处于匀强磁场中的两根足够长且电阻不计的平行金属导轨相距L ,导轨平面与水平面重合,左端用导线连接电容为C 的电容器(能承受的电压足够大).已知匀强磁场的磁感应强度大小为B 、方向竖直向上.一质量为m 、电阻不计的直金属棒垂直放在两导轨上,一根绝缘的、足够长的轻绳一端与棒的中点连接,另一端跨过定滑轮挂一质量为m 的重物.现从静止释放重物并通过轻绳水平拖动金属棒运动(金属棒始终与导轨垂直并保持良好接触,不计滑轮质量和所有摩擦).求:(1)若某时刻金属棒速度为v ,则电容器两端的电压多大?(2)求证:金属棒的运动是匀加速直线运动;(3)当重物从静止开始下落一定高度时,电容器带电量为Q ,则这个高度h 多大?解:(1)电容器两端的电压U 等于导体棒上的电动势E ,有:U=E=BLv(2)金属棒速度从v 增大到v+△v 的过程中,用时△t (△t →0),加速度为a ,有:电容器两端的电压为:U=BLv电容器所带电量为:式中各量都是恒量,加速度保持不变,故金属棒的运动是匀加速直线运动.(3)由于金属棒做匀加速直线运动,且电路中电流恒定4、如图所示,有一间距为L且与水平方向成θ角的光滑平行轨道,轨道上端接有电容器和定值电阻,S为单刀双掷开关,空间存在垂直轨道平面向上的匀强0磁场,磁感应强度为B。
2023年高考物理热点复习:电磁感应中的电路与图象问题(附答案解析)
2023年高考物理热点复习:电磁感应中的电路与图象问题【2023高考课标解读】1.对电磁感应中电源的理解2.解决电磁感应电路问题的基本步骤【2023高考热点解读】一、电磁感应中的电路问题1.内电路和外电路(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源。
(2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电路。
2.电源电动势和路端电压(1)电动势:E=Blv或E=nΔΦΔt。
(2)路端电压:U=IR=E-Ir。
【拓展提升】1.电磁感应中电路知识的关系图2.解决电磁感应中的电路问题三步曲二、电磁感应中的图象问题电磁感应中常见的图象问题图象类型(1)随时间变化的图象,如Bt图象、Φt图象、Et图象、It图象(2)随位移变化的图象,如Ex图象、Ix图象(所以要先看坐标轴:哪个物理量随哪个物理量变化要弄清)问题类型(1)由给定的电磁感应过程选出或画出正确的图象(画图象)(2)由给定的有关图象分析电磁感应过程,求解相应的物理量(用图象)应用知识四个规律左手定则、安培定则、右手定则、楞次定律六类公式(1)平均电动势E=nΔΦΔt(2)平动切割电动势E=Blv(3)转动切割电动势E=12Bl2ω(4)闭合电路欧姆定律I=ER+r(5)安培力F=BIl(6)牛顿运动定律的相关公式等例1.如图所示,a、b两个闭合正方形线圈用同样的导线制成,匝数均为10匝,边长l a=3l b,图示区域内有垂直纸面向里的匀强磁场,且磁感应强度随时间均匀增大,不考虑线圈之间的相互影响,则()A.两线圈内产生顺时针方向的感应电流B.a、b线圈中感应电动势之比为9∶1 C.a、b线圈中感应电流之比为3∶4D.a、b线圈中电功率之比为3∶1【答案】B【解析】当磁感应强度变大时,由楞次定律知,线圈中感应电流的磁场方向垂直纸面向外,由安培定则知,线圈内产生逆时针方向的感应电流,选项A错误;由法拉第电磁感应定律E=SΔBΔt及S a∶S b=9∶1知,E a=9E b,选项B正确;由R=ρLS′知两线圈的电阻关系为R a=3R b,其感应电流之比为I a∶I b=3∶1,选项C错误;两线圈的电功率之比为P a∶P b=E a I a∶E b I b=27∶1,选项D错误。
专题电磁感应现象中有关电容器类问题及答案 (2)
专题:电磁感应现象中有关电容器类问题1、电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制新武器和航天运载器.电磁轨道炮示意如图,图中直流电源电动势为E,电容器的电容为C。
两根固定于水平面内的光滑平行金属导轨间距为L,电阻不计。
炮弹可视为一质量为m、电阻为R的金属棒MN,垂直放在两导轨间处于静止状态,并与导轨良好接触。
首先开关S接1,使电容器完全充电。
然后将S接至2,导轨间存在垂直于导轨平面、磁感应强度大小为B的匀强磁场(图中未画出),MN开始向右加速运动.当MN上的感应电动势与电容器两极板间的电压相等时,回路中电流为零,MN达到最大速度,之后离开导轨.问:(1)磁场的方向;(2)MN刚开始运动时加速度a的大小;(3)MN离开导轨后的最大速度vm的大小。
试题分析:(1)根据通过MN电流的方向,结合左手定则得出磁场的方向.(2)根据欧姆定律得出MN刚开始运动时的电流,结合安培力公式,根据牛顿第二定律得出MN刚开始运动时加速度a的大小.(3)开关S接2后,MN开始向右加速运动,速度达到最大值时,根据电动势和电荷量的关系,以及动量定理求出MN 离开导轨后最大速度.解:(1)电容器上端带正电,通过MN的电流方向向下,由于MN向右运动,根据左手定则知,磁场方向垂直于导轨平面向下.2、一对无限长平行导轨位于竖直平面内,轨道上串联一电容器C (开始未充电)。
另一根质量为m 的金属棒ab 可沿导轨下滑,导轨宽度为L,在讨论的空间范围内有磁感应强度为B 、方向垂直整个导轨平面的匀强磁场,整个系统的电阻可以忽略,ab 棒由静止开始下滑,求它下滑h 高度时的速度v 。
解:设ab 棒下滑过程中某一瞬时加速度为a i ,则经过一微小的时间间隔Δt,其速度的增加量为Δv=a i·Δt .棒中产生的感应电动势的增加量为:ΔE=BL Δv=B La i ·Δt电容器的极板间电势差的增加量为:ΔU i=ΔE=BLa i ·Δt电容器电荷量的增加量为:ΔQ=C ·ΔU =CBLa i ·Δt电路中的充电电流为:I=tQ ∆∆=CB La i ab 棒所受的安培力为:F=BL I=CB 2L2ai由牛顿第二定律得:mg —F =ma i ,即mg —CB 2L 2ai =m ai ,所以,a i =22L CB m mg +,可见,棒的加速度与时间无关,是一个常量,即棒ab向下做匀加速直线运动.所以要求的速度为v=2222LCB m mgh ah +=。
高考物理专题电磁学知识点之电磁感应经典测试题附答案解析
高考物理专题电磁学知识点之电磁感应经典测试题附答案解析一、选择题1.在图中,EF 、GH 为平行的金属导轨,其电阻不计,R 为电阻,C 为电容器,AB 为可在EF 和GH 上滑动的导体横杆.有匀强磁场垂直于导轨平面.若用I 1和I 2分别表示图中该处导线中的电流,则当横杆AB( )A .匀速滑动时,I 1=0,I 2=0B .匀速滑动时,I 1≠0,I 2≠0C .加速滑动时,I 1=0,I 2=0D .加速滑动时,I 1≠0,I 2≠02.两块水平放置的金属板间的距离为d ,用导线与一个n 匝线圈相连,线圈电阻为r ,线圈中有竖直方向的磁场,电阻R 与金属板连接,如图所示,两板间有一个质量为m 、电荷量+q 的油滴恰好处于静止,则线圈中的磁感应强度B 的变化情况和磁通量的变化率分别是A .磁感应强度B 竖直向上且正增强,tφ∆=dmg nq B .磁感应强度B 竖直向下且正增强,tφ∆=dmg nq C .磁感应强度B 竖直向上且正减弱,tφ∆=()dmg R r nqR + D .磁感应强度B 竖直向下且正减弱,tφ∆=()dmgr R r nqR + 3.如图所示,用粗细均匀的铜导线制成半径为r 、电阻为4R 的圆环,PQ 为圆环的直径,在PQ 的左右两侧均存在垂直圆环所在平面的匀强磁场,磁感应强度大小均为B ,但方向相反,一根长为2r 、电阻为R 的金属棒MN 绕着圆心O 以角速度ω顺时针匀速转动,金属棒与圆环紧密接触。
下列说法正确的是( )A .金属棒MN 两端的电压大小为2B r ωB .金属棒MN 中的电流大小为22B r Rω C .图示位置金属棒中电流方向为从N 到MD .金属棒MN 转动一周的过程中,其电流方向不变4.如图所示,A 、B 两闭合圆形线圈用同样导线且均绕成100匝。
半径A B 2R R =,内有以B 线圈作为理想边界的匀强磁场。
若磁场均匀减小,则A 、B 环中感应电动势A B :E E 与产生的感应电流A B :I I 分别是( )A .AB :2:1E E =;A B :1:2I I =B .A B :2:1E E =;A B :1:1I I =C .A B :1:1E E =;A B :2:1I I =D .A B :1:1E E =;A B :1:2I I =5.如图所示的电路中,电源的电动势为E ,内阻为r ,电感L 的电阻不计,电阻R 的阻值大于灯泡D 的阻值,在0t =时刻闭合开关S ,经过一段时间后,在1t t =时刻断开S ,下列表示灯D 中的电流(规定电流方向A B →为正)随时间t 变化的图像中,正确的是( )A .B .C .D .6.如图所示,两块水平放置的金属板间距离为d ,用导线与一个n 匝线圈连接,线圈置于方向竖直向上的磁场B 中。
电磁感应电路中的电容问题
电磁感应电路中的电容问题1.两相互平行且足够长的水平金属导轨MN、PQ放在竖直平面内,相距0.4m,左端接有平行板电容器,板间距离为0.2m,右端接滑动变阻器R。
水平匀强磁场磁感应强度为10T,垂直于导轨所在平面,整个装置均处于上述匀强磁场中,导体棒CD与金属导轨垂直且接触良好,棒的电阻为1Ω,其他电阻及摩擦不计。
现在用与2金属导轨平行,大小为2N的恒力F使棒从静止开始运动。
已知R的最大阻值为2Ω,g=10m/。
则:⑴滑动变阻器阻值取不同值时,导体棒处于稳定状态时拉力的功C率不一样,求导体棒处于稳定状态时拉力的最大功率。
MN⑵当滑动触头在滑动变阻器中点且导体棒处于稳定状态时,一个带电小球从平行板电容器左侧,以某一速度沿两板的正中间且平行R于两极板射入后,在两极板间恰好做匀速直线运动;当滑动触头位F于最下端且导体棒处于稳定状态时,该带电小球以同样的方式和速度射入,小球在两极板间恰好做匀速圆周运动,则小球的速度为多PQD 大。
解:(1)当棒达到匀速运动时,棒受到的安培力F1与外力F相平衡,即F=F1=BIL①(1分)此时棒产生的电动势E=BLv,则电路中的电流。
EBLvI==②(1分)R+rR+rF(R+r)由①②式得此时棒的速度V=③(1分)B2L2F2(R+r)拉力功率P=FV=④(1分)B2L2由④式知回路的总电阻越大时,拉力功率越大,当R=2Ω时,拉力功率最大,Pm=0.75(W)(1分)(2)当触头滑到中点即R=1Ω时,由③式知棒匀速运动的速度F(R+r)v1==0.25(m/)(1分)B2L2导体棒产生的感应电动势E1=BLv1=10某0.4某0.25=1(V)(1分)E1R电容器两极板间电压U1==0.5(V)(1分)R+r由于棒在平行板间做匀速直线运动,则小球必带正电,此时小球受力情况如图所示,设小球的入射速度为v0,由平衡条件知:F+f=GU1即q+qv0B=mg⑤(2分)d当滑头滑至下端即R=2Ω时,棒的速度F(R+r)3V2=22=(m/)(1分)BL8导体棒产生的感应电动势E2=BLV2=1.5伏(1分)E2R电容器两极板间的电压U2==1伏(1分)R+r由于小球在平行板间做匀速圆周运动,电场力与重力平衡,于是:U2q=mg⑥(2分)dU2—U1联立⑤⑥并代入数值解得v0==0.25(m/)(1分)Bd2小球作圆周运动时洛仑兹力提供向心力,有v02qv0B=m⑦(2分)r联立⑥⑦解得小球作圆周运动的半径为r=0.0125m(2分)2、如图所示,光滑的平行导轨P、Q相距l=1m,处在同一水平面中,导轨的左端接有如图所示的电路,其中水平放置的电容器两极板相距d=10mm,定值电阻R1=R3=8Ω,R2=2Ω,导轨的电阻不计,磁感强度B=0.4T的匀强磁场竖直向下穿过导轨面,当金属棒ab沿导轨向右匀速运动(开关S断开)时,电容器两极之间质量m=1某10-14kg,带电量q=-1某10-15C的微粒恰好静止不动;当S闭合时,微粒的加速度a=7m/2向下做匀加速运动,取g=10m/2,求:(1)金属棒所运动的速度多大?电阻多大?(2)S闭合后,使金属棒ab做匀速运动的外力的功率多大?解答:(1)带电微粒在电容器两极间静止时,受向上的电场力和向下的重力而平衡,根据平衡条件有mgqU1,dmgd1014100.1解得电容器两极间电压为:U11Vq1015由于微粒带负电,可知上板电势较高,由于S断开,R3上无电流,R1、R2上电压等于U1,可知电路中的感应电流,即通过R1、R2的电流强度为:I1U10.1AR1R2根据闭合电路欧姆定律,可知ab切割磁感线运动产生的感应电动势为:EU1I1r(1)S闭合时,带电微粒向下做匀加速运动,根据牛顿第二定律有:mgq 可以求得S闭合时电容器两板间的电压为:U2U2madm(ga)d0.3V q这是电路中的电流为:I2=U20.15AR2R1R3R2r)(2)R1R3根据闭合电路欧姆定律有:EI2(将已知量代入(1)(2)式,可求得:E1.2V,r2由E=BLv得:vE3m/BL(2)S闭合时,通过ab电流I2=0.15A,ab所受磁场力为FBBI2L0.06N,ab的速度v=3m/做匀速运动,所受外力与磁场力FB大小相等,方向相反,即F=0.06N,方向向右,则外力功率为P=Fv=0.06某3w=0.18w3.如图所示,在水平方向与纸面垂直的足够大的匀强磁场中,有一足够长的U形金属框架abcd以v1=2m/的速度向右做切割磁感线运动,在框架abcd上下两板内产生一个匀强电场.有一个带电油滴以水平速度v2从P 点(ap=L/2)向左射入框架内做匀速圆周运动(g=10m/2).求:23(1)油滴必须带什么性质的电荷,油滴做匀速圆周运动的周期是多少(2)为使油滴不跟框架壁相碰,油滴速度v2与框架宽度L的比值v2/L 应满足什么条件(3)为使油滴不离开电场,并且能够在框架内完整地运动一周,速度v2要满足什么条件解:油滴应带负电.由于框架左边作切割磁感线运动,使上下两板间产生电压U=BLvbV1LU两板间电场强度E=L=Bv1由油滴做匀速圆周运动的条件得mg=qE=qBv1cmg2m2v12qvqBg5∴B=1油滴运动的周期T=2mv2mv2qv1v1v2v2qBv2mqmggRRBq(2)∵g2v1v2Lv24v油滴不跟框架壁相碰应满足条件2R<L/2即g<2∴L<1=1.25-1(3)油滴顺时针做圆周运动,若v2的水平速度大小等于v1时未脱离电场,则以后不再会脱离.设当油滴转至其线速度方向与竖直方向的夹角为θ时油滴速度v2的水平分量大小等于v1,油滴刚好运动至框架右边缘,(如图所示)则V2inθ=v133R22V2t=v1t>RcoθV1V1θV231v13vin122vv2v221>v2coθ即2>∴v14、如图所示,在虚线框内有一磁感应强度为B的匀强磁场,在磁场中的PQ和MN是两条光滑的平行金属导轨,其电阻不计,两导轨间距离为L,它们都与水平面成α角.已知匀强磁场的方向与导轨所在平面垂直,放置在导轨上的金属棒ab与导轨垂直,其质量为m,电阻为r.在导轨的一端接着阻值为R的电阻器C、D为竖直放置的,间距为d的平行板电容器,两板间的JK是与水平面成θ角的一条绝缘光滑直导轨。
电磁感应中的电路问题专题练习(含答案)
电磁感应中的电路问题专题练习1.用均匀导线做成的正方形线圈边长为I,正方形的一半放在垂直于纸面向里的匀强磁场中,如图所示,当磁场以普的变化率增强时,则下列说法正确的是()A.线圈中感应电流方向为adbcaB.线圈中产生的电动势E宅• fC.线圈中a点电势高于b点电势D.线圈中a,b两点间的电势差为芸£2.如图所示,用粗细相同的铜丝做成边长分别为L和2L的两只闭合线框a和b,以相同的速度从磁感应强度为B的匀强磁场区域中匀速地拉到磁场外,不考虑线框的重力,若闭合线框的电流分别为I a,I b,则l a :A.1B.1 : 2C.1D.不能确定3.在图中,EF,GH为平行的金属导轨,其电阻不计,R为电阻,C为电容器,AB为可在EF和GH上滑动的导体棒,有匀强磁场垂直于导轨平面.若用l i和|2分别表示图中该处导线中的电流,则当AB棒(D )X *X *D.加速滑动时,I4. 如图所示,导体棒在金属框架上向右做匀加速运动,在此过程中V X£亠A. 电容器上电荷量越来越多B. 电容器上电荷量越来越少C. 电容器上电荷量保持不变D. 电阻R 上电流越来越大度进入右侧匀强磁场,如图所示.在每个线框进入磁场的过程中,M,N 两点间的电压分别为 gUsU c 和U.下列判断正确的是()A. U a VUvUvUB.U a VUvUvUC. U a =U=U=UD.U b <U a <L l <L lA.匀速滑动时,I 1 = 0,1 2 = 0B.匀速滑动时,I i M0,I 2M0C.加速滑动时,I 1 = 0,1 2 = 0x MX 枫* X鼠K 具 K K5.用相同导线绕制的边长为 L 或2L 的四个闭合导体线框,以相同的速h N6.(多选)如图所示,MN,PQ是间距为L的平行光滑金属导轨,置于磁感应强度为B、方向垂直导轨所在平面向里的匀强磁场中,M,P间接有一阻值为R的电阻.一根与导轨接触良好、有效阻值为孚的金属导线ab 垂直导轨放置,并在水平外力F的作用下以速度v向右匀速运动,不计导轨电阻,则()X X X4 KP X x nAA.通电电阻R的电流方向为—R-MB.a,b两点间的电压为BLvC.a端电势比b端高D.外力F做的功等于电路中产生的焦耳热7.(多选)如图所示,电阻为r的均匀金属圆环放在图示的匀强磁场中磁感应强度为B,圆环直径为L,电阻为才长也为L的金属棒ab在圆环上从右向左以V0匀速滑动并保持与环良好接触.当ab运动到与环直径重合瞬间,棒两端电势差大小及电势高低为()A.电势差为警B.电势差为警C.a点电势比b点高D.b点电势比a点高8.(多选)半径为a右端开小口的导体圆环和长为2a的导体直杆,单位长度电阻均为忠圆环水平固定放置,整个内部区域分布着竖直向下始,杆的位置由0确定,如图所示.则( )"冰:*DA. 0 =0时,杆产生的电动势为 2BavB. 0 =■时,杆产生的电动势为遐BavC. 0 =0时,杆受的安培力大小为磊盂D. 0违时,杆受的安培力大小为盈詁9. 以下各种不同的情况中R=0.1 Q ,运动导线长 动的速度都为v=10 m/s.除电阻R 外,其余各部分电阻均不计.匀强磁 场的磁感应强度B=0.3 T.试计算各情况中通过每个电阻 R 的电流大小和方向.画m10. 面积S=0.2 m 2,n=100匝的圆形线圈,处在如图所示的磁场内,磁感应强度随时间t 变化的规律是B=0.02t(T),R=3 Q ,C=30卩F,线圈电RttXX—Ir —V y■―叫厂H7(甲}7A的匀强磁场,磁感应强度为B,杆在圆环上以速度 v 平行于直径CD 向 右做匀速直线运动,杆始终有两点与圆环良好接触 ,从圆环中心0开1=0.05 m,做匀速运阻r=1 Q ,求:磁场垂直,长为L 、电阻为扌的金属杆0A 一端在圆心,另一端在环上, 并可沿圆环转动.阻值为詐勺电阻一端与金属杆的0端相连,另一端与 环上C 点相连,若杆以角速度3逆时针转动,那么,阻值宇的电阻上的电—流在什么范围内变化?C12.(2016南昌调研)如图所示,匝数n=100匝、面积S=0.2 m 2、电阻 r=0.5 Q 的圆形线圈MN 处于垂直纸面向里的匀强磁场内,磁感应强度随时间按B=0.6+0.02t(T)的规律变化.处于磁场外的电阻R=3.5 Q ,R 2=6 Q ,电容C=30 a F,开关S 开始时未闭合,求:(1)闭合开关S 后,线圈两端M,N 两点间的电压U N 和电阻R 消耗的电功率;(2)闭合开关S 一段时间后又断开S,S 断开后通过R 的电荷量. 1、解析:根据楞次定律可知,选项A 错误;线圈中产生的电动势E 罟二¥ .等选项B 正确;线圈中的感应电流沿逆时针方向,所以a 点电势低 于b 点电势,选项C 错误;线圈左边的一半导线相当于电源,右边的一 半相当于外电路,a,b 两点间的电势差相当于路端电压,其大小为(1)通过R 的电流方向和 X K H4s 内通过导线横截面的电荷量;⑵电容器的电荷量.11.如图所示,半径为L 、电阻为R 的金属环与磁感应强度为 B 的匀强fLU==- •詈,选项D错误.2、解析:产生的感应电动势为E=Blv,由闭合电路欧姆定律得匸竽,又I b=2l a,由电阻定律知R=2R,故I a : I b=1 : 1.选项C正确.3、解析:导体棒水平运动时产生感应电动势,对整个电路,可把AB棒看做电源,等效电路如图所示.当棒匀速滑动时,电动势E不变,故I 1工0,1 2=0.当棒加速运动时,电动势E不断变大,电容器不断充电,故11工0,1 2工0.选项D正确.4、解析:导体棒匀加速运动,产生电动势越来越大,对电容器充电形成充电电流,电容器带电荷量均匀增大,充电电流保持不变,故选项A 正确.5、解析:每个线框进入磁场的过程中,仅有MN边做切割磁感线运动产生感应电动势,其余三条边是外电路,设长度为L的导线电阻为R,边长为L的导线切割磁感线产生感应电动势为E,由于以相同速度进入磁场,故边长为2L的导线切割磁感线产生感应电动势为2E,则U= 寻• 3R=E;Ub€ • 5R=E;U c罟-6R=E;U d罟• 4R=E,U a<U<U<U,选项B正确.6、解析:根据楞次定律或右手定则可判断出,通过电阻R的电流方向为MK R T P,选项A错误;导线ab相当于电源,电源电压E=BLv,内阻r=£所以a,b两点间的电压为路端电压,即U ab誉,选项B错误;在电源内部,电流从bTa,所以a 端电势比b 端高,选项C 正确;因为导线ab 在水平外力F 的作用下做匀速运动,所以安培力与外力F 等大反向,安培力做的功与外力F 做的功大小相等,又因为电路中产生的焦耳热 等于安培力做的功,所以电路中产生的焦耳热也等于外力 F 做的功, 选项D 正确.7、解析:当ab 与环直径重合时,匸驚,a,b 两点间电势差大小U=7,得U 營 由右手定则判断b 点电势高,选项BQ 正确.8解析:开始时刻,感应电动势E i =BLv=2Bav,故选项A 正确;0 =时,E 2=B- 2acos 夕-v=Bav,故选项 B 错误;由 L=2acos 0 ,E=BLv,□l=£R=R)[2acos 0 +( n +2 0 )a],得在 0 =0 时,F=甞諜故选项 C错误;0 =时F 羞侖,故选项D 正确.9、解析:题图(甲)中,两导线切割磁感线,产生的感应电流相互抵消,流过电阻R 的电流为0.题图(乙)中,两导线切割磁感线,均产生顺时针方向的电流,流过R 的 电流方向向右,大小为匸誓夕警y A=3 A.题图(丙)中,一导线切割磁感线,两外电阻并联,由右手定则知,流过 两电阻R 的电流方向向下,大小均为 冃x p = X 雾=X 哼严卯A=•兰 7ELIT1.5 A.题图(丁)中,一导线切割磁感线,内阻为R,两外电阻并联,由右手定则, 流过内阻R的电流方向向上,流过外电阻R的电流方向向下.流过内阻R的电流大小为I乎凸吒唸A=1 A,流过外电阻R的电流均为扌,即0.5 A.答案:见解析10、解析:(1)由法拉第电磁感应定律可得出线圈中的感应电动势,由欧姆定律可求得通过R的电流.由楞次定律可知电流的方向为逆时针通过R的电流方向为b-a,q=lt=±t=n^t=n 證=0.1 C.⑵ 由E二厝二n^=100X 0.2 X 0.02 V=0.4 V,二器A=0.1 A,U=L R=IR=0.1 X 3 V=0.3 V,-6 -6Q=C C=30X 10 X 0.3 C=9 X 10 C.答案:(1)b -a 0.1 C (2)9 X 10-6 C 11、解析:A在C点时金属圆环未接入电路中,则外电阻最小,如图所一 L LU 04沁5 I 2 示,E=BL • 二拒3 L ,c当A在C点正上方时环的电阻最大,外电阻最大,I『苣卫1 min-胡+1= .答案:竺?〜竺仝口木• 5左3住12、解析:内电路分析:圆形线圈构成内电路,由B=0.6+0.02t(T)知葺=0.02 T/S.外电路分析:S闭合后,R I,R2串联,电容器两端的电压同R两端的电压,U MN 为路端电压.(1)线圈中的感应电动势E咗二瞪S=100X 0.02 X 0.2 V=0.4 V,通过线圈的电流匸諾不春去:A=0.04 A,线圈两端M,N两点间的电压U MN=E-Ir=0.4 V-0.04 X 0.5 V=0.38 V.电阻R消耗的电功率R=I2R=0.042X 6 W=9.6X 10-3 W.(2)闭合开关后,电路稳定U=5=|R2=O.24 V,Q=C C=7.2 X 10-6 C.S断开后,电容器放电,通过R2的电荷量^ Q=7.2X 10-6 C. 答案:(1)0.38 V 9.6 X 10-3 W (2)7.2 X 10-6 C。
高考物理第二轮复习电磁感应中的电容课后练习
第19讲 电磁感应中的电容题一:电阻R 、电容C 与一线圈连成闭合电路,条形磁铁静止于线圈的正上方,N 极朝下,如图所示。
现使磁铁开始自由下落,在N 极接近线圈上端的过程中,流过R 的电流方向和电容器极板的带电情况是( )A .从a 到b ,上极板带正电B .从a 到b ,下极板带正电C .从b 到a ,上极板带正电D .从b 到a ,下极板带正电题二:如图甲所示,等离子气流由左边连续以v 0射入1P 和2P 两板间的匀强磁场中,ab 直导线与1P 、2P 连接,线圈A 与直导线cd 连接。
线圈A 内有随图乙所示的变化磁场,且磁场B 的正方向规定为向左。
则下列说法正确的是( )A .0~1 s 内ab 、cd 导线互相排斥B .1~2 s 内ab 、cd 导线互相排斥C .2~3 s 内ab 、cd 导线互相排斥D .3~4 s 内ab 、cd 导线互相排斥题三:如图所示,水平面内有两根足够长的平行导轨1L 、2L ,其间距0.5m d =,导轨左端接有电容2000μF C =的电容器。
质量20g m =的导体棒可在导轨上无摩擦滑动,导体棒和导轨的电阻不计。
整个空间存在着垂直导轨所在平面的匀强磁场,磁感应强度2T B =。
现用一沿导轨方向向右的恒力0.22N F =作用于导体棒,使导体棒从静止开始运动,经过一段时间t ,速度达到5m/s v =,则( )A .此时电容器两端电压为10VB .此时电容器所带电荷量为2110C -⨯C .导体棒做匀加速运动,且加速度为220m/sD .时间0.4s t =题四:如图所示,在空间存在着竖直向下的匀强磁场,磁感应强度为B 。
一水平放置的长度为L 的金属杆ab 与圆弧形金属导轨P 、Q 紧密接触,P 、Q 之间接有电容为C 的电容器。
若ab 杆绕a 点以角速度ω沿逆时针方向匀速转动,则下列说法正确的是( )A .电容器与a 相连的极板带正电B .电容器与b 相连的极板带正电C .电容器的带电荷量是22CB LωD .电容器的带电荷量是22CB L ω题五:在磁感应强度为B 的匀强磁场中,有一与磁场方向垂直、长度为L 的金属杆aO ,已知3Lab bc cO ===,a 、c 与磁场中以O 为圆心的同心圆(都为部分圆弧)金属轨道始终接触良好。
2025年高考人教版物理一轮复习专题训练—电磁感应中的动力学和能量问题(附答案解析)
错误!错误!错误!错误!错误!错误!错误!错误! 2025年高考人教版物理一轮复习专题训练—电磁感应中的动力学和能量问题(附答案解析)1.如图所示,在一匀强磁场中有一U形导线框abcd,线框处于水平面内,磁场与线框平面垂直,R为一电阻,ef为垂直于ab的一根导体杆,它可在ab、cd上无摩擦地滑动。
杆ef及线框的电阻不计,开始时,给ef一个向右的初速度,则()A.ef将减速向右运动,但不是匀减速运动B.ef将匀减速向右运动,最后停止C.ef将匀速向右运动D.ef将往返运动2.如图,在光滑水平桌面上有一边长为L、电阻为R的正方形导线框;在导线框右侧有一宽度为d(d>L)的条形匀强磁场区域,磁场的边界与导线框的一边平行,磁场方向竖直向下,导线框以某一初速度向右运动,t=0时导线框的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域。
下列v-t图像中,正确描述上述过程的可能是()3.(2023·陕西咸阳市模拟)如图,矩形闭合导体线框在匀强磁场上方,由不同高度静止释放,用t1、t2分别表示线框ab边和cd边刚进入磁场的时刻。
线框下落过程形状不变,ab边始终保持与磁场水平边界线OO′平行,线框平面与磁场方向垂直。
设OO′下方磁场区域足够大,不计空气阻力影响,则下列图像不可能反映线框下落过程中速度v随时间t变化的规律的是()4.(2023·江苏盐城市模拟)如图所示,MN和PQ是竖直放置的两根平行光滑金属导轨,导轨足够长且电阻不计,MP间接定值电阻R,金属杆cd保持与导轨垂直且接触良好。
杆cd由静止开始下落并计时,杆cd两端的电压U、杆cd所受安培力的大小F随时间t变化的图像,以及通过杆cd的电流I、杆cd加速度的大小a随杆的速率v变化的图像,合理的是()5.(多选)如图所示,两根间距为d 的足够长光滑金属导轨,平行放置在倾角为θ=30°的绝缘斜面上,导轨的右端接有电阻R ,整个装置放在磁感应强度大小为B 的匀强磁场中,磁场方向垂直于导轨平面向上。
高中物理(新人教版)选择性必修二同步习题:电磁感应中的电路问题(同步习题)【含答案及解析】
第二章电磁感应专题强化练4 电磁感应中的电路问题一、选择题1.(2020河北邯郸大名一中高二上月考,)如图所示,单匝正方形线框的边长为L,电容器的电容为C。
正方形线框的一半放在垂直于纸面向里的匀强磁场中,在磁场以变化率k均匀减弱的过程中,下列说法正确的是( )A.电压表的读数为kL 22B.线框产生的感应电动势大小为kL2C.电容器所带的电荷量为零D.回路中电流为零2.()(多选)如图甲,线圈A(图中实线,共100匝)的横截面积为0.3 m2,总电阻r=2 Ω,A右侧所接电路中,电阻R1=2 Ω,R2=6 Ω,电容C=3 μF,开关S1闭合。
A中有横截面积为0.2 m2的区域D(图中虚线),D内有按图乙所示规律变化的磁场,t=0时刻,磁场方向垂直于线圈平面向里。
下列判断正确的是( )A.闭合S2、电路稳定后,通过R2的电流由b流向aB.闭合S2、电路稳定后,通过R2的电流大小为0.4 AC.闭合S2、电路稳定后再断开S1,通过R2的电流由b流向aD.闭合S2、电路稳定后再断开S1,通过R2的电荷量为7.2×10-6 C3.(2020江苏盐城中学高二上期中,)(多选)粗细均匀的电阻丝围成边长为L的正方形线框,置于有界匀强磁场中,磁场方向垂直于线框平面,磁感应强度大小为B,其右边界与正方形线框的bc边平行。
现使线框以速度v匀速平移出磁场,如图所示,则在移出的过程中( )A.ad边的电流方向为a→dB.ad边的电流方向为d→aBLvC.a、d两点间的电势差绝对值为14D.a、d两点间的电势差绝对值为3BLv44.()(多选)如图所示,PN与QM两平行金属导轨相距1 m,电阻不计,两端分别接有电阻R1和R2,且R1=6 Ω,ab杆的有效电阻为2 Ω,在导轨上可无摩擦地滑动,垂直穿过导轨平面的匀强磁场的磁感应强度B为1 T。
现ab以恒定速度v=3 m/s匀速向右移动,这时ab杆上消耗的电功率与R1、R2消耗的电功率之和相等,则( )A.R2=6 ΩB.R1上消耗的电功率为0.375 WC.a、b间电压为3 VD.拉ab杆水平向右的拉力为0.75 N5.()如图所示,间距为L的光滑平行金属导轨弯成“∠”形,底部导轨面水平,倾斜部分与水平面成θ角,导轨与固定电阻相连,整个装置处于竖直向上、磁感应强度大小为B的匀强磁场中。
江苏专高考物理第二轮复习第19讲电磁感应中的电容课后练习336-
第19讲 电磁感应中的电容题一:电阻R 、电容C 与一线圈连成闭合电路,条形磁铁静止于线圈的正上方,N 极朝下,如图所示。
现使磁铁开始自由下落,在N 极接近线圈上端的过程中,流过R 的电流方向和电容器极板的带电情况是( )A .从a 到b ,上极板带正电B .从a 到b ,下极板带正电C .从b 到a ,上极板带正电D .从b 到a ,下极板带正电题二:如图甲所示,等离子气流由左边连续以v 0射入1P 和2P 两板间的匀强磁场中,ab 直导线与1P 、2P 连接,线圈A 与直导线cd 连接。
线圈A 内有随图乙所示的变化磁场,且磁场B 的正方向规定为向左。
则下列说法正确的是( )A .0~1 s 内ab 、cd 导线互相排斥B .1~2 s 内ab 、cd 导线互相排斥C .2~3 s 内ab 、cd 导线互相排斥D .3~4 s 内ab 、cd 导线互相排斥题三:如图所示,水平面内有两根足够长的平行导轨1L 、2L ,其间距0.5m d =,导轨左端接有电容2000μF C =的电容器。
质量20g m =的导体棒可在导轨上无摩擦滑动,导体棒和导轨的电阻不计。
整个空间存在着垂直导轨所在平面的匀强磁场,磁感应强度2T B =。
现用一沿导轨方向向右的恒力0.22N F =作用于导体棒,使导体棒从静止开始运动,经过一段时间t ,速度达到5m/s v =,则( )A .此时电容器两端电压为10VB .此时电容器所带电荷量为2110C -⨯C .导体棒做匀加速运动,且加速度为220m/sD .时间0.4s t =题四:如图所示,在空间存在着竖直向下的匀强磁场,磁感应强度为B 。
一水平放置的长度为L 的金属杆ab 与圆弧形金属导轨P 、Q 紧密接触,P 、Q 之间接有电容为C 的电容器。
若ab 杆绕a 点以角速度ω沿逆时针方向匀速转动,则下列说法正确的是( )A .电容器与a 相连的极板带正电B .电容器与b 相连的极板带正电C .电容器的带电荷量是22CB LωD .电容器的带电荷量是22CB L ω题五:在磁感应强度为B 的匀强磁场中,有一与磁场方向垂直、长度为L 的金属杆aO ,已知3Lab bc cO ===,a 、c 与磁场中以O 为圆心的同心圆(都为部分圆弧)金属轨道始终接触良好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题:电磁感应现象中有关电容器类问题1、电磁轨道炮利用电流与磁场的作用使炮弹获得超高速度,其原理可用来研制新武器与航天运载器。
电磁轨道炮示意如图,图中直流电源电动势为E,电容器的电容为C。
两根固定于水平面内的光滑平行金属导轨间距为L,电阻不计。
炮弹可视为一质量为m、电阻为R的金属棒MN,垂直放在两导轨间处于静止状态,并与导轨良好接触。
首先开关S接1,使电容器完全充电。
然后将S接至2,导轨间存在垂直于导轨平面、磁感应强度大小为B的匀强磁场(图中未画出),MN 开始向右加速运动。
当MN上的感应电动势与电容器两极板间的电压相等时,回路中电流为零,MN达到最大速度,之后离开导轨。
问:(1)磁场的方向;(2)MN刚开始运动时加速度a的大小;(3)MN离开导轨后的最大速度v m的大小。
试题分析:(1)根据通过MN电流的方向,结合左手定则得出磁场的方向.(2)根据欧姆定律得出MN刚开始运动时的电流,结合安培力公式,根据牛顿第二定律得出MN刚开始运动时加速度a的大小.(3)开关S接2后,MN开始向右加速运动,速度达到最大值时,根据电动势与电荷量的关系,以及动量定理求出MN离开导轨后最大速度、解:(1)电容器上端带正电,通过MN的电流方向向下,由于MN向右运动,根据左手定则知,磁场方向垂直于导轨平面向下.2、一对无限长平行导轨位于竖直平面内,轨道上串联一电容器C(开始未充电)、另一根质量为m 的金属棒ab 可沿导轨下滑,导轨宽度为L,在讨论的空间范围内有磁感应强度为B 、方向垂直整个导轨平面的匀强磁场,整个系统的电阻可以忽略,ab 棒由静止开始下滑,求它下滑h 高度时的速度v 、解:设ab 棒下滑过程中某一瞬时加速度为a i ,则经过一微小的时间间隔Δt,其速度的增加量为Δv=a i ·Δt 、棒中产生的感应电动势的增加量为:ΔE=BL Δv=BLa i ·Δt电容器的极板间电势差的增加量为:ΔU i =ΔE=BLa i ·Δt电容器电荷量的增加量为:ΔQ=C ·ΔU=CBLa i ·Δt电路中的充电电流为:I=tQ ∆∆=CBLa i ab 棒所受的安培力为:F=BLI=CB 2L 2a i由牛顿第二定律得:mg-F=ma i ,即mg-CB 2L 2a i =ma i ,所以,a i =22L CB m mg +,可见,棒的加速度与时间无关,就是一个常量,即棒ab 向下做匀加速直线运动、所以要求的速度为v=2222LCB m mgh ah +=、3、如图所示,处于匀强磁场中的两根足够长且电阻不计的平行金属导轨相距L,导轨平面与水平面重合,左端用导线连接电容为C 的电容器(能承受的电压足够大).已知匀强磁场的磁感应强度大小为B 、方向竖直向上.一质量为m 、电阻不计的直金属棒垂直放在两导轨上,一根绝缘的、足够长的轻绳一端与棒的中点连接,另一端跨过定滑轮挂一质量为m 的重物.现从静止释放重物并通过轻绳水平拖动金属棒运动(金属棒始终与导轨垂直并保持良好接触,不计滑轮质量与所有摩擦).求:(1)若某时刻金属棒速度为v,则电容器两端的电压多大?(2)求证:金属棒的运动就是匀加速直线运动;(3)当重物从静止开始下落一定高度时,电容器带电量为Q,则这个高度h 多大?解:(1)电容器两端的电压U 等于导体棒上的电动势E,有:U=E=BLv(2)金属棒速度从v 增大到v+△v 的过程中,用时△t(△t →0),加速度为a,有: 电容器两端的电压为:U=BLv电容器所带电量为:式中各量都就是恒量,加速度保持不变,故金属棒的运动就是匀加速直线运动. (3)由于金属棒做匀加速直线运动,且电路中电流恒定4、如图所示,有一间距为L且与水平方向成θ角的光滑平行轨道,轨道上端接有电容器与定值电阻,S为单刀双掷开关,空间存在垂直轨道平面向上的匀强0磁场,磁感应强度为B。
将单刀双掷开关接到a点,一根电阻不计、质量为m的导体棒在轨道底端获得初速度v0后沿着轨道向上运动,到达最高点时,单刀双掷开关接b 点,经过一段时间导体棒又回到轨道底端,已知定值电阻的阻值为R,电容器的电容为C,重力加速度为g,轨道足够长,轨道电阻不计,求:(1)导体棒上滑过程中加速度的大小;(2)若已知导体棒到达轨道底端的速度为v,求导体棒下滑过程中定值电阻产生的热量与导体棒运动的时间。
解:(1)导体棒上滑的过程中,根据牛顿第二定律得:又,有:联立解得:(2)导体棒上滑过程中,有导体棒下滑的过程中,由动量定理得:而联立解得:导体棒下滑的过程中,由能量守恒定律得:解得:5、如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L、导轨上端接有一平行板电容器,电容为C、导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面.在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触.已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g 、忽略所有电阻.让金属棒从导轨上端由静止开始下滑,求:(1)电容器极板上积累的电荷量与金属棒速度大小的关系;(2)金属棒的速度大小随时间变化的关系.解:(1)设金属棒下滑的速度大小为v ,则感应电动势为E =BLv ①平行板电容器两极板之间的电势差为U =E ②设此时电容器极板上积累的电荷量为Q ,按定义有C =Q U③ 联立①②③式得Q =CBLv ④(2)设金属棒的速度大小为v 时经历的时间为t ,通过金属棒的电流为i 、金属棒受到的磁场的作用力方向沿导轨向上,大小为F =BLi ⑤设在时间间隔(t ,t +Δt )内流经金属棒的电荷量为ΔQ ,按定义有⑥ΔQ也就是平行板电容器极板在时间间隔(t,t+Δt)内增加的电荷量.由④式得ΔQ=CBLΔv⑦式中,Δv为金属棒的速度变化量.按定义有⑧金属棒所受到的摩擦力方向斜向上,大小为F f=μF N⑨式中,F N就是金属棒对于导轨的正压力的大小,有F=mg cos θ⑩N金属棒在时刻t的加速度方向沿斜面向下,设其大小为a,根据牛顿第二定律有mg sin θ-F-F=ma⑪f联立⑤至⑪式得⑫由⑫式及题设可知,金属棒做初速度为零的匀加速运动.t时刻金属棒的速度大小为6、在光滑水平地面上,两根彼此平行的光滑导轨PQ、MN相距为L=1m,在它们的末端垂直PQ、MN跨放一金属杆ab,ab的质量为m=0.005kg,在导轨的另一端连接一个已经充电的电容器,电容器的电容C=200F,有一匀强磁场,方向垂直导轨PQ、MN所在平面向下,如图所示,磁感强度为B=0、5T.(除导轨PQ、MN与金属杆ab外其余部分都就是绝缘的)当闭合电键K时,ab杆将从导轨上冲出,并沿光滑斜面升到高为0.2m处,这过程电容器两端电压减小了一半,求:(1)磁场对金属杆ab冲量的大小.(2)电容器原来充电电压就是多少.7、如图所示,水平桌面上放置一U形金属导轨,两导轨平行,间距为L,导轨距水平地面高h。
导轨左端连接有一个电源、一个单刀双掷开关、一个电容器。
电源电动势为E,内电阻为r,电容器电容为C。
一根质量为m不计电阻的裸导线放在导轨上,方向与导轨垂直,导轨所在平面有一个方向向下的匀强磁场,磁感应强度为B。
先将单刀双掷开关拨到a;待电路稳定后将单刀双掷开关拨到b。
开关拨到b 后,导线在安培力作用下向右运动离开导轨,然后做平抛运动直至落到水平地面上。
(1)在开关拨到a到电路稳定的过程中,画出电容器电压u随电量q变化的图象。
(2)结合(1)中所画图象,求稳定时电容器储存的能量E C。
(3)导线落到水平地面,此时电容器两端的电压为,求落地位置与导轨右端的水平距离x及开关拨到b后电阻R上产生的热Q R。
解:(1)电容器充电完毕后,电容器两端的电压等于电源的电动势,所以电容器的带电量:q=CE根据电容器的定义式:C=q /U所以:u=q,电压与电量成正比,所以画出u-q的图线如图:充电的过程中克服电场力做的功:W=qU所以图线与横坐标围成的面积即为电容器储存的能量.有:E0=EQ联立得:E0=CE2(3)根据平抛运动的规律可得由动量定理,It=q,q=EC联立解得由能量关系可知,此过程中R上产生的焦耳热:点睛:本题就是电磁感应与电路、力学知识的综合,解答的关键就是由电路的串联关系先求出电容器两端的电压,再根据动量定理及电量表达式求出导体棒最大速度.同时要搞清能量转化关系、8、某同学设计了一个电磁击发装置,其结构如图所示。
间距为L=10cm的平行长直导轨置于水平桌面上,导轨中NO与N′O′段用绝缘材料制成,其余部分均为导电金属材料,两种材料导轨平滑连接。
导轨左侧与匝数为100匝、半径为5cm 的圆形线圈相连,线圈内存在垂直线圈平面的匀强磁场。
电容为1F的电容器通过单刀双掷开关与导轨相连。
在轨道间MPP′M′矩形区域内存在垂直桌面向上的匀强磁场,磁感强度为2T。
磁场右侧边界PP′与OO′间距离为a =4cm。
初始时金属棒A处于NN′左侧某处,金属棒B处于OO'左侧距OO'距离为a处。
当开关与1连接时,圆形线圈中磁场随时间均匀变化,变化率为;稳定后将开关拨向2,金属棒A被弹出,与金属棒B相碰,并在B棒刚出磁场时A棒刚好运动到OO′处,最终A棒恰在PP′处停住。
已知两根金属棒的质量均为0.02kg、接入电路中的电阻均为0、1Ω,金属棒与金属导轨接触良好,其余电阻均不计,一切摩擦不计。
问:(1)当开关与1连接时,电容器电量就是多少?下极板带什么电?(2)金属棒A与B相碰后A棒的速度v就是多少?(3)电容器所剩电量Q′就是多少?【解析】(1)将开关拨向2 时A 棒会弹出说明所受安培力向右,电流向上,故电容器下板带正电;(2) A、B 棒相碰地方发生时没有构成回路,没有感应电流,A、B 棒均作匀速直线运动直至A 棒到达OO′处, 设碰后A 棒速度为v ,由于B 棒的位移就是A 棒的两倍,故B 棒速度就是2v。
A 棒过OO′ 后在安培力作用下减速。
由动量定理可知:即两边求与可得,即;(3) 设A 棒与B 棒碰前的速度为v0,碰撞过程动量守恒,则有:mv0=mv+2mv,可得A 棒在安培力作用下加速,则有:即两边求与得:得代入前面的数据可知,电容器所剩电量为。