模电第六章
模电第六章知识点总结
模电第六章知识点总结一、运算放大器(Operational Amplifier,简称Op Amp)1. 运算放大器的基本概念:运算放大器是一种主要用于进行信号放大、滤波、比较、积分等运算的集成电路。
它具有高输入阻抗、低输出阻抗、大增益、高共模抑制比和宽带宽等特点。
2. 运算放大器的基本结构:运算放大器通常由一个差分放大器和一个输出级组成。
差分放大器提供了高增益和高输入阻抗,而输出级则提供了低输出阻抗和大功率放大。
3. 运算放大器的理想特性:理想的运算放大器具有无穷大的输入阻抗、零的输入偏置电压、无穷大的增益、无限带宽和零的输出阻抗。
4. 运算放大器的实际特性:实际的运算放大器会受到限制,例如有限的共模抑制比、有限的带宽、输入偏置电压和温度漂移等。
5. 运算放大器的虚短片段模型:运算放大器可以用虚短片段模型来进行分析,其中将输入端和输出端分别连接到地和反馈节点,其他端口则可以忽略。
6. 运算放大器的常见应用:运算放大器常用于反馈放大电路、比较器电路、积分电路、微分电路、滤波电路等。
7. 运算放大器的反馈模式:运算放大器的反馈模式主要包括正反馈和负反馈。
负反馈可以稳定放大器的增益和频率特性,而正反馈则会增加放大器的增益和非线性失真。
二、电压比较器1. 电压比较器的基本概念:电压比较器是一种将两个电压进行比较,并输出相应逻辑电平的集成电路。
它通常具有高增益、快速响应和高输出驱动能力等特点。
2. 电压比较器的工作原理:电压比较器通过将两个输入电压进行比较,当一个电压高于另一个电压时,输出为高电平;反之则为低电平。
3. 电压比较器的应用:电压比较器广泛应用于电压检测、开关控制、信号处理、电压测量和触发器等领域。
总结:模电第六章主要介绍了运算放大器和电压比较器的基本概念、工作原理、特性和应用。
掌握这些知识点,可以为我们设计和分析各种电路提供基础。
同时,对于提高我们的工程能力和电子技术水平也是非常有用的。
模电第六章
第6章 放大电路中的反馈自测题一、已知交流负反馈由四种组态:A.电压串联负反馈;B.电压并联负反馈; C.电流串联负反馈;D.电流并联负反馈。
选择合适答案填入下列空格内。
1.欲得到电流-电压转换电路,应在放大电路中引入( B )。
2.欲将电压信号转换成与之成比例的电流信号,应在放大电路中引入( C )。
3.欲减小电路从信号源索取的电流,增大带负载能力,应在放大电路中引入( A )。
4.欲从信号源获得更大的电流,并稳定输出电流,应在放大电路中引入( D )。
二、判断图T6.2所示各电路中是否引入了反馈;若引入了反馈,则判断是正反馈还是负反馈;若引入了交流负反馈,则判断是哪种组态的负反馈,并求出反馈系数和深度负反馈条件下的电压放大倍数uf A 或usf A 。
设图中所有电容对交流信号均可视为短路。
(a) (b)(c) (d) 图T6.2解:图(a)所示电路中引入了电流串联负反馈。
反馈系数和深度负反馈条件下的电压放大倍数分别为:13123Fui O R R u F i R R R ==++; 12313O O L uf L I F u i R R R R A R u u R R ++==≈。
式中R L 为电流表的等效电阻。
图(b)所示电路中引入了电压并联负反馈。
反馈系数和深度负反馈条件下的电压放大倍数分别为:21F iu O i F u R =≈-; 2111O O O uf I I F u u u R A u i R i R R ==≈=-图(c)所示电路中引入了电压串联负反馈。
反馈系数和深度负反馈条件下的电压放大倍数分别为:1O uu Fu F u == 1O O uf I I u uA u u =≈=图(d)所示电路中引入了正反馈。
三、电路如图T6.3 所示。
图T6.3(1)正确接入信号源和反馈,使电路的输入电阻增大,输出电阻减小;(2)若20ou iU A U ==,则R f 应取多少千欧?解:(1)应引入电压串联负反馈,如解图T6.3所示。
《模拟电子技术基础》(第四版)第6章
反馈系数 F= xf / xo
xd , xi , x f 可同为电压(或电流),xo 为电压(或电流)
反馈的极性判断
正反馈 xd = xi + xf xf加强了xi的作用
必须xf与xi同相
AF 0
负反馈 xd = xi – xf
必须xf与xi同相
xf削弱了xi的作用
AF 0
负反馈闭环放大倍数
RF
uo
1. 有交流反馈
RL
2. 组态判断输出端: uo=0时,反馈不存在了,电压反馈; (uo是对地的电压,反馈支路与uo有交叉点,电压反馈);
输入端: 反馈支路与ui有交叉点,并联反馈; (输入ui和反馈都加在uN(交叉点)上,并联反馈)
交叉点以左为信号源
ii +
u_o
ui R1 if
RL
RF
第六章 放大电路中的反馈
{ 反馈 负反馈
第8章 第6,7章
反馈的极性
{ 反馈
直流反馈 交流反馈
稳定Q点 稳定和改善交流指标
{ 交流负反馈的组态
电压串联负反馈 电压并联负反馈 电流串联负反馈
电流并联负反馈
{ 交流正反馈的组态
电压串联正反馈 电压并联正反馈
电流串联正反馈
电流并联正反馈
为什么要加交流负反馈? 改善放大电路的性能
F
io 在放大器输出端
RL
u F与A串联 o R当uo=0时,反馈仍然存在
当io=0时,反馈不存在了
在放大器输入端 电压 ud ,ui , u f ,KVL(回路形式) 反馈支路与ui无交叉点 反馈与输入加在A的不同点上
电流反馈
串联反馈
ud A
RS
模电chapter6-lbj
+U Rf Cl + Rs + Us - + Ui -
CC
Rc C2 + + RL Uo - Rs + Us - Cl + Ui -
Rb +
Rc
+ UCC C + 2 + RL Uo -
Re
(a)
(b)
图 6 – 2 反馈电路举例
2. 负反馈和正反馈
若反馈信号使净输入信号减弱, 则为负反馈;若反馈信号使净输入 信号加强, 则为正反馈。负反馈多用于改善放大器的性能;正反馈多用 于振荡电路。 反馈极性的判定多用瞬时极性法, 其步骤如下: (1) 首先在基本放大器输入端设定一个递增(或递减)的净输入信号, 对 并联反馈, 设定一个电流信号; 对串联反馈, 设定一个电压信号。 (2) 在上述设定下, 推演出反馈信号的变化极性。 (3) 判定在反馈信号的影响下, 净输入信号的变化极性。 若该极性与 前面设定的变化极性相反, 则为负反馈;若相同, 则为正反馈。
Ii Rs Us + - 反馈网络 If I′i Xo
基本放大器
图 6 – 7 并联反馈示意图
I Ii I f
' i
(3) 串联反馈和并联反馈的判定方法: 对于交变分量而言,若信号源的输出端和反馈网络的
比较端接于同一个放大器件的同一个电极上,则为并联反
馈;否则,为串联反馈。 按此方法可以判定,图 6-2(a)是并联反馈,图 6-2(b) 是串联反馈。
可见, 引入电压负反馈后可使输出电阻减小到ro/
(1+AoF) 。不同的反馈形式,其Ao、F的含义不同。串联
电压负反馈F=Fu=Uf/Uo, Ao=Au=Uo/Ui′; 并联电压负反馈 F=Fg=If/Uo, Ao=Ar=Uo/Ii′。
+U Rf Cl + Rs + Us - + Ui -
模电 第6章
uo ui ±UZ R1 R -+ + R2
∞
uo
R1
思考题:如何计算上下限? 思考题:如何计算上下限?
(6-27)
§6.4 精密整流电路
一、线性检波(半波整流 )电路 线性检波 半波整流 电路
普通半波整流电路的缺陷: 普通半波整流电路的缺陷:
D
ui ~
-
+
+ RL -
uo
1. 由于硅二极管的正向导通电 压不小于 0.5V ,当 Ui 小于 1V 时, UO 误差很大。 误差很大。 2. 二极管作为一个半导体元件, 二极管作为一个半导体元件, 它很容易受到温度的影响, 它很容易受到温度的影响, 它还具有非线性特性。 它还具有非线性特性。
(6-23)
R2 R1 ui + U om = 0 R1 + R2 R1 + R2
R ui R1
-+ + R2
∞
uo
uo
Uom
上下门限电压: 上下门限电压:
UL
UH
R1 UH = U om R2 R1 UL = − U om R2
0
-Uom 传输特性曲线
ui
(6-24)
2. 加上参考电压后的上行迟滞比较器 当uo= -UOM时: UR ui R1 R -+ + R2
(6-9)
二、 若ui从反相端输入
uo
+Uom
UR
+
∞
+
ui
uo
-Uom
0
UR
ui
当ui < UR时 , uo = +Uom 当ui >UR时 , uo = -Uom
模拟电子技术第06章
电阻,R′= Rf∥R1。
图6.3 同相比例运算电路
比例系数取决于电阻Rf与R1阻值之比。 同相比例运算电路中引入了电压串联 负反馈,故可以进一步提高电路的输入电 阻,降低输出电阻,Ri=∞,Ro=0。 图6.3中,若R1=∞或Rf=0,则uo=ui , 此时电路构成电压跟随器,如图6.4所示。
图6.16 一阶高通滤波电路
与低通滤波电路类似,一阶电路在低 频处衰减较慢,为使其幅频特性更接近于 理想特性,可再增加一级RC组成二阶滤波 电路如图6.17所示。
欲得到更加理想的滤波特性,可将多 个一阶或二阶滤波电路串接起来组成高阶 高通滤波器。
图6.17 二阶高通滤波电路
3.带通和带阻滤波电路
由于理想运放的输入电阻 rid=ric=∞, 而加到运放输入端的电压u+-u- 有限,所以 运放两个输入端的电流:
i+=i-≈0
这一特性称为理想运放输入端的“虚断”。
2.运放工作在非线性工作区时的特点
在非线性工作区,运放的输入信号超 出了线性放大的范围,输出电压不再随输 入电压线性变化,而是达到饱和,输出电 压为正向饱和压降UOH (正向最大输出电 压)或负向饱和压降UOL (负向最大输出 电压),如图6.1所示。
图6.24 简单过零比较器电路和输入、输出波形
6.3.2 滞回比较器(迟滞比较器)
单限比较器电路简单,灵敏度高,但 其抗干扰能力差。如果输入电压受到干扰 或噪声的影响,在门限电平上下波动,则 输出电压将在高、低两个电平之间反复跳 变,如图6.25所示。若用此输出电压控制 电机等设备,将出现误操作。为解决这一 问题,常常采用滞回电压比较器。
模电课件 第六章
c2 c1
i +
V1
V2
c1
u-id
I
-UEE
I
I
I
ic1 1 ic 2 ic1
uBE 2 uBE 1
1 e UT
uid
1 e UT
I
I
I
ic 2 1 ic1 ic 2
uBE 1 uBE 2
1 e UT
uid
1 eUT
第六章 集成运算放大器电路原理
iC1,iC2 I
iC2
iC1
I
Ir
Ir
第六章 集成运算放大器电路原理 多集电极晶体管镜像电流源
3.比例电流源
第六章 集成运算放大器电路原理
UBE1 IE1R1 UBE2 IE2R2 U BE1 U BE 2
IE1R1 IE2R2
IC2
IE2
R1
I E1
R1 R2
Ir
Ir
UCC U BE1 Rr R1
4.微电流电流源
第六章 集成运算放大器电路原理
第六章 集成运算放大器电路原理
iC1,iC2
第六章 集成运算放大器电I 路原理
iC2 Q
iC1
I 2
iC1
iC2
6 UT 4 UT2 UT 0 2UT 4UT 6UT uid
可见,增益AU正比于恒流源电流I。那 么,改变I就可以控制增益。
如果使I受到另外一个信号ub的控制, 那么就可以实现信号的相乘。
)(UGS
UGSTH )2
W1
W2
L1
L2
IO W2 / L2 Ir W1 / L1
二. CMOS共源放大第器六章 集成运算放大器电路原理
第六章 集成运算放大器电路原理 三.CMOS差动放大器
模电第六章 基于集成运算放大器的有源 滤波器分析与设计
相频响应
arctg
1 0 /
0 / Q
2
第六章
基于集成运算放大器的有源 滤波器分析与设计
三、二阶Sallen-Key带通滤波器
高通
反馈
设 Y 1 1/ R 1
Y2 1 R2 Y3 sC3 Y4 sC4 Y5 1 R5
得到二阶有源带通滤波电路
5、设计有源滤波器比设计LC滤波器更具灵活性,也可得到电 压增益。
第六章
基于集成运算放大器的有源 滤波器分析与设计
4.滤波器的用途 滤波器主要用来滤除信号中无用的频率成分,例 如,有一个较低频率的信号,其中包含一些较高频率 成分的干扰。滤波过程如图所示。
第六章
基于集成运算放大器的有源 滤波器分析与设计
第六章
基于集成运算放大器的有源 滤波器分析与设计
稳态响应
H ( j ) H (0 ) 1 jQ 0 0
幅频响应
H ( j ) H (0 ) 1 Q2 0 0
2
相频响应
arctgQ
低通
第六章
基于集成运算放大器的有源 滤波器分析与设计
A1 A0 通带 O 测评 通带 阻带 阻带
有源带通滤波电路可理解为
由低通和高通串联得到
1
1 低通特征角频率 1 R1C 1 1 高通特征角频率 2 R2 C 2
必须满足
A2 A0
阻 碍 阴
通带 阻 碍 测评 O 2 阴 阻 碍 A A0 阴 通带 阻带 O 阻 碍
低通(LPF) 高通(HPF) 带通(BPF) 带阻(BEF) 全通(APF)
第六章
基于集成运算放大器的有源 滤波器分析与设计
《模拟电子技术》课件第6章 集成运算放大电路
IE2
IE1Re1 Re2
VT Re2
ln
IE1 IE2
§6.2 电流源电路
IR R
IC1
T1
IE1 Re1
IB1 IB2
VCC
I C 2=IO
T2
IE2 Re2
当值足够大时
IR IC1 IE 1 IO IC2 IE 2
IO
IR
Re1 Re2
VT Re2
ln
IR IO
IO
IR
Re1 Re2
四、微电流源
R c + vo R c
VCC
Rs
+
vi1
T1 RL T2
Rs
+
vi2
Re
VEE
2、差模信号和共模信号的概念
vid = vi1 vi2 差模信号
vic
=
1 2
(vi1
vi2 )
共模信号
Avd
=
vod vid
差模电压增益
其中vod ——差模信号产生的输出
Avc
=
voc vic
共模电压增益
总输出电压
IE3
IC2
IC1
1
IC2
2
IC 1
2 IC1 β
IO
1
IR 2
2
2
IR
IC1
T1
R IB3
T3
IE3
IB1 IB2
V CC IO= IC2 = IC1
T2
IR R
IC1
IB3
T1 I B1
VCC
IO
T3
IE3 IC2
T2 IB2
三、比例电流源
精品课件-模拟电子技术-第6章
第六章 集成运算放大器
6.2.2 长尾式差动放大电路
图6 – 5 长尾式差动放大电路
第六章 集成运算放大器
1. 静态工作点的稳定性
静态时, 输入短路, 由于流过电阻Re的电流为IE1 和IE2之和, 且电路对称,IE1=IE2,故
U EE U BE 2I R E1 e I B Rs1
I B1
(1)由于电路难以绝对对称,所以输出仍然存在零漂。 (2)由于每一管子没有采取消除零漂的措施,所以当温度 变化范围十分大时,有可能差动放大管进入截止或饱和,使放 大电路失去放大能力。 (3)在实际工作中,常常需要对地输出,即从c1或c2对地输 出(这种输出我们称为单端输出),而这时的零漂与单管放大电 路的一样,仍然十分严重。 为此,人们又提出了长尾式差动放大电路。
第六章 集成运算放大器
第六章 集成运算放大器
6.1 零点漂移 6.2 差动放大电路 6.3 电流源电路 6.4 集成运算放大器介绍 6.5 集成运放的性能指标
第六章 集成运算放大器
图6-1 集成运放框图
第六章 集成运算放大器
6.1 零点漂移
运算放大器均是采用直接耦合方式。在第二章对直接耦 合方式的特点及问题作了介绍,这里主要讨论直接耦合放大电 路的零点漂移问题。
第六章 集成运算放大器
图6 – 3 差动放大电路的基本形式
第六章 集成运算放大器
1. 共模信号及共模电压放大倍数Auc 所谓共模信号,是指在差动放大管V1和V2的基极接入幅度 相等、极性相同的信号,如图6-4(a)所示,即
Uic1 Uic2
下标ic表示为共模输入信号。通常,共模信号都是无用信号。
I E1
1
,
Rs1 Rs2 Rs
模电第六章(童诗白)讲解的ppt
& Xd
& Xf
& A & F
& Uo
电流反馈
电压反馈
Back
Next
Home
5
• 对输出端的影响:串联反馈在输入级与反馈网络的连接 对输出端的影响: 处断开;并联反馈使输入端对地短路。 处断开;并联反馈使输入端对地短路。
+ +
& Ud
+ & U -
& A
f
& Xo
& Ii
& Id
& If
& Xo
解:据图示瞬时极性: 据图示瞬时极性:
& & & Ib = (Ii − I f ) ↓
所以,为并联负反馈。 所以,为并联负反馈。 & 短路, 若将 U 0 短路,同时将输 入信号接地, 入信号接地 , 使输入量对 反馈网络的影响, 反馈网络的影响,则:
C1 Rs + us –
I& f
& Ic2
I&i I&b
6.1 反馈的基本概念及判断方法 6.2 负反馈放大电路的四种基本组态 6.3 负反馈放大电路的计算 6.4 深度负反馈放大电路放大倍数 的分析 6.5 负反馈对放大电路性能的影响 6.6 负反馈放大电路的稳定性 6.7* 放大电路中其它形式的负反 馈 本章小结 内容简介
Home
内容简介
Home
1
Back
Next
Home
4
2. 基本放大电路的计算
(1) 开环时反馈网络的负载效应
• 对输入端的影响:电流反馈使输出电流所在回路开路; 对输入端的影响:电流反馈使输出电流所在回路开路; 电压反馈使输出端短路。 电压反馈使输出端短路。
模拟电子技术课件第六章
+ R2 Uz R2 + R3
R2
R3 +Uz
电容C放电,uC下降
u 当uC=u-<u+时, O=UZ
返回电容C充电状态。
R2 Uz R2 + R3
3. 周期与频率的计算(P182 自学)
26
6.5.1 矩形波产生电路
4. 占空比可变的矩形波产生电路
2
6.2 正弦波振荡电路的振荡条件(P172)
正弦波振荡电路就是一个无输入信号的正反馈放大器 。
Xi = 0
•
• •
•
•
•
X i′
Xo
X i′
•
A
•
A
Xo
Xf
•
•
Xf
•
F
F
自激振荡的条件: 而X f = FX o = FAXi '
X f = Xi '
即 AF = 1
3
1. 振荡条件
AF = 1
因为: A(ω ) = | A | ∠ϕ A
14
6.4.1 变压器反馈式LC振荡电路
Is
1 LC并联回路选频特性
等效阻抗
1 ( R + jωL) jωC Z= 1 + R + jωL jωC
一般有 R << ωL 则
Z= L C 1 ) ωC
•
U
R + j(ωL −
当 ω = ω0 = 谐振时
1 LC
时, 电路谐振。 ω 0 =
1 LC
为谐振频率
首端 L1 中间端 L2 尾端 C
模电课件第6章
所以IC2也很小。
ro≈rce2(1+
Re2 )
rbe2 Re2
(参考射极偏置共射放大电路的输出电阻 R)o
当电源电压发生变化时,IC2的变化远小于IREF的变化,电
源电压波动对IC2影响不大,故:此电流源有很高的恒定性。
6.1.1 BJT电流源电路
3. 高输出阻抗电流源
IR EF V CC V B3E R V B E 2 V EE
电流源:是指电流恒定的电源
电流源的作用
为放大电路提供稳定的偏置电流
可作为放大电路的有源负载,以 便提高放大电路的电压增益
电流源的特点: 直流电阻小,交流电阻大
6.1.1 BJT电流源电路
CH6 模拟集成电路
1. 镜像电流源
T1、T2的参数全同 即β1=β2,ICEO1=ICEO2
VB E2=VB E1 IE2 = IE1 IC2 =IC1
CH6 模拟集成电路
1. MOSFET镜像电流源
IOID 2IRE F V D DV R SS V G S
当器件具有不同的宽长比时
IO
W2 W1
/ /
L2 L1
IRE
F
(=0)
ro= rds2
MOSFET基本镜像电路流
6.1.2 FET电流源电路
1. MOSFET镜像电流源
用T3代替R,T1~T3特性相同,
CH6 模拟集成电路
6.2.1 差分式放大电路的一般结构
1. 用三端器件组成的差分式放大电路
由于电源具有恒流 特性,并带有高阻 值的动态输出电阻, 因而电路具有稳定 的直流偏置和很强 的抑制共模信号的 能力。
CH6 模拟集成电路
一般集成运算放大器都采用直接耦合方式,即级—级之间 不用任何耦合件,这样信号损失小,效率高,频响好,频带宽。 但前后级Q点会相互影响,产生零点漂移,即当温度变化使第一 级放大器静态点发生微小变化时,这种变化量会被后面的电路逐 级放大,最终在输出端产生较大的电压漂移 。
模电第六章_ppt课件
Rc 2 v o1 rbe 2 v i1
以双倍的元器件换 取抑制零漂的能力
接入负载时
1 β(R c || R L) 2 A vd = r be
<B> 双入、单出
v o1 vo 1 Rc 1 Avd1 = Av d vid 2 v i1 2 2 rbe
V = V BE2 BE1
则 I =I E2 E1 , IC2= IC1
I R EF I C 1 2 I B IC2 2 IB
2 I C 2 (1 ) 当 2 时,IC2和IREF是镜像关系。
6.1.1 BJT电流源电路
1. 镜像电流源
当BJT的β较大时,基极电流IB可以忽略
6.2 差分式放大电路
6.2.0 概述 6.2.1 差分式放大电路的一般结构 6.2.2 射极耦合差分式放大电路 6.2.3 源极耦合差分式放大电路
6.2.0 概述
1. 直接耦合放大电路
# 为什么一般的集成运 算放大器都要采用直接 耦合方式?
可以放大直流信号
2.直接耦合放大电路 电源电压波动 的零点漂移 也是原因之一
V V ( V ) V V CC BE E E CC E E Io=IC2≈IREF= R R
无论C2支路的负载值如何, IC2的电 流值将保持不变。
代表符号
动态(交流)电阻
i 1 C 2 r ( ) o I B 2 v CE 2
rce
一般ro在几百千欧以上
差模输入电阻
不论是单端输入还是双端输入,差模输入电阻Rid是基本放 大电路的两倍。
R r id = 2 be
模电第六章集成运算放大电路1
把整个电路中的元器件制作在一块硅基片上, 构成特定功能的电子电路,称为集成电路(IC -Integrated Circuits)。它的体积小,而性 能却很好。
集成电路按其功能来分,有数字集成电路和 模拟集成电路。模拟集成电路种类繁多,有 运算放大器、宽频带放大器、功率放大器、 模拟乘法器、模拟锁相环、模—数和数—模 转换器、稳压电源和音像设备中常用的其他 模拟集成电路等。
ID2 = W L 2 Kn' 2 VGS2 -VT 2 2 / 2 = Kn2 VGS2 -VT 2 2
ID2 =
W
L
2
K
' n2
VGS 2
-VT 2
2 /2
= Kn2 VGS2 -VT 2 2
图6.1.5 MOSFET 镜像电流源
常用电路
2.MOSFET多路电流源
电路如图6.1.6所示, 它是6.1.5b所
用途:1.电流源具有直流电阻小,交流电阻大的 特点;作有源负载 镜像电流源
共射电路的电压增益为:
A V
=
Vo Vi
=
- b (Rc // RL )
rbe
对于此电路Rc就是镜 像电流源的交流电阻,
因此增益为
A V
=
-
bRL
rbe
放大管
比用电阻Rc作负载时提高了。
2.用作偏置电路
例:图中电路为F007偏置
示镜像电流源电路的扩展。基准电流
IREF由T0和T1以及正、负电源确定,根 据前述各管漏极电流近似地与其宽长比
(W/L)成比例的关系,则有
W2
W3
ID2
= L2 W1 L1
I REF ;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
理想情况:vo= Avdvid=Avd(vi1-vi2);Avd差模电压增益 放大电路两个输入端所共有的任何信号对输出电压无 影响。(如共有的干扰信号) 实际情况:vo=Avdvid+ Avcvic ;Avd差模电压增益,Avc共模电压 增益。 其中, 差模信号vid=vi1 -vi2 ,共模信号vic=1/2(vi1 +vi2)
I E2 Re2 VBE1 VBE2 VBE
IO IC2 I E2
VBE Re2
由于 VBE 很小,所以IC2也很小。
4. 电流源作有源负载
镜像电流源
用三极管代替负载 电阻RC ,组成有源 负载,获得较高的 电压放大倍数 + 共射电路的电压增益为: vi -
+VCC VT3 R VT1
当 2 时,IC2和IREF是镜像关系。
6.1.1 BJT电流源电路
1. 镜像电流源
当BJT的β较大时,基极电流IB可以忽略
VCC VBE ( VEE ) VCC VEE Io=IC2≈IREF= R R
无论C2支路的负载值如何, IC2的电 流值将保持不变。
代表符号
则vid=vi1 -vi2=100μV ,vic=1/2(vi1 +vi2)=0
如vi1=+ 1050μV,vi2= + 950μV, 则vid=vi1 -vi2=100μV ,vic=1000μV 两种情况下输出电压是不同的。(除非共模增益为零)
动画
6.2.1 差分式放大电路的一般结构
1. 用三端器件组成的差分式放大电路
1=2=
VBE1=VBE2= VBE rbe1= rbe2= rbe ICBO1=ICBO2= ICBO Rc1=Rc2= Rc
信号的输入方式:若信号同 时从两个输入端输入,称为 双端输入; 若信号仅从一 个输入端对地加入,称为单 端输入。 信号的输出方式:差分放大电路可以有两个输出端,一 个是集电极C1,另一个是集电极C2。从C1 和C2输出称为 双端输出,仅从集电极 C1或C2 对地输出称为单端输出。
1. 镜像电流源
镜像电流源电路的特点是工 作三极管的集电极电流是电流源 电路电流的镜像(相等)。 T1、T2的参数完全相同(对管)
即β 1=β 2,ICEO1=ICEO2
VBE2 = VBE1
则I E2 = I E1 , I C2 = I C1
I R EF I C 1 2 I B IC2 2 IB I C 2 (1 2 )
传输特性——输出差模信号随输入差模信号变化的曲线 根据三极管vBE 与iE的基本关系 iE I ES evBE /VT 得:
vBE1= vi1= vid/2 vBE2= vi2 = -vid/2 又 vO1=VCC-iC1Rc1 vO2=VCC-iC2Rc2 可得传输特性曲线 vO1,vO2=f(vid)
Rc
双端输出时,Ro 2 Rc
(2)共模电压增益 <A> 双端输出 共模信号的输入使
两管集电极电压有相同的
变化。 所以
voc voc1 voc2 0
共模增益
voc Avc 0 vic
<B> 单端输出
voc1 voc2 Avc1 vic vic
Rc Rc rbe (1 )2ro 2 ro
dB
双端输出,理想情况
单端输出
K CMR
Avd1 Avc1
K CMR
ro
rbe
K CMR 越大, 抑制零漂能力 越强
对差分放大器,人为只加差模信号(放大),所谓共 模输入实际上是外界的干扰信号,应抑制。
(4)频率响应 高频响应与共射电路相同,低频可放大直流信号。
6.3 差分式放大电路的传输特性
+ vi1
+ vid -
差放
+ -
vo + vo2 -
+
vo1 -
-
+ vi2 -
2. 有关概念 vid = vi1 vi2 差模信号
1 vic = (vi1 vi2 ) 共模信号 2 vod Avd = vid 差模电压增益 voc Avc = 共模电压增益 vic
其中 v od ——差模信号产生的输出
很大的变化。当输入短路时(由于一些原因使输入
级的Q点发生微弱变化 ,如:温度),输出将随时 间缓慢变化,这样就形成了零点漂移。
产生零漂的主要原因是:晶体三极管的参数受
温度的影响。
例如 假设
漂移 10 mV+100 μV
漂移 1 V+ 10 mV
AV1 = 100, AV2 = 100, AV3 = 1 。
6.1 模拟集成电路中的直流偏置技术
6.2 差分式放大电路
6.3 差分式放大电路的传输特性 6.4 集成电路运算放大器 6.5 实际集成运算放大器的主要参数和对应用电路 的影响 6.6 变跨导式模拟乘法器 6.7 放大器中的噪声和干扰
集成电路
集成电路:把整个电路中的元器件制作在一块硅基片上,
完成特定功能的电子电路。 按功能分为数字集成电路和模拟集成电路。 在模拟集成电路中集成运放是应用极为广泛的一种。
vO1,vO2=f(vid)的传输特性曲线
从传输特性可以看出; 1、 vid vi 1 vi 2 0 时,电路处于静态,即Q态 2、vid在0~±VT范围变化时,vo1、vo2与vid呈线性关系, 放大电路工作在放大区,放大倍数越大,曲线越陡,线 性区越窄,动态范围小。 反之:放大倍数越小,曲线越缓,线性区越宽,动态 范围大。 3、当vid≥4VT时,差分放大电路具有限幅特性。
VT2
+ vo 放大管
vo ( Rc // RL ) AV = rbe vi
6.2 差分式放大电路
6.2.0 概述 6.2.1 差分式放大电路的一般结构 6.2.2 射极耦合差分式放大电路 6.2.3 源极耦合差分式放大电路
6.2.0 概述
1. 直接耦合放大电路
# 为什么一般的集成运 算放大器都要采用直接 耦合方式?
I B1 I B2
IC β
Vo = 0
动态 仅输入差模信号, v i1 和 v i2 大小相等,相位相反。 vc1 和 vc2 大小相等, 相位相反。 vo vc1 vc2 0 ,
信号被放大。 仅输入共模信号, vo
vc1 vc2 0
2.
抑制零点漂移原理 温度变化和电源电压波
差模信号和共模信号 差模信号是指在两个输入端加上幅度相等,极性相反的信号; 共模信号是指在两个输入端加上幅度相等,极性相同的信号。
差分放大电路仅对差模信号具有放大能力,对共模信号不予放大。
温度对差分式放大电路输入端的影响相 当于加入了共模信号。差分式放大电路抑制 共模信号,放大差模信号,是模拟集成运算 放大电路输入级所采用的电路形式。
以双倍的元器件换 取抑制零漂的能力
接入负载时
1 β ( Rc || RL ) 2 Avd = rbe
<B> 双入、单出
Avd1 Avd2
vo1 1 vo1 Rc = Avd vid 2vi1 2 2rbe
vo2 Rc = vid 2 rbe
接入负载时
Avd1
β ( Rc || RL ) = 2 rbe
ro Avc1
抑制零漂能力增强
共模输入电阻 不论是单端输入还 是双端输入,共模输 入电阻Ric为
Ric 1 = [rbe + (1 + β )2ro ] 2
共模输出电阻 单端输出时, Ro
Rc
双端输出时,Ro 2 Rc
(3)共模抑制比
K CMR Avd Avc
K CMR
Avd 20 lg Avc
将差分信号转换为 单端输出信号。
<C> 单端输入
ro很大,ro支路相当于 开路,输入信号近似 均匀地分在两管的输 入回路上。
单端输入等效于双 端输入,指标计算 与双端输入相同。
差模输入电阻
不论是单端输入还是双端输入,差模输入电阻Rid是基本放 大电路的两倍。
Rid = 2rbe
差模输出电阻 单端输出时, Ro
差分放大电路的工作状 态分差模和共模两种:
差分放大电路的差模工作状态分为四种 1. 双端输入、双端输出(双—双) 2. 双端输入、单端输出(双—单) 3. 单端输入、双端输出(单—双) 4. 单端输入、单端输出(单—单)
静态
I C1 = I C2
1 IC IO 2
VCE1 = VCE2
VCC IC Rc2 VE VCC IC Rc2 (0.7V)Biblioteka 若第一级漂了100 μV,
则输出漂移 1 V。
漂了 100 μV
若第二级也漂了100 μV, 则输出漂移 10 mV。
第一级是关键
漂移 1 V+ 10 mV
3、 减小零漂的措施
用非线性元件进行温度补偿 调制解调方式。如“斩波稳零放大器”
采用差分式放大电路
4、 差分式放大电路中的一般概念
可见,差分放大电路对差模输入信号有一定的要求。
6.4 集成电路运算放大器
6.4.1 CMOS MC14573集成电路运算放大器
6.4.2 BJTLM741集成运算放大器
1、方框图
特点: 电压增益高 输入电阻大
输出电阻小
运算放大器是由直接耦合多级放大电路集成制造 的高增益放大器,它是模拟集成电路最重要的品种, 广泛应用于各种电子电路之中。
总输出电压
vo = vod voc Avdvid Avcvic