柱体、椎体、台体、球体的体积和球的表面积

合集下载

柱体、锥体、台体、球的体积与球的表面积

柱体、锥体、台体、球的体积与球的表面积

柱体、锥体、台体、球的体积与球的表面积学习目标 1.掌握柱体、锥体、台体的体积公式,会利用它们求有关几何体的体积.2.了解球的表面积与体积公式,并能应用它们求球的表面积及体积.3.会求简单组合体的体积及表面积.知识点一 柱体、锥体、台体的体积公式1.柱体的体积公式V =Sh (S 为底面面积,h 为高); 2.锥体的体积公式V =13Sh (S 为底面面积,h 为高);3.台体的体积公式V =13(S ′+S ′S +S )h (S ′、S 为上、下底面面积,h 为高);4.柱体、锥体、台体的体积公式之间的关系V =ShV =13(S ′+S ′S +S )hV =13Sh .知识点二 球的表面积和体积公式1.球的表面积公式S =4πR 2(R 为球的半径); 2.球的体积公式V =43πR 3.类型一 柱体、锥体、台体的体积例1 (1)如图所示,已知三棱柱ABC -A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1-ABC 1的体积为( )A.312B.34C.612D.64答案 A解析 三棱锥B 1-ABC 1的体积等于三棱锥A -B 1BC 1的体积,三棱锥A -B 1BC 1的高为32,底面积为12,故其体积为13×12×32=312.(2)现有一个底面直径为20 cm 的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为6 cm ,高为20 cm 的圆锥形铅锤,铅锤完全浸没在水中.当铅锤从水中取出后,杯里的水将下降( )A .0.6 cmB .0.15 cmC .1.2 cmD .0.3 cm 答案 A解析 设杯里的水下降h cm ,由题意知π(202)2h =13×20×π×32,解得h =0.6 cm.反思与感悟 (1)常见的求几何体体积的方法 ①公式法:直接代入公式求解.②等积法:如四面体的任何一个面都可以作为底面,只需选用底面积和高都易求的形式即可. ③分割法:将几何体分割成易求解的几部分,分别求体积. (2)求几何体体积时需注意的问题柱、锥、台体的体积的计算,一般要找出相应的底面和高,要充分利用截面、轴截面,求出所需要的量,最后代入公式计算.跟踪训练1 (1)如图所示,在长方体ABCD -A ′B ′C ′D ′中,用截面截下一个棱锥C -A ′DD ′,求棱锥C -A ′DD ′的体积与剩余部分的体积之比.解 设AB =a ,AD =b ,AA ′=c , ∴V C -A ′D ′D =13CD ·S △A ′D ′D =13a ·12bc =16abc ,∴剩余部分的体积为V ABCD -A ′B ′C ′D ′-V C -A ′D ′D =abc -16abc =56abc ,∴棱锥C -A ′DD ′的体积与剩余部分的体积之比为1∶5.(2)已知一个三棱台上、下底面分别是边长为20 cm 和30 cm 的正三角形,侧面是全等的等腰梯形,且侧面面积等于上、下底面面积之和,求棱台的高和体积.解 如图,在三棱台ABC -A ′B ′C ′中,取上、下底面的中心分别为O ′,O ,BC ,B ′C ′的中点分别为D ,D ′,则DD ′是梯形BCC ′B ′的高. 所以S 侧=3×12×(20+30)×DD ′=75DD ′.又因为A ′B ′=20 cm ,AB =30 cm ,则上、下底面面积之和为S 上+S 下=34×(202+302)=3253(cm 2).由S 侧=S 上+S 下,得75DD ′=3253,所以DD ′=1333(cm),O ′D ′=36×20=1033(cm),OD =36×30=53(cm), 所以棱台的高h =O ′O =D ′D 2-(OD -O ′D ′)2 =(1333)2-(53-1033)2=43(cm). 由棱台的体积公式,可得棱台的体积为V =h 3(S 上+S 下+S 上·S 下)=433×(34×202+34×302+34×20×30)=1 900(cm 3).类型二 球的表面积与体积命题角度1 与球有关的切、接问题例2 (1)求球与它的外切等边圆锥(轴截面是正三角形的圆锥叫等边圆锥)的体积之比.解 如图等边△ABC 为圆锥的轴截面,截球面得圆O . 设球的半径OE =R , OA =OE sin 30°=2OE =2R ,∴AD =OA +OD =2R +R =3R , BD =AD ·tan 30°=3R , ∴V 球=43πR 3,V 圆锥=13π·BD 2×AD =13π(3R )2×3R =3πR 3,则V 球∶V 圆锥=4∶9.(2)设长方体的长、宽、高分别为2a ,a ,a ,其顶点都在一个球面上,则该球的表面积为( )A .3πa 2B .6πa 2C .12πa 2D .24πa 2 答案 B解析 长方体的体对角线是其外接球的直径,由长方体的体对角线为(2a )2+a 2+a 2=6a , 得球的半径为62a ,则球的表面积为4π(62a )2=6πa 2. 反思与感悟 (1)正方体的内切球球与正方体的六个面都相切,称球为正方体的内切球,此时球的半径为r 1=a2,过在一个平面上的四个切点作截面如图①. (2)球与正方体的各条棱相切球与正方体的各条棱相切于各棱的中点,过球心作正方体的对角面有r 2=22a ,如图②. (3)长方体的外接球长方体的八个顶点都在球面上,称球为长方体的外接球,根据球的定义可知,长方体的体对角线是球的直径,若长方体过同一顶点的三条棱长为a ,b ,c ,则过球心作长方体的对角面有球的半径为r 3=12a 2+b 2+c 2,如图③.(4)正方体的外接球正方体棱长a 与外接球半径R 的关系为2R =3a . (5)正四面体的外接球正四面体的棱长a 与外接球半径R 的关系为2R =62a . 跟踪训练2 (1)正方体的内切球与其外接球的体积之比为( ) A .1∶ 3 B .1∶3 C .1∶3 3 D .1∶9 答案 C解析 设正方体的棱长为1,则正方体内切球的半径为棱长的一半即为12,外接球的直径为正方体的体对角线, ∴外接球的半径为32, ∴其体积比为43π×(12)3∶43π×(32)3=1∶3 3.(2)长方体的共顶点的三个侧面面积分别为3、5、15,则它的外接球表面积为_______. 答案 9π解析 设长方体共顶点的三条棱长分别为a 、b 、c ,则⎩⎨⎧ab =3,bc =5,ac =15,解得⎩⎨⎧a =3,b =1,c =5,∴外接球半径为a 2+b 2+c 22=32,∴外接球表面积为4π×(32)2=9π.命题角度2 球的截面例3 在球内有相距9 cm 的两个平行截面面积分别为49π cm 2和400π cm 2,求此球的表面积. 解 方法一 (1)若两截面位于球心的同侧,如图(1)所示的是经过球心O 的大圆截面,C ,C 1分别是两平行截面的圆心,设球的半径为R cm ,截面圆的半径分别为r cm ,r 1 cm.由πr 21=49π,得r 1=7(r 1=-7舍去), 由πr 2=400π,得r =20(r =-20舍去).在Rt △OB 1C 1中,OC 1=R 2-r 21=R 2-49,在Rt △OBC 中,OC =R 2-r 2=R 2-400.由题意可知OC 1-OC =9,即R 2-49-R 2-400=9, 解此方程,取正值得R =25.(2)若球心在截面之间,如图(2)所示,OC 1=R 2-49,OC =R 2-400.由题意可知OC 1+OC =9, 即R 2-49+R 2-400=9.整理,得R 2-400=-15,此方程无解,这说明第二种情况不存在.综上所述,此球的半径为25 cm.∴S球=4πR2=4π×252=2 500π(cm2).方法二(1)若截面位于球心的同侧,同方法一,得OC21=R2-49,OC2=R2-400,两式相减,得OC21-OC2=400-49⇔(OC1+OC)(OC1-OC)=351.又OC1-OC=9,∴OC1+OC=39,解得OC1=24,OC=15,∴R2=OC2+r2=152+202=625,∴R=25 cm.(以下略)反思与感悟设球的截面圆上一点A,球心为O,截面圆心为O1,则△AO1O是以O1为直角顶点的直角三角形,解答球的截面问题时,常用该直角三角形求解,并常用过球心和截面圆心的轴截面.跟踪训练3把本例的条件改为“球的半径为5,两个平行截面的周长分别为6π和8π”,则两平行截面间的距离是()A.1 B.2 C.1或7 D.2或6答案 C解析画出球的截面图,如图所示.两平行直线是球的两个平行截面的直径,有两种情形:①两个平行截面在球心的两侧,②两个平行截面在球心的同侧.对于①,m=52-32=4,n=52-42=3,两平行截面间的距离是m+n=7;对于②,两平行截面间的距离是m-n=1.故选C.类型三组合体的体积例4某几何体的三视图如图所示,则该几何体的体积为()A.13+π B.23+π C.13+2π D.23+2π 答案 A解析 由三视图可知该几何体是一个三棱锥与半个圆柱的组合体,V =12π×12×2+13×(12×1×2)×1=π+13.故选A.反思与感悟 此类问题的关键是把三视图还原为空间几何体,再就是代入公式计算,注意锥体与柱体两者的体积公式的区别.解答组合体问题时,要注意知识的横向联系,善于把立体几何问题转化为平面几何问题,运用方程思想与函数思想解决,融计算、推理、想象于一体. 跟踪训练4 如图,是一个奖杯的三视图(单位:cm),底座是正四棱台,求这个奖杯的体积.解 三视图复原的几何体下部是底座是正四棱台,中部是圆柱,上部是球. 这个奖杯的体积V =13h (S 上+S 上S 下+S 下)+22π·16+4π3×33=336+100π(cm 3).1.已知一个铜质的五棱柱的底面积为16 cm 2,高为4 cm ,现将它熔化后铸成一个正方体的铜块(不计损耗),那么铸成的铜块的棱长是( ) A .2 cm B .3 cm C .4 cm D .8 cm 答案 C解析 ∵铜质的五棱柱的底面积为16 cm 2,高为4 cm , ∴铜质的五棱柱的体积V =16×4=64(cm 3), 设熔化后铸成一个正方体的铜块的棱长为a cm , 则a 3=64,解得a =4 cm ,故选C.2.已知高为3的棱柱ABC —A 1B 1C 1的底面是边长为1的正三角形(如图),则三棱锥B 1—ABC 的体积为( )A.14B.12C.36D.34答案 D解析 V =13Sh =13×34×3=34.3.将棱长为2的正方体木块削成一个体积最大的球,则这个球的表面积为( ) A .2π B .4π C .8π D .16π答案 B解析 体积最大的球是其内切球,即球的半径为1,所以表面积为S =4π×12=4π.4.如图,一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径相等,这时圆柱、圆锥、球的体积之比为________.答案 3∶1∶2解析 设球的半径为R ,则V 柱=πR 2·2R =2πR 3,V 锥=13πR 2·2R =23πR 3,V 球=43πR 3,故V 柱∶V锥∶V 球=2πR 3∶23πR 3∶43πR 3=3∶1∶2.5.某几何体的三视图如图所示,则其表面积为________.答案 3π解析 由三视图可知,该几何体是一个半径为1的半球,其表面积为半个球面面积与截面面积的和,即12×4π+π=3π.1.柱体、锥体、台体的体积之间的内在关系为V 柱体=Sh ←―――S ′=S V 台体=13h (S +SS ′+S ′)――→S ′=0V 锥体=13Sh .2.在三棱锥A -BCD 中,若求点A 到平面BCD 的距离h ,可以先求V A -BCD ,h =3V S △BCD.这种方法就是用等体积法求点到平面的距离,其中V 一般用换顶点法求解,即V A -BCD =V B -ACD =V C -ABD =V D -ABC ,求解的原则是V 易求,且△BCD 的面积易求.3.求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解.4.利用球的半径、球心到截面圆的距离、截面圆的半径可构成直角三角形,进行相关计算. 5.解决球与其他几何体的切接问题时,通常先作截面,将球与几何体的各量体现在平面图形中,再进行相关计算.课时作业一、选择题1.如果轴截面为正方形的圆柱的侧面积是4π,那么圆柱的体积等于( ) A .π B .2π C .4π D .8π 答案 B解析 设圆柱母线长为l ,底面半径为r ,由题意得⎩⎪⎨⎪⎧ l =2r ,2πrl =4π,解得⎩⎪⎨⎪⎧r =1,l =2.∴V 圆柱=πr 2l =2π.2.如图,在正方体中,四棱锥S -ABCD 的体积占正方体体积的( )A.12B.13C.14 D .不确定 答案 B解析 由于四棱锥S -ABCD 的高与正方体的棱长相等,底面是正方形,根据柱体和锥体的体积公式,得四棱锥S -ABCD 的体积占正方体体积的13,故选B.3.如图是某几何体的三视图,则该几何体的体积为( )A.92π+12 B.92π+18 C .9π+42 D .36π+18答案 B解析 由三视图可知该几何体是一个长方体和球构成的组合体,其体积V =43π(32)3+3×3×2=92π+18. 4.如图,ABC -A ′B ′C ′是体积为1的棱柱,则四棱锥C -AA ′B ′B 的体积是( )A.13B.12C.23D.34答案 C解析 ∵V C -A ′B ′C ′=13V ABC -A ′B ′C ′=13,∴V C -AA ′B ′B =1-13=23.5.一平面截一球得到直径为6 cm 的圆面,球心到这个圆面的距离是4 cm ,则该球的体积是( ) A.100π3 cm 3B.208π3 cm 3C.500π3 cm 3D.4163π3cm 3答案 C解析 如图,根据题意, |OO 1|=4 cm ,|O 1A |=3 cm ,∴|OA |=R =|OO 1|2+|O 1A |2=5(cm), 故球的体积V =43πR 3=500π3(cm 3).故选C.6.一个正四棱柱的各个顶点都在一个半径为2 cm 的球面上,如果正四棱柱的底面边长为2 cm ,那么该棱柱的表面积为( ) A .(2+42) cm 2 B .(4+82) cm 2 C .(8+162) cm 2 D .(16+322) cm 2答案 C解析 ∵一个正四棱柱的各个顶点都在一个半径为2 cm 的球面上,正四棱柱的底面边长为2 cm ,球的直径为正四棱柱的体对角线,∴正四棱柱的体对角线为4,正四棱柱的底面对角线长为22,∴正四棱柱的高为16-8=22,∴该棱柱的表面积为2×22+4×2×22=8+162,故选C.7.如图,在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2,将梯形ABCD 绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.23πB.43πC.53π D .2π答案 C解析由题意,旋转而成的几何体是圆柱,挖去一个圆锥(如图),该几何体的体积为π×12×2-13×π×12×1=53π.8.一个表面积为36π的球外切于一圆柱,则圆柱的表面积为()A.45π B.27π C.36π D.54π答案 D解析因为球的表面积为36π,所以球的半径为3,因为该球外切于圆柱,所以圆柱的底面半径为3,高为6,所以圆柱的表面积S=2π×32+2π×3×6=54π.二、填空题9.如图,三棱柱A1B1C1-ABC中,已知D,E,F分别为AB,AC,AA1的中点,设三棱锥A -FED的体积为V1,三棱柱A1B1C1-ABC的体积为V2,则V1∶V2的值为________.答案124解析设三棱柱的高为h,∵F是AA1的中点,则三棱锥F-ADE的高为h2,∵D,E分别是AB,AC的中点,∴S△ADE=14S△ABC,∵V1=13S△ADE·h2,V2=S△ABC·h,∴V1V2=16S△ADE·hS△ABC·h=124.10.圆锥的侧面展开图为扇形,若其弧长为2π cm,半径为 2 cm,则该圆锥的体积为___ cm3. 答案π3解析∵圆锥的侧面展开图的弧长为2π cm,半径为 2 cm,故圆锥的底面周长为2π cm,母线长为 2 cm ,则圆锥的底面半径为1,高为1,则圆锥的体积V =13·π·12·1=π3.11.已知某几何体的三视图如图所示,其中正视图、侧视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为________.答案2π6+16解析 由已知的三视图可知原几何体的上方是三棱锥,下方是半球,∴V =13×(12×1×1)×1+[43π(22)3]×12=16+2π6. 12.若一个四面体的四个面中,有两个面都是直角边长为1的等腰直角三角形,另两个面都是直角边长分别为1和2的直角三角形,则该四面体的外接球的表面积为________. 答案 3π解析 满足题意的四面体为如图所示的正方体中的三棱锥V -ABC ,所以VA =AB =BC =1,VB =AC =2,其外接球即为该正方体的外接球,故其半径为R =32, 所以该四面体外接球的表面积为4π×(32)2=3π. 三、解答题13.如图所示,半径为R 的半圆内的阴影部分是以直径AB 所在直线为轴,旋转一周得到的一几何体,求该几何体的表面积和体积.(其中∠BAC =30°)解 过C 作CO 1⊥AB 于点O 1,由已知得∠BCA =90°, ∵∠BAC =30°,AB =2R , ∴AC =3R ,BC =R ,CO 1=32R . ∴S 球=4πR 2,1圆锥侧AO S =π×32R ×3R =32πR 2, 1圆锥侧BO S =π×32R ×R =32πR 2,∴11几何体表球圆锥侧圆锥侧=++AO BO S S S S=4πR 2+32πR 2+32πR 2=11+32πR 2.又∵V 球=43πR 3,1圆锥AO V =13·AO 1·π·CO 21=14πR 2·AO 1, 1圆锥BO V =13·BO 1·π·CO 21=14πR 2·BO 1, ∴V 几何体=V 球-()11圆锥圆锥+AO BO V V =56πR 3.四、探究与拓展14.圆柱形容器内盛有高度为6 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球,如图所示.则球的半径是( )A .1 cmB .2 cmC .3 cmD .4 cm答案 C解析 设球半径为r ,则由3V 球+V 水=V 柱,可得 3×43πr 3+πr 2×6=πr 2×6r ,解得r =3. 15.如图所示,已知某几何体的三视图如下(单位:cm).(1)画出这个几何体(不要求写画法); (2)求这个几何体的表面积及体积. 解 (1)这个几何体如图所示.(2)这个几何体可看成是正方体AC 1及直三棱柱B 1C 1Q -A 1D 1P 的组合体. 由P A 1=PD 1= 2 cm ,A 1D 1=AD =2 cm , 可得P A 1⊥PD 1.故所求几何体的表面积S =5×22+2×2×2+2×12×(2)2=22+42(cm 2),所求几何体的体积V =23+12×(2)2×2=10(cm 3).。

各种形体面积体积计算公式

各种形体面积体积计算公式

各种形体面积体积计算公式
一、立体
1.椎体
椎体的表面积公式为:S=2πrh;椎体的体积公式为:V=1/3πr^2h,其中r为椎体半径,h为椎体的高。

2.圆柱体
圆柱体的表面积公式为:S=2πrh+2πr2;圆柱体的体积公式为:
V=πr²h,其中r为圆柱体底面的半径,h为圆柱体的高。

3.球体
球体的表面积公式为:S=4πr²;球体的体积公式为:V=4/3πr³,其中r为球体的半径。

4.圆锥体
圆锥体的表面积公式为:S=πrl+πrs;圆锥体的体积公式为:
V=1/3πr²h,其中r为圆锥体的底面半径,l为圆锥体的底面周长,h为圆锥体的高。

5.正方体
正方体的表面积公式为:S=6a²;正方体的体积公式为:V=a³,其中a为正方体的边长。

6.平行四边体
平行四边体的表面积公式为:S=2a²+2b²;平行四边体的体积公式为:V=a²b,其中a为平行四边体的底面的长度,b为平行四边体的底面的宽度。

二、平面
1.三角形
三角形的面积公式为:S=1/2absinC,其中a、b为三角形的两边,C
为三角形的夹角(以弧度为单位)。

2.矩形
矩形的面积公式为:S=ab,其中a为矩形的长,b为矩形的宽。

3.正方形
正方形的面积公式为:S=a²,其中a为正方形的边长。

4.圆
圆的面积公式为:S=πr²,其中r为圆的半径。

8.3.2 圆柱、圆锥、圆台、球表面积和体积(课件)2022-2023学年高一下学期数学(人教A版2

8.3.2 圆柱、圆锥、圆台、球表面积和体积(课件)2022-2023学年高一下学期数学(人教A版2
解:当球内切于正方体时用料最省 此时棱长=直径=5cm
答:至少要用纸150cm2
练习
解析 设球 O 的半径为 r,则圆柱的底面半径为 r, 高为 2r,所以VV12=π43rπ2·r23r=32.
三、课堂小结:
1.圆柱、圆锥、圆台的表面积公式
1).圆柱 2).圆锥
S 2r 2 rl
S r 2 rl
如果圆台的上、下底面半径分别为r和R,母线长为l,你能计算它的
表面积吗?
r O’
RO
圆台的侧面展开图是扇环
x x
r 'O’
rO
xl r x r' l rr' x r'
xl 1 r 1 x r'
x r' l r r'
∵圆台侧面展开图是一个扇环
S侧面积
1 2
2 r( x
l)
1 2
2 r
'
x
r( x l ) r ' x rx rl r ' x
A
B
D
C
A1 D1
B1 C1
变式 球的内接长方体的长、宽、高分别为3、2、 3 ,求此球体的表面积 和体积。
分析:长方体内接于球,则由球和长方体都是中心对称图形可知,它们 中心重合,则长方体对角线与球的直径相等。
内切球问题
例题3 把直径为5cm钢球放入一个正方体的有盖纸盒中,至少要用多少纸? 分析:用料最省时,球与正方体有什么位置关系? 球内切于正方体
解:一个浮标的表面积为
2π×0.15×0.6 + 4π×0.152 =0.8478(m2) 所以给1000个这样的浮标涂防水漆约需涂料
0.8478×0.5×1000 =423.9(kg).

空间几何体的表面积与体积公式大全,DOC

空间几何体的表面积与体积公式大全,DOC

空间几何体的表面积与体积公式大全一、全(表)面积(含侧面积)1、①棱柱②圆柱2、①②3、①②4、①球:②③二、1、①棱柱②圆柱2、①棱锥②圆锥3、①棱台②圆台4、①球:②③三、1、2、则+=即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、台体体积公式公式:)(31S SS S h V 下下上上台++=证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。

延长两侧棱相交于一点P 。

则∴V 即:)(33)(31S SS S h h S S S hS V 下下上上下上下上台++=++=∴)(31S S S S h V 下下上上台++=4、球体体积公式推导分析:将半球平行分成相同高度的若干层(层n ),n 越大,每一层越近似于圆柱,+∞→n 时,每一层都可以看作是一个圆柱。

这些圆柱的高为nr,则:每个圆柱的体积h S V i i ==nrr i 2π……=2r nr ⨯π=[3r n n π=[3r n n π当→n ∴V 半球5、 ∴S =球6、(1则其体积为:a V 3=正方体四个角上切下的每一个三棱锥体积为:中间剩下的正四面体的体积为:a a a a hSV 322231]60sin 21[3131)32232()2()2(=-⨯︒⨯⨯⨯==⨯⨯正三棱锥这样一个即:61(2 (a)(b)(c)(d)(e)(3(a ) 正方体内切球直径=正方体棱长(b ) 正方体内切球与正四面体的四条棱相切。

(c ) 与正四面体四条棱相切的球半径=正方体棱长的一半 (d ) 设正四面体棱长为a ,则与其棱都相切的球半径为r 1有:aar 422211=⨯= 7、利用祖暅原理推导球体体积。

构造一个几何体,使其截面与半球截面处处相等,根据祖暅原理可得两物体体积相等。

证明:作如下构造:在底面半径和高都是r 的圆柱内挖去一个与圆柱等底等高的圆锥。

如图:R ,∴S 1π=即:S 1 8、 正方体与球(1) 正方体的内切球正方体的棱长=a 球体的直径d (2) 正方体的外接球正方体的体对角线=a 3球体的直径d(3) 规律:①正方体的内切球与外接球的球心为同一点; ②正方体的内切球与外接球的球心在体对角线上; ③正四面体的内切球与外接球的的半径之比为:3:1 ④正四面体内切球与外接球体积之比为:1:339(∴a h r 12641==即:a a r V 33321663434)126(πππ===球∴π3:18=V V 球正四机体: (2)正四面体的外接球 外接球的半径=)2332(224343a a⨯-⨯=⨯高=a 46 ∴2:33122:86:33ππ==aaV V 正四面体球 (310、 (1 球体直径、圆柱的高、圆柱底面直径构成直角三角形。

球的表面积和体积

球的表面积和体积

1 A.6π cm3 4 C.3π cm3
[答案] A
6.一个长、宽、高分别为 2,1,2 的长方体,则它的外接球的表面 积为________,体积为________.
9 [答案] 9π, π. 2
7.若棱长为 3 的正方体的顶点都在同一球面上, 则该球的表面 积为________.
正方体都是中心对称图形可 知,它们中心重合,则正方体对角线与球的直径相等。
D A O D1 A1 B
C A
D B O D1 A1
C
略解:
RtDB1 D1 D中 : B1 D 2 R,B1 D 2a 3 a 2
C1 B1
C1 B1
(2 R ) 2 a 2 ( 2a ) 2 , 得:R \ S 4R 2 3a 2
略解: Rt D B 1 D 1 D 中 : ( 2 R ) 2 3 2 42+5 2R= 5 2 \ S 4 R 50
2 2
D A D1 A1 D A O B O B
C
C1 B1 C
D1
A1 B1
C1
2.如图,正方体ABCD-A1B1C1D1的棱长为a,它的各个顶 点都在球O的球面上,问球O的表面积。
a2 变题1.如果球O和这个正方体的六个面都相切,则有S=——。
2 2 a 变题2.如果球O和这个正方体的各条棱都相切,则有S=——。
关键: 找正方体的棱长a与球半径R之间的关系
球与正方体的“接切”问题
典型:有三个球,一球切于正方体的各面,一球切 于正方体的各侧棱,一球过正方体的各顶点,求 这三个球的体积之比.
问题2:把直线换成平面,圆换成球,即用一个平 面去截球,情况又怎样呢?
提示:圆面.

2023高考数学基础知识综合复习第18讲简单几何体的表面积与体积 课件(共24张PPT)

2023高考数学基础知识综合复习第18讲简单几何体的表面积与体积 课件(共24张PPT)
分叫作棱台
(2)旋转体的形成
几何体
旋转图形
圆柱
矩形
旋转轴
矩形一边所在的直线
圆锥
直角三角形
一直角边所在的直线
圆台
直角梯形或等腰梯形

半圆或圆
直角腰所在的直线或等腰梯形
上下底中点连线所在的直线
直径所在的直线
2.空间几何体的直观图
空间几何体的直观图常用斜二测画法来画,其画法步骤为:
①画轴:在平面图形上取互相垂直的x轴和y轴,作出与之对应的x'轴
3
4
3 = .故选 D.
考点一
考点二
考点三
本题考查四面体的体积的最大值的求法,涉及空间中线线、线面、
面面间的位置关系等基础知识,考查运算求解能力,属于难题.处理
此类问题时,往往先去找到不变的量,再根据题中的所给条件的变
化规律找到最值,从而得到体积的最值.
和y'轴,使得它们正方向的夹角为45°(或135°);
②画线(取长度):平面图形中与x轴平行(或重合)的线段画出与x'轴
平行(或重合)的线段,且长度不变,平面图形中与y轴平行(或重合)的
线段画出与y'轴平行(或重合)的线段,且长度为原来长度的一半;
③连线(去辅助线):连接有关线段,擦去作图过程中的辅助线.
径,从而进一步求解.
考点一
考点二
考点三
◆角度3.体积最值问题
例5(1)(2019年1月浙江学考)如图,线段AB是圆的直径,圆内一条动
弦CD与AB交于点M,且MB=2AM=2,现将半圆沿直径AB翻折,则三
棱锥C-ABD体积的最大值是(
)
2
3
1
3
A.

球体圆锥圆柱圆台的体积与表面积计算

球体圆锥圆柱圆台的体积与表面积计算

球体圆锥圆柱圆台的体积与表面积计算球体的体积与表面积计算在几何学中,球体是一种立体图形,其外形类似于一个完全圆满的球。

球体具有独特的性质,如体积和表面积。

这篇文章将讨论如何计算球体的体积和表面积。

一、球体的体积计算球体的体积是指球体内部的三维空间大小。

为了计算球体的体积,我们需要使用球体的半径。

公式:V = (4/3)πr³其中,V代表球体的体积,π为圆周率(约为3.14159),r代表球体的半径。

例如,如果给定一个球体的半径为5米,我们可以使用上述公式计算出它的体积:V = (4/3)π(5)³ = (4/3)π(125) ≈ 523.6立方米因此,该球体的体积约为523.6立方米。

二、球体的表面积计算球体的表面积是指球体外部的三维空间大小。

要计算球体的表面积,同样需要使用球体的半径。

公式:A = 4πr²其中,A代表球体的表面积,π为圆周率(约为3.14159),r代表球体的半径。

举个例子,如果我们有一个半径为5米的球体,应用上述公式可以计算出它的表面积:A = 4π(5)² = 4π(25) ≈ 314.16平方米因此,该球体的表面积约为314.16平方米。

圆锥的体积与表面积计算圆锥是一个有圆锥体和圆锥底的几何形状。

计算圆锥的体积和表面积可能有不同的方法,具体取决于所给出的信息。

一、圆锥体的体积计算圆锥体是指圆锥的实体部分,其体积可以通过以下公式进行计算。

公式:V = (1/3)πr²h其中,V代表圆锥体的体积,π为圆周率(约为3.14159),r为圆锥底的半径,h为圆锥的高度。

例如,如果我们知道圆锥底的半径为4米,高度为6米,可以使用上述公式计算圆锥体的体积:V = (1/3)π(4)²(6) = (1/3)π(16)(6) ≈ 100.53立方米因此,圆锥体的体积约为100.53立方米。

二、圆锥的表面积圆锥的表面积计算方法取决于所给出的信息。

新版高中数学必修2课件:8.3.2圆柱、圆锥、圆台、球的表面积和体积

新版高中数学必修2课件:8.3.2圆柱、圆锥、圆台、球的表面积和体积
解析:设球的半径为R,则圆柱的底面半径为R,高为2R. ∵V球=43πR3,V圆柱=πR2·2R=2πR3, ∴V球:V圆柱=43πR3:2πR3=23. 答案:2:3
易错辨析 对球的“切、接”的结构特点认识模糊致错 例5 设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点在 一个球面上,则该球的表面积为( ) A.πa2 B.73πa2 C.74πa2 D.5πa2
解析:由题意知,该三棱柱为正三棱柱,如图. 设O1,O分别为上,下底面的中心,且球心O2为OO1的中点, 连接AO交BC于D点,球半径为R.
∵AD= 23a,AO=23AD= 33a,OO2=a2, ∴R2=AO22=13a2+14a2=172a2. ∴S球=4πR2=4π×172a2=73πa2.故选B. 答案:B
S底=_π_(r_′__2_+__r2) S侧=π_(_r_′__+__r_)l S=4πR2 S表=π_(_r_′__2+__r_2)+π(r+r′)l
要点二 体积公式 图形
体积公式
圆 柱
底面半径为r,高为h,V=_π_r_2_h____
圆 锥
底面半径为r,高为h,V=__13_π_r_2_h__
高中数学必修二
8.3.2 圆柱、圆锥、圆台、 球的表面积和体积
要点一 圆柱、圆锥、圆台、球的表面积
圆柱(底面半 径为
圆台(上、下 底面半径分别 球半径为 为r′,r,母 R
线长为l)
侧面展 开图
底面积 S底=__2_π_r2__ S底=__π_r_2__ 侧面积 S侧=__2_π_rl__ S侧=__π_r_l__ 表面积 S表=_2_π_r(_r_+__l)_ S表=_π_r(_r_+__l)
16π C. 3
64π D. 3

2023年高考数学二轮复习第一部分专题攻略专题四立体几何第一讲空间几何体的表面积与体积

2023年高考数学二轮复习第一部分专题攻略专题四立体几何第一讲空间几何体的表面积与体积

专题四 立体几何第一讲 空间几何体的表面积与体积——小题备考微专题1 空间几何体的表面积和体积常考常用结论1.柱体、锥体、台体、球的表面积公式: ①圆柱的表面积S =2πr (r +l ); ②圆锥的表面积 S =πr (r +l );③圆台的表面积S =π(r ′2+r 2+r ′l +rl ); ④球的表面积S =4πR 2.2.柱体、锥体和球的体积公式: ①V 柱体=Sh (S 为底面面积,h 为高); ②V 锥体=13Sh (S 为底面面积,h 为高);③V 球=43πR 3.保 分 题1.[2022·山东枣庄三模]若圆锥的母线长为2,侧面积为2π,则其体积为( ) A .√6π B .√3π C .√63π D .√33π2.[2022·河北保定一模]圆柱的底面直径与高都等于球的直径,则球的表面积与圆柱的侧面积的比值为( )A .1∶1B .1∶2C .2∶1D .2∶33.[2022·湖北武汉二模]如图,在棱长为2的正方体中,以其各面中心为顶点构成的多面体为正八面体,则该正八面体的体积为( )A .2√23B .43 C .4√23D .83提分题例1 (1)[2022·河北张家口三模]如图,在三棱柱ABC­ A1B1C1中,过A1B1的截面与AC交于点D,与BC交于点E,该截面将三棱柱分成体积相等的两部分,则CDAC=()A.13B.12C.2−√32D.√3−12(2)[2022·湖南雅礼中学二模]某圆锥高为1,底面半径为√3,则过该圆锥顶点的平面截此圆锥所得截面面积的最大值为()A.2 B.√3C.√2D.1听课笔记:【技法领悟】1.求几何体的表面积及体积问题,可以多角度、多方位地考虑,熟记公式是关键.求三棱锥的体积,等体积转化是常用的方法,转化原则是其高易求,底面放在已知几何体的某一面上.2.求不规则几何体的体积,常用分割或补形的方法,将不规则几何体转化为规则几何体,易于求解.巩固训练11.[2022·山东菏泽一模]如图1,在高为h的直三棱柱容器ABC ­ A1B1C1中,AB=AC=2,AB⊥AC.现往该容器内灌进一些水,水深为2,然后固定容器底面的一边AB于地面上,再将容器倾斜,当倾斜到某一位置时,水面恰好为A 1B 1C (如图2),则容器的高h 为( )A .3B .4C .4√2D .62.[2022·福建福州三模]已知AB ,CD 分别是圆柱上、下底面圆的直径,且AB ⊥CD ,O 1,O 分别为上、下底面的圆心,若圆柱的底面圆半径与母线长相等,且三棱锥A ­ BCD 的体积为18,则该圆柱的侧面积为( )A .9πB .12πC .16πD .18π微专题2 与球有关的切、接问题常考常用结论1.球的表面积S =4πR 2,体积V =43πR 3.2.长方体、正方体的体对角线等于其外接球的直径. 3.n 面体的表面积为S ,体积为V ,则内切球的半径r =3VS .4.直三棱柱的外接球半径:R =√r 2+(L2)2,其中r 为底面三角形的外接圆半径,L 为侧棱长,如果直三棱柱有内切球,则内切球半径R ′=L2.5.正四面体中,外接球和内切球的球心重合,且球心在高对应的线段上,它是高的四等分点,球心到顶点的距离为外接球的半径R =√64a (a 为正四面体的棱长),球心到底面的距离为内切球的半径r =√612a ,因此R ∶r =3∶1.保 分 题1.[2022·广东深圳二模]已知一个球的表面积在数值上是它的体积的√3倍,则这个球的半径是( )A .2B .√2C .3D .√32.已知正四棱锥P ­ ABCD 中,AB =√6,P A =2√3,则该棱锥外接球的体积为( )A.4π B.32π3C.16π D.16π33.[2022·天津红桥一模]一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1、√2、3,则此球的体积为________.提分题例2 (1)[2022·江苏苏州三模]《九章算术》卷第五《商功》中,有“贾令刍童,上广一尺,袤二尺,下广三尺,袤四尺,高一尺.”,意思是:“假设一个刍童,上底面宽1尺,长2尺;下底面宽3尺,长4尺,高1尺.”(注:刍童为上下底面为相互平行的不相似长方形,两底面的中心连线与底面垂直的几何体),若该几何体所有顶点在一球体的表面上,则该球体的体积为()立方尺A.√41πB.41π3D.3√41πC.41√41π6(2)[2022·山东泰安三模]如图,已知三棱柱ABC ­ A1B1C1的底面是等腰直角三角形,AA1⊥底面ABC,AC=BC=2,AA1=4,点D在上底面A1B1C1(包括边界)上运动,则三棱锥D ­ ABC 的外接球表面积的最大值为()π B.24πA.814C.243π D.8√6π16听课笔记:【技法领悟】1.确定球心的位置,弄清球的半径(直径)与几何体的位置和数量关系.2.求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.3.补成正方体、长方体、正四面体、正棱柱、圆柱等规则几何体.巩固训练21.已知圆柱的轴截面为正方形,其外接球为球O,球O的表面积为8π,则该圆柱的体积为()A.√22π B.√2πC.2π D.2√2π2.[2022·广东潮州二模]已知△ABC是边长为3的等边三角形,三棱锥P ­ ABC全部顶点都在表面积为16π的球O的球面上,则三棱锥P ­ ABC的体积的最大值为()A.√3B.3√32C.9√34D.√32专题四 立体几何第一讲 空间几何体的表面积与体积微专题1 空间几何体的表面积和体积保分题1.解析:设圆锥的底面半径为r ,高为h ,则πr ×2=2π,可得r =1,则h =√22−r 2=√3,因此,该圆锥的体积为V =13πr 2h =13π×12×√3=√33π. 答案:D2.解析:设球的半径为r ,依题意圆柱的底面半径也是r ,高是2r , 圆柱的侧面积=2πr ·2r =4πr 2 ,球的表面积为4πr 2 , 其比例为1∶1. 答案:A3.解析:该正八面体是由两个同底的正四棱锥组成,且正四棱锥的底面是边长为√2的正方形,棱锥的高为1,所以该正八面体的体积为2×13×√2×√2×1=43.答案:B提分题[例1] 解析:(1)由题可知平面A 1B 1ED 与棱柱上、下底面分别交于A 1B 1,ED , 则A 1B 1∥ED ,ED ∥AB , 显然CDE - C 1A 1B 1是三棱台,设△ABC 的面积为1,△CDE 的面积为S ,三棱柱的高为h , ∴12·1·h =13h (1+S +√S ), 解得√S =√3−12,由△CDE ∽△CAB ,可得CD AC =√S√1=√3−12. (2)如图,截面为△P AB ,设C 为AB 中点,设OC =x ,x ∈[0,√3),则AB =2√3−x 2,PC =√x 2+1,则截面面积S =12×2√3−x 2×√x 2+1=√−(x 2−1)2+4,则当x 2=1时,截面面积取得最大值为2. 答案:(1)D (2)A[巩固训练1]1.解析:在图1中V 水=12×2×2×2=4,在图2中,V 水=V ABC − A 1B 1C 1− V C − A 1B 1C 1=12×2×2×h -13×12×2×2×h =43h , ∴43h =4,∴h =3.答案:A2.解析:分别过A ,B 作圆柱的母线AE ,BF ,连接CE ,DE ,CF ,DF ,设圆柱的底面半径为r ,则三棱锥A - BCD 的体积为两个全等四棱锥C - ABFE 减去两个全等三棱锥A - CDE , 即2×13×r ×2r ×r -2×13×r ×12×2r ×r =23r 3=18,则r =3,圆柱的侧面积为2πr ×r =18π答案:D微专题2 与球有关的切、接问题保分题1.解析:设球的半径为R ,则根据球的表面积公式和体积公式, 可得,4πR 2=43πR 3×√3,化简得R =√3. 答案:D2.解析:正方形ABCD 的对角线长√6+6=2√3,正四棱锥的高为 √(2√3)2−(2√32)2=3,设外接球的半径为R ,则(3-R )2+(2√32)2=R 2⇒R =2, 所以外接球的体积为4π3×23=32π3.答案:B3.解析:长方体外接球的直径为√12+(√2)2+32=2√3,所以外接球半径为√3,所以球的体积为4π3×(√3)3=4√3π.答案:4√3π提分题[例2] 解析:(1)作出图象如图所示:由已知得球心在几何体的外部, 设球心到几何体下底面的距离为x , 则R 2=x 2+(52)2=(x +1)2+(√52)2,解得x =2,∴R 2=414, ∴该球体的体积V =4π3×(√412)3=41√41π6.(2)因为△ABC 为等腰直角三角形,AC =BC =2,所以△ABC 的外接圆的圆心为AB 的中点O 1, 且AO 1=√2,连接O 1与A 1B 1的中点E ,则O 1E ∥AA 1,所以O 1E ⊥平面ABC , 设球的球心为O ,由球的截面性质可得O 在O 1E 上, 设OO 1=x ,DE =t (0≤t ≤√2),半径为R , 因为OA =OD =R ,所以√2+x 2=√(4−x )2+t 2, 所以t 2=8x -14,又0≤t ≤√2, 所以74≤x ≤2,因为R 2=2+x 2,所以8116≤R 2≤6,所以三棱锥D -ABC 的外接球表面积的最大值为24π. 答案:(1)C (2)B [巩固训练2]1.解析:设外接球的半径为R ,圆柱底面圆的半径为r ,因为圆柱的轴截面为正方形,所以圆柱的高h =2r ,由球O 的表面积S =4πR 2=8π,得R =√2,又R = √(h2)2+r 2=√2r ,得r =1,所以圆柱的体积V =πr 2·2r =2πr 3=2π.答案:C2.解析:球O 的半径为R ,则4πR 2=16π,解得:R =2,由已知可得:S △ABC =√34×32=9√34,其中AE =23AD =√3,球心O 到平面ABC 的距离为√R 2−(√3)2=1, 故三棱锥P - ABC 的高的最大值为3, 体积最大值为13S △ABC ·3=9√34.答案:C。

第一课时圆柱、圆锥、圆台的表面积和体积课件-高一下学期数学人教A版(2019)必修第二册

第一课时圆柱、圆锥、圆台的表面积和体积课件-高一下学期数学人教A版(2019)必修第二册

19
课堂精炼
【训练 3】
π
如图所示,在梯形 ABCD 中,∠ABC= ,AD∥BC,BC=2AD
2
=2AB=2,将梯形 ABCD 绕 AD 所在的直线旋转一周而形成的曲面所围成的
几何体的体积为(
5
A. π
3
4
B. π
3
2
C. π
3
)
D.2π
解析
由题意,旋转而成的几何体是圆柱,挖去一个圆
锥(如图),
又 BD=A1D·tan 60°=3 3,∴R+r=3 3,
∴R=2 3,r= 3,又 h=3,
1
1
2
2
∴V 圆台= πh(R +Rr+r )= π×3×[(2 3)2+
3
3
2 3× 3+( 3)2]=21π.
∴圆台的体积为 21π.
答案
10
21π
关于旋转体面积、体积等计
算问题,一般重点考察几何
体的轴截面,将立体问题平
面积与两底面积之和
题型二
求圆柱、圆锥、圆台的体积
数 学
7
知识梳理
2.柱体、锥体、台体的体积公式
V 柱体= sh (S 为底面面积,h 为柱体高);
V 锥体=

sh

(S 为底面面积,h 为锥体高);
1
V 台体= (S′+ S′S+S)h(S′,S 分别为上、下底面面积,h 为台体高).
3
8
课堂精讲
8.3.2 第一课时 圆柱、圆
锥、圆台的表面积和体积
数 学
1
题型一
求圆柱、圆锥、圆台的表面积
数 学
2
知识梳理
1.圆柱、圆锥、圆台的表面积和体积

圆柱、圆锥、圆台、球的表面积和体积

圆柱、圆锥、圆台、球的表面积和体积

(二)基本知能小试
1.判断正误
(1)圆柱、圆锥、圆台的侧面展开图的面积就是它们的表面
积.
()
(2)圆锥、圆台的侧面展开图中的所有弧线都与相应底面的
周长有关.
()
答案:(1)× (2)√
2.已知一个圆柱的侧面展开图是一个正方形,则这个圆柱的
表面积与侧面积的比值是
()
1+2π A. 2π
1+4π B. 4π
题型三 球的表面积和体积
[学透用活]
[典例 3] (1)设三棱柱的侧棱垂直于底面,所有棱的长都
为 a,顶点都在一个球面上,则该球的表面积为 ( )
A.πa2
B.73πa2
C.131πa2
D.5πa2
(2)若球的一个内接圆锥满足:球心到该圆锥底面的距离是
球半径的一半,则该圆锥的体积和此球体积的比值为
解:设圆锥的底面半径为 R,圆柱的底面半径为 r,表面积为 S.则 R=OC=2,AC=4,AO= 42-22=2 3. 如图所示,易知△AEB∽△AOC,∴AAOE=OEBC,即2 33=2r,∴ r=1. ∴S 底=2πr2=2π,S 侧=2πr·h=2 3π. ∴S=S 底+S 侧=2π+2 3π=(2+2 3)π.
[对点练清] 1.[圆柱的侧面积]一个圆柱的底面面积是 S,其侧面积展开图
是正方形,那么该圆柱的侧面积为_________. 解析:设圆柱的底面半径为 R,
则 S=πR2,R= Sπ, 底面周长 c=2πR. 故圆柱的侧面积为 S 圆柱侧=c2=(2πR)2=4π2·Sπ=4πS. 答案:4πS
2.[圆锥的表面积]如图,在底面半径为 2,母线长为 4 的 圆锥中内接一个高为 3的圆柱,求圆柱的表面积.

柱,锥,台的体积及球的表面积和体积

柱,锥,台的体积及球的表面积和体积
螺帽共重5.8kg,已知底面是正六边形, 边长为12mm,内 孔直径为10mm, 高为10mm,问这 堆螺帽大约有多少个?
[例2] 如图,圆柱的底面直径与高
都等于球的直径.
求证:(1) 球的
体积等于圆柱体积
的 2;
O
3
(2) 球] 如图,圆柱的底面直径与高
都等于球的直径.
***补例*** 1. 若圆台的高是3,一个底面半径
是另一个底面半径的2倍,母线与下底 面所成的角是45°,求这个圆台的侧 面积.
***补例***
2. 如图,一块正方形薄铁片的边长
为22cm,以它的一 个顶点为圆心,一
22cm
边长为半径画弧.沿
弧剪下一扇形,围
成一锥筒.求它的侧面积和体积.
1
V锥 3 sh V台 3 h(s s' ss')
1 V锥 3 sh
s'=0
1 V台体 3 h(s s' ss')
V柱 sh
s'=s
V圆锥
1 3
R2h
r=0
V圆台
1 3
h(r 2
R
R2
)
V圆柱 R2h
r=R
三、 球的表面积、体积公式
S球表 4R2
V球
4 R3
3
典型例题 [例1] 有一堆规格相同的铁制六角
1、多面体的表面积公式是什么?
S多面体表 底面面积 侧面面积
2、圆柱体的表面积公式是什么?
S圆柱表 2 r(r l)
3、圆锥体的表面积公式是什么?
S圆锥表 r(r l)
4、圆台的表面积公式是什么?
S圆台表(r'2 r2 r'l rl)

1.3 柱体、椎体、台体、球的表面积与体积

1.3 柱体、椎体、台体、球的表面积与体积
A.0.6 cm B.0.15 cm C.1.2 cm D.0.3 cm
当堂自测
1.棱长都是 1 的三棱锥的表面积为( A )
A. 3 B.2 3 C.3 3 D.4 3
当堂自测
2.一个直棱柱被一个平面截去一部分后所剩
几何体的三视图如图所示,
则该几何体的体积为( C )
A.9
B.10
C.11
D.223

8

侧面展开图

1
12
直观图2
V柱
( 12 2
)2
8
36 8 288


V柱

( 8 2
)2
12
16 12 192


例 2 (1)某几何体的三视图如图所示,则该几何体的体积为( A )
A.
1+π 3
B.23+π
C.13+2π
D.23+2π
(2)如图所示,已知三棱柱 ABC -A1B1C1 的所有棱长均为 1,
1.3.1柱体、锥体、台体的表面积与体积 1.3.2球的体积和表面积
一、柱体、锥体、台体、球的表面积
h
侧面展开
h' h'
侧面展开
h' h'
1.棱柱、棱锥、棱台的表面积
h'
h'
棱柱、棱锥、棱台都是由多个平面图形围成的几何体,它们的侧 面展开图还是平面图形,计算它们的表面积就是计算它的各个侧面面 积和底面面积之和.
h
S
S
h
S
祖恒原理
夹在两个平行平面间的两个几何体,被平行于这两个平行平面的 任何平面所截,如果截得两个截面的面积总相等,那么这两个几 何体的体积相等。

北师大版必修二 球的表面积和体积PPT课件

北师大版必修二   球的表面积和体积PPT课件

高为2R.
V球
4R3
3
V圆柱 R 2 2R 2 R 3
RO
2
V球
V 圆柱 3
(2)
S球4R2
S 圆 柱 2 R 侧 2 R 4 R 2
S球S圆柱侧
最新课件
13
讨论
长方体的一个顶点上三条棱长分别为3、4、5,若 它的八个顶点都在同一球面上,则这个球的表面积 是——
分析:长方体内接于球,则由球和长 方体都是中心对称图形可知,它们中 心重合,则长方体对角线与球的直径 相等。
2、在球心同侧有相距9cm的两个平行截面,它们的面积分别
为49 c m 2 和400 c m 2,求球的表面积。
答案:2500 c m 2
最新课件
26
3、若球的表面积变为原来的2倍,则半径变为原来的 __2_ 倍.
4、若球半径变为原来的2倍,则表面积变为原来 的__4_倍. 5、若两球表面积之比为1:2,则其体积之比是_1_:_2__2_
4 .长方体的共顶点的三个 侧面面积分别为 3,
5, 15,求它的外接球表面积 .
长方体对角线
最新课件
l 2 a2 b2 c229
半径为3的球的体积是(
A.9π
B.81π
) C.27π
D.36π
[答案] D
[解析] V=43π×33=36π.
最新课件
30
半径为 2的球的表面积等于________. [答案] 8π [解析] S=4π×( 2)2=8π.
3
32 6
最新课件
7
例题讲解
(变式1)把钢球(直径是5cm)放入一个正方体 的有盖纸盒中,至少要用多少纸?
用料最省时,球与正方体有什么位置关系?

常见体积表面积公式(3篇)

常见体积表面积公式(3篇)

第1篇一、引言在数学、物理、工程等领域,体积和表面积的计算是基本且重要的。

了解并掌握常见的体积和表面积公式对于解决实际问题具有重要意义。

本文将详细介绍一些常见的体积和表面积公式,以供读者参考。

二、常见体积公式1. 立方体体积公式立方体体积公式为:V = a^3,其中a为立方体的边长。

2. 球体体积公式球体体积公式为:V = (4/3)πr^3,其中r为球体的半径。

3. 圆柱体体积公式圆柱体体积公式为:V = πr^2h,其中r为圆柱体底面半径,h为圆柱体高。

4. 圆锥体体积公式圆锥体体积公式为:V = (1/3)πr^2h,其中r为圆锥体底面半径,h为圆锥体高。

5. 棱柱体积公式棱柱体积公式为:V = Bh,其中B为底面积,h为棱柱高。

6. 棱锥体积公式棱锥体积公式为:V = (1/3)Bh,其中B为底面积,h为棱锥高。

7. 梯形体积公式梯形体积公式为:V = (a+b)h/2,其中a和b为梯形上底和下底,h为梯形高。

8. 三角形体积公式三角形体积公式为:V = (1/2)ah,其中a为底边,h为高。

9. 矩形体积公式矩形体积公式为:V = lwh,其中l、w和h分别为矩形长、宽和高。

长方体体积公式为:V = lwh,其中l、w和h分别为长方体长、宽和高。

三、常见表面积公式1. 立方体表面积公式立方体表面积公式为:S = 6a^2,其中a为立方体的边长。

2. 球体表面积公式球体表面积公式为:S = 4πr^2,其中r为球体的半径。

3. 圆柱体表面积公式圆柱体表面积公式为:S = 2πrh + 2πr^2,其中r为圆柱体底面半径,h为圆柱体高。

4. 圆锥体表面积公式圆锥体表面积公式为:S = πrl + πr^2,其中r为圆锥体底面半径,l为圆锥体斜高。

5. 棱柱表面积公式棱柱表面积公式为:S = 2B + Ph,其中B为底面积,P为侧面积,h为棱柱高。

6. 棱锥表面积公式棱锥表面积公式为:S = πrl + πr^2,其中r为棱锥底面半径,l为棱锥斜高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、球体的体积和表面积
探 究
一个充满空气的足球和一个充满空气的篮球, 球内的气压相同,若忽略球内部材料的厚度,则哪一 个球充入的气体较多?为什么?
如果用油漆去涂一个足球和一个篮球,且涂的油漆 厚度相同,问哪一个球所用的油漆多?为什么?
球的概念
球的截面 的形状
圆面
球面被经过球心的平面截得的圆叫做大圆
分析:正方体内接于球,则由球和正方 体都是中心对称图形可知,它们中心重 合,则正方体对角线与球的直径相等。
略 解 :RtB1 D1 D中 : ( 2 R ) a ( 2a ) , 得
2 2 2
D A D1 A1 B
C
O
C1 B1
3 R a 2 S 4R 2 3a 2
D
A D1 A1 B1 O B
R
O
第i层“小圆片”下底面的 半径:
ri R R [ ( i 1)]2 , i 1,2 , n. n
2
R ri R [ ( i 1)]2 , i 1,2, , n n 3 R R i 1 2 2 Vi ri [1 ( ) ], i 1,2 , n n n n
C
C1
例7、已知过球面上三点A、B、C的截面到球 心O的距离等于球半径的一半,且 AB=BC=CA=2cm,求球的体积,表面积.
解:如图,设球O半径为R,截面⊙O′的半径为r,
R O O , ABC是正三角形, 2
O A 2 3 2 3 AB r 3 2 3
解:在RtOO A中, OA 2 O O 2 O A 2 ,
柱体、锥体、台体、球体 的体积和球体的表面积
一、柱体、锥体、台体的体积
思考:取一些书堆放在桌面上(如图所示) , 并改变它们的放置方法,观察改变前后的体 积是否发生变化?
从以上事实中你得到什么启发?
关于体积有如下几个原理:
(1)相同的几何体的体积相等; (2)一个几何体的体积等于它的各部分体积之和; (3)等底面积等高的两个同类几何体的体积相等; (4)体积相等的两个几何体叫做等积体.
R
S i
Vi
4 3 又球的体积为: V R 3 4 1 3 R RS , 从 而S 4R 233球的体积和表面积公式:
R O
4 3 V球 R 3
三、例题讲解
例1、 有一堆规格相同的铁制(铁的密度是 7.8 g / cm3 )六角螺帽共重5.8kg,已知底面是正六边 形,边长为12mm,内孔直径为10mm,高为10mm, 问这堆螺帽大约有多少个( 取3.14)? 解:六角螺帽的体积是六棱柱 的体积与圆柱体积之差,即:
1: 2 2 3、若两球表面积之比为1:2,则其体积之比是______.
3 1 : 4. 4、若两球体积之比是1:2,则其表面积之比是______
1、若球的表面积变为原来的2倍,则半径变为原来的___ 2 倍.
5、长方体的共顶点的三个侧面积分别为 3 , 5 , 15 , 9 . 则它的外接球的表面积为_____ 6、若两球表面积之差为48π ,它们大圆周长之和为12π , 4. 则两球的直径之差为______ 7、将半径为1和2的两个铅球,熔成一个大铅球,那么 这个大铅球的表面积是______. 123 3
R 2 2 3 2 R ( ) ( ) , 2 3
2
O
A
O
4 R . 3
C
4 3 4 4 3 256 V R ( ) ; 3 3 3 81
B
16 64 S 4R 4 . 9 9
2
四 、课堂练习
练习一
8 . 1、球的直径伸长为原来的2倍,体积变为原来的_倍
8cm
8.5cm
例5、一种空心钢球的质量是142g,外径是5cm, 求它的内径.(钢的密度是7.9g/cm3)
解:设空心钢球的内径为2xcm,则钢球的质量是
4 5 3 4 7.9 [ ( ) x 3 ] 142 3 2 3
x
3
5 3 142 3 ( ) 11.3 2 7.9 4
如果网格分的越细,则: “小锥 体”就越接近小棱锥
hi 的值就趋向于球的半径 R
1 Vi S i R 3 1 1 1 1 V S1 i R S 2 R S 3 R S n R 3 3 3 3
1 1 R( S 1 RS i S 2 S 3 ... S n ) 3 3
球面被分割成n个网格,表面积分别为:
S1,S2,S3 ,, Sn
O
则球的表面积:
S S1 S2 S3 Sn
设“小锥体”的体积为 Vi
S i
O
则球的体积为:
V V1 V2 V3 Vn
Vi
第 二 步: 求 近 似 和
V
S i
不过球心的截面截得的圆叫做球的小圆
设球的半径为R,截面半径为r,平 面与截面的距离为 l
那么
因此
r =
R l
2
2
S圆 = r 2 = (R 2 l 2 ) = R 2 l 2
o
l ll
l
r
l

o
R
(一)、球的体积:
1、实验法:
公式?
排液法测小球的体积
探 究
h
实验:排液法测小球的体积
hi
O O
Vi
1 Vi S i hi 3
由第一步得: V V1 V2 V3 Vn
1 1 1 1 S1h1 S 2 h2 S 3 h3 S n hn 3 3 3 3
第 三 步: 化 为 准 确 和
O
hi
S i
Vi
V VP ABCD VP ABCD
h
B
D
A
公式推导过程
棱台和圆台
棱台和圆台可以这样得到
V圆台 V大圆锥 V小圆锥 1 [ S下 (h h) S上h] 3 h S上 S上 h h S下 S 上 h h S下 h S上 1 V圆台 [( S下 S 上 ) S下 h] 3 S下 S 上 1 ( S 上 S下 S 上 S下 ) h 3 棱台的体积公式同理可得.
棱锥与同底等高的棱柱体积之间的关系.
三棱锥与同底等高的三棱柱的关系
经过探究得知,棱锥也是同底等高的棱柱体积
1 的 .即棱锥的体积: 3
1 V Sh(其中S为底面面积,h为高) 3
由此可知,棱柱与圆柱的体积公式类似,都是底 面面积乘高;棱锥与圆锥的体积公式类似,都是等于 1 底面面积乘高的 . 3
由计算器算得:
x 2.24 2 x 4.5
答:空心钢球的内径约为4.5cm.
(变式)把钢球放入一个正方体的有盖纸盒中, 至少要用多少纸?
用料最省时,球与正方体有什么位置关系?
球内切于正方体
侧棱长为5cm
S 侧 6 5 2 150cm 2
例6、如图,正方体ABCD-A1B1C1D1的棱长为a, 它的各个顶点都在球O的球面上,问球O的表 面积。
H
h
它 排 小 开 球 液 等 的 体 于 体 的 积 体 积
曹冲称象
2、类推法:高等于底面半径的旋转体体积对比
R
V圆锥
1 3 R 3
V半球 ?
V圆柱
3 3 R 3
猜测 : V半球
2 4 3 R , 从而V R 3 . 3 3
3、分割极限法:
ri
O
R ( i 1) n
(三)、台体体积:
根据台体的特征,如何求台体的体积?
P
D
由于圆台(棱台)是由圆锥(棱锥) 截成的,因此可以利用两个锥体的 体积差.得到圆台(棱台)的体积公 式.
A
S
C
S 1 ( S S S S )h C 3 B S S 其中 , 分别为上、下底面面积,h为圆台 (棱台)的高.
五、课堂小结
柱体 V Sh
S S'
柱体、锥体、台体的体积
1 台体 V ( S S S S )h 3
S' 0
1 锥体V Sh 3
V球
球的体积和表面积:
4 3 R 3
六、作业
习题1-7 A组第8题 B 组第1、3题 预习小结与复习
(四)、柱、锥、台体的体积公式联系:
柱体、锥体、台体的体积公式之间有什么关系?
上底扩大
上底缩小
V Sh
S 0
S为底面面积, h为锥体高
1 S S 1 V Sh V ( S S S S )h 3 3 S为底面面积, S分别为上、下底面 h为柱体高 面积,h 为台体高
2、一个正方体的顶点都在球面上,它的棱长是4cm, 32 3 cm3. 这个球的体积为___
3、有三个球,一球切于正方体的各面,一球切于 正方体的各侧棱,一球过正方体的各顶点,求这三 1:2 2 :3 3 个球的体积之比_________.
练习二
4 倍. 2、若球半径变为原来的2倍,则表面积变为原来的___
1 V台体 S上 +S下 + S上 S下 h 3


例3 、 一个圆锥形的空杯子上面放着一个半球 形的冰淇淋,如果冰淇淋融化了,溢出杯子吗? (假设冰淇淋融化前后体积不变)
4cm
12cm
例4 、 一个圆柱形的玻璃杯的内半径为3cm, 瓶里说装的水深为8cm,将一个钢球完全浸 入水中,瓶中水的高度上升到8.5cm,求钢 球的体积。
归纳: 长方体体积:V abc 3 正方体体积:V a
V Sh
(一)、柱体体积:
相关文档
最新文档