思想方法专题:直角三角形中的思想方法
【解直角三角形】专题复习(知识点+考点+测试)
《解直角三角形》专题复习一、直角三角形的性质 1、直角三角形的两个锐角互余 几何表示:【∵∠C=90°∴∠A+∠B=90°】2、在直角三角形中,30°角所对的直角边等于斜边的一半。
几何表示:【∵∠C=90°∠A=30°∴BC=21AB 】 3、直角三角形斜边上的中线等于斜边的一半。
几何表示:【∵∠ACB=90° D 为AB 的中点 ∴ CD=21AB=BD=AD 】4、勾股定理:直角三角形两直角边的平方和等于斜边的平方 几何表示:【在Rt △ABC 中∵∠ACB=90° ∴222c b a =+】5、射影定理:在直角三角形中,斜边上的高线是两直角边在斜边上的射影的比例中项,每条直角边是它们在斜边上的射影和斜边的比例中项。
即:【∵∠ACB=90°CD ⊥AB ∴ BD AD CD •=2AB AD AC •=2 AB BD BC •=2】6、等积法:直角三角形中,两直角边之积等于斜边乘以斜边上的高。
(a b c h •=•)由上图可得:AB •CD=AC •BC二、锐角三角函数的概念 如图,在△ABC 中,∠C=90°c asin =∠=斜边的对边A Ac bcos =∠=斜边的邻边A Ab atan =∠∠=的邻边的对边A A Aab cot =∠∠=的对边的邻边A A A锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数锐角三角函数的取值范围:0≤sin α≤1,0≤cos α≤1,tan α≥0,cot α≥0.三、锐角三角函数之间的关系(1)平方关系(同一锐角的正弦和余弦值的平方和等于1) 1cos sin 22=+A A(2)倒数关系(互为余角的两个角,它们的切函数互为倒数) tanA •tan(90°—A)=1; cotA •cot(90°—A)=1; (3)弦切关系tanA=A Acos sin cotA=AA sin cos(4)互余关系(互为余角的两个角,它们相反函数名的值相等) sinA=cos(90°—A),cosA=sin(90°—A) tanA=cot(90°—A),cotA=tan(90°—A)AC BDsin A sin c A ,cos b c A 12S ab =)结论:直角三角形斜边上的高)测底部不可到达物体的高度BP=xcot α 东 西 2八、基本图形(组合型)翻折平移九、解直角三角形的知识的应用问题:(1)测量物体高度.(2)有关航行问题.(3)计算坝体或边路的坡度等问题十、解题思路与数学思想方法图形、条件单个直角三角形直接求解实际问题数学问题辅助线构造抽象转化不是直角三角形直角三角形方程求解常用数学思想方法:转化、方程、数形结合、分类、应用【聚焦中考考点】1、锐角三角函数的定义2、特殊角三角函数值3、解直角三角形的应用【解直角三角形】经典测试题(1——10题每题5分,11——12每题10分,13——16每题20分,共150分) 1、在△ABC 中,若22cos =A ,3tan =B ,则这个三角形一定是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形 2、sin65°与cos26°之间的关系为( )A. sin65°< cos26°B. sin65°> cos26°C. sin65°= cos26°D. sin65°+ cos26°=1 3、如图1所示,铁路路基横断面为一个等腰梯形,若腰的坡度为i=2∶3,顶宽是3米,路基高是4米,则路基的下底宽是( )A. 7米B. 9米C. 12米D. 15米4、如图2,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阻影部分)的面积为( )A. αsin 1B. αcos 1C. αsinD. 1图15、把直角三角形中缩小5倍,那么锐角∠A 的正弦值 ( ) A. 扩大5倍 B. 缩小5倍 C. 没有变化 D. 不能确定6、如图3,在Rt △ABC 中,∠C=90°,D 为BC 上的一点,AD=BD=2,AB=23,则: AC 的长为( ).A .3B .22C .3D .3227、如果∠A 是锐角,且3sin 4B =,那么( ). A .030A ︒<∠<︒ B .3045A ︒<∠<︒C .4560A ︒<∠<︒D .6090A ︒<∠<︒8、已知1cos 3α=,则3sin tan 4sin 2tan αααα-+的值等于( )A.47B.12C .13D .09、 若一个等腰三角形的两边长分别为2cm 和6cm ,则底边上的高为__________cm ,底角的余弦值为______。
论小学数学教学中渗透数学思想方法——以三角形面积为例
三角形、锐角三角形和钝角三角形。如在“等 边三角形”概念的教学过程中,也可以采取 分类的教学思想。那么教师可以采取这样的 方式对小学三角形的教学。假设三角形的一 个角为 60 度,教师可以问同学这个三角形是 什么三角形?在这个三角形中可以进行分类 思想,根据三角形的角度或者边来进行划分。 在角度为标准中,三角形的一个角为 60 度, 另两个角的和加起来就是 120 度,可以判断 当 角 B 为 钝 角 时, 那 么 角 C 为 锐 角, 此 三 角形就有两个锐角,一个钝角,因此三角形 ABC 是钝角三角形。假设角 B 或者角 C 当中 有一个是直角,那么得到的答案据是这个三 角形是直角三角形。假设角 B 是锐角,角 C 也是锐角,可以肯定这个三角形就是锐角三 角形。其次根据三角形边来划分。假设三角 形两边相等就可以推断出来它可以是一个等 腰三角形。而是不是一个等边三角形呢,等 边三角形是一个 度的角,其中一个角已经 是 60 度了,另外两个角度可以调整为 60 度, 那么这个三角形可以确定是等边三角形。
1. 小学三角形教学中渗透类比思想 类比思想是对两个不同对象的某个地方 (包括他们的属性、特性和关系等)相同或 相似,推出它们在其他方面也可能相同或者 是相似的思维形式。这是一种数学的思想方 法,在小学数学教学过程中,运用类比推理 是培养小学学生的归纳、 总结,提高解决问 题的能力。如在进行平行四边形的教学时, 根据以往知识经验,可以得知一个平行四边 形可以分成两个完全相同的三角形,教师可 以拿出平行四边形的相关道具,让学生观察 平行四边形中的涂色三角形和没有涂色的三 角形,使学生认识到这两个三角形应该是一 样的,所以涂色的三角形面积是平行四边形 面积的一半。第一个平行四边形的面积是 16 平方厘米,所以三角形的面积是 8 平方厘米。 又如下图,两条直线相交形成 4 个角,你能 说明∠ 2 =∠ 4 吗?
高中数学_必须掌握的六种常用的数学思想方法
高中数学_必须掌握的六种常用的数学思想方法数学思想方法与数学基础知识相比较,它有较高的地位和层次。
数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。
而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。
常用数学思想方法有:1、数形结合的思想方法2、分类讨论的思想方法3、函数与方程的思想方法4、转化(化归)的思想方法5、分类讨论的思想方法6、整体的思想方法。
更多数学思维方法,请参阅《高中数学_快速解题的六种数学思维方法》。
一、数形结合的数学思想方法数学中的知识,有的本身就可以看作是数形的结合。
如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。
1、导读:2、相关内容:3、再现性题组:1.如果θ是第二象限的角,且满足cos θ2-sinθ2=1-sinθ,那么θ2是_____。
A.第一象限角B.第三象限角C.可能第一象限角,也可能第三象限角D.第二象限角2.如果实数x、y满足等式(x-2)2+y2=3,那么yx的最大值是_____。
A. 12B.33C.32D. 34、巩固性题组:1.已知5x+12y=60,则x y22+的最小值是_____。
A. 6013 B. 135C. 1312D. 12.方程2x=x2+2x+1的实数解的个数是_____。
A. 1B. 2C. 3D.以上都不对3.方程x=10sinx的实根的个数是_______。
二、分类讨论的数学思想方法①问题所涉及到的数学概念是分类进行定义的。
如|a|的定义分a>0、a=0、a<0三种情况。
这种分类讨论题型可以称为概念型。
②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。
《勾股定理》核心专题一点通(历年考题)
7.勤学早第17章《勾股定理》核心专题一点通B ——核心思想方法核心思想方法1:转化的思想(1)斜三角形→转化直角三角形→勾股定理1.等腰△ABC 中,AB =AC =4,∠ABC =75°,求△ABC 的面积.AB C解:过B 作BD ⊥AC 于D 点,∠A =30°,∴BD =2,∴△ABC 的面积是4.2.如图,某船向正东方向航行,在A 处望见某岛C 在北我偏东60°方向,前进6海里到B 点,测得该岛在北偏东30°方向,已知该岛周围4海里内有暗礁,若该船继续向东航行,有无触礁危险?请说明理1.732≈)解:过C 作CD ⊥AB 于D ,可求BC =AB =6,CD =4,∴该船继续向东航行,无触礁危险.(2)割补图形→转化直角三角形→勾股定理3.如图,在四边形ABCD 中,∠A =60°,∠B =∠D =90°,BC =6,CD =3,求AB 的长.ABD解:延长AB ,DC 交于E 点,∠E =30°,CE =2BC =12,BE=DE =CE +CD =15,在Rt △ADE 中,∠E =30°,ADAE =2AD =,AB =AE -BE =.4.在四边形ABCD 中,∠B =∠C =120°,AB =BC=4,CD =ABCD 的面积.ADB C解:分别过A,D作BC的垂线,垂足为M,N,则围成直角梯形AMND,可求四边形ABCD的面积是6643+.(3)将立体图形→转化平面图形→勾股定理5.如图,长方体的底面边长为4cm和宽为2cm,高为5cm,若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,求蚂蚁爬行的最短路径长.QP A解:如图,长方体的底面边长分别为2cm和4cm,高为5cm.∴P A=4+2+4+2=12(cm),QA =5cm .∴PQ=13cm.∴蚂蚁爬行的最短路径长为13cm.6.如图是一个三级台阶,它的每一级的长,宽,高分别为20dm,3dm,2dm,A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,求蚂蚁沿着台阶爬行到点B的最短路程.解:三级台阶平面展开图为长方形,长为20dm,宽为(2+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设妈蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得()222220[233]25x=++⨯=,解得x=25.7.有一个如图所示的长立体的透明玻璃鱼缸,假设其长AD=80cm,高AB=60cm,水深为AE=40cm,在水面上紧贴内壁G处有一鱼饵,G在水面线EF上,且EG=60cm,一小虫想从鱼缸外的A点沿壁爬进鱼缸内G生吃鱼饵.(1)小动物应该走怎样的路线才能使爬行的路线最短呢?请你在图中画出它爬行的路线,并用箭头标注.(2)求小动物爬行的最短路线长?A'QGFEDCBA解:(1)如图,AQ+QG为最短路程;(2)∵AE=40cm,A'A=120,A'E=80cm,又EG=60cm,∴AQ +QG ='A Q +QG =A 'G =100cm .∴最短路线长为100cm核心思想方法2:方程的思想(1)一般问题8.如图,等腰△ABC 的周长是16,底边上的高AD =4,求这个三角形各边的长.DBC解:设BD =x ,则AB =8-x ,由勾股定理,可以得到222AB BD AD =+,也就是()22284x x -=+,∴x =3,AB =AC =5,BC =6.9.一个正方体物体沿斜坡向下滑动,其截面如图所示,正方形DEFH 的边长为2米,∠A =30°,∠B =90°,BC =6米,已知222CD AE BC =+,求AE 的长.A解:AE =143(2)直角三角形+斜边上的高(知二求四) 10.Rt △ABC 中,∠C =90°,CD ⊥AB 于D ,AC =6,BC =8,求CD 和AD 的长.DBA解:CD =4.8,AD =3.611.在Rt △ABC 中,∠C =90°,CD ⊥AB 于D ,DB -AD =4,AC =4,求BC 和AB 的长.DBA解:BC =AB =8.(3)直角三角形+角平分线12.在Rt △ABC 中,∠C =90°,CD 平分∠ACB 交AB 于D ,AB =10,BC =8,求CD 的长.(提示:面积法求垂线段)CBAD解:过D 分别作DM ⊥AC 于M ,DN ⊥BC 于N ,利用面积法,可求DM =DN =247,CD =13.在Rt △ABC 中,∠C =90°,AD 平分∠CAB 交CB 于D ,CD =3,BD =5,求AC 和AD 的长.CBA解:过D 作DM ⊥AB 于M ,AC =AM =a ,CD =MD =3,则BM =4,在Rt △ABC 中,()22284a a +=+,a =6,AC =6,AD =(4)直角三角形+中线14.在Rt △ABC 中,∠C =90°,D 是BC 的中点,AD =13,AB =AC 和BC 的长.CBA解:AC =12,CD =5,BC =2CD =1015.在Rt △ABC 中,∠C =90°,AD ,BE是中线,BE =AD =5,求AB 的长.C BA解:AB =核心思想方法3:分类讨论的思想(1)三角形的形状不明时需分类讨论16.(2017东营)在△ABC 中,AB =10,AC =BC 边上的高AD =6,则另一边BC 的长是( C ) A .10 B .8 C .6或10 D .8或1017.在△ABC中,AB =AC =4,BC =2,以AB 为边向△ABC 处作△ABD ,使△ABD 为等腰直角三角形,求线段CD 的长.解:AC =4,BC =2,AB=222AC BC AB +=,∴△ACB 为直角三角形,即∠ACB =90°,分三种情况:(1)如图1,过点D 作DE ⊥CB ,垂足为点E ,易证△ACB ≌△BED ,易求CD =(2)如2,过点D 作DE ⊥CA ,垂足为点E ,易证△ACB ≌△DEA ,易求CD=(3)如图3,过点D 作DE ⊥CB ,垂足为点E ,过点A 作AF ⊥DE 垂足为点F ,易证△AFD ≌△DEB ,易求CD =图1DEB CA图2AEDB C 图3DF BECA(3)等腰三角形的顶点和腰不明时需要分类讨论 18.如图,在平面直角坐标系中,点A 的坐标为(2,1) (1)求OA 的长;(2)点P 为x 轴正半轴上一点,且△AOP 是等腰三角形,求P 点坐标.xx解:(1)0A ; (2)1P (54,0)或2P (4,0)或3P ,0). 核心思想方法4:建模的思想(1)数学模型1:半倍角→全等→勾股定理19.如图,四边形ADCF 中,∠D =∠C =90°,AD =DC =6,AE =EAF =45° (1)求EF 的长;(2)直接写出点F 到直线AE 的距离是 .AE解:将四边形ADCF 补成正方形ABCD ,由半角与倍角模型结论可知EF =DE +BF ,设EF =x ,则BF =x -3,FC =9-x ,在Rt △ECF 中,()22293x x =-=,解得x =5,EF =5;(2)可知△AEF 的面积是15,∴点F 到直线AE 的距离=215⨯÷20.(2017武汉改)(1)如图1,在等腰Rt △ABC 中,∠BAC =90°,AB =AC ,点M ,N 是BC 上任意两点,且∠MAN =45,求证:BM 2+CN 2=MN 2.(2)如图2,已知△AMC 中,N 为MC 上一点,∠MAN =∠C =45°,AC =,MC =9,求AN 的长.CNCN图1 图2解:(1)略;(1)过A 作AB ⊥AC 交CM 的延长线于B 点,则BC,AC =12,BM =3,∴设NC =x ,则MN =9-x ,由(1)可知222BM CN MN +=,∴()22239x x +=-,解得x =4,过A 作AT ⊥MC 于T ,则AT =TC =6,在Rt △ANT 中,运用勾股定理得:AN=(2)模型2:共顶点的等边三角形→全等→勾股定理21.如图,△ABC 中,AB =AC ,∠BAC =120°,∠DAE =60°,BD =5,CE =8,求DE 的长.CE DF BAE'CED F BA解:∵AB =AC ,可把△AEC 绕点A 顺时针旋转120°得到△A 'E B ,BE '=EC =8,'AE AE =,∠E 'AB =∠EAC ,∠BAC =120°,∠DAE =60°,∴∠BAD +∠EAC =60°,∠E 'AD =∠E 'AB +∠BAD =60°, ∴△E 'AD ≌△EAD (SAS ),∴E 'D =ED ,过E '作EF ⊥BD 于点F ,∵A B =AC ,∠BAC =120°,∴∠ABC =∠C =∠E 'BA =30°,∴∠E 'BF =60°,∴∠BE 'F =30°,∴1'42BF BE ==,'E F =BD =5,∴FD =BD -BF =1,在Rt △E 'FD 中,由勾股定理可得E 'D7,∴DE =7.22.如图,在△ABC 中,∠ABC =60°,AB =3,BC =5,以AC 为边向外作等边△ACD ,求BD 的长.F解:以AB 为边向外作等边三角形△ABE ,连接EC ,易证△ABD ≌△AEC ,得BD =EC ,过E 作EF ⊥BC 交CB 延长线于F ,易得32BF =,EF =,132CF =,在Rt △EFC 中,由勾股定理得EC =7,∴BD =7.(3)模型3:共顶点的等腰(直角)三角形→全等→勾股定理23.(1)如图1,锐角△ABC 中,分别以AB ,AC 为边向外作等腰△ABE 和等腰△ACD ,使AE =AB ,AD =AC ,∠BAE =∠CAD ,连接BD ,CE ,试猜想BD 和CE 的大小关系,并说明理由;(2)如图2,四边形ABCD 中,AB =7,BC =3,∠ABC =∠ACD =∠ADC =45°,求BD 的长; (3)如图3,在(2)的条件下,当△ACD 在线段AC 的左侧时,求BD 的长.DABDAB图1 图2 图3解:(1)BD =CE ,理由:证△EAC ≌△BAD ,BD =CE ;(2)过A 向外作AE ⊥AB 、连接EB,则△ABE 为等腰直角三角形,BE=AB =ABE =45°,∵∠ABC =45°,∴∠EBC =90°,∴BD =EC =(3)过A 向外作AE ⊥AB 交BC的延长线于E ,BE= BD =EC=BE-BC =3.E。
浅析三角形教学中的分类讨论思想
浅析三角形教学中的分类讨论思想作者:饶良鑫来源:《新课程·中学》2015年第06期摘要:初中数学中的分类讨论思想是近几年常州市中考的热门考点之一,几乎每年分类讨论思想都有出现在考题中,它是教学的重点也是难点,分类讨论思想不仅在数学学科中涉及,在其他理科中也经常使用。
分类讨论思想中蕴含严谨的数学学科特点,也可以锻炼学生的思维和想象力,特别是在考查几何问题时,重点阐述了初中几何教学中的分类讨论思想,三角形问题中的分类讨论频繁地出现在常州中考的压轴题中,它的重要性不言而喻。
关键词:初中数学;三角形;分类讨论思想一、问题提出分类讨论思想的基本要求首先是不重复、不遗漏,分类讨论思想可以培养学生思维的连贯性和有序性,培养学生完整细致地分析问题的习惯和探索问题的能力,提高学生严谨的思维。
通过研究发现,学生碰到这类问题常常不知道如何切入,更不知道要分类讨论解答,还有一类学生清楚分类讨论,但是分类不完整,其次分类完整的学生在计算的过程中也会出现一些小问题,而能完整解答的微乎其微。
因此,教师教学中对这种解题思路方法的渗透显得尤为重要,学生要从平时的教学中积累和提炼、总结归纳。
最后达到运用非常熟练,这将是一个漫长的吸收内化的过程。
几何中的三角形中涉及分类讨论思想的题型有等腰三角形、直角三角形、相似三角形等;等腰三角形经常按顶角和低角分类、按底边或腰进行分类。
直角三角形一般情况是按直角顶点分类。
相似三角形中,当出现“△ABC与△DEF相似”或“以点A、B、C为顶点的三角形相似于△DEF ”时,由于点的对应关系不确定,通过分类讨论才能更清晰、更完整地解答。
二、核心概念所谓数学分类讨论方法,就是将数学对象分成几类,分别进行讨论来解决问题的一种数学方法。
有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性。
分类思想可不像一般的数学知识那样,通过几节课的教学就可让学生掌握应用。
而是要根据学生的年龄特征,学生在学习各阶段的认知水平,逐步渗透,螺旋上升,不断地丰富自身的内涵,从而达到利用数学分类讨论方法来解决问题的目的。
小学数学中的几种思想方法及应用
小学数学中的几种思想方法及应用作者:李秀亲来源:《新课程·教研版》2011年第21期《全日制义务教育数学课程标准》在“双基”的基础上提出了“四基”:即基础知识、基本技能、基本思想和基本活动经验。
那么,小学数学中有哪些基本思想呢?数学思想蕴涵在数学知识的形成、发展和应用过程中,是数学知识和方法在更高层次上的抽象与概括。
小学数学中常见的基本数学思想方法有:转化思想、集合思想、数形结合思想、函数思想。
符号化思想、对应思想、归纳思想、模型思想、统计思想、极限思想等。
下面谈谈几种常见的思想方法及其应用。
一、集合的思想方法集合思想就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法。
在小学数学中,集合概念是通过画集合图的办法来渗透的。
如用圆圈图(韦恩图)向学生直观的渗透集合概念。
让他们感知圈内的物体具有某种共同的属性,可以看作一个整体,这个整体就是一个集合。
利用图形间的关系则可向学生渗透集合之间的关系,如长方形集合包含正方形集合,平行四边形集合包含长方形集合,四边形集合又包含平行四边形集合等。
二、对应的思想方法对应是人的思维对两个集合间问题联系的把握,是现代数学的一个最基本的概念。
小学数学教学中主要利用虚线、实线、箭头、计数器等图形将元素与元素、实物与实物、数与算式、量与量联系起来,渗透对应思想。
如人教版一年级上册教材中,分别将小兔和砖头、小猪和木头、小白兔和萝卜、苹果和梨一一对应后,进行多少的比较学习,向学生渗透了事物间的对应关系,为学生解决问题提供了思想方法。
三、数形结合的思想方法数和形是数学研究的两个主要对象,数寓不开形,形离不开数,一方面抽象的数学概念、复杂的数量关系,借助图形使之直观化、形象化、简单化;另一方而复杂的形体可以用简单的数量关系表示。
“数形结合”可以借助简单的图形、符号和文字所做的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。
三角形问题中的数学思想方法
三角形问题中的数学思想方法数学思想和方法是数学基础知识、基本技能的本质体现,是形成数学能力、数学意识的桥梁,是灵活应用数学知识、技能的灵魂.因此,在解三角形题过程中准确快捷的关键是正确运用数学思想方法.这里对三角形解题时常用的分类讨论思想、整体思想、方程思想、转化思想、数形结合思想等举例予以说明,以供同学们学习参考应用.一、分类讨论思想由于题目的约束较弱(条件趋一般)或图形位置的变化常常使同一问题具有多种形态,因而有必要考查全面(所有不同情况)才能把握问题的实质.此种情况下应当进行适当分类,就每种情形研究讨论结论的正确性.例1 在等腰三角形中,一腰上的中线把它的周长分为15cm 和6cm 两部分,求三角形各边的长.分析:要注意等腰三角形有两边相等, 一腰上的中线把它的腰分成的两段相等.由于问题中未指明哪一段为15cm ,哪一段为6cm ,故需分类讨论.解:设腰长为xcm ,底边为ycm ,即AB=x ,则AD=CD=21x ,BC=y ⑴ 若x+21x=6时,则y+21x=15. 由x+21x=6得x=4.把x=4代入y+21x=15得y=13. 因为4+4<13,所以不能构成三角形. ⑵ 若x+21x=15时,则y+21x=6. 由x+21x=15得x=10.把x=10代入y+21x=15得y=1. 10+1>10符合题意, 所以三角形三边分别为10cm 、10cm 、1cm.例2 已知非直角三角形ABC 中,∠A=45°,高BD 和CE 所在直线交于H ,求∠BHC 的度数.分析:三角形的形状不同,高的交点的位置也就不同.高的交点可能在三角形内部,也可能在三角形外部,故应分两种情况加以讨论.解:⑴当△ABC 为锐角三角形时(图2)∵BD 、CE 是△ABC 的高, ∠A=45°, ∴∠ADB=∠BEH=90°. 在△ABD 中, ∠ABD=180°-90°-45°=45°.图1图2ABC D H E∵∠BHC 是△BHE 的外角, ∴∠BHC=90°+45°=135°. ⑵当△ABC 为钝角三角形时(图3)∵H 是△ABC 两条高所在直线的交点 ∠A=45°, ∴∠ABD=180°-90°-45°=45°.在Rt △BEH 中, ∠BHC=180°-90°-45°=45°. ∴∠BHC 的度数是135°或45°.注意:涉及三角形高的问题,常常会因为高的位置而需要讨论,否则就会漏解. 二、整体思想研究某些数学问题时,往往不是以问题的某个组成部分为着眼点,而是将待解决的问题看作一个整体,通过研究问题的整体形式,整体结构做整体处理后,达到解决问题的目的.例3 如图4,求∠A+∠B+∠C+∠D+∠E+∠F+∠G 的度数.分析:观察图形可得,图由一个四边形和一个三角形构成,可根据四边形和三角形的内角和定理求度数之和.解:因为∠A +∠C+∠E=180°, 又因为∠B+∠D+∠F+∠G=360°,所以∠A+∠B+∠C+∠D+∠E+∠F+∠G=540°.剖析:例题中若直接求出每一角的度数再求其和显然是做不到的.因此,设法整体求值是解题的关键.事实上,有些数学问题,如果从局部去考虑,拘泥于常规,则举步维艰.如果从全局着手,突破常规,则会柳暗花明.三、方程思想求值时,当问题不能直接求出时,一般需要设未知数继之建立方程.用解方程的方法求出结果,这也是解题中常见的具有导向作用的一种思想.例4 如图5,在△ABC 中,∠B =∠C ,∠1=∠2,∠BAD=40°.求∠EDC. 分析:利用三角形的外角性质,设法建立关于∠EDC 的方程. 解:设∠EDC=x.因为∠1是△DEC 的外角,所以∠1=x+∠C. 又因为∠1=∠2,所以∠2=x+∠C.又因为∠2是△ABD 的外角,所以∠ADC=∠B+∠BAD. 所以∠B+∠BAD =∠2+x ,即∠B+40°=∠C+2x. 因为∠B =∠C ,所以2x=40°,解得x=20°.A BDHCE图3图5AEGFB CD图4剖析:方程是解决很多数学问题的重要工具,很多数学问题可以通过构造方程而获解.事实上,用设未知数的方法表示所求,可使计算过程书写简便,也易于表明角与角之间的关系.四、转化思想用简单、已学过的知识解决复杂、未知的知识,把复杂的问题转化为简单的问题,将陌生的问题转化为熟悉的问题来解.这种解题思想叫转化思想.例5 如图6,求五角星各顶角之和.分析:因为∠A 、∠B 、∠C 、∠D 、∠E 较分散,本例中又不 知其度数,因此,应设法将它们集中起来,将问题转化为三角形 来处理.根据三角形外角性质和内角和定理可以求解.解:因为∠1=∠C+∠E ,∠2=∠B+∠D ,又因为∠1+∠2+∠A=180°,所以∠A+∠B+∠C+∠D+∠E=180°.点拨:此题还可以连接CD 求解.当我们求多个角之和不能直接计算时,应考虑转化为三角形求解.五、数形结合思想例6 如图7,在△ABC 中,已知AD 是角平分线, ∠B=60°,∠C=45°,求∠ADB 和∠ADC 的度数.分析:在△ABD 中,∠ADB 是一个内角,它等于180°-∠B -∠BAD ,故求出∠BAD 即可求出∠ADB 的度数,这由已知条件不难求得;同理可求出∠ADC 的度数.解:在△ABC 中,∵∠B=60°, ∠C=45°, ∠B+∠C+∠BAC=180°, ∴∠BAC=180°-∠B -∠C=180°-60°-45°=75°. 又∵AD 是角平分线, ∴∠BAD=∠DAC=21∠BAC=37.5°. 在△ABD 中,∠ADB=180°-∠B -∠BAD=180°-60°-37.5°=82.5°. 同理∠ADC=180°-∠C -∠DAC=180°-45°-37.5°=97.5°.点拨:几何与代数是患难兄弟,密不可分.在求解几何题中,通常数与形要结合起来才能打开思路,进行运算.否则,一头舞水,扑朔迷离,茫然不知所措.图6A D 图7数学思想方法在三角形中的应用一、方程思想方法:例1、已知:等腰三角形的周长是24cm ,腰长是底边长的2倍,求腰长.分析:根据等腰三角形的周长=腰长+腰长+底边长和腰长是底边长的2倍,可设一腰长的长为xcm ,可列方程为x +2x +2x =24,解之即可.解:(1)设底边长x cm ,则腰长为2x cm x +2x +2x =24 x =4.8∴腰长=2x =2×4.8=9.6 (cm)点拨:用设未知数,找相等关系,列方程来解,体现了几何问题用代数方法解和方程思想.二、分类讨论的思想方法:例2、已知斜三角形ABC 中,∠A=45°,高BD 和CE 所在直线交于H ,求∠BHC 的度数.分析:三角形的形状不同,高的交点的位置也就不同,斜三角形包括锐角三角形和钝角三角形,故应分两种情况讨论.图1ACD解:∵△ABC 为斜三角形,∴△ABC 可能是锐角三角形,也可能是钝角三角形, (1) 当△ABC 为锐角三角形时(如图1), ∵BD 、CE 是△ABC 的高,∠A=45°, ∴∠ADB=∠BEH=90°,∴∠ABD=90°-45°=45°,∴∠BHC=∠ABH+∠BEH=45°+90°=135°.(2)当△ABC为钝角三角形时(如图2),H为△ABC的两条高所在直线的交点,∠A=45°,∴∠ABD=90°-45°=45°,在Rt△EBH中,∠BHC= 90°-∠ABD=90°-45°=45°.综上所述,∠BHC的度数是135°或45°.点拨:当问题出现的结果不唯一时,我们就需要分不同的情况来解决,这就是分类的思想.此类问题的出现,往往会被同学们忽视,或考虑不全面,希望大家在平时就要养成分类解析的习惯.本题易犯的错误是只考虑锐角三角形的情况,而造成解答不全面的错误.三、转化的数学思想方法:例3、如图3,已知五角星形的顶点分别为A、B、C、D、E,请你求出∠A+∠B+∠C+∠D+∠E的度数.分析:直接求这五个角的度数和显然比较难,又考虑到此图中提供的角应与三角形有关,我们应该想办法将这几个角转化成三角形的内角,然后利用三角形的内角和定理求解.解法一:∵∠1是△CEM的外角,∴∠1=∠C+∠E,∵∠2是△BDN的外角,∴∠1=∠B+∠D.在△AMN中,由三角形内角和定理,得∠A+∠1+∠2=180°,∴∠A+∠B+∠C+∠D+∠E=180°.解法二:如图4,连结CD,在△BOE和△COD中,∠5=∠6,∵∠3+∠4+∠6=∠B+∠E+∠5=180°,∴∠3+∠4=∠B+∠E.在△ACD中,∠A+∠ACE+∠ADC=180°,∴∠A+∠ACE+∠ADC+∠3+∠4+∠ADB=180°,∴∠A+∠B+∠C+∠D+∠E=180°.点拨:在遇到不熟悉的数学问题时,要善于研究分析该问题的结构,通过“拼”、“拆”、“合”、“分”等方法将之转化为熟悉问题来解决.这种将不熟悉的数学问题转化为熟悉的数学问题来解决,这就是转化的思想.在运用三角形知识解决有关问题时,通过添加辅助线将一般图形转化为三角形来解决是常用解答方法之一.。
专题27 角中的常见思想方法的应用(生)
专题27 角中的常见思想方法的应用【题型5 角中的整体思想】 (1)【题型6 角中的方程思想】 (3)【题型7 角中的分类讨论思想】 (4)【题型8 角中的数形结合思想】 (5)【题型5 角中的整体思想】【例5】(2022·山西·七年级期末)数学课上,李老师出示了如下题目.将一副三角板按如图1所示方式摆放,分别作出∠AOC,∠BOD的平分线OM,ON,然后提出问题:求∠MON 的度数.小明与同桌小丽讨论后,进行了如下解答:特殊情况,探索思路将三角板分别按图2,图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的平分线,其中,按图2方式摆放时,可以看成是ON,OD,OB在同一直线上.按图3方式摆放时,∠AOC和∠BOD相等.(1)请你直接写出计算结果:图2中∠MON的度数为______,图3中∠MON的度数为______;特例启发,解答题目(2)请你完成李老师出示的题目的解答过程;拓展结论,设计新题(3)若将李老师出示的题目中条件“分别作出∠AOC,∠BOD的平分线OM,ON”改为“分别作出射线OM,ON,使∠AOM=34∠AOC,∠DON=14∠BOD”,请你直接写出∠MON的度数.【变式5-1】(2022·全国·七年级课时练习)如图,已知∠AOB 内部有三条射线,其中OE 平分角∠BOC ,OF 平分∠AOC .(1)如图1,若∠AOB=120°,∠AOC=30°,求∠EOF 的度数?(2)如图2,若∠AOB=α,求∠EOF 的度数,(用含α的式子表示)(3)若将题中的“平分”的条件改为“∠EOB=13∠COB ,∠COF=23∠COA ,且∠AOB=α,求∠EOF 的度数.(用含α的式子表示)【变式5-2】(2022·全国·七年级)已知∠AOB =120∘,OC 、OD 是过点O 的射线,射线OM 、ON 分别平分∠AOC 和∠DOB .(1)如图①,若OC 、OD 是∠AOB 的三等分线,求∠MON 的度数;(2)如图②,若∠COD =50∘,∠AOC ≠∠DOB ,则∠MON =________;(3)如图③,在∠AOB 内,若∠COD =α(0∘<α<60∘),则∠MON =________.【变式5-3】(2022·全国·七年级单元测试)如图,将一副三角板如图①所示摆放,∠AOB =60°,∠COD =45°,OM ,ON 分别平分∠AOD 、∠COB .(1)求∠MON 的度数;(2)将图①中的三角板OCD 绕点О旋转到如图②的位置,求∠MON 的度数;(3)将图①中的三角板OCD绕点О旋转到如图③的位置,猜想∠MON的度数,并说明理由.【题型6 角中的方程思想】【例6】(2022·黑龙江牡丹江·七年级期末)以直线MN上点O为端点作射线OC,将直角三角板AOB的直角顶点放在点O处.(1)如图①,三角板AOB的边OB在射线ON上,若∠BOC=40°,则∠AOC=________.(2)如图②,将三角板绕点O逆时针方向转动,使得OB平分∠CON,请判断OA平分∠COM吗?并说明理由.∠AOM,则∠BON=________.(可(3)若∠CON=50°,将三角板AOB绕点O按逆时针方向转动,使得∠BOC=13用备用图.)【变式6-1】(2022·陕西渭南·七年级期末)如图,已知∠AOC:∠AOB=2:7,OD是∠AOB的平分线,若∠AOC= 16°,求∠AOD的度数.【变式6-2】(2022·山东烟台·期末)如图,将直角三角板OMN的直角顶点O放在直线AB上,射线OC平分∠AON.(1)当∠BON=60°时,求∠COM的度数;(2)若∠AOM=2∠COM,求∠AON的度数.【变式6-3】(2022·河南郑州·七年级期末)如图,已知∠AOB=90°,三角形COD是含有45°角的三角板,∠COD =45°,OE 平分∠BOC .(1)如图1,当∠AOC =30°时,∠DOE =_____________°;(2)如图2,当∠AOC =60°时,∠DOE =_____________°;(3)如图3,当∠AOC =α(90°<α<180°)时,求∠DOE 的度数(用α表示);(4)由前三步的计算,当0°<∠AOC <180°时,请直接写出∠AOC 与∠DOE 的数量关系为_______________________________________.【题型7 角中的分类讨论思想】【例7】(2022·浙江金华·七年级期末)定义:在一个已知角内部,一条线分已知角成两个新角,其中一个角度数为另个角度数的两倍,我们把这条线叫做这个已知角的三等分线.(1)如图,已知∠AOB =120°,若OC 是∠AOB 三等分线,求∠AOC 的度数.(2)点O 在线段AB 上(不含端点A ,B ),在直线AB 同侧作射线OC ,OD .设∠AOC =3t ,∠BOD =5t . ①当OC 是∠AOD 的三等分线时,求t 的值.②当OC 是∠BOD 的三等分线时,求∠BOD 的度数.【变式7-1】(2022·江苏·文昌初级中学七年级阶段练习)已知如图,∠COD=90°,直线AB 与OC 交于点B ,与OD 交于点A ,射线OE 与射线AF 交于点G.(1)若OE 平分∠BOA ,AF 平分∠BAD ,∠OBA=42°,则∠OGA= °(2)若∠GOA=13∠BOA ,∠GAD=13∠BAD ,∠OBA=42°,则∠OGA= °;(3)将(2)中的“∠OBA=42°”改为“∠OBA=α”,其它条件不变,求∠OGA 的度数.(用含α的代数式表示)(4)若OE 将∠BOA 分成1︰2两部分,AF 平分∠BAD ,∠ABO=α(30°<<90°) ,求∠OGA 的度数.(用含α的代数式表示)【变式7-2】(2022·江西省遂川县教育局教学研究室七年级期末)如图,∠AOB=90°,∠BOC=α(0°<α<180°),OD,OE分别是∠AOB,∠BOC的平分线.(1)如图1,当OC在OB左侧,且α=80∘时,∠DOE的度数是_________;(2)当OC的位置不确定时,请利用备用图,画出相关图形,探究∠DOE的大小与α的数量关系;(3)当∠DOE的度数为36°时,请直接写出α的度数.【变式7-3】(2022·广东汕头·七年级期末)探索新知:如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB,∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“巧分线”(1)一个角的平分线______这个角的“巧分线”(填“是”或“不是”);(2)如图2,若∠MPN=α,且射线PQ是∠MPN的“巧分线”,则∠MPQ=______;(用含α的代数式表示);深入研究:如图2,若∠MPN=60°,且射线PQ绕点P从PN位置开始,以每秒10°的速度逆时针旋转,当PQ与PN成180°时停止旋转,旋转的时间为t秒.若射线PM同时绕点P以每秒5°的速度逆时针旋转,并与PQ同时停止,请求出当射线PQ是∠MPN的“巧分线”时的值.【题型8 角中的数形结合思想】【例8】(2022·浙江台州·七年级期末)如图,已知∠AOB=120°,OC是∠AOB内的一条射线,且∠AOC:∠BOC=1:2.(1)求∠AOC ,∠BOC 的度数;(2)作射线OM 平分∠AOC ,在∠BOC 内作射线ON ,使∠BON =70°,补全图形, 并求出∠MON 的度数;(3)若存在射线OD ,使∠AOD =4∠BOD ,请直接写出所有可能的∠COD 的度数.【变式8-1】(2022·山东临沂·七年级期末)已知∠AOB 、∠COD ,射线OE 平分∠AOD ;(1)如图1,已知∠AOB =180°、∠COD =90°,若∠DOB =46°,求∠COE 的度数;(2)∠AOB 、∠COD 的位置如图2,已知∠COD =12∠AOB ,求∠COE:∠DOB 的值. 【变式8-2】(2022·全国·七年级单元测试)操作与实践:在综合与实践活动课上,老师将一副三角板按图1所示的位置摆放,分别在∠AOC ,∠BOD 的内部作射线OM ,ON ,然后提出如下问题:先添加一个适当条件,再求∠MON 的度数.(1)特例探究:“兴趣小组”的同学添加了:“若OM ,ON 分别平分∠AOC ,∠BOD ”,画出如图2所示图形.小组3号同学佳佳的做法:由于图中∠AOC 与∠BOD 的和为90°,所以我们容易得到∠MOC 与∠NOD 的和,这样就能求出∠MON 的度数.请你根据佳佳的做法,写出解答过程.(2)特例探究:“发现小组”的同学添加了:“若∠MOC =13∠AOC ,∠DON =13∠BOD ”,画出如图3所示图形.小组2号同学乐乐的做法:设∠AOC 的度数为x °,我们就能用含有x °的式子表示出∠COM 和∠DON 的度数,这样就能求出∠MON 的度数,请你根据乐乐的做法,写出解答过程.(3)类比拓展:受“兴趣小组”和“发现小组”的启发,“创新小组”的同学添加了:“若∠MOC =1n ∠AOC ,∠DON=1∠BOD”.请你直接写出∠MON的度数.n【变式8-3】(2022·山东·烟台市福山区教学研究中心期中)如图,将一副三角板放到一起可以擦除怎样的数学火花呢?福山区某学校两个数学兴趣小组对一副三角板进行了以下两种方式的摆放组合.已知一副三角板重合的顶点记为点O,作射线OE平分∠AOC,射线OF平分∠BOD,来研究一下45°三角板不动,30°三角板绕重合的顶点O旋转时,∠EOF的度数如何变化.【A组研究】在同一平面内,将这副三角板的的两个锐角顶点重合(图中点O),此时∠AOB=45°,∠COD=30°将三角板OCD绕点O转动.(1)如图①,当射线OB与OC重合时,则∠EOF的度数为___________;(2)如图②,将∠COD绕着点O顺时针旋转,设∠BOC=α,∠EOF的度数是否发生变化?如果不变,请根据图②求出∠EOF的度数;如果变化,请简单说明理由.【B组研究】在同一平面内,将这副直角三角板中的一个直角顶点和一个锐角顶点重合(图中点O),此时∠AOB=90°,∠COD=30°,将三角板OCD绕点O转动.(3)如图③,当三角板OCD摆放在三角板AOB内部时,则∠EOF的度数为___________;(4)如图④,当三角板OCD转动到三角板AOB外部,设∠BOC=β,∠EOF的度数是否发生变化?如果不变,请根据图④求出∠EOF的度数;如果变化,请简单说明理由.。
勾股定理中的数学思想方法
勾股定理中的数学思想方法勾股定理是反映自然界基本规律的一条重要结论,它有着悠久的历史,在数学发展中起着重要的作用.它揭示了一个直角三角形三条边之间的数量关系,把数与形统一起来,在现实世界中有着广泛的应用.勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a b c 222+=; 逆定理:如果三角形的三边长a ,b ,c 满足a b c 222+=,那么这个三角形是直角三角形.勾股定理揭示了直角三角形三边关系的重要性质;它的逆定理则是从三角形三边关系判定三角形是否是直角三角形的一个方法.学习《勾股定理》这一章,除了掌握上述两个定理之外,还应了解:这一章中蕴含着哪些重要的数学思想方法?在运用勾股定理解题时,若能正确地把握数学思想,则可思路开阔,方法简便快捷,下面举例说明,供同学们参考. 一、数形结合思想勾股定理本身就是数形结合的定理,它的验证和应用,都体现了数形结合的思想. 例1.如图1是一种“羊头”形图案,其做法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②′,…,然后依次类推,若正方形1的边长为64cm ,则正方形的边长为 cm .析解:这是一类关于“勾股树”(国外叫做“毕达哥拉斯树”)的探讨题,主要考查灵活运用勾股定理解决问题的能力,这里只要由勾股定理的规律通过一系列的探索就可以得到答案是8.例2.有一直立标杆,它的上部被风吹折,杆顶着地,离杆脚20cm ,修好后又被风吹杆,因新断处比前次低了5cm ,且标杆顶着地处比前次远10cm ,求标杆的高.析解:依题意作图如2,数形结合求解,设第一次吹折后下段AB 的长为xcm ,上段BC 的长为ycm ,第二次折后下段AD 的长为(x-5)cm ,上段DE 的长为(y+5)cm ,依题意得⎪⎩⎪⎨⎧=--+=-22222230)5()5(20x y x y只要求出x+y 的值即求出标杆的高而不必单独求x 与y 的值.②-①得10(x+y )=500∴x+y=50故标杆的高为50cm评析:利用三边的平方关系或辅助线或生活常识可获得直角三角形,进而可求边长或面积.数形结合思想是数学中的重要思想方法,它可以使抽象的知识转化为形象的图形,从而处理起来,更直观、容易,应引起同学们的重视.二、方程思想例3.在印度数学家拜·斯加罗的著作中,记载了一个有趣的“荷花问题”:“平平湖水清可鉴,面上半尺声红莲;图1出泥不染亭亭立,忽被强风吹一边;渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”,请你用学过的数学知识回答这个问题.析解:此诗的大意是:在平静的湖面上,有一朵荷花高出水面0.5尺,忽然一阵狂风把荷花吹在水中淹没了,最后荷花垂直落到湖底,到了秋天,渔翁发现,落到湖底的荷花离根部有2尺远,如图,你知道这个湖的水深是多少尺吗?解答过程应该是这个样子的:设水深为x 尺,根据勾股定理,可得2222(0.5)x x +=+,所以x=3.75,故这个湖的水深是3.75尺. 三、转化思想例4.如图3所示,有一根高为2m 的木柱,它的底面周长为0.3m ,为了营造喜庆的气氛,老师要求小明将一根彩带从柱底向柱顶均匀地缠绕7圈,一直缠到起点的正上方为止,问:小明至少需要准备多长的一根彩带?分析与解:(1)将一张直角三角形的纸片在铅笔上缠绕七圈,将纸片展开,发现彩带的长相当于直角三角形的斜边长(如图4),可以利用勾股定理求出彩带的长.∵BC 为木柱的高,∴2m BC =.又∵木柱的底面周长为0.3m ,∴AC 的长为0.37 2.1m ⨯=.在Rt ACB △中,由勾股定理,得222AB AC BC =+,因此彩带的长为 2.9m AB =.(2)在木柱上均匀地缠绕7圈,相当于将木柱分成相等的七段,在每一段木柱上由底向正上方缠绕一根彩带,其侧面展开图是一个矩形,对角线的长为每段彩带的长(如图5).∵EF 为木柱的17,∴2m 7EF =. 又∵DE 为木柱展开后的底面周长,∴0.3m DF =. 在Rt DEF ∆中,由勾股定理,得222DE DF EF =+, ∴29m 70DE =,因此,彩带的长为7 2.9m DE ⨯=. 评析:遇到一些空间问题,通过动手实际操作一下,建立实物模型,这是建立空间概念的良好训练方法;而对实际问题进行分解、转化是数学解题中常用的思路.四、分类讨论思想例5.如图6是一块长、宽、高分别为6厘米、4厘米、3厘米的长方题木块.一只蚂蚁要从木块的一定点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需要爬行的最短路径的长是( ).A .)323(+厘米B .97厘米C .85 厘米D .9厘米分析:这个问题是个空间问题,应该把他平面化.所以将长方体展开是解决本题的关键.分类一:我将长方体相邻两侧面展开可得图7,由图7,可得222310AB +==109. 分类二:我展开的图形和小敏的不一样,我的展开图如图8,根据图8可得22267AB +==85.分类三:我还有一种展开的方法,请大家看图9,这个时候我可得22294AB +==97. 评析:同学们思考的都非常有道理,通过比较我们可以发现沿图8的爬行路径路程最短,所以85=AB 厘米.故选C .五、整体思想例6:(课本题)已知a 、b 、c 分别是Rt △ABC 的两条直角边和斜边,且a+b=14,c=10,则S △ABC =分析:一般的想法,要求直角三角形的面积,先求出其两条直角边a 、b ,则S △ABC 即可求出,但这样求a 、b 非常繁杂,甚至在现阶段不可能,如果注意到:S △ABC =ab 21,那么只要求出ab 这一整体就可以了.解、由a+b=14,两边平方得:a 2+2ab+b 2=196, 所以ab=()219622b a +- 根据勾股定理,a 2+b 2=c 2 所以,ab=21962c -=2101962-=48 因此S △ABC =ab 21=48例7:如图10,BC 长为3厘米,AB 长为4厘米,AF 长为13厘米.求正方形CDEF 的面积.分析:一般的想法,要求出正方形的面积,先求出其边长CF ;要求出CF ,先要求出AC .好,现在我们就顺着这个思路来求.在Rt ABC △中,222223425AC AB BC =+=+=,所以5AC =,在Rt FAC △中,22222135194F C A F A C =+=+=,FC为多少?数不够用了!我们再去看一下题目,是让求正方形的面积,正方形的面积为2FC ,何必去求FC ,只要求出2FC 这个“整体”就可以,原来正方形的面积为194,我们已经求出来了!(解答过程请同学们完成) 评析:整体思想,有时可以便问题直奔主体,少走弯路,使问题的解决方便、快捷,在一定程度上,体现了解题者的目标意识.。
数学思想方法在全等三角形解题中的应用
数学思想方法在全等三角形解题中的应用作者:李洪庆来源:《初中生世界·八年级》2013年第10期数学学习内容是数学基础知识和数学思想方法的有机结合.在数学课上,同学们往往只注意了对数学知识的学习,而忽视了联结这些知识的观点及由此产生的解决问题的方法与策略.下面,让我们一起走近“全等三角形”,体会一下隐藏在知识背后的思想方法.一、化归思想化归是数学中用以解决问题的最基本的手段之一,可以理解为转化、归结的意思,是指把待解决的问题通过某种转化,归结到较易解决的问题中去的一种手段或方法.证明线段相等或角相等等问题往往可以化归为证明三角形的全等,相关辅助线也是为这一目的而添置的.例1 如图1,已知:在△ABC中,AB=AC,D为AB上一点,E为AC的延长线上一点,连接DE交BC于G,DG=GE,求证:BD=CE.证明:过点D作DF∥AC交BC于F. ∵DF∥AC,∴∠DFG=∠ECG,又∠DGF=∠EGC,DG=EG,∴△DFG≌△ECG,∴CE=DF.∵DF∥AC,∴∠DFB=∠ACB,∵AB=AC,∴∠ABC=∠ACB,∴∠DFB=∠ABC,∴DB=DF,∴BD=CE.【评注】本题要证BD=CE,然而BD和CE这两条线段所在三角形却不可能全等,这时就通过添加辅助线DF构造出全等三角形,从而使问题获得解决.例2 如图2,已知:在△ABC中,AB=3,AC=5,求BC边上的中线AD的取值范围.解:延长AD到E,使DE=AD.在△ABD和△ECD中,∵AD=ED, BD=CD,∠ADB=∠EDC,∴△ABD≌△ECD.∴AB=EC.在△AEC中, AC-EC即AC-EC【评注】本例要解决的是边与边的不等关系,必须在同一三角形中运用三边关系定理,然而在△ABD、△ADC和△ABC中均不能解决,势必利用“倍长中线”构造全等三角形,将已知条件归结到一起来解决问题.二、整体思想整体思想就是从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些图形看成一个整体,把握它们之间的关联,进行有目的、有意识的整体处理.例3 如图3,已知:△ABC和△A′B′C′中,∠B=∠B′,∠C=∠C′,△ABC和△A′B′C′的周长相等,求证:△ABC≌△A′B′C′.本题待证的两个三角形已有两组角对应相等,但缺全等的必备条件“边对应相等”,因此要把“周长相等”整体转化成“边相等”.分别在直线BC和直线B′C′上截取BD=BA,CE=CA,B′D′=B′A′,C′E′=C′A′,则有DE=D′E′,易证△ADE≌△A′D′E′,可得AD=A′D′,从而△ABD≌△A′B′D′,于是AB=A′B′,这样待证的两个三角形全等的条件都已满足.三、方程思想在几何证明问题中,若能根据题目和图形的特征,运用方程思想去处理,往往容易找到解决问题的切入点,收到奇效.例4 设Rt△ABC与Rt△DEF的面积相等且斜边相等,即AB=DE,求证:△ABC≌△DEF.证明:设a,b,c为Rt△ABC的边长,d,e,f为Rt△DEF的边长,则有:S△ABC=■ab,S△DEF=■de,于是由S△ABC=S△DEF知ab=de①,又知c=f,故c2=f 2,即a2+b2=d2+e2②(勾股定理将在第三章学习),由①②可得(a+b)2=(d +e)2,(a-b)2=(d-e)2,即a=d,b=e或a=e,b=d.不论哪种情况,都有△ABC≌△DEF.运用数学符号形成的语言将相等关系转化成方程或方程组,通过解方程或方程组,使问题得到解决.几何问题代数化,事半功倍.四、分类思想分类思想是根据对象的相同点和差异点将对象划分为不同种类的方法,分类的标准往往是根据不同的实际需要来确定的,分类必须做到不重不漏.例5 已知两个三角形有两条边及其一边上的高对应相等,则第三边所对角有怎样的关系并说明理由.本题用几何语言叙述为:在△ABC和△A′B′C′中,AB=A′B′,BC=B′C′,AD⊥BC,A′D′⊥B′C′,D、D′为垂足,AD=A′D′,∠ABC和∠A′B′C′有怎样的关系?显然,∠ABC和∠A′B′C′的关系,须通过两个图形的全等关系来说明.然而我们并不能直接判定这两个三角形全等,必须根据数形结合来进行分类讨论:如果△ABC和△A′B′C′同为锐角三角形、直角三角形、钝角三角形时,易证△ABC≌△A′B′C′,从而∠ABC=∠A′B′C′;如果△ABC和△A′B′C′一为钝角三角形,一为锐角三角形,如图4所示,不妨设△ABC为钝角三角形,△A′B′C′为锐角三角形,易证△ABD≌△A′B′D′,则∠ABD=∠A′B′C′,于是∠ABC和∠A′B′C′互补.数学思想方法是数学的灵魂和精髓,是数学知识在更高层次上的抽象和概括,是知识转化为能力的桥梁,是解题过程中披荆斩棘、劈山开路的宝剑.同学们要学会运用数学思想方法去分析问题和解决问题.。
数学思想方法在《全等三角形》一章中的应用(1)
数学思想方法在《全等三角形》一章中的应用云南省普洱市墨江县那哈乡学校(中学部)余绍省【摘要】三角形在生活中的广泛应用,三角形在教学中的重要地位引起我们对三角形的探究,从而引出数学思想方法在三角形中的应用,这些方法包括化归思想、分类思想、数形思想、类比思想等。
本文就这些思想方法进行一些简单的应用介绍,与同行共勉。
【关键词】数学思想方法全等三角形应用三角形是生产、生活中最常见,应用最广泛的图形之一。
它又是最常见的多边形。
我们对其他图形的研究通常都是转化为三角形问题,利用三角形的性质去研究。
因此三角形这一章是平面几何学中最重要的基础知识,又由于几何通常运用逻辑推理方法研究问题,本章教学同时还担负着培养学生逻辑推理的任务,是学生学习推理的阶段,也是几何入门的阶段,学生在小学时虽已接触过一些图形知识,但主要以几何量的计算为主,很少讨论图形的性质,因此,初二数学教学中历年来都存在一个几何“入门”难的问题,由此可见老师教好这一章,学生学好这一章是非常重要的。
数学教学内容是数学基础知识和数学思想方法的有机结合。
在数学课上,学生往往只注意了对数学知识的学习,而忽视了连结这些知识的观点及由此产生的解决问题的方法与策略。
因而在教学中渗透数学思想方法,让学生在学到数学知识的同时也学到数学思想方法,使之以后在生活、工作中都可以随时随地用它们去解决问题,在培养智力的同时也培养了能力,更有利于当代素质教育的开展。
因此,在课堂教学中渗透数学思想、数学方法是非常必要的。
它包括培养学生通过观察、分析,综合概括出抽象概念、性质的能力,对知识进行分类,系统化的能力;也包括运用运动变化的观点,矛盾转化的思想分析问题和解决问题的能力。
下面,我就这些年的教学经验和同仁谈一点数学思想方法在《全等三角形》一章中的应用,对这一章教学中主要的数学思想方法作一些简单介绍:一、化归思想化归可以理解为转化、归结的意思,它是数学中用以解决问题的最基本的手段之一。
小专题求角度的几种数学思想方法人教版八年级数学上册作业课件
小专题求角度的几种数学思想方法人 教版八 年级数 学上册 作业课 件
小专题求角度的几种数学思想方法人 教版八 年级数 学上册 作业课 件
小专题求角度的几种数学思想方法人 教版八 年级数 学上册 作业课 件
小专题求角度的几种数学思想方法人 教版八 年级数 学上册 作业课 件
类型 4:整体思想 7.如图,在△ABC 中,AD⊥BC,AE 平分∠BAC.
小专题求角度的几种数学思想方法人 教版八 年级数 学上册 作业课 件
小专题求角度的几种数学思想方法人 教版八 年级数 学上册 作业课 件
如图②,若△ABC 是钝角三角形,∵BD 是高, ∴∠ABD=90°-∠A=90°-50°=40°.∵CE 是高,∴∠BHC= 90°-∠ABD=90°-40°=50°. 综上所述,∠BHC 的度数是 130°或 50°.
小专题求角度的几种数学思想方法人 教版八 年级数 学上册 作业课 件
小专题求角度的几种数学思想方法人 教版八 年级数 学上册 作业课 件
小专题求角度的几种数学思想方法人 教版八 年级数 学上册 作业课 件
小专题求角度的几种数学思想方法人 教版八 年级数 学上册 作业课 件
解:由(3)可知 ∠BDC=∠A +∠B+∠C =90°+21°+20° =131°, 而量得∠BDC=130°, ∵130°≠131°, ∴不合格.
小专题求角度的几种数学思想方法人 教版八 年级数 学上册 作业课 件
小专题求角度的几种数学思想方法人 教版八 年级数 学上册 作业课 件
感悟数形结合思想 发展数学核心素养——“解直角三角形中的数形结合”专题复习教学及反思
一、内容和内容解析1.内容“解直角三角形中的数形结合”专题复习课包括图1本节课为第1课时,以解直角三角形及其应用为载体,在综合运用相关知识解决问题的过程中,提炼运用数形结合思想方法解题的操作步骤、作用、注意要点等.2.内容解析(1)地位和作用.代数和几何是初中数学的主要研究对象.数形结合是通过数与形的相互转化达到认识和解决问题的一种思想和方法.通过“以形助数”和“以数解形”,准确把握数与形的关联点,可以使抽象的问题形象化、直观的问题精细化,从而快速获取解题思路,逻辑清晰地解决问题.运用数形结合思想解决问题的过程也是学生发展直观想象、数学运算、数学抽象、逻辑推理、数学建模等素养的过程.数形结合在数学学习和研究中占有重要地位,它不仅是一种重要思想,也是一种常用的解题策略与方法.本节课是运用数形结合思想解决相关问题的专题复习课,从具体的锐角三角函数问题的解决开始,总结提炼数形结合思想方法的作用、操作步骤和注意要点,并用于解决综合性问题.锐角三角函数是数形结合的产物,它的概念的产生和应用都与图形有着密切的联系,在历年中考试题中都占有一定的比重.因此,学好本节课的内容对中考备考有重要作用.(2)概念的解析.运用数形结合思想方法解决问题的操作步骤、注收稿日期:2021-01-16基金项目:河南省教育科学规划2020年度一般课题——基于“互联网+信息技术”的初中数学解题教学实践研究(2020YB0980).作者简介:赵智勇(1963—),男,中学高级教师,主要从事中学数学教育教学研究.——“解直角三角形中的数形结合”专题复习教学及反思赵智勇摘要:文章以锐角三角函数知识内容为载体,着眼于数形结合思想方法的深层感悟,实现数与形的双向沟通.通过“解直角三角形中的数形结合”专题复习课的教学,引导学生概括数形结合解决问题的基本思路,体会其作用,归纳其注意要点;引导学生应用概括出的数形结合思想的基本思路解决问题,实现数形结合思想的巩固和迁移;引导学生融合不同的思想方法解决综合性问题,实现思想方法的融合.关键词:数形结合;锐角三角函数;专题复习;教学研究感悟数形结合思想发展数学核心素养··47意要点、作用如下.操作步骤:分析问题结构—构想数形关联—实施数形转换—获得问题答案.注意要点:考虑数形结合解决问题的必要性、可行性和简洁性;解决几何证明题需要几何直观分析、代数抽象分析对应进行;代数性质与几何图形的对应互换.作用:运用数形结合思想方法解决问题能够使抽象的问题形象化,使复杂的关系得到直观、具体的表示,对理解题意、挖掘题目中的各种信息、发现蕴含的条件和关系、获得解题的灵感和方法等都具有重要意义.(3)思想方法.数形结合的实质是把抽象的数量关系与直观的图形表示结合起来,或把几何中的定性结论转化为可计算的定量结果,或以直观图形辅助抽象的代数运算与推理.(4)知识类型.本专题内容属于程序性知识,还是策略性知识,由知识类型所决定.在教学中,教师要注重以问题为引导,以学生活动为主,在独立思考、合作交流中,师生共同提炼数形结合思想方法的操作步骤和核心要点,进一步体会数形结合思想方法的作用;在应用中注重引导学生用数形结合思想方法去分析问题和解决问题.(5)教学重点.基于以上分析,确定本节课的教学重点为:提炼数形结合思想解题的一般步骤和注意要点.二、目标和目标解析1.目标(1)通过解直角三角形及其应用问题,了解数形结合思想的内涵和作用.(2)经历问题解决过程,能抽象概括出用数形结合思想解决问题的操作步骤、注意要点和作用.(3)能正确进行数形互化,运用数形结合思想解决有一定综合性的问题,形成解题策略.2.目标解析达成目标(1)的标志:知道数形结合研究数的精确与形的直观之间的转化,可使解题思路变得简单明了,从而化繁为简、化难为易.达成目标(2)的标志:明确运用数形结合解决问题一般需要经历“分析、构想、建立、求解”四个步骤.数与形的对应转换是运用数形结合解决问题的关键,明确以形助数、以数解形的具体操作步骤.知道在运用数形结合解决问题时,要考虑可行性等,不能用形的显然替代推理论证,既需要进行几何直观分析,又需要通过符号抽象、运算和推理进行量化研究.达成目标(3)的标志:在解决相关问题的过程中,能有意识借助形的几何直观性来阐述数之间的普遍关系和一般规律,借助数的精确性阐述形的某些属性和一般规律;能运用数形结合思想方法解决一些有一定难度的中考试题.三、教学问题诊断分析1.已具备的认知基础学生已经学习了直角三角形的两锐角互余、勾股定理、锐角三角函数等知识,并能运用直角三角形的性质解直角三角形;经历了数轴、坐标系、函数等概念的学习,对数形结合有一定的认识,对数与形的对应和转换有一定的模仿经验,具有一定的解决问题的能力,这为本节课的学习奠定了基础.2.与本课目标的差距分析(知识、能力)初中生运用数形结合解决问题,需要具备以下能力:敏锐的观察能力;准确的语言表达能力;灵活的思维能力;较强的综合应用能力.运用数形结合思想解决有一定难度的综合问题时,需要进一步培养学生敏锐的观察能力和灵活的思维能力.3.可能存在的问题运用数形结合思想解决综合性较强的题目时,纵横联系的知识点多,这对学生的数形结合能力提出了较高的要求.对于某些问题,学生有可能误用形的直观替代严谨的推理论证,也可能抓不住数的特征构建适当的形.4.应对策略本节课需要通过具体实例多次展现数形结合的具体操作步骤,使学生获取更多活动经验,提升学生对数形结合思想的认识和理解.首先,创设问题情境,引导学生利用数形结合思想解决问题;其次,引导学··48生对上述问题分解并进行反思总结,组织学生进行思想方法的交流和一般性思考;最后,通过对例题进行有针对性地指导,使学生经历数形结合解决问题的过程,既进行几何直观分析,又对应进行代数抽象探究,提升学生的认知加工水平和解题能力.基于以上分析,确定本节课的教学难点为:进行数与形的等价转化,并运用数形结合思想解决有一定难度的综合问题.四、教学支持条件分析利用希沃白板制作课件、互动授课;借助希沃授课助手拍照上传、进行投屏等,灵活展示和点评学生的学习成果,呈现课堂细节;结合GeoGebra 软件辅助构图操作,提升课堂效率.五、教学过程设计1.课前检测——针对强化,提升实效检测题1:△ABC 在正方形网格中的位置如图2所示,则sin α的值为().(A )34(B )43(C )35(D )45A BCαACB图3图2补测题:△ABC 在正方形网格中的位置如图3所示,则sin B 的值为.检测题2:如图4,已知在Rt△ABC 中,∠C =90°,tan ∠DBC =13,AD =3,AB =5,则cos A 的值为.A C D B图4DA BC图5补测题:如图5,在Rt△ABC 中,∠C =90°,∠BAC =30°,延长CA 至点D ,使AD =AB ,则tan D 的值为.【设计意图】通过课前检测题,了解学生对本节课的相关基础知识的掌握情况,可以根据检测的结果决定是否需要补测题,为后续提炼数形结合步骤和要点及进一步利用数形结合解决问题做好铺垫.2.解决问题——经历过程,感悟应用问题1:如图6,已知在△ABC中,AB =BC =5,tan∠ABC =43.(1)求AC 的长;(2)设边BC 的垂直平分线与边AB 的交点为点D ,求AD AB的值.师生活动:教师引导学生审清题意,从数与形两个方面的关联分析问题.第(1)小题中,作高构建数所对应的形,根据形所对应的数量关系确定求AC 的长的方法(设未知数,将求AC 的长转化为解方程问题求解).第(2)小题中,从图形特征关联图形对应的数量关系,确定求比值的方法.在引导学生审题和分析问题的过程中,教师结合学生的回答给出如表1所示的数形关联表,然后通过追问使学生理解“图形的形状确定,则图形中对应的数量关系也随之确定”.因此,求图形中两条线段的比值时,不必关注具体的数量,而把目光聚焦到图形中元素间的数量关系上,则求解过程更为简捷.表1追问1:你是如何使用“tan∠ABC =43”这个条件的?AB C图6··49追问2:条件“边BC的垂直平分线与边AB的交点为点D”对应的图形和数量关系表达式是什么?追问3:若将“AB=BC=5”改为“AB=BC”,你还能求出ADAB的值吗?为什么?【设计意图】通过解决第(1)小题,使学生经历以数解形的思考与解决问题的过程,将图形信息转换为具体的数量关系,借助图形的直观性,增加问题解决的准确性,使问题求解更加简明.通过解决第(2)小题,使学生经历以形助数的思考与解决问题的过程,让学生感悟借助图形的几何直观来解决数的问题,常常可以避免复杂的推理计算,使问题化难为易,使抽象的问题具体化.解决问题后,借助数形关联表,通过问题串促进学生对解决问题的过程进行反思总结,提炼运用数形结合解决问题的一般步骤、注意要点和作用,提升学生的思维能力.3.交流提炼——合作交流,提炼方法问题2:结合课前检测和问题1,你能总结一下利用数形结合思想解决问题的一般步骤和作用吗?师生活动:引导学生回顾课前检测题2的问题解决过程,师生共同建立如表2所示的数形关联表.表2结合问题1的解决过程和如表1、表2所示的数形关联表,师生共同归纳上述问题的解题思路和方法,总结提炼数形结合的一般操作步骤、作用和转化策略.作用:实现数与形的相互转化,使抽象思维与形象思维相结合,从而化繁为简、化难为易.一般操作步骤如下.(1)分析问题结构——审题,得到数的关系和形的特征.(2)构想数形关联——从数的角度想象和表示图形特征,从形的角度想象和描述数量关系,找到数与形的关联点,如几何度量(如距离、角度等)或坐标.(3)实施数形转换——构建数所对应的形,对形所对应的数量或数量关系进行符号抽象、运算和推理.(4)获得问题答案——有逻辑地表达解题过程.转化策略:关注具有显著特征的对象,基于基本的几何度量(距离和角度)找出数量关系与几何图形的关联点.【设计意图】概括数学思想方法,需要把数形结合思想的操作过程模型化、程序化、一般化.组织学生相互讨论交流,进一步挖掘数形结合思想的本质内涵,使学生对数形结合思想的认识从内隐转化为外显,实现运用数形结合思想解决问题操作策略的明朗化. 4.迁移应用——知识迁移,能力拓展问题3:如图7,我国两艘海监船A,B在南海海域巡航.某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C.此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向.已知A船的航速为30海里/时,B船的航速为25海里/时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈45,cos53°≈35,tan53°≈43,2≈1.41.)图7AB45°53°C师生活动:学生按以下步骤进行独立探索,并在学案上构建数形关联表,解决问题3.第一步:分析问题结构.过点C作AB所在直线的垂线,垂足为点D,由已知AD=DC,∠CBD=53°,··50AB=5.根据两艘船的速度,求等待时间,就要求AC 和BC的长.已知两角和一边,求另外两条边的长,这其实就是解直角三角形问题.第二步:构想数形关联.当已知角和边的条件时,利用锐角三角函数解决问题,通常要构建直角三角形.第三步:实施数形转换.设未知数,根据图形结构列出方程.第四步:获得问题答案.检验解的意义,得到实际问题的答案.教师在学生的分析、思考过程中,关注学生对数形结合解决问题一般步骤的操作表现,并利用希沃授课助手(手机APP结合电脑端)对学生完成的较规范的数形关联表和解题过程进行拍照上传、展示点评.结合学生的思考,师生共同构建如表3所示的数形关联表,解决问题3.表3【设计意图】通过对问题3的解决,进一步明确运用数形结合解决问题的思考步骤和注意要点,感知数与形之间的关联性,挖掘数与形之间的联系,促使学生自觉运用数形结合思想,提升分析问题和解决问题的能力.问题4:如图8,在△ABC中,AB=AC,AD是边BC上的高,E是AB的中点,F是边AC上一个动点,EF与AD相交于点G,AC=10,cos∠DAC=45.当△AGF为等腰三角形时,求EG的长.师生活动:首先,引导学生关注问题中的特殊元素,如两个中点E,D,连接ED构造△AGF∽△DGE;其次,解题需要关注主要构图对象,借助GeoGebra软件中的“复选框”功能简化图形,最终将问题转化为“在△DEG中,DE=5,cos∠EDG=45,当△DEG为等腰三角形时,求EG的长”.再运用GeoGebra软件中的“滑动条”控制动点F在边AC上移动,通过分类讨论,师生共同构建如表4所示的数形关联表,利用数形结合解决问题.代数关系式由BD=DC,BE=EA,得△AGF∽△DGE.由△AGF为等腰三角形,得△DGE为等腰三角形.得DE=5,cos∠EDG=45情况1:DE=EG;情况2:DE=DG;情况3:EG=DG对应的几何图形EDG(舍去)情况1EGDEGD(方法1)(方法2)情况2EGDEGD(方法1)(方法2)情况3AEFGDB CEGD5表4AEFGDB C图8··51追问1:此题还有其他解法吗?追问2:“EG=ED”这种情况不存在,我们还可以怎样说明?追问3:当EG=DG时,E G的长有限制吗?【设计意图】通过对问题4的解决,以数形结合、分类讨论思想为基础,引导学生在分析问题、规划思路时,将目光聚焦在特殊的视角和特殊的对象(等腰、中点、平行线)上,根据已有的数学活动经验合理寻求解决问题的突破口,体会利用数形结合进行推理得到的结论具有一般性,掌握目标导向的认知策略,使学生进一步感知数与形之间的关联性,挖掘数与形之间的必然联系,提升分析问题和解决问题的能力.追问4:结合以上问题,你能总结一下利用数形结合解决问题的注意要点和转化策略吗?注意要点如下.(1)代数性质与几何图形要对应互换.(2)考虑数形结合解决问题的必要性、可行性和简洁性.(3)不能用图形的直观代替严密的逻辑推理,既需要几何直观分析,又需要进行对应的代数抽象分析.5.反思总结——回顾思考,深化思维(1)数形结合的作用是什么?(2)运用数形结合解决问题可以分为哪些步骤?(3)运用数形结合解决问题的过程中最关键是哪一步?需要注意什么?(4)你还有哪些收获?师生共同总结出如图9所示的框图.数形结合作用实现数与形的相互转化,使抽象思维与形象思维相结合化繁为简,化难为易1.分析问题结构2.构想数形关联3.实施数形转换4.获得问题答案转化策略:找出数量关系与几何图形的关联点操作步骤注意要点1.考虑数形结合解决问题的必要性、可行性和简洁性2.几何证明题需几何直观分析、代数抽象分析对应进行3.代数性质与几何图形的对应互换图9【设计意图】回顾本节课的学习历程,并再次总结数形结合思想的解题思路、操作步骤、要点和作用,深化学生对数形结合思想的理解,强化目标导向的认知策略.六、目标检测——自我检测,巩固反馈1.新冠肺炎疫情期间,教育部号召各地各类学生居家学习.为支持小明学习,妈妈特意买了新台灯.图10(1)是放置在水平桌面上的台灯,图10(2)是其侧面示意图(台灯底座高度忽略不计),其中灯臂AC=40cm,灯罩CD=30cm,AC 可以绕点A上下调节一定的角度,CD可以绕点C上下调节一定的角度.使用时发现:当灯臂与底座构成的夹角∠CAB=53°,∠ACD=157°时,台灯光线最佳.求光线最佳时点D到桌面的距离为多少?(结果保留一位小数.参考数据:sin53°≈45,cos53°≈35.)A BCD(2)(1)图102.如图11,在Rt△ABC中,∠C=90°,sin B=45,AC=4.D是BC的延长线上的一个动点,∠EDA=∠B,AE∥BC.当△ADE为等腰三角形时,求AE的长.AB C DE图11【设计意图】巩固利用数形结合思想解决问题的过程与方法,对应知应会的核心知识进行检测,为下节课的解题课奠定基础.通过解决问题,进一步体现数形结合思想应用的广泛性和有效性,提高学生对数学思想的感悟层次,提升学生分析问题和解决问题的能力,感受数形结合的育人价值.··52七、教学反思教学设计是静态的,而课堂生成是动态的.通过对数形结合的设计和实施教学,笔者认为,在教学中,教师引导学生感悟数形结合思想方法,发展数学学科核心素养应注意以下几点.1.进行单元整体教学从整体上把握教学内容,整体构思单元各课时的教学内容,注重知识的前后联系,以及对后续学习的重要作用,体现数学知识的整体性、逻辑的连贯性、思想的一致性和方法的一般性.在相互联系中引导学生感悟其中蕴涵的数学思想方法,发展学生的数学素养,有利于深化学生对数形结合思想的理解,培养理性精神和探究精神,提升中考数学备考能力.2.发挥一般观念的引领作用本节课的教学设计和实施是在一般观念的指导下,以数学知识的内在逻辑构建自然而然的研究过程.以解直角三角形内容为载体,根据题目条件和数学知识的内在逻辑关系设计系列问题串,自然引出数形关联表,利用问题串和数形关联表引导学生概括总结问题的解决思路和方法,提炼数形结合的作用、一般操作步骤、转化策略,形成基本套路,提升教学的整体性和思想性,帮助学生体会数形结合思想方法,使学生透过现象看本质,从复杂问题中抓住关键要素,从而化繁为简,形成数学的思维方式,提升发现问题、提出问题、分析问题和解决问题的能力. 3.遵循数学思想方法教学的原理数学思想方法的学习要经历“解决问题—概括提炼—迁移应用—联系发展”这四个阶段.本节课以此为依据进行教学设计.首先,通过具体问题的解决,体会数形结合思想;其次,将如何分析问题结构、构想数形关联、实施数形转换这一操作过程显性化,明确其作用、操作步骤和要点,提炼和概括数形结合思想;最后,让学生用概括出来的数形结合思想解决新的问题,感悟利用数形结合解决问题的关键是从数的角度观察图形特征,从形的角度实现数量代换,找到数与形的关联点,使学生内化数形结合思想,形成数学活动的经验.例如,在回顾检测题2和问题1时,给表格加个题目“数形关联表”,在对照表格进行引导时用“数量关系关联的几何图形”和“几何图形关联的数量关系”等语言,可以促进学生使用“关联”进行概括.4.精选样例引导学生感悟数形结合思想方法,重要的是精选适当的题目,利用题目归纳操作流程.巩固操作流程可以利用相关的变式题目和拓展题目进行迁移训练,使学生在合作探究中内化数形结合的操作流程,在反思总结中形成有结构的知识经验.5.坚持以学为中心在以学生活动为主、以感悟数形结合思想为目标的复习教学中,教师需要注意鼓励学生积极思考、提出有价值的问题,关注学生是否能够用数学的思维方式观察、分析、解决问题,使学生感受数与形之间的相互转化,使抽象思维与形象思维相结合;合理运用信息技术手段,有利于增强学生的学习兴趣,提高课堂学习效果.教学时,若教师不揭示方法的本质,学生只会看到简单的数学操作,看不到问题的本质.数学思想是对数学知识的更高层次的概括与提炼,是培养学生的数学能力、发展数学学科核心素养的重要环节.数学思想方法的教学对解题教学具有十分重要的指导作用,有助于提升学生的解题能力和应用能力,发展学生的理性思维和科学精神,有效发挥数学学科的育人价值.参考文献:[1]中华人民共和国教育部制定.义务教育数学课程标准(2011年版)[M].北京:北京师范大学出版社,2012.[2]章建跃.章建跃数学教育随想录[M].杭州:浙江教育出版社,2017.[3]吴增生.科学用脑高效复习:初中数学总复习教学设计[M].杭州:浙江科技出版社,2018.[4]吴增生.整体建构核心素养导向下的总复习教学策略体系[J].中国数学教育(初中版),2019(7/8):3-11,37.[5]王华鹏.“四个理解”指导下的教学设计新思路:以“位似”教学设计为例[J].中国数学教育(初中版),2019(9):3-8,13.··53。
初中数学几何思想方法以及例题
一、解决数学问题的思想方法:1、设未知数即方程的思想方法,可以根据题目的意思以及所学知识进行设未知数,但是有时候计算到最后是不用求出来的,仅仅是依靠其作为桥梁2、分类讨论的数学思想方法:当题目出现说存在等腰三角形或者存在直角三角形都需要分类讨论,根据题目的意思画出分类的几种图形,再进一步分析得出答案3、转化的数学思想方法,如题目要求某个动点某个数据的最小值或者最大值,可以根据题目的意思将线段转化成另一条容易求的线段。
4、整体的思想方法5、需要记住一些常见的基本模型整体思想6、整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。
整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。
已知代数式3x2-4x+6的值为9,则246 3x x-+的值为( )A.18 B.12 C.9 D.7转化思想转化思想是解决数学问题的一种最基本的数学思想。
在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。
转化的内涵非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。
如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为m(容器厚度忽略不计).点评:本题利用转化思想把立体问题转化为平面问题,从而使问题简单化、直观化。
将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.分类讨论思想在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。
北师版八年级数学上册复习思想方法专题:勾股定理中的思想方法
思想方法专题:勾股定理中的思想方法◆类型一 分类讨论思想一、直角边和斜边不明时需分类讨论【易错1】1.在一个直角三角形中,若其中两边长分别为5,3,则第三边长的平方为( )A .16B .16或34C .34D .不存在2.已知x ,y 为正数,且|x -4|+(y -3)2=0,如果以x ,y 为边长作一个直角三角形,那么以这个直角三角形的斜边长为边长的正方形的面积为( )A .5B .7C .7或25D .16或25 二、锐角和钝角不明时需分类讨论【易错2】 3.★在△ABC 中,AB =13cm ,AC =20cm ,BC 边上的高为12cm ,则△ABC 的面积为________cm 2.【变式题】一般三角形→等腰三角形等腰三角形的腰长为5,一腰上的高为3,则这个等腰三角形底边长的平方为________.三、腰和底不明时需分类讨论4.★如图,在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,将△ABC 扩充为等腰△ABD ,且扩充部分是以AC 为直角边的直角三角形,则CD 的长为( ) A.76,2或3 B .3或76C .2或76D .2或3◆类型二 方程思想一、利用两直角三角形“公共边”相等列方程5.如图,在△ABC 中,CD ⊥AB 于D ,若AD ∶BD =5∶2,AC =17,BC =10,则BD 的长为( )A .4B .5C .6D .86.如图,在△ABC 中,AB =15cm ,AC =13cm ,BC =14cm ,则△ABC 的面积为________cm 2.【方法5①】二、折叠问题中利用勾股定理列方程 7.如图,在Rt △ABC 中,∠B =90°,AB =3,BC =4,将△ABC 折叠,使点B 恰好落在边AC 上与点B ′重合,AE 为折痕,则EB =________.8.如图,长方形纸片ABCD 沿对角线AC 折叠,设点D 落在D ′处,BC 交AD ′于点E ,AB =6cm ,BC =8cm ,求阴影部分的面积.【方法3】◆类型三 利用转化思想求最值9.(2016-2017·张掖期中)课外小组的同学在学校的花园里观察到一棵牵牛花的藤在一截面周长为36cm 的圆柱形水管上缠绕4圈后,恰好上升至108cm 的高度,则此时牵牛花藤的长度至少是________.【方法4②】10.如图是一个三级台阶,它的每一级长、宽、高分别是100cm ,15cm 和10cm ,A ,B 是这个台阶上两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿台阶爬行到B 点的最短路程是________.参考答案与解析1.B 2.D3.126或66 解析:当∠B 为锐角时,如图①,在Rt △ABD 中,BD 2=AB 2-AD 2=132-122=25,∴BD =5cm.在Rt △ADC 中,CD 2=AC 2-AD 2=202-122=256,∴CD =16cm.∴BC =BD +CD =5+16=21(cm),∴S △ABC =12·BC ·AD =12×21×12=126(cm 2);当∠B 为钝角时,如图②,在Rt △ABD 中,BD 2=AB 2-AD 2=132-122=25,∴BD=5cm.在Rt △ADC 中,CD 2=AC 2-AD 2=202-122=256,∴CD =16cm.∴BC =CD -BD =16-5=11(cm).∴S △ABC =12·BC ·AD =12×11×12=66(cm 2).故答案为126或66.【变式题】90或10 解析:分两种情况讨论:①当等腰三角形为锐角三角形时,可求得底边长的平方为10;②当等腰三角形为钝角三角形时,可求得底边长的平方为90. 4.A 解析:分三种情况:①当AD =AB 时,得CD =BC =3;②当AD =BD 时,设CD =x ,则AD =x +3,由勾股定理列出方程(x +3)2=x 2+42,解得x =76;③当BD=AB 时,由勾股定理求出AB =5,即可得出CD =5-3=2.故CD 的长为3,76或2.5.C 解析:设BD =2x ,则AD =5x ,在Rt △ACD 与Rt △BCD 中,AC 2-AD 2=BC 2-BD 2,即172-(5x )2=102-(2x )2,解得x =3,即BD =6.6.84 7.328.解:∵四边形ABCD 是长方形,∴∠B =∠D =90°,AB =CD .由折叠的性质可知∠D ′=∠D ,CD =CD ′,∴∠B =∠D ′,AB =CD ′.又∵∠AEB =∠CED ′,∴△ABE ≌△CD ′E .∴AE =CE .设AE =x cm ,在Rt △ABE 中,AB 2+BE 2=AE 2,即62+(8-x )2=x 2,∴x =254,∴CE =AE =254cm.∴S阴影=12·CE ·AB =12×254×6=754(cm 2).9.180cm 解析:将水管展开,则最短藤如图所示,其中BC =1084=27(cm),AC =36cm ,∴由勾股定理得AB 2=AC 2+BC 2=272+362=2025,∴AB =45cm.故藤的最短长度为45×4=180(cm).10.125cm。
专题14 直角三角形中的分类讨论模型(解析版)
专题14直角三角形中的分类讨论模型模型1、直角三角形中的分类讨论模型【知识储备】凡是涉及直角三角形问题,优先考虑直角顶点(或斜边)分类讨论,再利用直角三角形的性质或勾股定理解题即可。
1)无图需分类讨论:①已知边长度无法确定是直角边还是斜边时要分类讨论;②已知无法确定是哪个角是直角时要分类讨论(常见与折叠、旋转中出现的直角三角形)。
2)“两定一动”直角三角形存在性问题:(常见于与坐标系综合出题,后续会专题进行讲解)即:如图:已知A ,B 两点是定点,找一点C 构成Rt ABC △方法:两线一圆具体图解:①当︒=∠90BAC 时,过点A 作AB 的垂线,点C 在该垂线上(A 除外)②当︒=∠90ABC 时,过点B 作AB 的垂线,点C 在该垂线上(B 除外)。
③当︒=∠90ACB 时,以AB 为直径作圆,点C 在该圆上(A ,B 除外)。
例1.(2023春·江苏·八年级假期作业)若三角形的三边长是6,8,x ,当2x 的值为时,该三角形是直角三角形.【答案】100或28【分析】三角形是直角三角形,这里给出三边的长,只要用两小边的平方和等于最长边的平方即可求解,所以要分情况讨论,当最长边为8时,和最长边不是8时,再根据勾股定理进行计算.【详解】①最长边为8时,82-62=2x ,则2x =28;②最长边不是8时,82+62=2x ,则2x =100.【点睛】本题考查勾股定理的逆定理,解题的关键是分情况讨论最长边.例2.(2023春·江苏宿迁·八年级统考期末)如图,在ABC 中,9040BAC C ∠=︒∠=︒,,AH 、BD 分别是ABC 的高和角平分线,点E 为BC 边上一点,当BDE 为直角三角形时,则CDE ∠=︒.【答案】50或25/25或50【分析】根据三角形内角和定理得ABC ∠形时,存在两种情况:分别根据三角形外角的性质即可得出结论.【详解】解:∵9040BAC C ∠=︒∠=︒,∵BD 平分ABC ∠∴1DBC ABC ∠=∠=∵40C ∠=︒,∴904050CDE ∠=︒-︒=︒②当90BDE ∠=︒时,如图2,∴902565BED ∠=︒-︒=︒,∵BED ∠=∠综上,CDE ∠的度数为50︒或25︒.故答案为:【点睛】本题考查的是直角三角形的两锐角互余,题的关键.A.1个【答案】C【分析】根据题意,结合图形,分两种情况讨论:其中的一条腰.【点睛】本题考查了等腰直角三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想.例4.(2023·江苏·九年级假期作业)外部作等腰直角ABC,或(37),【答案】(74)∵BAC AOB AEC ∠=∠=∠∵AB AC =,∴AOB △≌△同法可得,当AB BC =',当AB 是等腰直角三角形的斜边时,综上所述,满足条件的点.【答案】2或5/5或2【分析】当90B ED ∠'=︒时,先求出时,作AH BC ⊥,证明出ADH 【详解】解:当90B ED ∠'=︒时,如图,AB AC = ,AE BC ⊥,BE ∴=由折叠得BD B D =',AB AB '=在Rt B DE ' 中,224)8(x -+=当90B DE ∠'=︒时,如图,作AH 90B DE ∠'=︒ ,ADB ADB ∴∠=∠6DH AH ∴==,BD BH DH ∴=-【点睛】本题考查了轴对称的性质,勾股定理的应用及等腰直角三角形的性质,掌握勾股定理是解题关键.例8.(2023秋·广东·八年级专题练习)如图,5(1)如图1,若点F 恰好落在边BC 上,判断BDF V 的形状,并证明;(2)如图2,若点F 落在ABC 内,且DF 的延长线恰好经过点C ,CF EF =,求A ∠的度数;(3)若9AB =,当BDF V 是直角三角形时,直接..写出AD 的长.【答案】(1)BDF V 是等边三角形;见解析(2)40A ∠=︒;(3)AD 的长是3或6【分析】(1)根据平行线的性质即可求出相等的角,再根据等边三角形的判定即可得到结论;(2)根据折叠的性质可知角相等,再根据三角形的内角和定理即可得到结果;(3)根据题意分两种情况,再根据图形以及折叠的性质得到AD 的长度.【详解】(1)解:BDF V 是等边三角形,理由如下:∵60B DE BC ∠=︒,∥,∴60ADE B ∠=∠=︒,由折叠可得60FDE ADE ∠=∠=︒,∴60BDF ∠=︒,∴60DFB B BDF ∠=∠=∠=︒,∴BDF V 是等边三角形;(2)解:由折叠可得A DFE ∠=∠,∵60FDE ADE ∠=∠=︒,∴120ADC ∠=︒,∵CF EF =,∴FEC FCE ∠=∠,设FEC FCE x ∠=∠=,则2A DFE FEC FCE x ∠=∠=∠+∠=,在ADC △中,180A ACD ADC ∠+∠+∠=︒,即2120180x x ++︒=︒,解得20x =︒,∴240A x ∠==︒;(3)解:AD 的长是3或6,理由如下:当90BFD ∠=︒时,点F 在ABC 内(如图所示)∵60BDF ∠=︒,∴30DBF ∠=︒,∴2BD DF=由折叠得DF AD =,∴2BD AD =,∴39AD =,∴3AD =;当90DBF ∠=︒时,点F 在ABC 外,同理可得2AD DF BD ==,∴6AD =.【点睛】本题考查了折叠的性质,等边三角形的性质,含30︒角的直角三角形的性质,平行线的性质,根据题意画出图形是解题的关键.例10.(2023秋·江苏盐城·八年级统考期末)如图,已知直线1l 经过点()5,6,交x 轴于点()30A -,,直线2:3l y x=交直线1l 于点B .(1)求直线1l 的函数表达式和点B 的坐标;(2)求AOB 的面积;(3)在x 轴上是否存在点C ,使得ABC 是直角三角形?若存在,求出点C 的坐标:若不存在,请说明理由.39=+;()1,3(2)9(3)()1,0 y x②当90ABC ∠=︒时,点C 在图中C 的位置:设【答案】(1)见解析;(2)①721y x =--;②()4,2Q 或2022,33⎛⎫ ⎪⎝⎭.【分析】(1):利用角的数量关系可求得D E ∠=∠,ACD EBC ∠=∠,然后根据(2)①:过点B 作BC AB ⊥交2l 于C ,过C 作CD y ⊥轴于D ,由(1三角形的性质求出C 的坐标,再利用待定系数法求2l 的解析式即可;②可得:(AAS)AMQ QNP ≌,利用全等三角形的性质建立关系式求解即可.∵45BAC ∠=︒,∴ABC ∵14:43l y x =+,令y =令0x =,则4y =,∴∴437OD =+=.∴C 将点(3,0)A -,(4,7C -当90AQP ∠=︒时,由(1)同理可证:∴QN AM =,即86(2m m -=--【点睛】本题主要考查了全等三角形的判定和性质、待定系数法求一次函数解析式等知识点,灵活运用全等三角形的性质是解题的关键.课后专项训练A.2【答案】D【分析】由条件可求得t<<两种情况,根据当610三角形的性质求解即可得.△【详解】解:在Rt ABC【答案】90︒或34︒【分析】分当90A ∠=︒时,当【详解】解:当90A ∠=︒时,满足【答案】2483-或【分析】由等边三角形的性质可得角三角形的性质可求【答案】125或247或325①当04t <≤时,3AP t =,BP 在Rt BPQ 中,2BP BQ =,即12②当46t <≤时,312BP t =-,①当04t <≤时,3AP t =,BP AB =在Rt BPQ 中,2BQ BP =,即2t =②当46t <≤时,312BP t =-,在【答案】3-【分析】分两种情况:即可求得EF;当EF.【答案】103或53【分析】分BMN ∠=【详解】解:由题意得,当90BMN ∠=︒时,【答案】30︒或45︒【分析】分两种情况:当点E在∆外时,由折叠可得:AE在ACB【详解】解:分两种情况:如图,由折叠可得:AE AC =,C ∠= AD 平分CAE ∠,45CAD ∴∠=︒,故答案为30︒或45︒.【点睛】本题考查折叠的性质,解本题要注意分类讨论.熟练掌握折叠的性质、直角三角形的性质和三角【答案】4,6或73【分析】由题意分AD =BD 【详解】解:如图,当AD ∵Rt △ABC 中,∠C =90°∵AB =BD ,∴CD BD BC =-如图,当AB =AD 时,∵AB =BD ,∠C =90°,∴综上可得CD 的长为4,【点睛】本题考查等腰三角形的性质以及勾股定理的应用,熟练掌握利用方程根据勾股定理建立方程求解以及进行全面思考、分类讨论是解题的关键12.(2023春·江苏·八年级期末)在为线段AB 上的动点,当【答案】69°或11°【分析】分情况讨论,当∠时,通过三角形内角和求出∠【详解】∵80C ∠=︒,∠∵BD平分∠ABC,∴∠DBE如图,当∠ADE=90°时,∵BD平分∠ABC,∴∠DBC∴∠ADB=∠DBC+∠C=21°+80°=101°【点睛】本题考查了三角形内角和定理、角平分线的定义和三角形外角的性质,解题的关键是根据题意画一共可作出6【点睛】本题考查了等腰直角三角形,作出图形,利用数形结合的思想求解更形象直观.14.(2023·江苏兴化·八年级期中)在Rt△ABC中,∠BAC=90°,点D、E在边BC所在的直线上,且AB=DB,AC=EC,则∠DAE的度数为________.【答案】45°或135°【分析】分四种情况:若点D 、E 在线段BC 上时;若点D 在线段BC 上,点E 在BC 的延长线上时;若点D 在CB 的延长线上点E 在BC 的延长线上时;若点D 在CB 的延长线上,点E 在线段BC 上时讨论,即可求解.【详解】解:如图,若点D 、E 在线段BC 上时,∵AB =DB ,AC =EC ,∴∠BAD =∠ADB ,∠CAE =∠AEC ,∴∠BAE +∠DAE =∠CAD +∠C ,∠CAD +∠DAE =∠BAE +∠B ,∴∠BAE +∠CAD +2∠DAE =∠CAD +∠BAE +∠B +∠C ,∴2∠DAE =∠B +∠C ,∵∠BAC =90°,∴∠B +∠C =90°,∴∠DAE =45°;如图,若点D 在线段BC 上,点E 在BC 的延长线上时,∵AC =EC ,∴可设∠E =∠CAE =x ,∴∠ACB =∠E +∠CAE =2x ,∵∠BAC =90°,∴∠B =90°-∠ACB =90°-2x ,∵AB =DB ,∴()1180452BAD ADB B x ∠=∠=︒-∠=︒+,∵∠ADB =∠DAE +∠E ,∴∠DAE =45°;如图,若点D 在CB 的延长线上,点E 在BC 的延长线上时,∵AC =EC ,∴∠E =∠CAE ,∴∠ACB =∠E +∠CAE =2∠CAE ,∵AB =DB ,∴∠D =∠BAD ,∴∠ABC =∠D +∠BAD =2∠BAD ,∵∠BAC =90°,∴∠ABC +∠ACB =90°,∴2∠CAE +2∠BAD =90°,∴∠CAE +∠BAD =45°,∴∠DAE =∠CAE +∠BAD +∠BAC =135°;如图,若点D 在CB 的延长线上,点E 在线段BC 上时,∵AB =DB ,∴可设∠D =∠BAD =y ,∴∠ABC =∠D +∠BAD =2y ,∴∠ABC =2y ,∵∠BAC =90°,∴∠C =90°-2y ,∵AC =EC ,∴∠AEC =∠CAE =()1180452C y ︒-∠=︒+,∵∠AEC =∠D +∠DAE ,∴∠DAE =45°综上所述,∠DAE 的度数为45°或135°.故答案为:45°或135°【点睛】本题主要考查等腰三角形的性质,直角三角形两锐角互余,利用分类讨论思想解答是解题的关键.15.(2022·广东·八年级课时练习)如图,60BOC ∠=︒,点A 是BO 延长线上的一点,10cm OA =,动点P 从点A 出发沿AB 以3cm/s 的速度移动,动点Q 从点O 出发沿OC 以1cm/s 的速度移动,如果点P Q ,同时出发,用(s)t 表示移动的时间,当t =_________s 时,POQ △是等腰三角形;当t =_________s 时,POQ △是直角三角形.5类时注意不能遗漏,也不能重复.16.(2022·浙江·义乌市八年级期中)如图,已知Rt△ABC中,∠ACB=90°,AC=3,BC=4,点P是BC 边上的一个动点,点B与B′是关于直线AP的对称点,当△CPB'是直角三角形时,BP的长=_______.24=5,PB′2,是矩形,2,1,17.(2022·河北承德·八年级期末)如图,60ABC ∠=︒,3AB =,动点P 从点B 出发,以每秒1个单位长度的速度沿射线BC 运动,嘉琪在研究过程中发现,随着点Р运动,ABP △形状在发生变化,设点P 的运动时间为t 秒.(1)当ABP △是直角三角形时,t 的值为______;(2)当ABP △是钝角三角形时,t 满足的条件是__________.19.(2022·江苏镇江·八年级期中)点P,Q分别是边长为4cm的等边△ABC的边AB,BC上的动点,点P 从顶点A,点Q从顶点B同时出发,且它们的速度都是1cm/s,设运动时间为t秒.(1)连接AQ,CP交于点M,则在P,Q运动的过程中,∠CMQ变化吗?若变化,则说明理由;若不变,则求出它的度数;(2)连接PQ.①当△BPQ为等边三角形时,t=秒;②当△BPQ为直角三角形时,t=秒.(直接写出结果)(1)点M,N运动几秒后,AMN如存在,请求出此时∆?到直角三角形AM N【答案】(1)12秒(2)存在,,AMN ANM ∴∠=∠,∴∠AB BC AC == ,ΔACB ∴AMC ANB Ð=ÐQ ,C ∠=CM BN ∴=,1236t ∴-=2BN t = ,AM t =,AN ∴如图,若90ANM ∠=︒,由2AN AM =,则2(12当点N 在AC 上运动时,点当点N 在BC 上运动时,如图,当点由ABC ∆时等边三角形知如图,当点M 位于BC 中点处时,由ABC ∆时等边三角形知AM 综上,当3t =或245或15或【点睛】本题考查了等边三角形的性质及判定,全等三角形的性质与判定,等腰三角形的性质,角三角形的性质,关键是根据题意设出未知数,理清线段之间的数量关系.(1)在图2的ABC 中,20C ∠=︒,110ABC ∠=︒.请在图2中画出ABCDBC ∠的度数;(2)已知20C ∠=︒,在图3中画出两种不同于图1、图2的ABC ,所画ABC 同时满足:①∠C 为最小角;②存在关于点B 的伴侣分割线,请画出其伴侣分割线,标出所画ABC 中各个角的度数.【答案】(1)见解析(2)见解析【分析】(1)首先了解伴侣分割线的定义,然后把∠ABC 分成90°角和20°角即可;(2)根据等腰三角形的性质,直角三角形的性质和三角形内角和求解即可.【详解】(1)如图所示:(2)如图所示:【点睛】本题考查了作图—应用与设计作图,直角三角形的性质,等腰三角形的性质及三角形内角和定理,涉及分类讨论,解题的关键是掌握等腰三角形的性质和直角三角形的性质.23.(2023秋·四川成都·八年级校考期末)如图,在平面直角坐标系内,点O 为坐标原点,经过A(-2,6)的直线交x 轴正半轴于点B ,交y 轴于点C ,OB=OC ,直线AD 交x 轴负半轴于点D ,若△ABD 的面积为27.(1)求直线AD 的解析式;(2)横坐标为m 的点P 在AB 上(不与点A ,B 重合),过点P 作x 轴的平行线交AD 于点E ,设PE 的长为y (y≠0),求y 与m 之间的函数关系式并直接写出相应的m 的取值范围;(3)在(2)的条件下,在x 轴上是否存在点F ,使△PEF 为等腰直角三角形?若存在求出点F 的坐标,若∴EF=-m+4,∴-m+4=3 2③当∠PFE=90°时,如图∵∠FPE+∠EFP+∠FEP=180°∴∠PFR=180°-∠FPE-∠∵点R与点E的纵坐标相同,∴∴PR=FR=-m+4=-107+4=18。
中考数学思想方法 【新定义问题】三角形中的新定义问题(学生版+解析版)
三角形中的新定义问题知识方法精讲1.解新定义题型的方法:方法一:从定义知识的新情景问题入手这种题型它要求学生在新定义的条件下,对提出的说法作出判断,主要考查学生阅读理解能力,分析问题和解决问题的能力.因此在解这类型题时就必须先认真阅读,正理解新定义的含义;再运用新定义解决问题;然后得出结论。
方法二:从数学理论应用探究问题入手对于涉及到数学理论的题目,要解决后面提出的新问题,必须仔细研究前面的问题解法.即前面解决问题过程中用到的知识在后面问题中很可能还会用到,因此在解决新问题时,认真阅读,理解阅读材料中所告知的相关问题和内容,并注意这些新知识运用的方法步骤.方法三:从日常生活中的实际问题入手对于一些新定义问题,出题的方向通常借助生活问题,那么处理此类问题需要结合生活实际,再将问题转化成数学知识、或者将生活图形转化为数学图形,从而利用数学知识进行解答。
2.解新定义题型的步骤:(1)理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论.(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的解题方法.归纳“举例”提供的分类情况.(3)类比新定义中的概念、原理、方法,解决题中需要解决的问题.3.三角形内角和定理(1)三角形内角的概念:三角形内角是三角形三边的夹角.每个三角形都有三个内角,且每个内角均大于0°且小于180°.(2)三角形内角和定理:三角形内角和是180°.(3)三角形内角和定理的证明证明方法,不唯一,但其思路都是设法将三角形的三个内角移到一起,组合成一个平角.在转化中借助平行线.(4)三角形内角和定理的应用主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.4.线段垂直平分线的性质(1)定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)垂直平分线,简称“中垂线”.(2)性质:①垂直平分线垂直且平分其所在线段.②垂直平分线上任意一点,到线段两端点的距离相等.③三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.5.等腰三角形的性质(1)等腰三角形的概念有两条边相等的三角形叫做等腰三角形.(2)等腰三角形的性质①等腰三角形的两腰相等②等腰三角形的两个底角相等.【简称:等边对等角】③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.6.等边三角形的性质(1)等边三角形的定义:三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形.①它可以作为判定一个三角形是否为等边三角形的方法;②可以得到它与等腰三角形的关系:等边三角形是等腰三角形的特殊情况.在等边三角形中,腰和底、顶角和底角是相对而言的.(2)等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.7.勾股定理(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.(2)勾股定理应用的前提条件是在直角三角形中.(3)勾股定理公式a2+b2=c2的变形有:a=,b=及c=.(4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.8.勾股定理的逆定理(1)勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.说明:①勾股定理的逆定理验证利用了三角形的全等.②勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.(2)运用勾股定理的逆定理解决问题的实质就是判断一个角是不是直角.然后进一步结合其他已知条件来解决问题.注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.9.三角形的外接圆与外心(1)外接圆:经过三角形的三个顶点的圆,叫做三角形的外接圆.(2)外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.(3)概念说明:①“接”是说明三角形的顶点在圆上,或者经过三角形的三个顶点.②锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部.③找一个三角形的外心,就是找一个三角形的三条边的垂直平分线的交点,三角形的外接圆只有一个,而一个圆的内接三角形却有无数个.10.相似三角形的判定与性质(1)相似三角形相似多边形的特殊情形,它沿袭相似多边形的定义,从对应边的比相等和对应角相等两方面下定义;反过来,两个三角形相似也有对应角相等,对应边的比相等.(2)三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合;或作辅助线构造相似三角形,判定三角形相似的方法有事可单独使用,有时需要综合运用,无论是单独使用还是综合运用,都要具备应有的条件方可.11.解直角三角形(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角、直角之间的关系:∠A +∠B =90°;②三边之间的关系:a 2+b 2=c 2;③边角之间的关系:sin A ==,cos A ==,tan A ==.(a ,b ,c 分别是∠A 、∠B 、∠C 的对边)一.填空题(共5小题)1.(2021秋•花都区期末)如图,在四边形ABCD 中,AB BC =,AD CD =,我们把这种两组邻边分别相等的四边形叫做“筝形”.筝形ABCD 的对角线AC 、BD 相交于点O .已知120ADC ∠=︒,60ABC ∠=︒,小婵同学得到如下结论:①ABC ∆是等边三角形;②2BD AD =;③ABCD S AC BD =⋅四边形;④点M 、N 分别在线段AB 、BC 上,且60MDN ∠=︒,则MN AM CN =+,其中正确的结论有 .(填写所有正确结论的序号)2.(2021秋•长宁区期末)定义:在ABC ∆中,点D 和点E 分别在AB 边、AC 边上,且//DE BC ,点D 、点E 之间距离与直线DE 与直线BC 间的距离之比称为DE 关于BC 的横纵比.已知,在ABC ∆中,4BC =,BC 上的高长为3,DE 关于BC 的横纵比为2:3,则DE = .3.(2021秋•赣州期中)规定:若1(a x =,1)y ,2(b x =,2)y ,则1212a b x x y y ⋅=+.例如(1,3)a =,(2,4)b =,则123421214a b ⋅=⨯+⨯=+=.已知(1,1)a x x =+-,(3,4)b x =-,则a b ⋅的最小值是.4.(2021秋•闵行区校级期中)如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称作为这个平面图形的一条优美线.已知ABC∆中,5AB AC==,6BC=,点D、E在边BC上,且2BD=,E为BC中点,过点D的优美线交过点E的优美线于F,那么线段AF的长等于.5.(2021秋•邹城市期中)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“奇妙三角形”,其中α称为“奇妙角”.如果一个“奇妙三角形”的一个内角为60︒,那么这个“奇妙三角形”的另两个内角的度数为.二.解答题(共15小题)6.(2021秋•鄞州区期末)【问题提出】如图1,ABC∆中,线段DE的端点D,E分别在边AB和AC上,若位于DE上方的两条线段AD和AE之积等于DE下方的两条线段BD和CE之积,即AD AE BD CE⨯=⨯,则称DE 是ABC∆的“友好分割”线段.(1)如图1,若DE是ABC∆的“友好分割”线段,2AD CE=,8AB=,求AC的长;【发现证明】(2)如图2,ABC∆中,点F在BC边上,//FD AC交AB于D,//FE AB交AC于E,连结DE,求证:DE是ABC∆的“友好分割”线段;【综合运用】(3)如图3,DE是ABC∆的“友好分割”线段,连结DE并延长交BC的延长线于F,过点A画//AG DE交ADE∆的外接圆于点G,连结GE,设ADxDB=,FCyFB=.①求y关于x的函数表达式;②连结BG,CG,当916y=时,求BGCG的值.7.(2021秋•石鼓区期末)我们定义:等腰三角形中底边与腰的比叫做底角的邻对()can ,如图1,在ABC ∆中,AB AC =,底角B ∠的邻对记作canB ,这时BC canB AB ==底边腰.容易知道一个角的大小与这个角的邻对值是一一对应的,根据上述角的邻对的定义,解下列问题:(1)30can ︒= ,若1canB =,则B ∠= ︒.(2)如图2,在ABC ∆中,AB AC =,85canB =,48ABC S ∆=,求ABC ∆的周长.8.(2021秋•丰台区期末)对于平面直角坐标系xOy 中的线段AB 及点P ,给出如下定义: 若点P 满足PA PB =,则称P 为线段AB 的“轴点”,其中,当060APB ︒<∠<︒时,称P 为线段AB 的“远轴点”;当60180APB ︒∠<︒时,称P 为线段AB 的“近轴点”.(1)如图1,点A ,B 的坐标分别为(2,0)-,(2,0),则在1(1,3)P -,2(0,2)P ,3(0,1)P -,4(0,4)P 中,线段AB 的“轴点”是 ;线段AB 的“近轴点”是 .(2)如图2,点A 的坐标为(3,0),点B 在y 轴正半轴上,30OAB ∠=︒.若P 为线段AB 的“远轴点”,请直接写出点P 的横坐标t 的取值范围 .9.(2020秋•南沙区期末)新定义:顶角相等且顶角顶点重合的两个等腰三角形互为“兄弟三角形”.(1)如图①中,若ABC ∆和ADE ∆互为“兄弟三角形”, AB AC =,AD AE =.写出BAD ∠,BAC ∠和BAE ∠之间的数量关系,并证明.(2)如图②,ABC ∆和ADE ∆互为“兄弟三角形”, AB AC =,AD AE =,点D 、点E 均在ABC ∆外,连接BD 、CE 交于点M ,连接AM ,求证:AM 平分BME ∠.(3)如图③,若AB AC =,60BAC ADC ∠=∠=︒,试探究B ∠和C ∠的数量关系,并说明理由.10.(2021秋•余姚市月考)定义:若两个三角形有一对公共边,且另有一组对应边和一对对应角分别对应相等,那么这两个三角形称为邻等三角形.例如:如图1,ABC ∆中,AD AD =,AB AC =,B C ∠=∠,则ABD ∆与ACD ∆是邻等三角形.(1)如图2,O 中,点D 是BC 的中点,那么请判断ABD ∆与ACD ∆是否为邻等三角形,并说明理由.(2)如图3,以点(2,2)A 为圆心,OA 为半径的A 交x 轴于点(4,0)B ,OBC ∆是A 的内接三角形,30COB ∠=︒.①求C ∠的度数和OC 的长;②点P 在A 上,若OCP ∆与OBC ∆是邻等三角形时,请直接写出点P 的坐标.11.(2021秋•岳麓区校级月考)定义:如果一个三角形中有两个内角α,β满足290αβ+=︒,那我们称这个三角形为“近直角三角形”.(1)若ABC ∆是“近直角三角形”, 90B ∠>︒,50C ∠=︒,则A ∠= ︒;(2)如图1,在Rt ABC ∆中,90BAC ∠=︒,3AB =,4AC =.若BD 是ABC ∠的平分线, ①求证:BDC ∆是“近直角三角形”;②在边AC上是否存在点E(异于点)D,使得BCE∆也是“近直角三角形”?若存在,请求出CE的长;若不存在,请说明理由.(3)如图2,在Rt ABC∆中,90∠=︒,点D为AC边上一点,以BD为直径的圆交BCBAC于点E,连结AE交BD于点F,若BCDAF=,求AD∆为“近直角三角形”,且5AB=,3的长.12.(2021秋•荔城区校级期中)概念学习规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角开中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.理解概念:(1)如图1,在Rt ABC∆中,90∠=︒,CD AB⊥,请写出图中两对“等角三角形”.ACB概念应用:(2)如图2,在ABC∠=︒.求证:CD为ABC∆的B∠=︒,60∆中,CD为角平分线,40A等角分割线.动手操作:(3)在ABC∠的∆的等角分割线,请求出所有可能的ACB∠=︒,CD是ABCA∆中,若50度数.13.(2021秋•金安区校级期中)概念学习:已知ABC ∆,点P 为其内部一点,连接PA 、PB 、PC ,在PAB ∆、PBC ∆和PAC ∆中,如果存在一个三角形,其内角与ABC ∆的三个内角分别相等,那么就称点P 为ABC ∆的等角点.理解应用(1)判断以下两个命题是否为真命题,若为真命题,则在相应横线内写“真命题”;反之,则写“假命题”.①内角分别为30︒、60︒、90︒的三角形存在等角点 ;②任意的三角形都存在等角点 .(2)如图中,点P 是锐角三角形ABC ∆的等角点,若BAC PBC ∠=∠,探究图中么BPC ∠、ABC ∠、ACP ∠之间的数量关系,并说明理由.14.(2021•安溪县模拟)在平面直角坐标系xOy 中,对于点P 、Q 和图形G ,给出如下定义:若图形G 上存在一点C ,使90PQC ∠=︒,则称点Q 为点P 关于图形G 的一个“直角联络点”.已知点(4,0)A ,(4,4)B .(1)在点(2,2)M 、(4,1)N -中,点O 关于点A 的“直角联络点”是 .(直接写出符合条件的点)(2)点E 的坐标为(2,)m ,若点E 是点O 关于点B 的“直角联络点”,求m .15.(2021•临海市一模)在三角形中,一个角两夹边的平方和减去它对边的平方所得的差,叫做这个角的勾股差.(1)概念理解:在直角三角形中,直角的勾股差为 ;在底边长为2的等腰三角形中,底角的勾股差为 ; (2)性质探究:如图1,CD 是ABC ∆的中线,AC b =,BC a =,2AB c =,CD d =,记ACD ∆中ADC ∠的勾股差为m ,BCD ∆中BDC ∠的勾股差为n ;①求m ,n 的值(用含a ,b ,c ,d 的代数式表示);②试说明m 与n 互为相反数;(3)性质应用:如图2,在四边形ABCD 中,点E 与F 分别是AB 与BC 的中点,连接BD ,DE ,DF ,若34DF AB =,且CD BD ⊥,CD AD =,求DE DF的值. 16.(2021秋•南昌期中)【概念学习】如图1,2,已知ABC ∆,点P 为其内部一点,连接PA 、PB 、PC ,在PAB ∆、PBC ∆、PAC ∆中,如果存在一个三角形,其内角与ABC ∆的三个内角分别相等,那么就称点P 为ABC ∆的等角点.【理解应用】(1)判断以下两个命题是否为真命题,若为真命题,则在相应横线内写“真命题”;反之,则写“假命题”.①等边三角形存在等角点: ;②等腰直角三角形存在等角点: ;③内角分别为30︒、60︒、90︒的三角形存在等角点: ;④任意的三角形都存在等角点: ;【深入理解】(2)如图1,点P 是锐角ABC ∆的等角点,且PBC ∆与ABC ∆的三个内角分别相等,已知:若50BAC ∠=︒,10PBA PCA ∠=∠=︒,求ABC ∠的度数;(3)如图2,点P 是锐角ABC ∆的等角点,若BAC PCB ∠=∠,探究BPC ∠、ACB ∠、ABP ∠之间的数量关系,并说明理由.17.(2021秋•诸暨市期中)定义:两边的平方和与这两边乘积的差等于第三边平方的三角形叫做“和谐三角形”.如图1在ABC ∆中,若222AB AC AB AC BC +-⋅=,则ABC ∆是“和谐三角形”.(1)等边三角形一定是“和谐三角形”,是 命题(填“真”或“假” ).(2)若Rt ABC ∆中,90C ∠=︒,AB c =,AC b =,BC a =,且b a >,若ABC ∆是“和谐三角形”,求::a b c .18.(2021秋•大田县期中)在平面直角坐标系xOy 中,将三点A ,B ,C 的“矩面积”记为S ,定义如下:A ,B ,C 中任意两点横坐标差的最大值a 称为“水平底”,任意两点纵坐标差的最大值h 称为“铅垂高”,“水平底”与“铅垂高”的乘积即为点A ,B ,C 的“矩面积”,即S ah =.例如:点(1,2)A ,(3,1)B -,(2,2)C -,它们的“水平底”为5,“铅垂高”为4,“矩面积” 5420S =⨯=. 解决以下问题:(1)已知点(2,1)A ,(2,3)B -,(0,5)C ,求A ,B ,C 的“矩面积”;(2)已知点(2,1)A ,(2,3)B -,(0,)C t ,且A ,B ,C 的“矩面积”为12,求t 的值;(3)已知点(2,1)A ,(2,3)B -,(,1)C t t +,若0t <,且A ,B ,C 的“矩面积”为25,求t 的值.19.(2021秋•广陵区期中)我们知道,到线段两端距离相等的点在线段的垂直平分线上.由此,我们可以引入如下新定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.(1)如图1,点P 在线段BC 上,90ABP APD PCD ∠=∠=∠=︒,BP CD =.求证:点P 是APD ∆的准外心;(2)如图2,在Rt ABC ∆中,90BAC ∠=︒,5BC =,3AB =,ABC ∆的准外心P 在ABC ∆的直角边上,试求AP 的长.20.(2021秋•西城区校级期中)对于平面直角坐标系内的任意两点1(P x ,1)y ,2(Q x ,2)y ,定义它们之间的“直角距离”为1212(,)||||d P Q x x y y =-+-.对于平面直角坐标系内的任意两个图形M ,N ,给出如下定义:P 为图形M 上任意一点,Q 为图形N 上任意一点,如果P ,Q 两点间的“直角距离”有最小值,那么称这个最小值为图形M ,N 间的“直角距离”,记作(,)D M N .(1)已知(1,0)A ,(0,2)B ,则(,)d A B = ,(,)D O AB = ;(2)已知(1,0)A ,(0,)B t ,若(,)1D O AB =,则t 的取值范围是 ;(3)已知(1,0)A ,若坐标平面内的点P 满足(,)1d P A =,则在图中画出所有满足条件的点P 所构成的图形,该图形的面积是 ;(4)已知(1,0)A ,(0,2)B ,直线l 过点(0,)t 且垂直于y 轴,若直线l 上存在点Q 满足(d Q ,)(A d Q =,)B ,则t 的取值范围是 .三角形中的新定义问题知识方法精讲1.解新定义题型的方法:方法一:从定义知识的新情景问题入手这种题型它要求学生在新定义的条件下,对提出的说法作出判断,主要考查学生阅读理解能力,分析问题和解决问题的能力.因此在解这类型题时就必须先认真阅读,正理解新定义的含义;再运用新定义解决问题;然后得出结论。