周衍柏《理论力学教程(第三版)》电子教案 3-4章作业解答

合集下载

周衍柏《理论力学教程(第三版)》电子教案第三章4-5刚体力学解析

周衍柏《理论力学教程(第三版)》电子教案第三章4-5刚体力学解析

所以可以把所有空间力化为过一点的力和力偶. P点叫简化中心, 力的矢量和叫主矢, 力偶矩的矢量 和叫对简化中心的主矩.
主矢使刚体平动状态发生变化 主矩使刚体转动状态发生变化
2 刚体运动微分方程
如果ri代表刚体中任一质点Pi 对静止系S原点O的位 矢, rC 为质心C对O的位矢, 而ri’ 为Pi 对质心C的位矢, 动 坐标系S’随质心作平动, 其原点与质心C重合.
2
a R
T
a mg 5 m s2
mm
mM 2
h 1 at 2 2.5 m T 40 N
mg
2
例3、一质量为 m 、长为 l 的均质细杆,转轴在 O 点, 距A端 l/3 . 杆从静止开始由水平位置绕O点转动. 求: (1)水平位置的角速度和角加速度. (2)垂直位置时的角速度和角加速度.
述位置仍处于平衡状态,求棍与地面的摩擦系数
解: 受力分析知本题是一共
y
面力系的平衡问题, 取棍子所 在的平面为xy平面, 则
Fx 0, N1 sin 0 f 0
B
N1
Cl
Fy 0, N1 cos0 N2 P 0
对A点
Pl cos0 N1h / sin 0 0
h P
O
l N2
0
x
f
A
第三章 刚体力学
导读
• 空间力系和平行力系的求和 • 刚体运动微分方程和平衡方程 • 简单转动惯量的计算 •转动惯量的计算
§3.4 刚体运动方程与平衡方程
1 力系的简化
F1 F2 F3
将所有空间力作用点都迁移到一点.
力是滑移矢量
F
F
F
F
力可沿作用线移动,不能随意移动

大学_理论力学教程第三版(周衍柏著)课后答案下载

大学_理论力学教程第三版(周衍柏著)课后答案下载

理论力学教程第三版(周衍柏著)课后答案下载理论力学教程第三版内容简介绪论第一章质点力学1.1 运动的描述方法1.2 速度、加速度的分量表示式1.3 平动参考系1.4 质点运动定律1.5 质点运动微分方程1.6 非惯性系动力学(一)1.7 功与能1.8 质点动力学的基本定理与基本守恒定律1.9 有心力小结补充例题思考题习题第二章质点组力学2.1 质点组2.2 动量定理与动量守恒定律2.3 动量矩定理与动量矩守恒定律 2.4 动能定理与机械能守恒定律2.5 两体问题2.6 质心坐标系与实验室坐标系2.7 变质量物体的运动2.8 位力定理小结补充例题思考题习题第三章刚体力学3.1 刚体运动的分析3.2 角速度矢量3.3 欧拉角3.4 刚体运动方程与平衡方程3.5 转动惯量3.6 刚体的平动与绕固定轴的.转动3.7 刚体的平面平行运动3.8 刚体绕固定点的转动__3.9 重刚体绕固定点转动的解 __3.10 拉莫尔进动小结补充例题思考题习题第四章转动参考系4.1 平面转动参考系4.2 空间转动参考系4.3 非惯性系动力学(二)__4.5 傅科摆小结补充例题思考题习题第五章分析力学5.1 约束与广义坐标5.2 虚功原理5.3 拉格朗日方程5.4 小振动5.5 哈密顿正则方程5.6 泊松括号与泊松定理5.7 哈密顿原理5.8 正则变换__5.9 哈密顿-雅可比理论__5.10 相积分与角变数__5.11 刘维尔定理小结补充例题思考题习题附录主要参考书目理论力学教程第三版目录本书是在第二版的基础上修订而成的,适用于高等学校物理类专业的理论力学课程。

本书与第二版相比内容保持不变,仅将科学名词、物理量符号等按照国家标准和规范作了更新。

本书内容包括质点力学、质点组力学、刚体力学、转动参考系及分析力学等,每章附有小结、补充例题、思考题及习题。

理论力学周衍柏第三章

理论力学周衍柏第三章
一、基础知识 1. 力系:作用于刚体上里的集合. 平衡系:使静止刚体不产生任何运动的力系. 等效系:二力系对刚体产生的运动效果相同. 二、公理: 1)二力平衡原理:自由刚体在等大、反向、共线二力作 用下必呈平衡。 2)加减平衡力学原理:任意力系加减平衡体系,不改变原 力系的运动效应。 3)力的可传性原理:力沿作用线滑移,幵不改变其作用 效果,F与F’等效。 注:1)以上公理适用于刚体, 2) 力的作用线不可随便平移
(e) dT Fi dri
(e) 若 Fi dri dV 则 T V E
为辅助方程,可代替上述6个方程中任何一个
§3.5 转动惯量
一、刚体的动量矩 1. 某时刻刚体绕瞬轴OO’转动,则pi点的速度为
vi rii
动量矩为 2. 坐标表示
R Fi Fi 0 M M i ri Fi 0
2. 几种特例 1)汇交力系(力的作用线汇交于一点):取汇交点为 简化中心,则
Fix 0 R Fi 0 Fiy 0 Fiz 0
三、力偶力偶矩 1. 力偶:等大、反向、不共线的两个力组成的利系。
力 偶 所在平面角力偶面. 2. 力偶矩: 对任意一点O M rA F rB F (rA rB ) F r F M Fd
方向 : 右手法则 上式表明:
J z x mi zi xi y mi zi yi z mi ( xi2 yi2 )
I yy mi ( zi2 源自xi2 ) I zy mi zi yi I yz mi yi zi I xz mi xi zi
I zz mi ( xi2 yi2 )

周衍柏《理论力学教程(第三版)》电子教案 3-4章作业解答

周衍柏《理论力学教程(第三版)》电子教案 3-4章作业解答

T
N
T
物体 : ma2 mg T 圆柱 : Ma1 T f d 1 T f R, I 0 MR 2 dt 2 xC a1 d xC R , dt R R a A 2a1 a2 I0
M
r
f Mg
m
mg
4mg 8mg a1 , a2 3M 8m 3M 8m 3Mmg T 3M 8m
4.10) 质量为m的小环M, 套在半径为a的光滑圆圈上, 并可沿着圆 圈滑动. 如圆圈在水平面内以匀角速绕圈上某点O转动, 试求小 y 环沿圆圈切线方向的运动微分方程. 解: 设坐标系如图, oxy为水平面,它绕z轴转 动,即圆圈为转动参照系 受力分析,重力和约束反力都在z轴方向, 没 有画出. 惯性离心力m2r , 科里奥利力为 FC= -2m×v
b2 tan (a 2b)a
3.5)一均质的梯子, 一端置于摩擦系数为1/2的地板上, 另一端 则斜靠在摩擦系数为1/3的高墙上,一人的体重为梯子的三倍, 爬到 梯的顶端时, 梯尚未开始滑动, 则梯与地面的倾角,最小当为若干? 解: 研究对象为梯子, 人在顶端时,梯子与地面的夹角为, 梯子 y 重量p, 人重3p. 平衡时:

B x b C
a b
2
2
a
解2:用寻找瞬心法,过A做vA垂线,瞬心在O点,距离A为vA/. 连OB, 因角+=90o, 所以
OB OA 2 AB 2 2OA AB cos 1

v 2 2v
ab a 2 b2
2a 2
vB OB v 2 2v
2y sin C1 x 2my sin x m 2 z cos x sin C2 2m z sin y cos x y m m gt 2y cos C3 z cos mg 2my z 2y sin x y 0, z v0 , 在t =0, x 2 z cos x sin y x y z0 z v0 gt 2y cos

经典教材——周衍柏理论力学教程及参考答案chp-4

经典教材——周衍柏理论力学教程及参考答案chp-4

第四章思考题4.1为什么在以角速度ω转动的参照系中,一个矢量G 的绝对变化率应当写作G ωG G ⨯+=*dt d dt d 在什么情况下0=*dtd G?在什么情况下0=⨯G ω?又在什么情况下0=dtd G? 4.2式(4.1.2)和式(4.2.3)都是求单位矢量i 、j 、k 对时间t 的微商,它们有何区别?你能否由式(4.2.3)推出式(4.1.2)?4.3在卫星式宇宙飞船中,宇航员发现自己身轻如燕,这是什么缘故? 4.4惯性离心力和离心力有哪些不同的地方?4.5圆盘以匀角速度ω绕竖直轴转动。

离盘心为r 的地方安装着一根竖直管,管中有一物体沿管下落,问此物体受到哪些惯性力的作用?4.6对于单线铁路来讲,两条铁轨磨损的程度有无不同?为什么?4.7自赤道沿水平方向朝北或朝南射出的炮弹,落地是否发生东西偏差?如以仰角 40朝北射出,或垂直向上射出,则又如何?4.8在南半球,傅科摆的振动面,沿什么方向旋转?如把它安装在赤道上某处,它旋转的周期是多大?4.9在上一章刚体运动学中,我们也常采用动坐标系,但为什么不出现科里奥利加速度?第四章思考题解答4.1.答:矢量G 的绝对变化率即为相对于静止参考系的变化率。

从静止参考系观察变矢量G 随转动系以角速度ω相对与静止系转动的同时G 本身又相对于动系运动,所以矢量G 的绝对变化率应当写作G ωG G ⨯+=*dt d dt d 。

其中dtd G *是G 相对于转动参考系的变化率即相对变化率;G ω⨯是G 随动系转动引起G 的变化率即牵连变化率。

若G 相对于参考系不变化,则有0=*dt d G ,此时牵连运动就是绝对运动,G ωG ⨯=dt d ;若0=ω即动系作动平动或瞬时平动,则有0=⨯G ω此时相对运动即为绝对运动 dtd dt d G G *=;另外,当某瞬时G ω//,则0=⨯G ω,此时瞬时转轴与G 平行,此时动系的转动不引起G 的改变。

当动系作平动或瞬时平动且G 相对动系瞬时静止时,则有0=dtd G;若G 随动系转动引起的变化G ω⨯与相对动系运动的变化dtd G *等值反向时,也有0=dt d G 。

理论力学(周衍柏第三版)习题答案

理论力学(周衍柏第三版)习题答案
由以上两式得
v0 s 1 at1 t1 2
再由此式得 证明完毕.
a
2st 2 t1 t1t 2 t1 t 2
1.2 解 由题可知,以灯塔为坐标原点建立直角坐标如题 1.2.1 图.
1 设 A 船经过 t 0 小时向东经过灯塔,则向北行驶的 B 船经过 t 0 1 小时经过灯塔任意时刻 A 2

r
r

把③④⑦⑧代入⑤⑥式中可得
a // 2 r
1.7 解 由题可知
2 2
r
a r
x r cos ① ② y r sin
③ r cos r sin x sin r sin r 2 cos ④ cos 2r x r
对等式两边同时积分 ,可得: 1.6 解 由题可知质点的位矢速度 沿垂直于位矢速度 又因为
1 2T 2T t s c t 2 sin t 2T 2
v // r ①
v

r , v // r
r r
v r 即 r
dv 2kv 2 dt
y3 p 1 y 2
2 3 2


dv dv dy dv y dt dy dt dy x yy p
把 y 2 2px 两边对时间求导得
又因为
2 y 2 v2 x
所以
2 y
v2 y2 ⑥ 1 2 p
d 15t 0 15t
2
1 15 t 0 1 15t 2
2
- - 1- -

理论力学第三版(周衍柏)全部习题答案

理论力学第三版(周衍柏)全部习题答案
彗星轨道为抛物线,即 。近日点时 。故近日点有


又因为
所以

(彗星在单位时间内矢径扫过的面积 )
扫过扇形面积的速度

又因为

两边积分

从数学上我们可以得到两轨道交点为地球轨道半径处。
上升时 下降时
题1.19.1图
则两个过程的运动方程为:
上升

下降:

对上升阶段:

对两边积分
所以

即质点到达的高度.
对下降阶段:


由③=④可得
1.20解 作子弹运动示意图如题1.20.1图所示.
题1.20.1图
水平方向不受外力,作匀速直线运动有

竖直方向作上抛运动,有

由①得

代入化简可得
因为子弹的运动轨迹与发射时仰角 有关,即 是 的函数,所以要求 的最大值.把 对 求导,求出极值点.
因为
所以


上式化为
这是一个二阶常系数废气次方程。
解之得
微积分常数,取 ,故


所以
1.45证由题意可知,质点是以太阳为力心的圆锥曲线,太阳在焦点上。
轨迹方程为
在近日点处
在远日点处
由角动量守恒有
所以
1.46解 因为质点速率
所以
又由于

又因为
所以
两边积分

1.47证( )设地球轨道半径为 。则彗星的近日点距离为 。圆锥曲线的极坐标方程为
时, 得 ,故

同理,把⑦代入⑤可以解出
把⑦代入⑤
代入初条件 时, ,得 .所以

理论力学第三版课后答案第3章

理论力学第三版课后答案第3章

r 由式(1)在 τ 向的坐标式,可得点 B 的速度 r τ : vB = vO + rω = 2rω
aw .
re vω B r vO
r n
(1)
co
τ
r
m
固定圆弧纯滚动由点 O′ 到点O,有 AD = AD′ ,即 r (φ + θ ) = Rθ ,得 rφ = (R − r )θ ,两边对时


ww w
r 公共基 e 的坐标式为 rA = rB + A1 ρBA ,展开,考虑到图
r x2 r x3
r y3
C
3-2Ca 有

θ3

0 ⎛ xA ⎞ ⎛ ⎞ ⎛ cos φ1 ⎜ ⎜y ⎟ ⎟=⎜ ⎜ l sin (α − φ )⎟ ⎟+⎜ ⎜ 1 ⎠ ⎝ sin φ1 ⎝ A⎠ ⎝
− sin φ1 ⎞⎛ l cos α ⎞ ⎟⎜ ⎟ ⎜ ⎟ cos φ1 ⎟ ⎠⎝ 0 ⎠
aw .
r y2
B
r r 连体基 e 2 相对于与连体基 e 1 的位形为
r y
co
A
(1)
m
r y1 r x1
φ1 α
r r r r (2)对于连体基 e 1 ,由图 3-2Ca 有 rA = rB + ρ BA 在
.k hd
ρ = (0 − l sin α ) , θ 3 =
1 C T
π
2
−α
(2)
洪嘉振等《理论力学》第 3 版习题详解
1
3-1C 试确定图示各机构中刚体 B2 的位形和它们相对于公共基的方向余弦阵。
r y
r y r y
C b
B2

理论力学教程(第三版)第三章 周衍柏编

理论力学教程(第三版)第三章   周衍柏编
质心 c 的纵坐标
P
∫ yc =
θ0 ρdθR(R cosθ
−θ0
θ0 ρRdθ
− R) = −R + sinθ0
θ0
R
∫−θ0
上式中 ρ 为圆弧的线密度
l = R − sinθ0 R ② θ0

[ ] ∫ I =
θ0 ρR (R cosθ − R)2 + (R sinθ )2 dθ
−θ 0
=
c2 ⎜⎜⎝⎛1 −
y2 b2
⎟⎟⎠⎞
故积分
H
S(y)
=
πac⎜⎜⎝⎛1 −
y2 b2
⎟⎟⎠⎞
P∫ ∫ ∫ y2dm =
b −b
y2S(y)

ρdy
=
b −b
y2πac⎜⎜⎝⎛1 −
y2 b2
⎟⎟⎠⎞ρdy
=
4 πρab3c 15
同理可求
∫ ∫ x2dm = 4 πρa3bc, z2dm = 4 πρabc3
第三章习题解答
3.1 解 如题 3.1.1 图。
y
N1 o
N2 θ
B
θ
x
θθ
G
A
题3.1.1图
S C
I 均质棒受到碗的弹力分别为 N1 , N2, 棒自身重力为G 。棒与水平方向的夹角为
θ 。设棒的长度为 l 。
S 由于棒处于平衡状态,所以棒沿 x 轴和 y 轴的和外力为零。沿过 A 点且与
z 轴平行的合力矩为 0。即:
I
S O 为正方体中心。Ox 、Oy 、Oz 分别与正方体的边平行。由对称性可知,Ox 、
Oy 、Oz 轴就是正方体的中心惯量主轴。设正方体的边长为 a 。设为平行于轴的 一小方条的体积,则正方体绕轴的转动惯量

周衍柏《理论力学教程(第三版)》电子教案 第三章8-9刚体力学

周衍柏《理论力学教程(第三版)》电子教案 第三章8-9刚体力学

1 欧勒—潘索情况
力矩为零, 原则上可用欧勒动力学方程求出角速度, 再代入欧勒运动学方程求出欧勒角和时间的函数关系.
以地球自转作为例子来分析. 地球看作扁平球体, I1=I2.
地球的中心作为定点取为坐标原点, z轴于地球的对称 轴重合, 因 I1=I2, Mx=My=Mz=0 ,所以欧勒动力学方程为
I zk
3z
k
M M xi M y j M zk
所以
I1 x I2 I3 yz I2 y I3 I1 zx
M
x
My
I3 z
I1
I2 xy
Mz
——欧勒动力学方程
机械能守恒律(外力为保守力时)
1
2
I xx2
I
2
yy
I
2
zz
V
E
一般来说, 有动力学和运动学方程就可以完全确定刚体的
12l
sin
V 2l R2
sin
i
2V1l
R
cosj
12l
cosk
2 欧勒动力学方程
刚体绕定点O以角速度 转动时, 其运动方程是
dJ
M
dt
J是刚体绕定点O的动量矩, M为诸外力对O点的主矩.
我们选用固定在刚体上并一起转动的坐标系并选用O点 上的惯量主轴为动坐标轴,
Jx=I1x, Jy=I2y, Jz=I3z.
O
I1 x I2 I3 yz M x
I2 y
I3
I1 zx
M
y
I3 z
I1
I2 xy
Mz
——欧勒动力学方程
动量矩的进动 章动
§3.9 重刚体绕固定点转动的解(略)
导读

理论力学(周衍柏第三版)思考题习题答案

理论力学(周衍柏第三版)思考题习题答案

阿第一章思考题解答1.1答:平均速度是运动质点在某一时间间隔t t t ∆+→内位矢大小和方向改变的平均快慢速度,其方向沿位移的方向即沿t ∆对应的轨迹割线方向;瞬时速度是运动质点在某时刻或某未知位矢和方向变化的快慢程度其方向沿该时刻质点所在点轨迹的切线方向。

在0→∆t 的极限情况,二者一致,在匀速直线运动中二者也一致的。

1.2答:质点运动时,径向速度r V 和横向速度θV 的大小、方向都改变,而r a 中的r 只反映了r V 本身大小的改变,θa 中的θθ r r +只是θV 本身大小的改变。

事实上,横向速度θV 方向的改变会引起径向速度r V 大小大改变,2θ r -就是反映这种改变的加速度分量;经向速度rV 的方向改变也引起θV 的大小改变,另一个θr 即为反映这种改变的加速度分量,故2θ r r a r -=,.2θθθr r a +=。

这表示质点的径向与横向运动在相互影响,它们一起才能完整地描述质点的运动变化情况1.3答:内禀方程中,n a 是由于速度方向的改变产生的,在空间曲线中,由于a 恒位于密切面内,速度v 总是沿轨迹的切线方向,而n a 垂直于v 指向曲线凹陷一方,故n a 总是沿助法线方向。

质点沿空间曲线运动时,0,0≠=b b F a z 何与牛顿运动定律不矛盾。

因质点除受作用力F ,还受到被动的约反作用力R ,二者在副法线方向的分量成平衡力0=+b b R F ,故0=b a 符合牛顿运动率。

有人会问:约束反作用力靠谁施加,当然是与质点接触的周围其他物体由于受到质点的作用而对质点产生的反作用力。

有人也许还会问:某时刻若b b R F 与大小不等,b a 就不为零了?当然是这样,但此时刻质点受合力的方向与原来不同,质点的位置也在改变,副法线在空间中方位也不再是原来b a 所在的方位,又有了新的副法线,在新的副法线上仍满足00==+b b b a R F 即。

这反映了牛顿定律得瞬时性和矢量性,也反映了自然坐标系的方向虽质点的运动而变。

周衍柏《理论力学教程(第三版)》电子教案 第三章7刚体力学

周衍柏《理论力学教程(第三版)》电子教案 第三章7刚体力学

v Ax

如果=0, 则无转动瞬心, 或者说, 转动瞬心在无穷远处. 只要转动瞬心C已知,就知道薄片在此时的运动.因为 如果取C为基点,则因它此时的速度为零,薄片将仅绕C 转动而任意一点P 的速度大小为 CP 过A及B作两直线分别垂直于 vA及vB, 此两直线的交点即为 转动瞬心.
A B
自时刻t2以后, 乒乓球向后作无滑动滚动, 如不考虑滚 动摩擦, 质心速度和角速度恒定
2 3 vC vC 0 gt 2 R0 vC 0 5 2 vC 2 3 vC 0 0 R 5 2 R
例3 如图, 一半径为R的圆木以角速度0在水平面上作纯 滚动, 在前进的路上撞在以高度为h的台阶上. 设碰撞是完 全非弹性的, 即碰撞后圆木不弹回.要圆木能够翻上台阶 而又始终不跳离台阶,对台阶有什么要求?
圆木不跳离台阶的条件是台阶的支撑力N始终大于零. N在碰撞的最初时刻最小, 我们就来计算它.沿质心和 接触点方向的向心加速度是重力分量和支撑力造成 的,所以
mR 2 mgsin N
由图知 sin=1-h/R, 从而有
3R 2h N mg 1 h / R mR mg 1 h / R mR 0 0 3R 9( R h) g 2 0 (d) 2 (3R 2h)
vA
C
vB
3 平面平行运动动力学
质心作为基点, 利用质心运动定理 和相对于质心的角动量定理写出平面 平行运动的动力学方程
y
y
y

C
x x
C Fx m x C Fy m y
I zz M z I zz
o
x
Mz为诸外力(包括约束反力)对z轴的力矩的和

周衍柏《理论力学教程(第三版)》电子教案 第一章1-3质点力学

周衍柏《理论力学教程(第三版)》电子教案 第一章1-3质点力学

r
r0
t dr v dt
t0
2 例1 已知质点的运动方程 r 2t i 19 2t j
求:1)轨道方程;(2)t=2秒时质点的位置、速度以 及加速度;(3)什么时候位矢恰好与速度矢垂直?


解: (1)
x 2t ,
y 19 2t 2
消去时间参数
1 2 y 19 x 2

8 tg 7558 2
1
dr v 2i 4tj dt
-2
dv a 4 j dt
( 3)
方向沿y轴的负方向 a 4 m s 2 r v 2ti 19 2t j 2i 4tj
t
d 2 h0 2 v0
, hc h0 1 2 h v2 0 0
2 g h0 d 2 2 h0
2 g h0 d 2

0
显然只有
v
2 0

时才可能击中
2 极坐标系
极坐标系:空间p的位置(r,)
当p沿着曲线运动,速度沿轨道 的切线. 沿矢径方向
j p r c v i
2 ( 2) r 2 2 i 19 2 2 j 4 i 11 j t 2 dr v 2i 4tj m/s v t 2 2i 8 j dt
v2 2 8 8.25 m/s
2 2

• 自然坐标系,切向、法向加速度 • 相对运动, 绝对(加)速度、相对(加)速 度、牵连(加)速度.
§1.1
1 质点
运动的描述
具有一定质量的几何点
自由质点:可以在空间自由移动的质点. 确 定它在空间的位置需要三个独立变量.

理论力学第三版课后习题答案

理论力学第三版课后习题答案

理论力学第三版课后习题答案【篇一:理论力学教程思考题答案第三版.doc】2r?.。

这表示质点的径向与横向运动在相互影响,它们一起才?2,a??rar??r??r?能完整地描述质点的运动变化情况1.3答:内禀方程中,an是由于速度方向的改变产生的,在空间曲线中,由于a恒位于密切面内,速度v总是沿轨迹的切线方向,而an垂直于v指向曲线凹陷一方,故an总是沿助法线方向。

质点沿空间曲线运动时,ab?0,fb?0z何与牛顿运动定律不矛盾。

因质点除受作用力f,还受到被动的约反作用力r,二者在副法线方向的分量成平衡力fb?rb?0,故ab?0符合牛顿运动率。

有人会问:约束反作用力靠谁施加,当然是与质点接触的周围其他物体由于受到质点的作用而对质点产生的反作用力。

有人也许还会问:某时刻若fb与rb大小不等,ab就不为零了?当然是这样,但此时刻质点受合力的方向与原来不同,质点的位置也在改变,副法线在空间中方位也不再是原来ab所在的方位,又有了新的副法线,在新的副法线上仍满足fb?rb?0即ab?0。

这反映了牛顿定律得瞬时性和矢量性,也反映了自然坐标系的方向虽质点的运动而变。

1.4答:质点在直线运动中只有a?而无an,质点的匀速曲线运动中只有an而无a?;质点作变速运动时即有at又有an。

1.5而dr即反应位矢r大小的改变又反映其方向的改变,是质点运动某时刻的速度矢量,dtdrdr?j而dr?r?i?r??。

在直线运动中,?r只表示r大小的改变。

如在极坐标系中,dtdtdt规定了直线的正方向后,drdrdrdr。

且的正负可表示的指向,二者都可表示质点dtdtdtdt的运动速度;在曲线运动中drdrdrdr?,且也表示不了的指向,二者完全不同。

dtdtdtdtdvdv表示质点运动速度的大小,方向的改变是加速度矢量,而只是质点运动速度大小dtdtdvdvaan,而?a?。

dtdt的改变。

在直线运动中规定了直线的正方向后,二者都可表示质点运动的加速度;在曲线运动中,二者不同,1.6答:不论人是静止投篮还是运动投篮,球对地的方向总应指向篮筐,其速度合成如题1.6v球对人v人对地题1-6图图所示,故人以速度v向球网前进时应向高于篮筐的方向投出。

理论力学(周衍柏)习题答案,第四章

理论力学(周衍柏)习题答案,第四章

第四章习题解答4.1解如题4.1.1图所示.坐标系的原点位于转动的固定点,轴沿轴与角速度的方向一致,即设点沿运动的相对速度为则有题意得:故在点时的绝对速度设与轴的夹角为,则故与边的夹角为,且指向左上方。

点时绝对速度设的夹角为,则,故与边的夹角为,且指向左下方。

4.2解如题4.2.1图所示,以转动的方向为极角方向建立坐标系。

轴垂直纸面向外,设点相对速度①设绝对速度的量值为常数,则:②对②式两边同时球时间导数得:依题意故解得通解当时,,将其带入①式游客的知:时,即最后有4.3解如题4.3.1图所示,直角坐标的原点位于圆锥顶点轴过圆锥的对称轴.点在轴上对应的一点,且有,所以点的绝对加速度:最后有4.4解如题4.4.1图所示,题4.4.1图坐标系是以轴转动的坐标系.图中画出的是曲线的一段,在任意一点处,假设某质点在此处静止,则该质点除了受重力、钢丝的约束力之外,还会受惯性离心力的作用,,方向沿轴正向,在作用下,致信处于平衡状态,则有①②有①得③又因为过原点.对上式积分得抛物线有③得将代入②的反作用力4.5以直管为参照系,方向沿管,沿竖直轴建立坐标系,则小球受力为:故沿方向运动的微分方程为:①有初始条件:可得①式解为故当邱刚离开管口时,即时.则得所以此时:故当球刚要离开管口时的相对速度为,绝对速度为,小球从开始运动到离开管口所需时间为4.6解以光滑细管为参考系,沿管,沿水平轴建立坐标系,如题4.6.1图所示,则小球受力为:故沿方向运动的微分方程为:①方程的通解而方程①的特解为:故方程①的通解为:初始条件为当时,故可得所以质点相对于管的运动规律为:4.7解以水平细管为参考系,沿管,沿竖直转动轴向上建立坐标系,如题图4.7.1图所示则易得质点反方向的运动微分方程为:①②将方程①②作简单变换可得:化简得其通解为:初始条件为:故可得:故4.8解以抛物线形金属丝为参照物沿抛物线在顶点的切线方向,沿竖直轴建立坐标系,则小环的运动微分方程为:①②故代入①②得化简即得4.9解一当小环相对平衡时,由上题可知即要求为常数,故故解二以地面为参照系,则小球受力,如图4-8所示.其中为固定地面的坐标系,故平衡时有:4.10解以地面为参考系,则小环的运动微分方程为:其中为与圆心的连线和通过点的直径间所夹的角化简得4.11解以地面为非惯性参考系,建立坐标系,指正南,竖直向上,发射点为原点,炮弹的运动微分方程为:①②③初始条件为故将①②③积分一次代入初始条件后得:④⑤⑥有⑥可得落地时间:⑦其中所以将展开可得由式及初始条件可得所以炮弹落地时的横向偏离为4.1 解以地面为非惯性,建立坐标系指向正南,竖直向上,上抛点为原点,质点的运动微分方程为:①初始条件为:如上题同理可得②③④代入①式得有④式求出落地时间为:有③式得:将代入得复落至地面时:。

周衍柏《理论力学教程(第三版)》电子教案 第三章1-3刚体力学

周衍柏《理论力学教程(第三版)》电子教案 第三章1-3刚体力学

4 定点转动: 一点固定不动, 刚体围绕过这点的某一 瞬时轴转动(三个变量).
5 一般运动:刚体不受任何约束,可以在空间任意运动.
质心的平动
+
绕质心的转动
§3.2 角速度矢量
1 有限转动与无限小转动
z
角坐标
约定
(t )
P
x
>0 沿顺时针方向转动 < 0
沿逆时针方向转动 角位移
O

y
x
(2) 坐标系O- 固定不动, 坐标系 O-xyz 固定在刚体上 随之一起转动.
假定O- 系和 O-xyz系开始重合, 令O-xyz绕 轴逆时 针转动 , 于是x轴和 轴分开,y 轴和轴分开, 而且Ox 轴转到Ox’(即ON);
z
O
z
y
y
O N x
变化范围:
0 2
0 2
0

z

y y

O

x

N
O 平面和xOy 平面的交线ON 称节线. ON和O间的夹角 是一个欧勒角(进动角). ON和Ox间的夹角是另一个欧勒角(自 转角). O和Oz间的夹角是第三个欧勒角(章动角).
从图知: z轴垂直ON, 故 z轴位置与N有关, 因此 z轴位置要用

x

进动
然后令活动系绕ON 转动 ,于是 z 轴和 轴分开, 活 动系三个轴变到x’’, y’’和z’’, z’’轴和 轴夹角是 , x’’ Oy’’平面和O平面夹角也是 .
z
y
O N x
z



O

y

x N
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a 0
x2bdx

ba3
3

ma2 3
d
a2 d k 2ba4 0 / 2 d t 3kba2
I AB
dt
M AB
3
m dt

4


dt
2
0
0 4m
t

4m
3kba20
3.16)一矩形板ABCD在平行自身的平面内运动, 其角速度为定值
. 在其一瞬时, A点的速度为v, 其方向则沿对角线AC. 试求此瞬
别为a,b. 则当平衡时, AB和竖直直线所成的角满足下列关系
tan

a2
b2 2ab
解: 研究对象为ABC结构,受力分析如图. 按照题意,知道
R
A
B m1g

m1 a, m2 b
m2g C
平衡时:
n
MA 0
i1
m1g
a 2
sin

m2
g

b 2
cos

a sin

tan

(m1
m2b 2m2 )a
tan b2
(a 2b)a
3.5)一均质的梯子, 一端置于摩擦系数为1/2的地板上, 另一端 则斜靠在摩擦系数为1/3的高墙上,一人的体重为梯子的三倍, 爬到 梯的顶端时, 梯尚未开始滑动, 则梯与地面的倾角,最小当为若干?
解: 研究对象为梯子, 人在顶端时,梯子与地面的夹角为, 梯子
度 .
解: 研究对象为棒, 受力分析如图. 建立直角坐标系为x轴水 平向右, y竖直向上
平衡方程
R 2l
B
Fy 0 R cos mg
n
MA 0
i 1
Rd lmg cos cos
A
cos3

d


cos1
d
1/ 3

l
l

mg
N
d
第3.2题图
3.3)两根均质棒AB、BC在B处刚性联结在一起, 且角ABC形成 一直角. 如将此棒的A点用绳系于固定点上, 棒AB和BC的长度分
cos cos cos 3
3

I xx
y2 z2
dm
a/2 a/2 a/2
dx dy
y2 z2
dz
a5

a/2 a/ 2 a/2
6
同理 对角线转动惯量
I yy

I zz

a5 6

I

I xx
cos2

I yy
cos2
k d 32
解: 这是一个求解转动惯量的问题.对任一轴线转动惯量为:
I Ixx cos2 I yy cos2 Izz cos2 2Ixy cos cos 2Ixz cos cos 2I yz cos cos
设立方体密度为ρ, dm=ρ dxdydz, M=a3 ρ. 现选取过质心为原点, 平行各边为轴的坐标系,则惯量积为零.
解:在匀质薄片上沿AD方向取一宽为dx长条
B
C
做微元,到转轴的距离为x
b
每一个微元受空气阻力 df k(x)2bdx
整个薄片受阻力矩为:
Aa
D
M f
dM f

a
kx(x)2bdx
0
k 2ba 4
4
整个薄片绕AB轴的转动惯量为: I AB x2dm


a2 b2
vB OB
v2 2v
ab 2a2
a2 b2
3.20)质量为M、半径为r的均质圆柱体放在粗糙水平面上. 柱的
外面绕有轻绳, 绳子跨过一个很轻的滑轮, 并悬挂一质量为m的物
体, 设圆柱体只滚不滑, 并且圆柱体与滑轮间的绳子是水平的, 求
圆柱体质心的加速度a1, 物体的加速度a2及绳中张力T.
第十四讲 作业复习(二)
3.1)半径为r的光滑半球形碗, 固定在水平面上. 一均质棒斜靠在
碗缘, 一端在碗内, 一端则在碗外, 在碗内的长度为c, 试证棒的全
长为
4 c2 2r2
c
证: 研究对象为棒, 建立直角坐标系并 受力分析如图.
y
R

A
N x
B
平衡方程
mg
Fx 0 R cos mg sin R mg tan
时B点的速度.以v, 及矩形的边长等表示之假定AB=a, BC=b.
解1:用解析法,选取坐标如图, 以A为基点

vvBBx
vA rBA vAx yB
and
vBy vAy xB
vBx vAx vA cos vA
yB 0, xB a
解:这是平面平行运动, 对象圆柱和 物体 受力分析如图,坐标系向右,向
T
下为正
N
T
物体 : ma2 mg T
圆柱 : Ma1 T f
I0
d
dt

T

f
R, I0

1 2
MR2
Mr
f Mg
m mg
xC
R , d
dt

xC R

a1 R
a1

4mg 3M 8m


I zz
cos2

a5 6


a2 6
M
3.12)矩形均质薄片ABCD,边长为a与b, 重为mg, 绕竖直轴AB以初
角速0转动. 此时薄片的每一部分均受到空气的阻力, 其方向垂直
于薄片的平面, 其值与面积及速度平方成正比,比例系数为k. 问经
过多少时间后,薄片的角速度减为初速度的一半?
n MB 0
i 1
Rc sin mg cos c l
2
ห้องสมุดไป่ตู้
又几何条件
r 2 (c / 2)2
tan
c/2
联立上述方程, 得
l 4 c2 2r2 c
3.2)长为2l的均质棒, 一端抵在光滑墙上, 而棒身则如图示斜靠 在与墙相距为d的光滑棱角上.求棒在平衡时与水平面所成的角
重量p, 人重3p.
y
平衡时:
A
NA
3p
n
Fx 0
i 1
n
Fy 0
i 1
1 2
NB

NA
1 3
NA

NB

4p
p
NB

B
x
n
MB 0
i 1

p
l 2
l

3 pl

1 3
N
Al

cos


N Al
sin


0
tan 41
24
3.9)证明对角线长度为d的立方体绕其对角线转动的回转半径为
a a2 b2
vBy vA sin a vA
b a
a2 b2
O
A


D
a
y
B b
x
C
解2:用寻找瞬心法,过A做vA垂线,瞬心在O点,距离A为vA/. 连OB, 因角+=90o, 所以
OB OA2 AB2 2OA AB cos 1 v2 2v ab 2a2
相关文档
最新文档