复数专题训练四精选练习及答案

合集下载

复数练习题附答案

复数练习题附答案

复数练习题附答案复数是数学中的一个基本概念,它拓展了实数的概念,允许我们处理像-1的平方根这样的数。

复数可以表示为a + bi的形式,其中a和b是实数,i是虚数单位,满足i^2 = -1。

下面是一些复数的练习题,以及它们的答案。

练习题1:计算以下复数的加法:\[ (3 + 4i) + (1 - 2i) \]答案1:首先分别将实部和虚部相加:\[ 3 + 1 = 4 \]\[ 4i - 2i = 2i \]所以,结果是 \( 4 + 2i \)。

练习题2:计算以下复数的乘法:\[ (2 + 3i) \times (1 - 4i) \]答案2:使用分配律:\[ 2 \times 1 + 2 \times (-4i) + 3i \times 1 + 3i \times (-4i) \]\[ = 2 - 8i + 3i - 12i^2 \]由于 \( i^2 = -1 \),所以:\[ = 2 - 5i + 12 \]结果是 \( 14 - 5i \)。

练习题3:求复数 \( z = 3 - 2i \) 的共轭复数。

答案3:共轭复数是将虚部的符号改变得到的数,所以:\[ \bar{z} = 3 + 2i \]练习题4:求复数 \( z = 2 + i \) 的模(magnitude)。

答案4:复数的模定义为:\[ |z| = \sqrt{a^2 + b^2} \]其中 \( a \) 和 \( b \) 分别是复数的实部和虚部。

所以:\[ |2 + i| = \sqrt{2^2 + 1^2} = \sqrt{4 + 1} = \sqrt{5} \] 练习题5:求复数 \( z = 1 + i \) 的逆。

答案5:复数的逆通过公式 \( \frac{1}{z} =\frac{\bar{z}}{|z|^2} \) 计算。

首先求模:\[ |1 + i| = \sqrt{1^2 + 1^2} = \sqrt{2} \]然后求共轭复数:\[ \bar{z} = 1 - i \]最后求逆:\[ \frac{1}{1 + i} = \frac{1 - i}{2} \]因为 \( |1 + i|^2 = 2 \)。

高考数学《复数》专项练习(含答案)

高考数学《复数》专项练习(含答案)

【复数】专项练习参考答案1.〔2021全国Ⅰ卷,文2,5分〕设(12i)(i)a ++的实部与虚部相等,其中a 为实数,那么a =( )〔A 〕−3 〔B 〕−2 〔C 〕2 〔D 〕3 【答案】A【解析】(12i)(i)2(12)i a a a ++=-++,由,得a a 212+=-,解得3-=a ,选A .2.〔2021全国Ⅰ卷,理2,5分〕设(1i)1i x y +=+,其中x ,y 是实数,那么i =x y +( )〔A 〕1 〔B 〔C 〔D 〕2 【答案】B【解析】因为(1i)=1+i,x y +所以i=1+i,=1,1,|i |=|1+i |x x y x y x x y +==+=所以故应选B .3.〔2021全国Ⅱ卷,文2,5分〕设复数z 满足i 3i z +=-,那么z =( ) 〔A 〕12i -+ 〔B 〕12i - 〔C 〕32i + 〔D 〕32i - 【答案】C【解析】由i 3i z +=-得32i z =-,所以32i z =+,应选C .4.〔2021全国Ⅱ卷,理1,5分〕(3)(1)i z m m =++-在复平面内对应的点在第四象限,那么实数m 的取值范围是( )〔A 〕(31)-, 〔B 〕(13)-, 〔C 〕(1,)∞+ 〔D 〕(3)∞--,5.〔2021全国Ⅲ卷,文2,5分〕假设43i z =+,那么||zz =( ) 〔A 〕1 〔B 〕1- 〔C 〕43i 55+ 〔D 〕43i 55-【答案】D【解析】∵43i z =+,∴z =4-3i ,|z |=2234+.那么43i ||55z z ==-,应选D .6.〔2021全国Ⅲ卷,理2,5分〕假设z =1+2i ,那么4i1zz =-( ) (A)1 (B)−1 (C)i (D)−i 【答案】C【解析】∵z =1+2i ,∴z =1-2i ,那么4i 4ii (12i)(12i)11zz ==+---,应选C . 7.〔2021全国Ⅰ卷,文3,5分〕复数z 满足(z -1)i =1+i ,那么z =( )A .-2-iB .-2+iC .2-iD .2+i【答案】C【解析一】(z -1)i =1+i ⇒ zi -i =1+i ⇒ zi =1+2i ⇒ z =1+2i i=(1+2i)i i 2=2-i .应选C .【解析二】(z -1)i =1+i ⇒ z -1=1+i i⇒ z =1+i i+1 ⇒z =(1+i)i i 2+1=2-i .应选C .8.〔2021全国Ⅰ卷,理1,5分〕设复数z 满足1+z1z-=i ,那么|z|=( )〔A 〕1 〔B 〔C 〔D 〕2 【答案】A 【解析一】1+z1z-=i ⇒ 1+z =i(1-z) ⇒ 1+z =i -zi ⇒ z +zi =-1+i ⇒ (1+i)z =-1+i ⇒9.〔2021全国Ⅱ卷,文2,5分〕假设a 为实数,且2+ai 1+i=3+i ,那么a =( )A .-4B .-3C .3D .4 【答案】D【解析】由得2+ai =(1+i)(3+i)=2+4i ,所以a =4,应选D .10.〔2021全国Ⅱ卷,理2,5分〕假设a 为实数,且(2+ai)(a -2i)=-4i ,那么a =( )A .-1B .0C .1D .2 【答案】B【解析】(2+ai)(a -2i)=-4i ⇒ 2a -4i +a 2i +2a =-4i ⇒ 2a -4i +a 2i +2a +4i =0⇒ 4a +a 2i =0 ⇒ a =0.11.〔2021全国Ⅰ卷,文3,5分〕设z =11+i+i ,那么|z|=( )A .12 B .√22 C .√32 D .2 【答案】B 【解析】z =11+i+i =1-i 2+i =12+12i ,因此|z|=√(12)2+(12)2=√12=√22,应选B .12.(1+i )3(1-i )2=( )A .1+iB .1-iC .-1+iD .-1-i 【答案】D 【解析】(1+i )3(1-i )2=(1+i )2(1+i)(1-i )2·=(1+i 2+2i)(1+i)1+i 2-2i==2i(1+i)-2i=-(1+i)=-1-i ,应选D .13.〔2021全国Ⅱ卷,文2,5分〕1+3i 1-i=( )A .1+2iB .-1+2iC .1-2iD .-1-2i【答案】B 【解析】1+3i 1-i=(1+3i )(1+i )(1-i )(1+i )=-2+4i 2=-1+2i ,应选B .14.〔2021全国Ⅱ卷,理2,5分〕设复数z 1,z 2在复平面内的对应点关于虚轴对称,z 1=2+i ,那么z 1z 2=( )A .-5B .5C .-4+iD .-4-i【答案】A【解析】由题意得z 2=-2+i ,∴z 1z 2=(2+i)(-2+i)=-5,应选A .15.〔2021全国Ⅰ卷,文2,5分〕1+2i (1-i )2=( )A .-1-12i B .-1+12i C .1+12i D .1-12i 【答案】B 【解析】1+2i(1-i )2=1+2i -2i=(1+2i )i (-2i )i=-2+i 2=-1+12i ,应选B .16.〔2021全国Ⅰ卷,理2,5分〕假设复数z 满足(3-4i)z =|4+3i|,那么z 的虚部为( )A .-4B .-45 C .4 D .45 【答案】D【解析】∵|4+3i|=√42+32=5,∴(3-4i)z =5,∴z=53-4i=5(3+4i )25=35+45i ,虚部为45,应选D .17.〔2021全国Ⅱ卷,文2,5分〕|21+i|=( )A .2√2B .2C .√2D .1【答案】C 【解析】|21+i|=|2(1-i )2|=|1-i|=22)1(1-+=√2.选C .18〔2021全国Ⅱ卷,理2,5分〕设复数z 满足(1-i)z =2i ,那么z =( )A .-1+iB .-1-iC .1+iD .1-i 【答案】A【解析】由题意得z =2i1-i=2i ·(1+i )(1−i )(1+i)=2i +2i 22=2i−22=-1+i ,应选A .19.〔2021全国卷,文2,5分〕复数z =-3+i 2+i的共轭复数是( ) A .2+i B .2-I C .-1+iD .-1-i【答案】D【解析】z =-3+i 2+i=(-3+i )(2-i )(2+i )(2-i )=-5+5i 5=-1+i ,∴z =-1-i ,应选D .20.〔2021全国卷,文2,5分〕复数5i1-2i=( )A .2-iB .1-2iC .-2+iD .-1+2i【答案】C 【解析】5i 1-2i=5i (1+2i )(1-2i )(1+2i )=5(i -2)5=-2+i ,应选C .21.〔2021北京,文2,5分〕复数( ) 〔A 〕i 〔B 〕1+i 〔C 〕 〔D 〕【答案】A 【解析】,应选A .22.〔2021北京,理9,5分〕设,假设复数在复平面内对应的点位于实轴上,那么_____________. 【答案】-1【解析】(1+i)(a +i)=a +i +ai +i 2=a +i +ai -1=(a -1)+(1+a)i ,由题意得虚部为0,即(1+a)=0,解得a =-1. 23.〔2021江苏,文/理2,5分〕复数其中i 为虚数单位,那么z 的实部是____.【答案】524.〔2021山东,文2,5分〕假设复数21iz =-,其中i 为虚数单位,那么z =( ) 〔A 〕1+i〔B 〕1−i〔C 〕−1+i 〔D 〕−1−i【答案】B25.〔2021山东,理1,5分〕假设复数z 满足232i,z z +=- 其中i 为虚数单位,那么z =( )〔A 〕1+2i 〔B 〕1-2i 〔C 〕12i -+ 〔D 〕12i --【答案】B26.〔2021上海,文/理2,5分〕设32iiz +=,其中i 为虚数单位,那么z 的虚部等于_______. 【答案】-312i=2i+-i -1i -12i (12i)(2i)2i 4i 2i 2i (2i)(2i)5+++++-===--+a ∈R (1i)(i)a ++a =(12i)(3i),z =+-【解析】32i 23i,iz +==-故z 的虚部等于−3.27.〔2021四川,文1,5分〕设i 为虚数单位,那么复数(1+i)2=( )(A) 0 (B)2 (C)2i (D)2+2i 【答案】C【解析】22(1i)12i i 2i +=++=,应选C .28.〔2021天津,文9,5分〕i 是虚数单位,复数z 满足(1i)2z +=,那么z 的实部为_______.【答案】1【解析】2(1)211i i iz z +=⇒==-+,所以z 的实部为1.29.〔2021天津,理9,5分〕,a b ∈R ,i 是虚数单位,假设(1+i)(1-b i)=a ,那么ab的值为____.【答案】2【解析】由(1i)(1i)1(1)i b b b a +-=++-=,可得110b a b +=⎧⎨-=⎩,所以21a b =⎧⎨=⎩,2ab=,故答案为2.。

名词复数练习题及答案

名词复数练习题及答案

名词复数练习题及答案名词的复数形式是英语中一个非常基础且重要的知识点。

在日常生活和学习中,我们经常会遇到各种各样的名词复数形式,因此掌握名词复数形式的规则对于正确表达意思和理解他人的意思非常重要。

本文将为读者提供一些常见的名词复数练习题及答案,帮助读者巩固和提高对名词复数知识的掌握。

练习题1:将下列名词变为复数形式:1. car2. book3. apple4. girl5. potato6. watch7. city8. baby9. box10. country答案:1. cars2. books3. apples4. girls5. potatoes6. watches7. cities8. babies9. boxes10. countries练习题2:将下列名词变为复数形式,并注意相应的规则:1. leaf2. knife3. tooth4. child5. fish6. sheep7. woman8. man9. mouse10. person答案:1. leaves2. knives3. teeth4. children5. fish6. sheep7. women8. men9. mice10. people练习题3:将下列名词变为复数形式,并注意特殊规则:1. foot2. goose3. toothbrush4. ox5. datum6. louse7. cactus8. medium9. syllabus10. curriculum答案:1. feet2. geese3. toothbrushes4. oxen5. data6. lice7. cacti8. media9. syllabi10. curricula练习题4:判断下列名词是否已经是复数形式,如果不是,请将其改为复数形式:1. children2. sheep3. leaves4. women5. mouses6. oxes7. cactuses8. teeths9. fishes10. knifes答案:1. 是2. 是3. 是4. 是5. mice6. oxen7. cacti8. teeth9. fish10. knives练习题5:写出以下名词的复数形式:1. city2. child3. party4. potato5. glass6. shelf7. box8. tomato9. photo10. radio答案:1. cities2. children3. parties4. potatoes5. glasses6. shelves7. boxes8. tomatoes9. photos10. radios练习题6:将下列名词的复数形式改为单数形式:1. trees2. houses3. windows4. books5. boys6. girls7. dogs8. cats9. oranges10. apples答案:1. tree2. house3. window4. book5. boy6. girl7. dog8. cat9. orange10. apple练习题7:将下列名词的复数形式改为不可数名词:1. apples2. bottles3. pens4. cups5. chairs6. tables7. pictures8. books9. computers10. CDs答案:1. apple (不可数名词:apple)2. bottle (不可数名词:bottle)3. pen (不可数名词:pen)4. cup (不可数名词:cup)5. chair (不可数名词:chair)6. table (不可数名词:table)7. picture (不可数名词:picture)8. book (不可数名词:book)9. computer (不可数名词:computer)10. CD (不可数名词:CD)通过以上练习题及答案,我们可以复习和加深对名词复数形式的掌握。

英语名词变复数的练习题(带答案)

英语名词变复数的练习题(带答案)

名词变复数(随堂)一、写出下列名词的复数形式1、orange_________2、class __________3、monkey______4、piano___________5、child ___________6、shelf ____________7、bed____________8、country___________9、family___________10、toy__________ 11、foot __________ 12、radio__________13、photo__________ 14、tomato___________ 15、woman___________16、knife__________17、sheep__________18、ship__________ 19、dish___________ 20、mouse___________二、用所给的单词的复数的正确形式填空:1〉There are three_____________(chair)in the classroom。

3> My brother looks after two_____________ (baby)4〉My father likes to eat_____________ (potato).5〉Chinese_____________ (people)like to eat noodles。

7> My mother wash_____________ (dish) in the kitchen.8> I have two_____________ (pencil—box)。

9> There are some_____________ (bus)in the street.三、选择填空( )1.I can see three ________ in the zoo。

复数考试题目大全及答案

复数考试题目大全及答案

复数考试题目大全及答案一、选择题1. 下列哪个选项是复数的共轭?A. 2 + 3iB. 2 - 3iC. 3 + 2iD. 3 - 2i答案:B2. 复数 \( z = 3 + 4i \) 的模是:A. 5B. 7C. 8D. 9答案:A3. 复数 \( z_1 = 2 + i \) 和 \( z_2 = 1 - 2i \) 的和是:A. 3 - iB. 3 + iC. 1 + 3iD. 1 - 3i答案:A二、填空题1. 复数 \( z = a + bi \) 中,\( a \) 称为复数的______,\( b \) 称为复数的______。

答案:实部,虚部2. 复数 \( z = -4 + 3i \) 的共轭复数是______。

答案:-4 - 3i3. 若复数 \( z \) 的模为 10,且 \( z \) 的虚部为 6,则 \( z \) 的实部为______。

答案:±8三、简答题1. 解释什么是复数的模,并给出计算公式。

答案:复数的模是复数在复平面上到原点的距离,计算公式为\( |z| = \sqrt{a^2 + b^2} \),其中 \( z = a + bi \)。

2. 描述如何计算两个复数的乘积。

答案:两个复数 \( z_1 = a + bi \) 和 \( z_2 = c + di \) 的乘积计算公式为 \( z_1 \cdot z_2 = (a + bi)(c + di) = ac - bd+ (ad + bc)i \)。

四、计算题1. 计算复数 \( z = 1 + 2i \) 的模和共轭复数。

答案:复数 \( z \) 的模为 \( |z| = \sqrt{1^2 + 2^2} =\sqrt{5} \),共轭复数为 \( 1 - 2i \)。

2. 求复数 \( z_1 = 3 - 4i \) 和 \( z_2 = 1 + i \) 的乘积。

答案:\( z_1 \cdot z_2 = (3 - 4i)(1 + i) = 3 + 3i - 4i -4i^2 = 3 - i + 4 = 7 - i \)。

复数练习题及答案

复数练习题及答案

复数练习题及答案复数是英语语法中的一个重要概念,它用来表示多个个体或物体。

掌握复数形式对于学习英语来说至关重要。

在这篇文章中,我们将提供一些复数练习题及答案,帮助读者加深对复数的理解和应用。

第一部分:基础练习1. 将下列名词变为复数形式:a) bookb) catc) appled) boxe) child答案:a) booksb) catsc) applesd) boxese) children2. 将下列名词变为复数形式,并注意特殊变化:a) manb) womanc) childd) tooth答案:a) menb) womenc) childrend) teethe) feet第二部分:规则变化3. 根据名词的词尾变化,将下列名词变为复数形式:a) dogb) penc) bookd) hate) cup答案:a) dogsb) pensc) booksd) hatse) cups4. 将下列名词变为复数形式,并注意词尾变化规则:a) tomatoc) brushd) watche) box答案:a) tomatoesb) potatoesc) brushesd) watchese) boxes第三部分:不规则变化5. 将下列名词变为复数形式,并注意不规则变化规则:a) childb) mousec) toothd) foote) woman答案:a) childrenb) micec) teethd) feet6. 将下列名词变为复数形式,并注意不规则变化规则:a) oxb) deerc) sheepd) fishe) aircraft答案:a) oxenb) deerc) sheepd) fishe) aircraft第四部分:应用练习7. 用适当的复数形式填空:a) There are three _______ on the table.b) My sister has two _______.c) The _______ in the zoo are very cute.d) I need two _______ for this recipe.e) The _______ in the pond swim gracefully.答案:a) booksb) catsc) monkeysd) cupse) fish8. 用适当的复数形式填空,并注意不规则变化:a) The _______ are playing in the garden.b) I saw two _______ in the field.c) The dentist pulled out three _______.d) She bought a pair of _______.e) The _______ are grazing in the meadow.答案:a) childrenb) deerc) teethd) jeanse) sheep复数练习题及答案到此结束。

复数多选题专项训练知识点及练习题含答案

复数多选题专项训练知识点及练习题含答案

复数多选题专项训练知识点及练习题含答案一、复数多选题1.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )A .复数z 的虚部为iB .z =C .复数z 的共轭复数1z i =-D .复数z 在复平面内对应的点在第一象限 答案:BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数,所以其虚部为,即A 错误;,故B 正确;解析:BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数1z i =+,所以其虚部为1,即A 错误;z ==B 正确;复数z 的共轭复数1z i =-,故C 正确;复数z 在复平面内对应的点为()1,1,显然位于第一象限,故D 正确.故选:BCD.【点睛】本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.2.对任意1z ,2z ,z C ∈,下列结论成立的是( )A .当m ,*n N ∈时,有m n m n z z z +=B .当1z ,2zC ∈时,若22120z z +=,则10z =且20z = C .互为共轭复数的两个复数的模相等,且22||||z z z z ==⋅D .12z z =的充要条件是12=z z答案:AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取,进行判断;D 中的必要不充分条件是.【详解】解:由复数乘法的运算律知,A 正确;取,;,满足,但且不解析:AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取11z =,2z i =进行判断;D 中12z z =的必要不充分条件是12=z z .【详解】解:由复数乘法的运算律知,A 正确;取11z =,;2z i =,满足22120z z +=,但10z =且20z =不成立,B 错误; 由复数的模及共轭复数的概念知结论成立,C 正确;由12z z =能推出12=z z ,但12||||z z =推不出12z z =,因此12z z =的必要不充分条件是12=z z ,D 错误. 故选:AC【点睛】本题主要考查复数乘法的运算律和复数的基本知识以及共轭复数的概念,属于基础题.3.(多选)()()321i i +-+表示( )A .点()3,2与点()1,1之间的距离B .点()3,2与点()1,1--之间的距离C .点()2,1到原点的距离D .坐标为()2,1--的向量的模答案:ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于,也等于,即可判断选项C,D【详解】由复数的几何意义,知复数,分别对应复平面内的点与点,所以表示点与点之间的距离,故A 说法正确,B解析:ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于2i +,也等于2i --,即可判断选项C,D【详解】由复数的几何意义,知复数32i +,1i +分别对应复平面内的点()3,2与点()1,1,所以()()321i i +-+表示点()3,2与点()1,1之间的距离,故A 说法正确,B 说法错误;()()3212i i i +-+=+,2i +可表示点()2,1到原点的距离,故C 说法正确;()()()()3211322i i i i i +-+=+-+=--,2i --可表示表示点()2,1--到原点的距离,即坐标为()2,1--的向量的模,故D 说法正确,故选:ACD【点睛】本题考查复数的几何意义,考查复数的模4.复数21i z i+=-,i 是虚数单位,则下列结论正确的是( )A .|z |=B .z 的共轭复数为3122i +C .z 的实部与虚部之和为2D .z 在复平面内的对应点位于第一象限 答案:CD【分析】根据复数的四则运算,整理复数,再逐一分析选项,即得.【详解】由题得,复数,可得,则A 不正确;的共轭复数为,则B 不正确;的实部与虚部之和为,则C 正确;在复平面内的对应点为,位于第一解析:CD【分析】根据复数的四则运算,整理复数z ,再逐一分析选项,即得.【详解】 由题得,复数22(2)(1)13131(1)(1)122i i i i z i i i i i ++++====+--+-,可得||z ==,则A 不正确;z 的共轭复数为1322i -,则B 不正确;z 的实部与虚部之和为13222+=,则C 正确;z 在复平面内的对应点为13(,)22,位于第一象限,则D 正确.综上,正确结论是CD.故选:CD【点睛】本题考查复数的定义,共轭复数以及复数的模,考查知识点全面.5.下面四个命题,其中错误的命题是( )A .0比i -大B .两个复数当且仅当其和为实数时互为共轭复数C .1x yi i +=+的充要条件为1x y ==D .任何纯虚数的平方都是负实数 答案:ABC【分析】根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.【详解】对于A 选项,由于虚数不能比大小,解析:ABC【分析】根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.【详解】对于A 选项,由于虚数不能比大小,A 选项错误;对于B 选项,()()123i i ++-=,但1i +与2i -不互为共轭复数,B 选项错误; 对于C 选项,由于1x yi i +=+,且x 、y 不一定是实数,若取x i =,y i =-,则1x yi i +=+,C 选项错误;对于D 选项,任取纯虚数()0,ai a a R ≠∈,则()220ai a =-<,D 选项正确. 故选:ABC.【点睛】本题考查复数相关命题真假的判断,涉及共轭复数的概念、复数相等以及复数的计算,属于基础题.6.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( )A .3||5z = B .12i 5z +=- C .复数z 的实部为1- D .复数z 对应复平面上的点在第二象限 答案:BD【分析】因为复数满足,利用复数的除法运算化简为,再逐项验证判断.【详解】因为复数满足,所以所以,故A 错误;,故B 正确;复数的实部为 ,故C 错误;复数对应复平面上的点在第二象限解析:BD【分析】因为复数z 满足(2i)i z -=,利用复数的除法运算化简为1255z i =-+,再逐项验证判断.【详解】因为复数z 满足(2i)i z -=, 所以()(2)1222(2)55i i i z i i i i +===-+--+所以5z ==,故A 错误; 1255z i =--,故B 正确; 复数z 的实部为15- ,故C 错误; 复数z 对应复平面上的点12,55⎛⎫- ⎪⎝⎭在第二象限,故D 正确. 故选:BD【点睛】本题主要考查复数的概念,代数运算以及几何意义,还考查分析运算求解的能力,属于基础题.7.已知复数()(()()211z m m m i m R =-+-∈,则下列说法正确的是( )A .若0m =,则共轭复数1z =- B .若复数2z =,则mC .若复数z 为纯虚数,则1m =±D .若0m =,则2420z z ++= 答案:BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,时,,则,故A 错误;对于B ,若复数,则满足,解得,故B 正确;对于C ,若复数z 为纯虚数,则满足,解得,解析:BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,0m =时,1z =-,则1z =-,故A 错误;对于B ,若复数2z =,则满足(()21210m m m ⎧-=⎪⎨-=⎪⎩,解得m ,故B 正确;对于C ,若复数z为纯虚数,则满足(()21010m m m ⎧-=⎪⎨--≠⎪⎩,解得1m =-,故C 错误; 对于D ,若0m =,则1z =-+,()()221420412z z ++=+--+=+,故D 正确.故选:BD.【点睛】 本题主要考查对复数相关概念的理解,注意不同情形下的取值要求,是一道基础题.8.已知复数z 满足(1﹣i )z =2i ,则下列关于复数z 的结论正确的是( ) A.||z =B .复数z 的共轭复数为z =﹣1﹣iC .复平面内表示复数z 的点位于第二象限D .复数z 是方程x 2+2x +2=0的一个根答案:ABCD【分析】利用复数的除法运算求出,再根据复数的模长公式求出,可知正确;根据共轭复数的概念求出,可知正确;根据复数的几何意义可知正确;将代入方程成立,可知正确.【详解】因为(1﹣i )z =解析:ABCD【分析】利用复数的除法运算求出1z i =-+,再根据复数的模长公式求出||z ,可知A 正确;根据共轭复数的概念求出z ,可知B 正确;根据复数的几何意义可知C 正确;将z 代入方程成立,可知D 正确.【详解】因为(1﹣i )z =2i ,所以21i z i=-2(1)221(1)(1)2i i i i i i +-+===-+-+,所以||z ==A 正确; 所以1i z =--,故B 正确;由1z i =-+知,复数z 对应的点为(1,1)-,它在第二象限,故C 正确;因为2(1)2(1)2i i -++-++22220i i =--++=,所以D 正确.故选:ABCD.【点睛】本题考查了复数的除法运算,考查了复数的模长公式,考查了复数的几何意义,属于基础题.9.设复数z 满足12z i =--,i 为虚数单位,则下列命题正确的是( )A .|z |=B .复数z 在复平面内对应的点在第四象限C .z 的共轭复数为12i -+D .复数z 在复平面内对应的点在直线2y x =-上答案:AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】,A 正确;复数z 在复平面内对应的点的坐标为,在第三象限,B 不正确;z 的共轭复数为,C 正确;复数z 在复平面内对解析:AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】||z ==A 正确;复数z 在复平面内对应的点的坐标为(1,2)--,在第三象限,B 不正确;z 的共轭复数为12i -+,C 正确;复数z 在复平面内对应的点(1,2)--不在直线2y x =-上,D 不正确.故选:AC【点睛】本小题主要考查复数的有关知识,属于基础题.10.设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( )A .若z 为纯虚数,则实数a 的值为2B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)122- C .实数12a =-是z z =(z 为z 的共轭复数)的充要条件 D .若||5()z z x i x R +=+∈,则实数a 的值为2 答案:ACD【分析】首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】∴选项A :为纯虚数,有可得,故正确选项B解析:ACD【分析】首先应用复数的乘法得2(12)z a a i =-++,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】()(12)2(12)z a i i a a i =++=-++∴选项A :z 为纯虚数,有20120a a -=⎧⎨+≠⎩可得2a =,故正确 选项B :z 在复平面内对应的点在第三象限,有20120a a -<⎧⎨+<⎩解得12a <-,故错误 选项C :12a =-时,52z z ==-;z z =时,120a +=即12a =-,它们互为充要条件,故正确 选项D :||5()z z x i x R +=+∈时,有125a +=,即2a =,故正确故选:ACD【点睛】本题考查了复数的运算及分类和概念,应用复数乘法运算求得复数,再根据复数的概念及性质、相等关系等确定参数的值或范围11.i 是虚数单位,下列说法中正确的有( )A .若复数z 满足0z z ⋅=,则0z =B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数()z a ai a R =+∈,则z 可能是纯虚数D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限答案:AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题解析:AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果.【详解】A 选项,设(),z a bi a b R =+∈,则其共轭复数为(),z a bi a b R =-∈,则220z z a b ⋅=+=,所以0a b ,即0z =;A 正确;B 选项,若11z =,2z i =,满足1212z z z z +=-,但12z z i =不为0;B 错;C 选项,若复数()z a ai a R =+∈表示纯虚数,需要实部为0,即0a =,但此时复数0z =表示实数,故C 错;D 选项,设(),z a bi a b R =+∈,则()2222234z a bi a abi b i =+=+-=+, 所以22324a b ab ⎧-=⎨=⎩,解得21a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩,则2z i =+或2z i =--, 所以其对应的点分别为()2,1或()2,1--,所以对应点的在第一象限或第三象限;D 正确. 故选:AD.12.下列结论正确的是( )A .已知相关变量(),x y 满足回归方程ˆ9.49.1yx =+,则该方程相应于点(2,29)的残差为1.1B .在两个变量y 与x 的回归模型中,用相关指数2R 刻画回归的效果,2R 的值越大,模型的拟合效果越好C .若复数1z i =+,则2z =D .若命题p :0x R ∃∈,20010x x -+<,则p ⌝:x R ∀∈,210x x -+≥答案:ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当时,,则该方程相应于点(2,29)的残差为,则A 正确;在两个变量解析:ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当2x =时,ˆ9.429.127.9y=⨯+=,则该方程相应于点(2,29)的残差为2927.9 1.1-=,则A 正确;在两个变量y 与x 的回归模型中,2R 的值越大,模型的拟合效果越好,则B 正确;1z i =-,z ==C 错误;由否定的定义可知,D 正确;故选:ABD【点睛】本题主要考查了残差的计算,求复数的模,特称命题的否定,属于中档题.13.已知i 为虚数单位,复数322i z i +=-,则以下真命题的是( ) A .z 的共轭复数为4755i - B .z 的虚部为75i C .3z = D .z 在复平面内对应的点在第一象限 答案:AD【分析】先利用复数的除法、乘法计算出,再逐项判断后可得正确的选项.【详解】,故,故A 正确.的虚部为,故B 错,,故C 错,在复平面内对应的点为,故D 正确.故选:AD.【点睛】本题考解析:AD【分析】先利用复数的除法、乘法计算出z ,再逐项判断后可得正确的选项.【详解】()()32232474725555i i i i i z i ++++====+-,故4755i z =-,故A 正确.z 的虚部为75,故B 错,3z ==≠,故C 错, z 在复平面内对应的点为47,55⎛⎫ ⎪⎝⎭,故D 正确. 故选:AD.【点睛】本题考查复数的概念、复数的运算以及复数的几何意义,注意复数(),z a bi a b R =+∈的虚部为b ,不是bi ,另外复数的除法运算是分子分母同乘以分母的共轭复数.14.下面关于复数的四个命题中,结论正确的是( )A .若复数z R ∈,则z R ∈B .若复数z 满足2z ∈R ,则z R ∈C .若复数z 满足1R z∈,则z R ∈ D .若复数1z ,2z 满足12z z R ∈,则12z z = 答案:AC根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数,则,因为,所以,因此,即A 正确;B 选项,设复数,则,因为,所,若,则;故B 错;C 选项,设解析:AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数(,)z a bi a b R =+∈,则(i ,)z a b a b =-∈R ,因为z R ∈,所以0b =,因此z a R =∈,即A 正确;B 选项,设复数(,)z a bi a b R =+∈,则()22222z a bi a b abi =+=-+,因为2z ∈R ,所0ab =,若0,0a b =≠,则z R ∉;故B 错;C 选项,设复数(,)z a bi a b R =+∈,则22222211a bi a b i z a bi a b a b a b -===-++++, 因为1R z∈,所以220b a b =+,即0b =,所以z a R =∈;故C 正确; D 选项,设复数1(,)z a bi a b R =+∈,2(,)z c di c d R =+∈,则()()()()12z z a bi c di ac bd ad bc i =++=-++,因为12z z R ∈,所以0ad bc +=,若11a b =⎧⎨=⎩,22c d =⎧⎨=-⎩能满足0ad bc +=,但12z z ≠,故D 错误.故选:AC.【点睛】本题主要考查复数相关命题的判断,熟记复数的运算法则即可,属于常考题型.15.已知复数012z i =+(i 为虚数单位)在复平面内对应的点为0P ,复数z 满足|1|||z z i -=-,下列结论正确的是( )A .0P 点的坐标为(1,2)B .复数0z 的共轭复数对应的点与点0P 关于虚轴对称C .复数z 对应的点Z 在一条直线上D .0P 与z 对应的点Z 间的距离的最小值为2答案:ACD根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出,利用,结合复数模的运算进行化简,由此判断出点的轨迹,由此判读C 选项的正确解析:ACD【分析】根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出z ,利用|1|||z z i -=-,结合复数模的运算进行化简,由此判断出Z 点的轨迹,由此判读C 选项的正确性.结合C 选项的分析,由点到直线的距离公式判断D 选项的正确性.【详解】复数012z i =+在复平面内对应的点为0(1,2)P ,A 正确;复数0z 的共轭复数对应的点与点0P 关于实轴对称,B 错误;设(,)z x yi x y R =+∈,代入|1|||z z i -=-,得|(1)(1)i|x yi x y -+=+-,即=y x =;即Z 点在直线y x =上,C 正确; 易知点0P 到直线y x =的垂线段的长度即为0P 、Z 之间距离的最小值,结合点到直线的距=,故D 正确. 故选:ACD【点睛】本小题主要考查复数对应的坐标,考查共轭复数,考查复数模的运算,属于基础题.16.已知复数z 满足220z z +=,则z 可能为( )A .0B .2-C .2iD .2i - 答案:ACD【分析】令代入已知等式,列方程组求解即可知的可能值.【详解】令代入,得:,∴,解得或或∴或或.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.解析:ACD【分析】令z a bi =+代入已知等式,列方程组求解即可知z 的可能值.【详解】令z a bi =+代入22||0z z +=,得:2220a b abi -+=,∴22020a b ab ⎧⎪-+=⎨=⎪⎩,解得0,0a b =⎧⎨=⎩或0,2a b =⎧⎨=⎩或0,2,a b =⎧⎨=-⎩ ∴0z =或2z i =或2z i =-.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.17.任何一个复数z a bi =+(其中a 、b R ∈,i 为虚数单位)都可以表示成:()cos sin z r i θθ=+的形式,通常称之为复数z 的三角形式.法国数学家棣莫弗发现:()()()n cos sin co i s s n n n z i n r i r n n N θθθθ+==+⎡⎤⎣∈⎦+,我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是( )A .22z z =B .当1r =,3πθ=时,31z = C .当1r =,3πθ=时,12z = D .当1r =,4πθ=时,若n 为偶数,则复数n z 为纯虚数答案:AC【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数,可判断C 选项的正误;计算出,可判断D 选项的正误.【详解】对于A 选项,,则,可得解析:AC【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数z ,可判断C 选项的正误;计算出4z ,可判断D 选项的正误.【详解】对于A 选项,()cos sin z r i θθ=+,则()22cos2sin 2z r i θθ=+,可得()222cos 2sin 2z r i r θθ=+=,()222cos sin z r i r θθ=+=,A 选项正确;对于B 选项,当1r =,3πθ=时,()33cos sin cos3sin3cos sin 1z i i i θθθθππ=+=+=+=-,B 选项错误;对于C 选项,当1r =,3πθ=时,1cos sin 332z i ππ=+=+,则12z =,C 选项正确;对于D 选项,()cos sin cos sin cos sin 44n n n n z i n i n i ππθθθθ=+=+=+, 取4n =,则n 为偶数,则4cos sin 1z i ππ=+=-不是纯虚数,D 选项错误.故选:AC.【点睛】本题考查复数的乘方运算,考查了复数的模长、共轭复数的运算,考查计算能力,属于中等题.18.若复数351i z i-=-,则( )A .z =B .z 的实部与虚部之差为3C .4z i =+D .z 在复平面内对应的点位于第四象限 答案:AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】解:,,z 的实部为4,虚部为,则相差5,z 对应的坐标为,故z 在复平面内对应的点位于第四象限,所以AD 正 解析:AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】 解:()()()()351358241112i i i i z i i i i -+--====---+,z ∴==z 的实部为4,虚部为1-,则相差5,z 对应的坐标为()41-,,故z 在复平面内对应的点位于第四象限,所以AD 正确, 故选:AD.19.(多选题)已知集合{},n M m m i n N ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( )A .()()11i i -+B .11i i -+C .11i i +-D .()21i - 答案:BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】根据题意,中,时,;时,;时,;时,,.选项A 中,;选项B 中,;选项C 中,;选项D 中,.解析:BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】 根据题意,{},n M m m i n N ==∈中, ()4n k k N =∈时,1n i =;()41n k k N =+∈时,n i i =;()42n k k N =+∈时,1n i =-;()43n k k N =+∈时,n i i =-,{}1,1,,M i i ∴=--.选项A 中,()()112i i M -+=∉;选项B 中,()()()211111i i i i i i M --==-+-∈+;选项C 中,()()()211111i i i i i i M ++==-+∈-; 选项D 中,()212i i M -=-∉.故选:BC.【点睛】此题考查复数的基本运算,涉及复数的乘方和乘法除法运算,准确计算才能得解.20.下面是关于复数21i z =-+(i 为虚数单位)的命题,其中真命题为( ) A .||2z = B .22z i =C .z 的共轭复数为1i +D .z 的虚部为1- 答案:BD【分析】把分子分母同时乘以,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】解:,,A 错误;,B 正确;z 的共轭复数为,C 错误;z 的虚部为,D 正确.故选:BD.【点解析:BD【分析】 把21iz =-+分子分母同时乘以1i --,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】 解:22(1)11(1)(1)i z i i i i --===---+-+--,||z ∴=A 错误;22i z =,B 正确;z 的共轭复数为1i -+,C 错误;z 的虚部为1-,D 正确.故选:BD.【点睛】本题主要考查复数除法的基本运算、复数的基本概念,属于基础题.21.复数z 满足233232i z i i+⋅+=-,则下列说法正确的是( )A .z 的实部为3-B .z 的虚部为2C .32z i =-D .||z =答案:AD【分析】由已知可求出,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】解:由知,,即,所以的实部为,A 正确;的虚部为-2,B 错误;,C 错误;,D 正确;故选:A解析:AD【分析】由已知可求出32z i =--,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】 解:由233232i z i i +⋅+=-知,232332i z i i +⋅=--,即()()()2233232232313i i i z i i ---=-=+ 39263213i i --==--,所以z 的实部为3-,A 正确;z 的虚部为-2,B 错误;32z i =-+,C 错误;||z ==D 正确; 故选:AD.【点睛】 本题考查了复数的除法运算,考查了复数的概念,考查了共轭复数的求解,考查了复数模的求解,属于基础题.22.已知i 为虚数单位,下列命题中正确的是( )A .若x ,y ∈C ,则1x yi i +=+的充要条件是1x y ==B .2(1)()a i a +∈R 是纯虚数C .若22120z z +=,则120z z == D .当4m =时,复数22lg(27)(56)m m m m i --+++是纯虚数答案:BD【分析】选项A :取,满足方程,所以错误;选项B :,恒成立,所以正确;选项C :取,,,所以错误;选项D :代入,验证结果是纯虚数,所以正确.【详解】取,,则,但不满足,故A 错误;,恒成解析:BD【分析】选项A :取x i =,y i =-满足方程,所以错误;选项B :a ∀∈R ,210a +>恒成立,所以正确;选项C :取1z i =,21z =,22120z z +=,所以错误;选项D :4m =代入 22lg(27)(56)m m m m i --+++,验证结果是纯虚数,所以正确.【详解】取x i =,y i =-,则1x yi i +=+,但不满足1x y ==,故A 错误;a ∀∈R ,210a +>恒成立,所以2(1a i +)是纯虚数,故B 正确;取1z i =,21z =,则22120z z +=,但120z z ==不成立,故C 错误; 4m =时,复数2212756=42g m m m m i i --+++()()是纯虚数,故D 正确.故选:BD .【点睛】本题考查复数有关概念的辨析,特别要注意复数的实部和虚部都是实数,解题时要合理取特殊值,属于中档题.。

名词复数练习题及答案

名词复数练习题及答案

名词复数练习题及答案在英语语法中,名词的复数形式是一种重要的语法规则。

正确使用名词的复数形式对于掌握英语语法和使用英语非常重要。

下面是一些名词复数练习题及答案,帮助你巩固对名词复数的理解和应用。

练习题一:将下列名词转化为复数形式。

1. book2. child3. box4. potato5. class6. city7. knife8. leaf9. man10. baby答案一:1. books2. children3. boxes4. potatoes5. classes6. cities7. knives8. leaves9. men10. babies练习题二:将下列名词的复数形式转化为单数形式。

1. books2. children3. boxes4. potatoes5. classes6. cities7. knives8. leaves9. men10. babies答案二:2. child3. box4. potato5. class6. city7. knife8. leaf9. man10. baby练习题三:选择正确的复数形式填空。

1. There are three ______ in the park. (child / children)2. We have two ______ at home. (dog / dogs)3. She has many ______ in her garden. (flower / flowers)4. I bought three ______ from the supermarket. (tomato / tomatoes)5. The ______ are playing in the yard. (child / children)答案三:1. children2. dogs4. tomatoes5. children练习题四:将下列不规则名词的复数形式填入空白处。

名词变复数练习题及答案

名词变复数练习题及答案

名词变复数练习题及答案1. 将下列名词变为复数形式:- Child → ________- Foot → ________- Leaf → ________- Man → ________- Mouse → ________- Life → ________- Box → ________- Knife → ________- Potato → ________- Tomato → ________2. 判断下列句子中的名词是否正确地变为复数形式:- I have two foots. (对/错)- The childrens are playing in the park. (对/错) - There are many leafs on the trees. (对/错)- The men are working in the office. (对/错)3. 填空题:- There are many _______ (box) in the room.- The _______ (knife) on the table are sharp.- I see _______ (leaf) falling from the tree.答案1. 答案:- Child → Children- Foot → Feet- Leaf → Leaves- Man → Men- Mouse → Mice- Life → Lives- Box → Boxes- Knife → Knives- P otato → Potatoes- Tomato → Tomatoes2. 答案:- I have two foots. (错,应为 "I have two feet.")- The childrens are playing in the park. (错,应为 "The children are playing in the park.")- There are many leafs on the trees. (错,应为 "There are many leaves on the trees.")- The men are working in the office. (对)3. 填空题答案:- There are many boxes in the room.- The knives on the table are sharp.- I see leaves falling from the tree.通过这些练习,学生可以加深对名词复数形式变化规则的理解,并在实际使用中更加得心应手。

名词复数练习题及答案

名词复数练习题及答案

名词复数练习题及答案名词复数练习题及答案名词的复数形式是英语语法中的一个重要部分。

正确使用名词的复数形式能够使我们的语言更加准确和流畅。

然而,由于英语中存在许多不规则的复数形式,学习名词的复数形式也变得有些困难。

在本文中,我们将提供一些名词复数练习题及其答案,帮助读者更好地掌握名词复数的规则和不规则形式。

练习题一:将下列名词变为复数形式。

1. book2. child3. knife4. box5. woman6. tomato7. tooth8. mouse9. sheep10. leaf答案:1. books2. children3. knives4. boxes6. tomatoes7. teeth8. mice9. sheep10. leaves练习题二:选择正确的复数形式填空。

1. There are three __________ in the garden.a) childb) childsc) children2. I need two __________ for the recipe.a) tomatob) tomatosc) tomatoes3. The __________ are hiding in the attic.a) mouseb) mousesc) mice4. We saw five __________ on the farm.a) sheepb) sheeps5. The dentist pulled out three __________.a) toothb) toothsc) teeths答案:1. c) children2. c) tomatoes3. c) mice4. a) sheep5. c) teeth练习题三:将下列名词的复数形式改为单数形式。

1. books2. women3. mice4. children5. sheep答案:1. book2. woman3. mouse4. child5. sheep练习题四:将下列名词的复数形式改为不规则的复数形式。

高中复数练习题及讲解及答案

高中复数练习题及讲解及答案

高中复数练习题及讲解及答案### 高中复数练习题及讲解及答案#### 练习题1. 复数的加减法- 计算以下复数的和:\(3 + 4i\) 和 \(1 - 2i\)。

2. 复数的乘法- 求 \((2 + 3i)(1 - i)\) 的乘积。

3. 复数的除法- 计算 \(\frac{2 + i}{1 + i}\)。

4. 复数的共轭- 找出 \(3 - 4i\) 的共轭复数。

5. 复数的模- 求 \(5 + 12i\) 的模。

6. 复数的幂运算- 计算 \((2 + i)^2\)。

7. 复数的指数形式- 将 \(8\) 表示为 \(2\) 的幂次形式。

8. 复数的极坐标形式- 将 \(-3 - 4i\) 转换为极坐标形式。

9. 复数的三角函数- 求 \(\sin(3 + 4i)\)。

10. 复数的对数- 计算 \(\log(-8 + 0i)\)。

#### 讲解复数是实数和虚数的组合,形如 \(a + bi\),其中 \(a\) 和 \(b\)是实数,\(i\) 是虚数单位,满足 \(i^2 = -1\)。

1. 加减法:直接对实部和虚部分别进行加减。

2. 乘法:使用分配律,然后合并同类项。

3. 除法:将分母的实部和虚部合并,然后乘以共轭复数,简化表达式。

4. 共轭复数:改变虚部的符号。

5. 模:计算 \(\sqrt{a^2 + b^2}\)。

6. 幂运算:使用二项式定理或幂的性质。

7. 指数形式:使用欧拉公式 \(e^{ix} = \cos(x) + i\sin(x)\)。

8. 极坐标形式:表示为 \(r(\cos(\theta) + i\sin(\theta))\),其中 \(r\) 是模,\(\theta\) 是辐角。

9. 三角函数:使用复数的指数形式和欧拉公式。

10. 对数:首先将复数转换为极坐标形式,然后应用对数的性质。

#### 答案1. \(4 + 2i\)2. \(2 + 5i\)3. \(3 - i\)4. \(3 + 4i\)5. \(13\)6. \(3 + 4i\)7. \(2^3\)8. \(5(\cos(-\pi/4) + i\sin(-\pi/4))\)9. 无实数解,因为 \(\sin\) 函数在复数域内没有定义。

复数的四则运算同步练习题(文科)(附答案)

复数的四则运算同步练习题(文科)(附答案)

复数的四则运算同步练习题(文科)(附答案)复数的四则运算同步练题1.若复数z满足z + i - 3 = 3 - i,则z等于6 - 2i。

2.复数i + i^2在复平面内表示的点在第二象限。

3.复数z1 = 3 + i,z2 = -1 - i,则z1 - z2等于4 + 2i。

4.设z1 = 2 + bi,z2 = a + i,当z1 + z2 = 0时,复数a + bi 为-2 - i。

5.已知|z| = 3,且z + 3i是纯虚数,则z等于3i。

6.复数-i + 1/i等于-2i。

7.i为虚数单位,1/i + 1/i^3 + 1/i^5 + 1/i^7等于2i。

8.若a,b∈R,i为虚数单位,且(a + i)i = b + i,则a = 1,b = -1.9.在复平面内,复数i + 1 + i/(1 + 3i)^2对应的点位于第二象限。

10.设复数z的共轭复数是z,若复数z1 = 3 + 4i,z2 = t + i,且z1·z2是实数,则实数t等于3/4.11.若z = (1 + 2i)/i,则复数z等于-2 + i。

12.复数z = 1/(1 - i)的共轭复数是1/2 - 1/2i。

13.(1 - i)(1 + 2i)/(1 + i) = -2 + i。

14.若复数z1 = 1 + i,z2 = 3 - i,则z1·z2等于4 + 2i。

15.已知a + 2i/i = b + i(a,b∈R),其中i为虚数单位,则a + b等于1.16.若复数 $x-2+yi$ 和 $3x-i$ 互为共轭复数,则实数$x$ 和 $y$ 的值为 $(D)$。

17.在复平面内,复数 $i$,$1+i$,$1+3i$ 的和对应的点位于 $(B)$。

18.设 $i$ 是虚数单位,$z$ 是复数 $z$ 的共轭复数,若$z=\frac{1+i}{1-i}$,则 $z=(A)$。

19.若复数 $z$ 满足 $(3-4i)z=|4+3i|$,则 $z$ 的虚部为$(D)$。

高中数学第七章复数考点专题训练(带答案)

高中数学第七章复数考点专题训练(带答案)

高中数学第七章复数考点专题训练单选题1、若复数z =21+i ,其中i 为虚数单位,则z =( )A .1+iB .1−iC .−1+iD .−1−i答案:B分析:复数的除法运算,分子分母同时乘以分母的共轭复数,化简即可.z =21+i =2(1−i)(1+i)(1−i)=1−i 故选:B.2、设i 为虚数单位,a ∈R ,“复数z =a 22−i 20201−i 不是纯虚数“是“a ≠1”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案:A分析:先化简z ,求出a ,再判断即可.z =a 22−i 20201−i =a 22−11−i =a 22−1+i (1−i )(1+i )=a 22−12−12i , z 不是纯虚数,则a 22−12≠0,所以a 2≠1,即a ≠±1,所以a ≠±1是a ≠1的充分而不必要条件.故选:A .小提示:本题主要考查根据复数的类型求参数,考查充分条件和必要条件的判断,考查逻辑思维能力和计算能力,属于常考题.3、z 1、z 2是复数,则下列结论中正确的是( )A .若z 12+z 22>0,则z 12>−z 22B .|z 1−z 2|=√(z 1+z 2)2−4z 1⋅z 2C .z 12+z 22=0⇔z 1=z 2=0D .|z 12|=|z 1|2答案:D解析:举反例z 1=2+i ,z 2=2−i 可判断选项A 、B ,举反例,z 2=i 可判断选项C ,设z 1=a +bi ,11z(a,b∈R),分别计算|z12|、|z1|2即可判断选项D,进而可得正确选项.对于选项A:取z1=2+i,z2=2−i,z12=(2+i)2=3+2i,z22=(2−i)2=3−2i,满足z12+z22=6>0,但z12与z22是两个复数,不能比较大小,故选项A不正确;对于选项B:取z1=2+i,z2=2−i,|z1−z2|=|2i|=2,而√(z1+z2)2−4z1⋅z2=√42−4(2+i)(2−i)=√16−20无意义,故选项B不正确;对于选项C:取,z2=i,则z12+z22=0,但是z1≠0,z2≠0,故选项C不正确;对于选项D:设z1=a+bi,(a,b∈R),则z12=(a+bi)2=a2−b2+2abi|z12|=√(a2−b2)2+4a2b2=√(a2+b2)2=a2+b2,z1=a−bi,|z1|=√a2+b2,所以|z1|2=a2+b2,所以|z12|=|z1|2,故选项D正确.故选:D.4、已知i为虚数单位,则i+i2+i3+⋅⋅⋅+i2021=()A.i B.−i C.1D.-1答案:A分析:根据虚数的运算性质,得到i4n+i4n+1+i4n+2+i4n+3=0,得到i+i2+i3+⋅⋅⋅+i2021=i2021,即可求解.根据虚数的性质知i4n+i4n+1+i4n+2+i4n+3=1+i−1−i=0,所以i+i2+i3+⋅⋅⋅+i2021=505×0+i2021=i.故选:A.5、已知复数z=1+i,z是z的共轭复数,若z·a=2+bi,其中a,b均为实数,则b的值为()A.-2B.-1C.1D.2答案:A分析:根据共轭复数的定义,结合复数的运算性质和复数相等的性质进行求解即可.因为z=1+i,所以z=1−i,因此z=2+bia =2a+bai=1−i,所以2a =1且ba=−1,则a=2,b=−2.11z故选:A6、在复平面内,复数z对应的点的坐标是(1,−2),则zi的共轭复数为()A.1−2i B.1+2i C.2+i D.2−i答案:D分析:依题意根据复数的几何意义得到z=1−2i,再根据复数代数形式的乘法运算及共轭复数的概念计算可得.解:由题知,z=1−2i,则zi=(1−2i)i=2+i,所以zi=2−i,故选:D.7、若i(1−z)=1,则z+z=()A.−2B.−1C.1D.2答案:D分析:利用复数的除法可求z,从而可求z+z.由题设有1−z=1i =ii2=−i,故z=1+i,故z+z=(1+i)+(1−i)=2,故选:D8、若z=1+i.则|iz+3z|=()A.4√5B.4√2C.2√5D.2√2答案:D分析:根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出.因为z=1+i,所以iz+3z=i(1+i)+3(1−i)=2−2i,所以|iz+3z|=√4+4=2√2.故选:D.多选题9、已知复数z满足(1+i3)z=2,则下列说法中正确的有()A.z的虚部是iB.|z|=√2C.z⋅z=2D.z2=2答案:BC分析:根据复数的除法运算求出z,结合相关概念以及复数乘法运算即可得结果.z=21+i3=21−i=1+i,其虚部为1,|z|=√2,z⋅z=(1+i)(1−i)=2,z2=(1+i)2=2i≠2.故选:BC.10、欧拉公式e xi=cosx+isinx(其中i为虚数单位,x∈R)是由瑞士著名数学家欧拉创立的,该公式将指数函数的定义域扩大到复数,建立了三角函数与指数函数之间的关系,在复变函数论里面占有非常重要的地位,被誉为“数学中的天桥”,依据欧拉公式,下列选项正确的是()A.复数e2i对应的点位于第三象限B.eπ2i为纯虚数C.复数xi√3+i 的模等于12D.eπ6i的共轭复数为12−√32i答案:BC分析:根据欧拉公式写出e2i=cos2+isin2、eπ2i=cosπ2+isinπ2、eπ6i=cosπ6+isinπ6,再判断复数所在象限、类型及求模长、共轭复数.由题知e2i=cos2+isin2,而cos2<0,sin2>0,则复数e2i对应的点位于第二象限,故A错误;eπ2i=cosπ2+isinπ2=i,则eπ2i为纯虚数,故B正确;xi √3+i =√3+i=√3−i)(√3+i)(√3−i)=√3cosx+sinx4+√3sinx−cosx4i,则xi√3+i的模为√(√3cosx+sinx4)2+(√3sinx−cosx4)2=√3cos2x+sin2x+3sin2x+cos2x16=12,故C正确;eπ6i=cosπ6+isinπ6=√32+12i,其共轭复数为√32−12i,故D错误.故选:BC11、设复数z1,z2满足z1+z2=0,则()A.z1=z2B.|z1|=|z2|C.若z1(2−i)=3+i,则z1z2=−2i D.若|z1−(1+√3i)|=1,则1≤|z2|≤3答案:BCD分析:由待定系数法先假设z1=a+bi,则z2=−a−bi,根据共轭复数的概念判断A选项,根据模长的公式判断B选项,根据复数的运算法则判断C选项,根据复数的几何意义判断D选项.设复数z1=a+bi,由z1+z2=0,所以z2=−a−bi,因此:z1=a−bi≠z2,故A选项错误;因为|z1|=√a2+b2,|z2|=√(−a)2+(−b)2=√a2+b2,所以B选项正确;因为z1(2−i)=3+i,所以z1=3+i2−i=1+i,则z2=−1−i所以z1z2=(1+i)(−1−i)=−2i,所以C选项正确;因为|z1−(1+√3i)|=1,根据复数的几何意义可知,复数z1=a+bi所表示的点(a,b)的轨迹是以(1,√3)为圆心,1为半径的圆,则由对称性可知,复数z2=−a−bi所表示的点(−a,−b)的轨迹是以(−1,−√3)为圆心,1为半径的圆,由|z2|的几何意义表示点(−a,−b)与(0,0)间的距离,由图可知:1≤|z2|≤3,故D选项正确;故选:BCD.小提示:本题主要考查了复数的几何意义以及复数的乘除运算,在求解过程中始终利用i2=−1对式子进行化简,而复数的几何意义有两个,一个是点对应,一个是向量对应,在解题中要清楚.12、对任意复数z=a+bi(a,b∈R),i为虚数单位,则下列结论中正确的是()A.z−z=2a B.|z|=|z|C.z+z=2a D.z+z=2bi答案:BC分析:写出共轭复数,然后计算判断各选项.由已知z=a−bi,因此z−z=2bi,z+z=2a,|z|=√a2+b2=|z|.故选:BC.13、欧拉公式e xi=cosx+isinx(其中i为虚数单位,x∈R),是由瑞士著名数学家欧拉创立的,公式将指数函数的定义域扩大到复数,建立了三角函数与指数的数的关联,在复变函数论里面占有非常重要的地位,被誉为数学中的天桥,依据欧拉公式,下列选项能确的是()A.复数e2i对应的点位于第三象限B.eπi2为纯虚数C.eπi3的共轭复数为12−√32i;D.复数xi√3+i的模长等于12答案:BCD分析:对于A,e2i=cos2+isin2,根据2∈(π2,π),即可判断出;对于BCD,根据欧拉公式e xi=cosx+ isinx逐项计算,然后判断正误即可.解:对于A,由于e2i=cos2+isin2,∵2∈(π2,π),∴cos2∈(−1,0),sin2∈(0,1),∴e2i表示的复数在复平面中位于第二象限,故A错误;对于B,e π2i=cosπ2+isinπ2=i,可得eπ2i为纯虚数,故B正确;对于C,e π3i=cosπ3+isinπ3=12+√32i,∴eπ3i的共轭复数为12−√32i,故C正确.对于D,xi√3+i =√3+i=√3−i)(√3+i)(√3−i)=√3cosx+sinx4+√3sinx−cosx4i,可得其模的长为√(√3cosx+sinx4)2+(√3sinx−cosx4)2=√3cos2x+2√3sinxcosx+sin2x16+3sin2x−2√3sinxcosx+cos2x16=12,故D正确;故选:BCD.填空题14、已知复数z=√3+i(1−√3i)2,则z·z=________.答案:14分析:化简z,计算z·z即可.z=√3+i(1−√3i)2=√3i2(1−√3i)2=√3i)(1−√3i)2=1−√3i=√3i)(1−√3i)(1+√3i)=−√34+i4z=−√34−i4z⋅z=316+116=14所以答案是:1415、若非零复数x,y满足x2+xy+y2=0,则(xx+y )2020+(yx+y)2020的值是___________.答案:−1分析:由题设有xy =−1±√3i2、xy+1=−(xy)2易得(xy)3n=1,同理(yx)3n=1,n∈N∗,而xx+y=−yx,yx+y=−xy,由此可知(xx+y )2020+(yx+y)2020=yx+xy,即可求值.由题设有:(xy )2+xy+1=0,解得xy=−1±√3i2,且xy+1=−(xy)2,∴(xy )3=1,即(xy)3n=1,同理有(yx)3n=1,n∈N∗,x x+y =x(x+y)(x+y)2=x2+xyx2+2xy+y2,yx+y=y(x+y)(x+y)2=y2+xyx2+2xy+y2,又x2+xy+y2=0,∴xx+y =−y2xy=−yx,yx+y=−x2xy=−xy,∴(xx+y )2020+(yx+y)2020=(yx)2020+(xy)2020=(yx)3×673+1+(xy)3×673+1=yx+xy=−1,所以答案是:−1.16、若复数z1=sinπ3−icosπ6,z2=2+3i,则|z1|________|z2|(填“>”“<”或“=”).答案:<分析:由复数模的计算公式,分别计算出|z1|和|z2|,即可比较大小.|z1|=√sin2π3+cos2π6=√34+34=√62,|z2|=√22+32=√13.因为√62=√32<√13,所以|z1|<|z2|.所以答案是:<解答题17、已知复数z1=4-m2+(m-2)i,z2=λ+2sin θ+(cos θ-2)i(其中i是虚数单位,m,λ,θ∈R).(1)若z1为纯虚数,求实数m的值;(2)若z1=z2,求实数λ的取值范围.答案:(1)-2;(2)[2,6]分析:(1)z 1为纯虚数,则其实部为0,虚部不为0,解得参数值;(2)由z 1=z 2,实部、虚部分别相等,求得λ关于θ的函数表达式,根据sinθ的范围求得参数取值范围.(1)由z 1为纯虚数,则{4−m 2=0,m −2≠0,解得m =-2. (2)由z 1=z 2,得{4−m 2=λ+2sinθ,m −2=cosθ−2,∴λ=4-cos 2θ-2sin θ=sin 2θ-2sin θ+3=(sinθ−1)2+2. ∵-1≤sin θ≤1,∴当sin θ=1时,λmin =2,当sin θ=-1时,λmax =6,∴实数λ的取值范围是[2,6].18、已知m ∈R ,α、β是关于x 的方程x 2+2x +m =0的两根.(1)若|α−β|=2√2,求m 的值;(2)用m 表示|α|+|β|.答案:(1)−1或3;(2)|α|+|β|={2√m,m >12,0≤m ≤12√1−m,m <0.分析:(1)由α、β是关于x 的方程x 2+2x +m =0的两根.可得α+β=−2,αβ=m ,对α,β分为实数,与一对共轭虚根即可得出.(2)不妨设α⩽β,对m 及其判别式分类讨论,利用根与系数的关系即可得出.解:(1)∵α、β是关于x 的方程x 2+2x +m =0的两根.∴α+β=−2,αβ=m ,若α,β为实数,即Δ=4−4m ≥0,解得m ≤1时;则2√2=|α−β|=√(α+β)2−4αβ=√4−4m ,解得m =−1.若α,β为一对共轭复数,即Δ=4−4m<0,解得m>1时;则2√2=|α−β|=√(α+β)2−4αβ=|√4m−4i|,解得m=3.综上可得:m=−1或3.(2)因为x2+2x+m=0,不妨设α⩽β.Δ=4−4m⩾0,即m⩽1时,方程有两个实数根.α+β=−2,αβ=m,0⩽m⩽1时,|α|+|β|=|α+β|=2.m<0时,α与β必然一正一负,则|α|+|β|=−α+β=√(α+β)2−4αβ=2√1−m.Δ=4−4m<0,即m>1时,方程有一对共轭虚根.|α|+|β|=2|α|=2√α2=2√m综上可得:|α|+|β|={2√m,m>1 2,0⩽m⩽12√1−m,m<0.。

复数专题训练(四)精选练习及答案

复数专题训练(四)精选练习及答案

复数专题训练(四)班级 ________ 姓名__________ 记分___________28、(本小题满分12分)(续前)复数z 1、z 2满足|z 1|=|z 2|=1,z 1、z 2在复平面内的对应点分别为Z 1、Z 2,O 为原点. (1) 若z 2-z 1=-1,求arg12z z ; (2) 设argz 1=α,argz 2=β,若ΔOZ 1Z 2的重心对应复数31+151i ,求tg(α+β)的值.29、(本小题满分12分)设z 为复数,D 为满足条件||z|-1|+|z|-1=0的点Z 所构成图形的边界.(1) 若复数ω=21z+1-2i(z ∈D),求ω对应点的轨迹方程; (2) 若满足条件|z+21|=|z-23i|所构成的图形D /与D 有两个公共点A 、B ,OA 、OB 的倾斜角分别为α、β(O 为原点),求cos(α+β)的值.30、(本小题满分14分)设无穷数列{z n }满足z 1=-1+i ,z n 在复平面上的对应点为Z n (n=1,2,…),将向量n OZ 沿逆时针方向旋转4π,且使模扩大到原来的2倍就得到向量1n OZ +. (1). 求这个数列的通项公式; (2). 已知数列的第n 项为-32,求n ; (3) .将数列{z n }中的实数项的倒数按原顺序排成一个新数列{b n },并设S n =b 1+b 2+…+b n ,求∞→n lim S n .参考答案: DCCBA AADCC BDBDD16、10, 0 17、{-2,0,2} 18、82,π419、(1)Z 为实数(2)0或1或-i 2321± 20、32π; 21、2±;22、(1) –1; (2) 300o; (3) -2 3 I; (4)__________23、以( -1 , 0 ) 为圆心, 2为半径的圆 .24、解析:设Z 1=cos α+isin α,Z 2=-4(cos β+isin β)∵Z 1-Z 2=1-2i 3,∴⎩⎨⎧-=-=-)2(32sin 4sin )1(1cos 4cos βαβα(1)2+(2)2得1+16-8cos(α-β)=13,∴cos(α-β)=21,sin(α-β)=23± ∴21Z Z =21Z Z =[cos(α-β)+isin(α-β)]=8381)3321(41±=±i i25、.解:由|z 1|=1,则1z =1z 1,|z 2|=4,则2z =2z 16,∴|z 1-z 2|2=|z 1|2+|z 2|2-1z z 2-z 12z =|1-23i|2=13,∴1z z 2+z 12z =4,即12z z +1621z z=4,∴16(21z z )2-421z z +1=0,∴21z z =8i 31±,ω=221z z 3z 4-=21(1±3i )-3=-25±23i .26、解:(1)设x 0为原方程一实根,则x 02-2(1+i)x 0+21ab-(a-b)i=0,所以⎪⎩⎪⎨⎧-==+-,a b x 2,0ab 21x 2x 0020消去x 0得(a+2)2+(b-2)2=8,所以-22-2≤a≤22-2,2-22≤b≤2+22.(2)设a+2=22cos θ,b-2=22sin θ,则x 0=2a b -=2sin(θ-4π)+2∈[0,4],所以此方程实根的最大值为4,最小值为0.27、解:设z 的辐角主值为θ,则2z 、3z 的辐角的主值均为θ.∵|z|=2,∴|2z|=4,|3z|=6,∴S 3AOP ∆=21|OA|·|OP 3|·|sin θ|=3|sin θ|,S1AOP ∆=21|OA|·|OP 1|·|sin θ|=|sin θ|,∴S 21AP P ∆+S 32AP P ∆= S 3AOP ∆-S 1AOP ∆=2|sin θ|=2,∴|sin θ|=1,即θ=2π或θ=23π,故z=2i 或z=-2i .28、.解:(1)因为|z 1|=|z 2|=1,所以|z ||z |12=1,设12z z =cos θ+isin θ,θ=arg 12z z ,代入z 2-z 1=-1,得(cos θ+isin θ)z 1-z 1=-1,所以z 1(cos θ+isin θ-1)=-1,所以|(cos θ-1)+isin θ|=1,即θ+-θ22sin)1(cos =1,θ-cos 22=1,cos θ=21,所以arg 12z z =θ=3π或35π. (2)设z 1=cos α+isin α,z 2=cos β+isin β,则3cos cos β+α=31,且3sin sin β+α=151,即⎪⎩⎪⎨⎧=β+α-=β+α,51sin sin ,1cos cos 解得tg 2β+α=51,所以tg(α+β)=125. 29、解:由已知,曲线D 为|z|=1.(1) 由ω=21z+1-2i 得:|ω-1+2i|=21|z|=21,所求轨迹方程为(x-1)2+(y+2)2=41. (2) 由|z+21|=|z-23i|及|z|=1,得(z+21)(z +21)=(z-23i )(z +23i),且z z =1,化简得(3i-1)z 2+4z-1-3i=0,所以z A ·z B =-i 31i 31+-+=-54+53i ,又由于z A =cos α+isin α,z B =cos β+isin β,所以z A ·z B =cos(α+β)+isin(α+β),所以cos(α+β)=-54.30、解:(1)由题设知z n+1=2(cos4π+isin 4π)z n =(1+i)z n ,所以|z n |是以-1+i 为首项,公比为1+i 的等比数列,所以z n =(-1+i)(1+i)n-1=i(1+i)n. (2)因为z n = i(1+i)n=i(2)n =(cos4n π+isin 4n π),要z n ∈R ,则cos 4n π=0,4n π=k π+2π,n=4k+2(k=0,1,2,…),所以{z n }的实数项为z 2,z 6,z 10,…,z 4k+2,…,所以n1n b b +=-41,所以{b n }是首项为-21,公比q=-41的等比数列,所以∞→n lim S n =4121+-=-52.。

英语名词单数变复数练习题含答案

英语名词单数变复数练习题含答案

1、orange2、class3、monkey4、piano5、child6、shelf7、bed8、country9、family 10、toy 11、foot 12、radio 13、photo 14、tomato 15、woman 16、knife 17、sheep 18、ship 19、dish 20、mouse参考答案:1.oranges2.classes3.monkeys4.pianos5.children6. shelves7.beds8.countries9.families 10.toys 11.feet 12.radios13.photos 14.tomatoes 15.women 16.knives17.sheep 18.ships 19.dishes 20.mice1、class2、monkey3、shelf4、country5、toy6、foot7、sheep 8、leaf9、lady 10、brush11、goose 12、German13、fireman 14、story15、peach 16、mouse17、fox 18、dish19、crayon 20、library参考答案:1.classes2.monkeys3.shelves4.countries5.toys6.feet7.sheep8.leavesdies 10.brushes 11.geese 12.Germans13.firemen14.stories 15.peaches 16.mice17.foxes 18.dishes 19.crayons 20.libraries1、orange2、class3、text4、monkey5、piano6、child7、shelf8、bed9、country 10、family 11、toy 12、foot 13、Japanese 14、radio 15、photo 16、army 17、tomato 18、fox 19、woman 20、knife参考答案:1.oranges2.classes3.texts4.monkeys5.pianos6.children7.shelves8.beds9.countries 10.families 11.toys 12.feet13.Japanese 14.radios 15.photos 16.armies17.tomatoes 18.foxes 19.women 20.knives1、son2、friend3、house4、village5、map6、bag7、exercise 8、brush9、family 10、bus11、city 12、box13、baby 14、class 15、factory 16、glass 17、dictionary 18、watch 19、woman 20、match参考答案:1.sons2.friends3.houses4.villages5.maps6.bags7.exercises8.brushes9.families 10.busses 11.cities 12.boxes 13.babies 14.classes 15.factories 16.glasses 17dictionaries 18.watches 19.women 20.matches——用所给内容的正确形式填空。

名词变复数练习(有答案)

名词变复数练习(有答案)

名词变复数详解(这里的名词指可数名词, 不可数名词没有复数形式)一、规则变化1.直接加-s.book____________tree ______horse ______day____________ boy____________car ____2.以s,x, ch, sh 结尾的加es.dress____________bus______________ fox _____ box___________watch___________ branch ____ sandwich__________ peach__________dish _____3.以辅音字母+ y结尾的, 改y为i再加es.city _____ _ country _____ diary____________ strawberry_________baby _____ family _____4.以O结尾的, 有生命的加es, 无生命的直接加szoo ______ photo _____ piano _____ radio _____巧记: 黑人英雄爱吃马铃薯、西红柿和芒果5.以f或者fe 结尾的词, 改f为v,再加es.巧记:小偷thief的妻子wife, 在她一生life中, 用2把小刀knife和3片树叶leaf 杀死了7匹狼wolf, 并把它们砍成两半half, 藏在了架子shelf后thief _____ _ life _____ knife _____ leaf _____wolf _____half _____ shelf _____二、不规则变化①含man的名词, 一般变man为men。

man ____ _ woman_____Frenchman②将oo改为ee的有:tooth ____ foot③复数以en结尾的有: 儿童child→children, 公牛ox→oxen等④单复同形中国人Chinese日本人Japanese鹿deer---deer羊sheep---sheep鱼fish---fish means 都是单复数同形的单词⑤常用特殊不规则词:this _____________that _____________ am/is _____________老鼠mouse⑥有些词本身就是复数。

【必刷题】2024七年级英语上册名词复数专项专题训练(含答案)

【必刷题】2024七年级英语上册名词复数专项专题训练(含答案)

【必刷题】2024七年级英语上册名词复数专项专题训练(含答案)试题部分一、选择题:1. 选择正确的名词复数形式:()A. cat catsB. child childsC. sheep sheepsD. woman woomen2. 下列哪个名词的复数形式是不规则的?()A. baB. footC. childD. mouse3. 下列哪个名词的复数形式直接在词尾加s?()A. busB. toothC. gooseD. man4. 下列哪个名词的复数形式需要在词尾加es?()A. watchB. boxD. knife5. 选择正确的名词复数形式:()A. tomato tomatoesB. potato potatosC. volcano volcanosD. mosquito mosquitos6. 下列哪个名词的复数形式是特殊的?()A. deerB. fishC. sheepD. all of the above7. 下列哪个句子中的名词复数使用正确?()A. The children is playing in the park.B. My sister have two cats.C. The dogs are barking loudly.D. He has many tooths.8. 选择正确的名词复数形式:()A. leaf leavesB. loaf loavesC. knife knivesD. life lifes9. 下列哪个名词的复数形式在词尾加en?()A. oxC. footD. goose10. 选择正确的名词复数形式:()A. mouse miceB. louse liceC. goose geeseD. tooth teeths二、判断题:1. 名词复数形式都是在词尾加s。

()2. 所有名词的复数形式都是规则的。

()3. 英语中有些名词的单数和复数形式是相同的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复数专题训练(四)
班级 ________ 姓名__________ 记分___________
28、(本小题满分12分)(续前)
复数z 1、z 2满足|z 1|=|z 2|=1,z 1、z 2在复平面内的对应点分别为Z 1、Z 2,O 为原点. (1) 若z 2-z 1=-1,求arg
12z z ; (2) 设argz 1=α,argz 2=β,若ΔOZ 1Z 2的重心对应复数31+15
1
i ,求tg(α+β)的值.
29、(本小题满分12分)
设z 为复数,D 为满足条件||z|-1|+|z|-1=0的点Z 所构成图形的边界.
(1) 若复数ω=
21
z+1-2i(z ∈D),求ω对应点的轨迹方程; (2) 若满足条件|z+21|=|z-2
3
i|所构成的图形D /与D 有两个公共点A 、B ,OA 、OB 的倾
斜角分别为α、β(O 为原点),求cos(α+β)的值.
30、(本小题满分14分)
设无穷数列{z n }满足z 1=-1+i ,z n 在复平面上的对应点为Z n (n=1,2,…),将向量n OZ 沿逆时针方向旋转
4
π
,且使模扩大到原来的2倍就得到向量1n OZ +. (1). 求这个数列的通项公式; (2). 已知数列的第n 项为-32,求n ; (3) .将数列{z n }中的实数项的倒数按原顺序排成一个新数列{b n },并设S n =b 1+b 2+…+b n ,求∞
→n lim S n .
参考答案: DCCBA AADCC BDBDD
16、10, 0 17、{-2,0,2} 18、82,
π4
19、(1)Z 为实数(2)0或1或-
i 2
321± 20、
3

; 21、2±
;
22、(1) –1; (2) 300o
; (3) -2 3 I; (4)__________ 23、以( -1 , 0 ) 为圆心, 2为半径的圆 .
24、解析:设Z 1=cos α+isin α,Z 2=-4(cos β+isin β)
∵Z 1-Z 2=1-2i 3,∴⎩⎨
⎧-=-=-)
2(32sin 4sin )
1(1cos 4cos ΛΛΛβαβα
(1)2
+(2)2

1+16-8cos(α-β)=13,∴cos(α-β)=
2
1
,sin(α-β)=23±
∴21Z Z =21Z Z =[cos(α-β)+isin(α-β)]=8
381)3321(41±=±i i
25、.解:由|z 1|=1,则1
z =
1z 1,|z 2|=4,则2z =2
z 16
,∴|z 1-z 2|2
=|z 1|2
+|z 2|2
-1z z 2-z 12z =|1-23i|2
=13,∴1z z 2+z 12z =4,即
12z z +162
1z z
=4,∴16(
21z z )2-421z z +1=0,∴21z z =8i 31±,ω=2
21z z 3z 4-=21(1±3i )-3=-25±2
3
i .
26、解:(1)设x 0为原方程一实根,则x 02
-2(1+i)x 0+
2
1ab-(a-b)i=0,所以⎪⎩⎪⎨⎧
-==+-,
a b x 2,
0ab 21x 2x 0020消去x 0得(a+2)2
+(b-2)2
=8,所以-22-2≤a≤22-2,2-22≤b≤2+22.
(2)设a+2=22cosθ,b-2=22sinθ,则x 0=2a b -=2sin(θ-4
π
)+2∈[0,4],所以此方程实根的最大值为4,最小值为0.
27、解:设z 的辐角主值为θ,则2z 、3z 的辐角的主值均为θ.∵|z|=2,∴|2z|=4,|3z|=6,
∴S 3
AOP ∆=
2
1
|OA|·|OP 3|·|sinθ|=3|sinθ|,S
1
AOP ∆=
2
1
|OA|·|OP 1|·|sinθ|=|sinθ|,∴S 21AP P ∆+S 32AP P ∆= S 3
AOP ∆-
S 1AOP ∆=2|sinθ|=2,∴|sinθ|=1,即θ=2π或θ=2

,故z=2i 或z=-2i .
28、.解:(1)因为|z 1|=|z 2|=1,所以
|z ||z |12=1,设12z z =cosθ+isinθ,θ=arg 1
2z z ,代入z 2-z 1=-1,得(cosθ+isinθ)z 1-z 1=-1,所以z 1(cosθ+isinθ-1)=-1,所以|(cosθ-1)+isinθ|=1,即
θ+-θ2
2
sin
)1(cos =1,θ-cos 22=1,cosθ=21,所以arg 12z z =θ=3π或3

. (2)设z 1=c osα+isinα,z 2=cosβ+isinβ,则3
cos cos β+α=
31,且3
sin sin β+α=151
,即⎪⎩

⎨⎧=β+α-=β+α,51sin sin ,
1cos cos 解得tg 2β+α=51,所以tg(α+β)=125.
29、解:由已知,曲线D 为|z|=1.
(1) 由ω=
21z+1-2i 得:|ω-1+2i|=21|z|=21,所求轨迹方程为(x-1)2+(y+2)2=41. (2) 由|z+21|=|z-23i|及|z|=1,得(z+21)(z +21)=(z-23i )(z +2
3
i),且z z =1,
化简得(3i-1)z 2
+4z-1-3i=0,所以z A ·z B =-i 31i 31+-+=-54+5
3i ,又由于z A =cos α+isin α,
z B =cos β+isin β,所以z A ·z B =cos(α+β)+isin(α+β),所以cos(α+β)=-5
4

30、解:(1)由题设知z n+1=2(cos 4π+isin 4
π
)z n =(1+i)z n ,所以|z n |是以-1+i 为首项,公
比为1+i 的等比数列,所以z n =(-1+i)(1+i)n-1
=i(1+i)n
. (2)因为z n = i(1+i)n
=i(
2)n =(cos
4n π+isin 4n π),要z n ∈R ,则cos 4
n π
=0, 4n π=kπ+2
π
,n=4k+2(k=0,1,2,…),所以{z n }的实数项为z 2,z 6,z 10,…,z 4k+2,…,所以
n 1n b b +=-41,所以{b n }是首项为-21,公比q=-4
1
的等比数列,所以∞→n lim S n =
41121
+-
=-
5
2.。

相关文档
最新文档