数学建模之人口预测

合集下载

人口预测的数学模型与预测方法分析

人口预测的数学模型与预测方法分析

人口预测的数学模型与预测方法分析人口预测是对未来一定时期内人口数量和结构的变动进行估计和预测的过程。

人口预测在社会经济发展规划、城市规划、教育医疗资源配置等方面具有重要的参考价值。

为了准确预测人口的变动趋势,需要建立合理的数学模型和选择适当的预测方法。

人口预测的数学模型主要包括线性回归模型、指数模型、Logistic模型等。

线性回归模型是一种用来描述两个变量之间线性关系的统计模型,可以用来预测人口随时间的变化。

指数模型假设人口数量按照指数规律增长或减少,适用于人口增长较快的情况。

Logistic模型则适用于人口增长速度放缓后的情况,它是一种描述增长速度逐渐趋近于饱和的模型。

在选择数学模型时,需要综合考虑以下几个因素:人口历史变动趋势、人口自然增长率、人口迁移和流动情况、政策调控等因素。

同时,还需根据实际情况对模型的参数进行合理的设定和修正,以提高预测的准确性。

在预测方法上,常用的有趋势线法、复合增长率法、比较推理法、时间序列分析法和系统动力学方法等。

趋势线法是基于历史数据的发展趋势来进行预测,适用于人口变动趋势比较稳定的情况。

复合增长率法是将历史数据中的增长率按一定规则进行加权平均,再用来推算未来人口的增长率。

比较推理法通过对不同因素的比较和推理,来估计未来人口的变化。

时间序列分析法是根据时间序列数据的历史模式来预测未来的变化趋势。

系统动力学方法则是通过对不同因素的动态关系建立模型,用来探索人口变动的内在机制和规律。

在具体应用时,可以结合不同的数学模型和预测方法,进行多角度的分析和预测。

同时,还需要不断对模型进行修正和优化,以适应不断变化的人口变动趋势和社会经济背景。

此外,还应该注意对预测结果的不确定性进行评估和把握,提供多种可能性的预测结果,为决策者提供科学的参考依据。

数学建模之中国人口增长的预测和人口结构的简析

数学建模之中国人口增长的预测和人口结构的简析

数学建模之中国人口增长的预测和人口结构的简析随着社会经济的发展,人口增长一直是一个备受关注的问题。

数学建模是研究人口增长和人口结构的重要方法之一、本文将对中国人口增长的预测和人口结构进行简析,并利用数学建模方法进行预测分析。

首先,中国人口增长的情况是众所周知的。

随着中国的经济快速发展,人民生活水平的提高,医疗水平的提高以及计划生育政策的实施,中国的人口增长率逐渐放缓。

根据国家统计数据,自2024年以来,中国的总人口增长率一直在下降,其中在2024年总人口为14亿人,增长率仅为0.35%。

根据这一趋势,可以推断出未来的人口增长率可能会进一步下降。

在进行人口增长预测时,可以运用数学建模方法中的指数增长模型。

指数增长模型是描述人口增长的一种常用方法,其基本形式为:N(t)=N0*e^(r*t)其中,N(t)表示时间t时刻的人口数量,N0表示初始人口数量,r表示人口增长率,e表示自然对数的底数。

利用指数增长模型可以对未来的人口增长进行预测。

但要注意的是,由于人口增长受到多种因素的影响,例如政策调整、经济发展、文化变迁等,所以对于人口的精确预测是一项复杂而困难的任务。

因此,在进行人口预测时,应结合实际情况,综合考虑人口增长的多个因素。

另外,人口结构是指人口在不同年龄段的分布情况。

人口结构反映了一个地区或国家的经济、社会、教育等方面的发展状况。

中国的人口结构表现为老龄化趋势和少子化现象。

根据国家统计数据,中国的老龄化人口比例逐年提高,同时生育率呈下降趋势。

这种人口结构的变化将对中国的社会、经济等多个方面产生深远的影响。

为了分析人口结构的变化,可以利用数学建模中的人口金字塔。

人口金字塔以年龄为横轴,人口数量为纵轴,通过金字塔的形状和比例来反映人口的结构情况。

通过观察人口金字塔的变化,可以了解人口的年龄分布情况,判断人口的变化趋势,为相关政策和规划提供依据。

总之,中国人口增长的预测和人口结构的分析是一个复杂的问题,数学建模可以提供一种客观、科学的方法来分析这些问题。

中国人口增长预测数学建模 (2)

中国人口增长预测数学建模 (2)

中国人口增长预测数学建模引言中国作为世界上人口最多的国家之一,人口增长一直是一个备受关注的问题。

人口数量的增长对于国家的经济、社会、环境等方面都有着重要的影响。

因此,预测中国人口的增长趋势对于未来的发展规划具有重要意义。

本文将介绍一种基于数学建模的方法,用于预测中国人口的增长情况。

方法数据收集为了进行人口增长预测的数学建模,我们需要收集一系列历史人口数据。

这些数据可以从各种统计年鉴、人口普查、政府发布的数据等渠道获取。

通常,我们需要收集的数据包括中国的总人口数量、出生率、死亡率、迁入率和迁出率等。

建立数学模型基于收集到的数据,我们可以建立一个数学模型来描述中国人口的增长情况。

常用的数学模型包括指数增长模型、Logistic增长模型等。

在本文中,我们以Logistic增长模型为例。

Logistic增长模型基于以下假设: 1. 人口增长率与当前人口数量成正比; 2. 当人口数量接近一定的上限时,人口增长率会逐渐减小。

Logistic增长模型的公式可以表示为:dP/dt = r*P*(1-P/K)其中,P表示人口数量,t表示时间,r表示人口增长率,K表示人口的上限。

参数估计为了应用Logistic增长模型进行人口预测,我们需要估计模型中的参数。

参数估计可以通过拟合历史数据来完成。

常用的参数估计方法包括最小二乘法、最大似然估计等。

模型验证一旦完成参数估计,我们可以使用模型预测未来的人口变化情况。

为了验证模型的准确性,我们可以将预测结果与实际观测数据进行比较。

如果预测结果与实际观测数据较为接近,说明模型具有较好的预测能力。

预测未来人口增长利用建立的数学模型和参数估计,我们可以进行未来人口增长的预测。

通过不同的假设和参数值,我们可以探讨不同因素对人口增长的影响。

例如,我们可以考虑不同的出生率和死亡率情况下的人口增长,或者研究不同人口政策下的人口增长趋势。

结论本文介绍了一种基于数学建模的方法,用于预测中国人口的增长情况。

数学建模实例人口预报问题

数学建模实例人口预报问题

数学建模实例:人口预报问题1.问题人口问题是当前世界上人们最关心的问题之一.认识人口数量的变化规律,作出较准确的预报,是有效控制人口增长的前提.下面介绍两个最基本的人口模型,并利用表1给出的近两百年的美国人口统计数据,对模型做出检验,最后用它预报2000年、2010年美国人口.表1 美国人口统计数据2.指数增长模型(马尔萨斯人口模型)此模型由英国人口学家马尔萨斯(Malthus1766~1834)于1798年提出. [1] 假设:人口增长率r 是常数(或单位时间内人口的增长量与当时的人口成正比).[2] 建立模型: 记时刻t=0时人口数为x 0, 时刻t 的人口为()t x ,由于量大,()t x 可视为连续、可微函数.t 到t t ∆+时间内人口的增量为:()()()t rx tt x t t x =∆-∆+于是()t x 满足微分方程:()⎪⎩⎪⎨⎧==00x x rx d t d x(1)[3] 模型求解: 解微分方程(1)得()rt e x t x 0= (2)表明:∞→t 时,()∞→t x (r>0).[4] 模型的参数估计:要用模型的结果(2)来预报人口,必须对其中的参数r 进行估计,这可以用表1的数据通过拟合得到.拟合的具体方法见本书第16章或第18章.通过表中1790-1980的数据拟合得:r=0.307. [5] 模型检验:将x 0=3.9,r=0.307 代入公式(2),求出用指数增长模型预测的1810-1920的人口数,见表2.表2 美国实际人口与按指数增长模型计算的人口比较从表2可看出,1810-1870间的预测人口数与实际人口数吻合较好,但1880年以后的误差越来越大.分析原因,该模型的结果说明人口将以指数规律无限增长.而事实上,随着人口的增加,自然资源、环境条件等因素对人口增长的限制作用越来越显著.如果当人口较少时人口的自然增长率可以看作常数的话,那么当人口增加到一定数量以后,这个增长率就要随着人口增加而减少.于是应该对指数增长模型关于人口净增长率是常数的假设进行修改.下面的模型是在修改的模型中著名的一个.3. 阻滞增长模型(Logistic 模型)[1]假设:(a )人口增长率r 为人口()t x 的函数()x r (减函数),最简单假定()0, ,>-=s r sx r x r (线性函数),r 叫做固有增长率.(b )自然资源和环境条件年容纳的最大人口容量m x . [2]建立模型: 当mx x =时,增长率应为0,即()m x r =0,于是mx rs =,代入()sx r x r -=得:()⎪⎪⎭⎫⎝⎛-=m x x r x r 1 (3) 将(3)式代入(1)得:模型为: ()⎪⎩⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛-=001xx x x x r dt dx m (4)[3] 模型的求解: 解方程组(4)得()rt m me x x x t x -⎪⎪⎭⎫ ⎝⎛-+=110 (5)根据方程(4)作出x dtdx~ 曲线图,见图1-1,由该图可看出人口增长率随人口数的变化规律.根据结果(5)作出x~t 曲线,见图1-2,由该图可看出人口数随时间的变化规律.[4] 模型的参数估计:利用表1中1790-1980的数据对r 和x m 拟合得:r=0.2072, x m =464. [5] 模型检验:将r=0.2072, x m =464代入公式(5),求出用指数增长模型预测的1800-1990的人口数,见表3第3、4列.也可将方程(4)离散化,得)())(1()()()1(t x x t x r t x x t x t x m-+=∆+=+ t=0,1,2,… (6) 用公式(6)预测1800-1990的人口数,结果见表3第5、6列.表3 美国实际人口与按阻滞增长模型计算的人口比较图1-2 x~t 曲线现应用该模型预测人口.用表1中1790-1990年的全部数据重新估计参数,可得r=0.2083, x m=457.6. 用公式(6)作预测得:x(2000)=275; x(2010)=297.9.也可用公式(5)进行预测.。

数学建模之中国人口增长的预测和人口结构的简析

数学建模之中国人口增长的预测和人口结构的简析

中国人口增长的预测和人口结构的简析摘要本文根据过去数十年的人口数据,通过建立不同的数学模型,对中国人口的增长进行了短期和中长期的预测。

模型一:从中国统计年鉴—2008,查找得到2000-2007年的人口数据,然后用灰色模型进行人口的短期(2008-2017)预测。

这里,我们采用两种算法进行人口总数的预测。

一种是用灰色模型分别对城镇人口和乡村人口进行人口预测,然后求加和得到总的人口数;另一种是用灰色模型对实际的总人口数进行预测,预测未来10年的总人口数。

通过比较相对误差率知道第二种方法预测得到的数据误差较小,故采用第二种方法预测的未来10年的人口数为:模型二:对于中长期的预测我们采用Leslie模型进行预测。

我们利用题中所提供的人口数据的比例,将人分为6种类型,在考虑年龄结构的基础上,对各类人中的女性人数分别进行预测,然后根据男女的性别比例,求出男性的人口数,再将预测得到的各类人数进行汇总加和,最终得到总的人口数。

由于我们是根据年龄结构进行的预测,所以可以对人口进行简单的分析,得到老龄化变化趋势,乡镇市的人口所占比例的变化等。

关键词:人口预测;灰色模型;分类计算;Leslie模型一、模型假设模型一的假设:1、不考虑国际迁移,认为国家内部迁移不改变人口总量;2、不考虑自然灾害、疾病等因素对人口数量的影响;3、文中短期预测到2017年4、大面积自然灾害、疾病的发生以及人们的生育观念等因素会对当年的生育率和人口数量产生影响,认为这些因素在预测误差允许的范围内.模型二的假设:1、每一年龄组的女性在每一个时间段内有相同的生育率和死亡率;2、在预测的时间段内男女的性别比例保持现状不变;3、不考虑人口的迁入和迁出;4、不考虑空间等自然因素的影响,不考虑自然灾害对人口数量的影响。

二、问题分析中国是一个人口大国,随着经济的不断发展,生产力达到较高的水平,现在的问题已不是仅仅满足个人的需要,而是要考虑社会的需要。

中国未富先老,对经济的发展产生很大的影响。

人口增长的预测(数学建模论文

人口增长的预测(数学建模论文

关键字:人口数平衡点方程模型运动预测曲线稳定增长人口一题目:请在人口增长的简单模型的基础上。

" (1)找到现有的描述人口增长,与控制人口增长的模型;" (2)深入分析现有的数学模型,并通过计算机进行仿真验证;" (3)选择一个你们认为较好的数学模型,并应用该模型对未来20年的某一地区或国家的人口作出有关预测;" (4)就人口增长模型给报刊写一篇文章,对控制人口的策略进行论述。

二摘要:本次建模是依照已知普查数据,利用Logistic模型,对中国人口的增长进行预测。

首先假设人口增长符合Logistic模型,即引入常数,用来表示自然环境条件所能容许的最大人口数。

并假设净增长率为,即净增长率随着人口数N(t)增长而减小,当N(t) 时,净增长率趋于零。

按照这个假设,。

用参数=3.0,r=0.0386, =1908, =14.5。

画出N=N(t)的图像,作为人口增长模型的一种近似。

做微分方程解的定性分析,求出N=N(t)的驻点和拐点,按照函数作图方法列出定性分析表,作出相轨迹的运动图。

当初始人口<时,方程的解单调递增到地趋向,这意味着如果使用Logistic模型描述人口增长,则人口发展地总趋势是渐增到最大人口数,因此可作为人口的预测值,也称谓平衡点。

用导数做稳定分析,为判断平衡点是否为稳定,可在平面上绘制f(x)的图象,然后像函数绘图那样,用导数进行定性分析,通过图看出人口数N(t)按时间是递增的,当人口数未达到饱和状态的时候,将逐渐地趋向,这意味着是稳定的平衡点。

按该模型,未来人口的数量将随着时间的演化,从初始状态出发达到极限状态,这样就给出了人口的未来预测。

三问题的提出1. Malthus模型英国统计学家Malthus(1766-1834)发现人口增长率是一个常数。

设t时刻人口为N(t),因为人口总数很大,可近似把N(t)当作连续变量处理。

Malthus的假设是:在人口的自然增长过程中,净相对增长率(出生率减去死亡率)是常数,即单位时间内人口的增长量与人口总数成正比。

数学建模人口模型人口预测

数学建模人口模型人口预测

关于计划生育政策调整对人口数量、结构及其影响的研究【摘要】本文着重于讨论两个问题:1、从目前中国人口现状出发,对于中国未来人口数量进行预测。

2、针对深圳市讨论单独二胎政策对未来人口数量、结构及其对教育、劳动力供给与就业、养老等方面的影响。

对于问题1从中国的实际情况和人口增长的特点出发,针对中国未来人口的老龄化、出生人口性别比以及乡村人口城镇化等,提出了 Logistic 、灰色预测、等方法进行建模预测。

首先,本文建立了 Logistic 阻滞增长模型,在最简单的假设下,依照中国人口的历史数据,运用线形最小二乘法对其进行拟合, 对 2014 至 2040 年的人口数目进行了预测, 得出在 2040 年时,中国人口有 14.32 亿。

在此模型中,由于并没有考虑人口的年龄、 出生人数男女比例等因素,只是粗略的进行了预测,所以只对中短期人口做了预测,理 论上很好,实用性不强,有一定的局限性。

然后, 为了减少人口的出生和死亡这些随机事件对预测的影响, 本文建立了 GM(1,1) 灰色预测模型,对 2014 至 2040 年的人口数目进行了预测,同时还用 2002 至 2013 年的 人口数据对模型进行了误差检验,结果表明,此模型的精度较高,适合中长期的预测, 得出 2040 年时,中国人口有 14.22 亿。

与阻滞增长模型相同,本模型也没有考虑年龄 一类的因素,只是做出了人口总数的预测,没有进一步深入。

对于问题2针对深圳市人口结构中非户籍人口比重大,流动人口多这一特点,我们采用了灰色GM(1,1)模型,通过matlab 对深圳市自2001至2010年的数据进行拟合,发现其人口变化近似呈线性增长,线性相关系数高达0.99,我们就此认定其为线性相关并给出线性方程。

同理,针对其非户籍人口,我们进行matlab 拟合发现,其为非线性相关,并得出相关函数。

并做出了拟合函数0.0419775(1)17255.816531.2t X t e ⨯+=⨯-。

数学建模之人口预测

数学建模之人口预测

四、符号说明
1.模型一 t 表示某一时刻; P(t) 表示时刻 t 我国的人口数,P0 = P(0); r 表示人口增长率为常数。 2.模型二 t 表示某一时刻; P(t) 表示时刻 t 我国的人口数; Pm(t)表示自然资源和环境条件能容纳的最大人口数量; r 为固有增长率,表示人口很少是(理论上是 x=0)的增长率。 3.模型三 1)F(r,t):人口分布函数; 2)f(t):婴儿出生率; 3) (t):总和生育率; 4)h(r,t):生育模式。
查权威数据可知,我国最大的人口容量是 15--16 亿,上表中的数据大于 16 亿,并有继续上升的趋势,因此,此模型误差较大,究其原因,主要在于没有资 源、环境的限制。
5.2 阻滞增长模型 5.2.1 模型建立 人口增长到一定数量后增长率下降的主要原因中,自然资源、环境条件等因 素对人口的增长起着阻滞作用,并且随着人口的增加,阻滞作用越来越大。阻滞 增长模型就是考虑了这些因素,对指数增长的基本假设进行修改后得到的。 阻滞增长作用主要是体现在对人口增长率 r 的影响上,使得随着 r 的增长人 口数量 P(t)的增长而下降。 则可以把 r 表示为 P 的函数 r(P),且它应是减函数。 于是方程应该改写为 dP (1) rP ,P(0)=P0 dt 假设 r(P)是一个关于 P 的线性函数,即 r(P)=r-Ps(r>=0,s>0) (2) 其中这里的 r 为固有增长率,表示人口很少是(理论上是 x=0)的增长率。引入 自然资源和环境条件能容纳的最大人口数量 Pm(t)当 P(t)= Pm(t)时,人口不再增
3
令△t
0,得到 P(t)满足微分方程 dP (2) rP dt 由这个方程可以解出 rt P(t)=P0e (3) r>0 时,表示人口将按指数规律随时间无限增长。 [3] 利用线性最小二乘法 ,将(3)式取对数,得到 y=rt+a,y=ln P ,a=ln P0 (4) [4] 运用Matlab编程 (程序见附录1),以1999-2006年至的数据对(4)进行数据 拟合,得到相关的参数 a=lnP0=7.1385; r=0.0063,得到 P0=exp(a)=1259.5 (百万) 。 因此可以得到指数增长模型的方程为: P(t)=1259.5 *exp(0.0063*t) (5) 同理可得:若以全部数据拟合对(4)进行数据拟合,得到指数增长模型的方 程为: P(t)= 1262.6*exp(0.0055*t) (6)

数学建模论文-人口预测模型

数学建模论文-人口预测模型

中国人口预测模型摘要本文对人口预测的数学模型进行了研究。

首先,建立一次线性回归模型, 灰色序列预测模型和逻辑斯蒂模型。

考虑到三种模型均具有各自的局限性,又用加权法建立了熵权组合模型,并给出了使预测误差最小的三个预测模型的加权系数,用该模型对人口数量进行预测,得到的结果如下:单位:(万人)其中加权系数为:,其次,建立Leslie人口模型,充分反映了生育率、死亡率、年龄结构、男女比例等影响人口增长的因素,并利用以1年为分组长度方式和以5年为分组长度方式预测短期和长期人口增长,然后对人口模型进行了改进,构建了反映生育率和死亡率变化率负指数函数,并给出了反映城乡人口迁移的人口转移向量最后我们BP神经网络模型检验以上模型的正确性关键字:一次线性回归灰色序列预测逻辑斯蒂模型Leslie人口模型BP神经网络一、问题重述1. 背景人口增长预测是随着社会经济发展而提出来的。

在过去的几千年里,由于人类社会生产力水平低,生产发展缓慢,人口变动和增长也不明显,生产自给自足或进行简单的以货易货,因而对未来人口发展变化的研究并不重要,根本不用进行人口增长预测。

而当今社会,经济发展迅速,生产力达到空前水平,这时的生产不仅为了满足个人需求,还要面向社会的需求,所以必须了解供求关系的未来趋势。

而人口增长预测是对未来进行预测的各环节中的一个重要方面。

准确地预测未来人口的发展趋势,制定合理的人口规划和人口布局方案具有重大的理论意义和实用意义。

2. 问题人口增长预测有短期、中期、长期预测之分,而各个国家和地区要根据实际情况进行短期、中期、长期的人口预测。

例如,中国人口预期寿命约为70 岁左右,因此,长期人口预测最好预测到70年以后,中期40—50 年,短期可以是5 年、10年或20 年。

根据2007 年初发布的《国家人口发展战略研究报告》(附录一)及《中国人口年鉴》收集的数据(附录二),再结合中国的国情特点,如老龄化进程加速,人口性别比升高,乡村人口城镇化等因素,建立合理的关于中国人口增长的数学模型,并利用此模型对中国人口增长的中短期和长期趋势做出预测,同时指出此模型的合理性和局限性。

数学建模 人口数量预测ppt

数学建模   人口数量预测ppt

模型建立: 假设时刻t=0是人口数为 x0 ,时刻t的人口为 是t的连续、可微函数。 x(t ) x(t ) t到 t& t ) x(t ) rx(t ) t
由此得到微分方程
dx rx (*) dt x(0) x0
人口增长到一定数量后,资源, 环境等因素将对人口的增长加以 限制 ,并且,人口数量越大,资 源,环境问题越明显,人口增长 率值将会减小,即r(x)是x的减函 数,当人口数量达到人口最大容 量 时,人口不在增长,即人口 增长率r(x)=0
忽略因素: 1-近似认为x(t)是t的一个连续可微函数 2-忽略战争、瘟疫、地震等灾害造成人口数 骤变 3-医疗水平稳定,对人口数量影响较小 4-计划生育政策在短期内不会发生重大改变
模型分析: 搜集我国历史上每年的人口数量,统计分 析,认识和了解人口数量的变化规律,从 而建立初步的数学模型,应用数学软件等 对数据进行拟合,求解出已建立模型中的 未知参数,从而监理处完善的,可供利用 的数学模型,最后,利用模型求解出所需 要的数据。
人口数量预测
组长:李 组员:宋 李 李 * * * * 石** 孙 ** 马**
题目:根据中国历史上每年人 口数量,分析其变化规律,预 测2020年以前每年的人口数量。
符号说明



r——人口增长率 t——时间 ——1978年人口数量 x(t)——时刻t的人口数 r(x)——增长率的函数 ——人口最大容量 S ——人口增长率函数系数
设r(x)= r-sx (r,s > 0) 由上述分析得0= r -s x 从而 r ( x) r (1 )
xm
解得 (**)
r s xm
将(**)代入(*)可得

MATLAB之数学建模人口预测

MATLAB之数学建模人口预测
先前我国人口基数大,国家推行了计划生育政策,提倡少生优生晚生。近年来,
于人口老龄化问题严重,国家现以开放二胎政策,鼓励人们生育。相信大家只要
关注新闻都有些了解。 我们小组成员平常时候也是极喜爱阅读,通过腾讯新闻,微博等对开放二胎政策 略有些了解,正巧遇上MATLBA作业,于是我们的数学建模原型由此而来。
下面从机理上分析人口问题的模型。人口的出生率b和死亡率d可设为常数 N(t+△t)——N(t)=(b—d)*N(t) 令r=b—d,△t→0,可得:
N’(t)=rN(t)
假设N(t0)=N0exp(r(t-t0)) 此为人口学Malthus模型。可见对数据图的推测是有道理的。
(2)修正
最后利用历史数据来确定参数和r。如果只有两个数据,则和r 是唯一的。问题是有很多数据, 而且这些数据并不在同一数据线上。事实上,由于政策、经济、
%----------------------------------------
------------function N=li4_17fun(c,t) N=c(1)*exp(c(2)*t)
其优化结果如下表
初始值 拟合结果
1949年人口N0(BW)
541.7
609.2
2021年人口N24(BW)
N=c(1)*exp(c(2)*t)
其实现的MATELAB的程序代码如下: function youhua clear all;clc t=0:1:21;
N=[54167 57482 61465 65346 66457 70499 76032 82542 88761 9326
101654 105851 111026 115823 119850 123626 126743 129227 13144

数学建模在人口统计预测中的应用

数学建模在人口统计预测中的应用

数学建模在人口统计预测中的应用1. 引言人口统计预测是社会发展与规划的重要组成部分,而数学建模则为人口统计预测提供了科学的分析和预测工具。

在这篇文章中,我们将探讨数学建模在人口统计预测中的应用,并分析其重要性和局限性。

2. 数学模型的基本原理数学建模在人口统计预测中的应用基于几个基本原理。

首先,人口统计数据可被描述为一个动态系统,其中包括出生率、死亡率、迁移率和人口增长等因素。

其次,人口统计数据通常具有一定的周期性。

最后,人口统计数据还受到各种社会、经济和环境因素的影响。

3. 人口统计预测模型的建立建立人口统计预测模型的第一步是收集并整理相关的数据,包括历史人口统计数据和各种相关因素的数据。

然后,可以通过回归分析等方法来发现人口增长与其他因素之间的关系,并建立数学模型。

这些模型可以是线性的,也可以是非线性的,取决于相关因素的复杂性和数据的分布。

4. 常见的人口统计预测模型常见的人口统计预测模型包括传统的线性模型、非线性模型和人工智能模型等。

线性模型通常假设人口增长与时间呈线性关系,适用于较为简单的人口统计预测。

非线性模型则可以更好地捕捉人口增长的复杂特征,适用于复杂的人口统计预测。

而人工智能模型则可以通过机器学习和深度学习等技术来处理大规模和高维度的数据,提高人口统计预测的准确性和效率。

5. 数学建模在人口统计预测中的重要性数学建模在人口统计预测中具有重要的意义。

首先,数学建模可以通过对历史数据的分析来揭示人口增长的规律和趋势,从而为社会发展和规划提供可靠的数据支持。

其次,数学建模可以预测人口统计变量的未来发展,对政府和社会组织提供决策参考。

最后,数学建模可以帮助人们更好地理解人口增长与其他社会因素之间的相互关系,为社会科学研究提供新的思路和方法。

6. 数学建模在人口统计预测中的局限性然而,数学建模在人口统计预测中也存在一定的局限性。

首先,数学建模往往基于历史数据,对未来的不确定性无法完全预测。

中国人口增长预测数学建模

中国人口增长预测数学建模

中国人口增长预测数学建模引言中国作为世界人口最多的国家之一,人口增长一直是一个备受关注的话题。

为了能够合理规划和管理资源,预测中国人口的增长趋势对决策者来说至关重要。

本文将运用数学建模的方法,通过分析历史数据,来预测中国人口的增长。

数据收集与处理为了进行人口增长预测,首先需要收集和处理相关的数据。

我们可以通过查阅统计年鉴、人口普查数据等公开的数据来获取所需信息。

然后,需要对数据进行清洗和整理,以便进行后续的分析和建模工作。

人口增长模型选择人口增长涉及到多个因素的复杂影响,如出生率、死亡率、迁移率等。

为了能够对中国人口的增长进行模型化,我们需要选择适合的数学模型。

常用的人口增长模型有Malthusian模型、Logistic模型等。

在选择模型时,需要考虑模型的适用性和可解释性。

Malthusian模型Malthusian模型是由英国经济学家Malthus提出的,他认为人口增长是按指数规律进行的。

该模型是基于以下假设:1.出生率和死亡率是恒定的;2.人口的增长率与人口规模成正比。

Malthusian模型的数学表达式为:$$ \\frac{{dP}}{{dt}} = rP $$其中,P为人口规模,P为时间,P为每个个体的平均增长率。

根据该模型,人口规模以指数形式增长。

Logistic模型Logistic模型是在Malthusian模型的基础上发展起来的,它考虑到了环境资源的有限性对人口增长的限制。

Logistic模型的数学表达式为:$$ \\frac{{dP}}{{dt}} = rP(1 - \\frac{{P}}{{K}}) $$其中,P为人口规模,P为时间,P为每个个体的平均增长率,P为环境资源的极限容量。

该模型认为人口规模在达到环境资源的极限容量时,增长率将逐渐减小。

变量的估计和参数的拟合在建立模型之后,需要对模型进行参数估计和拟合。

可以利用历史数据来对模型中的参数进行估计,并通过优化算法来拟合模型与实际数据的拟合度。

(完整word版)数学建模-人口预测实验报告

(完整word版)数学建模-人口预测实验报告

数学与计算科学学院实验报告实验项目名称人口预报所属课程名称数学模型实验类型综合型实验日期班级信计1001班学号201053100127姓名徐超成绩129207 129735 130137)得人口预测方程:0.022552ˆ()176060.7575988.75t Xt e -=- 将各个年份分别代入上面的方程即得各个年份的人口数据预测值,然后将其分别与实际值比较,并计算出其误差.实际值与预测值的比较图[1]该模型对于中短期的人口预测,所得结果较为准确,大部分预测数据与实际数据的误差率都在2%以内,较好地估计出了最近几十年的人口数量。

根据我们的模型所预测出的结果,到本世纪中叶我国的人口数量将超过15亿,但是根据国内的本课题专家研究,随着我国经济社会发展和计划生育工作加强,可以预测我国的总人口将于2010年、2020年分别达到13.6亿人和14。

5亿人,2033年前后达到峰值15亿人左右,即我国人口的上限不会超过15亿人。

这一结论与我们的模型所得到的数据有所出入。

于是我们将模型进行改进,选择在长期预测方面比较精准的模型(2)Logistic 人口模型来求解. B 、模型(2)这个问题是典型的伯努利方程初值问题,其解为:()-(-)01(-1)0w mw t t t w m ew μ=+分析上式可知:(1)当t →∞时,()m w t w →,即无论人口初值如何随着时间推移而变化,人口总数总是趋向于一个确定的值m w ;(2)222(1)md w wdt w μ=-,所以当人口达到极限值的一半2m w 时,属于加速增长,超过一半属于减速增长,但是增长率仍为正的,并且其增长率随时间的增加而减少。

根据1981年~2005年的全国人口统计数据,利用计算机Matlab 编程得,0.0422μ=,150000Wm =从而得到全国总人口数的Logistic 模型方程为:0.0422(1981)150000()1500001(1)100072t w t e --=+-利用该模型对1981年~2005年的人口数据进行检验并对2006年~2050年的人口数据进行预测。

数学建模人口发展预测

数学建模人口发展预测

数学建模⼈⼝发展预测基于BP神经⽹络模型的⼈⼝发展预测摘要针对问题⼀,⾸先基于⼈⼝普查统计数据,根据灰⾊预测理论,建⽴了⼀级的灰⾊预测模型,再将历次我国⼈⼝普查的数据带⼊模型,即可以预测到未来⼀段时间内我国的⼈⼝数量。

所得结果为我国总⼈⼝将于2020年、2030年、2040年、2050年分别达到140329、145732、149052、156369万⼈。

关键词⼀、问题重述⼈⼝是⼈类社会存在和发展的前提,是社会⽣活的主体。

⼈既是⽣产者,也是消费者,⼈⼝的性别、年龄、职业、民族、地区、⽂化教育以及其他社会构成对社会与经济等⽅⾯的可持续协调发展具有重要作⽤。

请查阅我国历次⼈⼝普查的数据,通过数学建模的⽅法研究下⾯问题:1、预测我国的⼈⼝发展情况。

2、预测我国劳动⼒⼈⼝及⽼年⼈⼝⽐例的发展情况。

3、根据前⾯两问的预测对我国的⼈⼝政策提出合理性建议。

⼆、问题分析对于问题⼀,⾸先分析中国⼈⼝发展的特点,得出影响中国⼈⼝增长的主要因素,即:⽼龄化程度加速、出⽣⼈⼝性别⽐持续升⾼,以及乡村⼈⼝城镇化。

中国⼈⼝增长模型同时受到环境、社会、经济等诸多不确定因素的影响和制约,适宜采⽤灰⾊预测模型对我国⼈⼝发展进⾏预测。

最后,由于⼈⼝数与出⽣率、死亡率及城镇化速度之间的联系,初步采⽤GM(1.1)模型,运⽤MATLAB最⼩⼆乘拟合,从⽽预测出我国的⼈⼝发展情况。

对于问题⼆,对于问题三,基于问题1、2,综合考虑影响中国⼈⼝增长的因素,作出我国⼈⼝政策的合理性建议。

三、模型假设1、假设在未来相当长的⼀段时间内中国国内不会出现使⼈⼝数量锐减的疾病以及⾃然灾害。

2、假设在未来相当长的⼀段时间内中国国内政策及环境保持稳定。

3、假设本问题所使⽤的数据均真实有效,且有统计分析价值。

4、假设当年龄⼤于等于六⼗五岁时为步⼊⽼龄阶段。

5、假设⼀年到五年为短期,⼗年以上为中长期。

四、符号系统五、模型的构建与求解5.1模型⼀⾸先基于我国⼈⼝历次普查数据(表1),根据灰⾊预测理论,建⽴了⼀级的灰⾊预测模型,最后预测⼈⼝未来的变化趋势。

数学建模_人口模型与预测

数学建模_人口模型与预测

人口模型与预测摘要人口的增长是当前世界上引起普遍关注的问题,作为世界上人口最多的国家,我国的人口问题是十分突出的,由于人口基数大,尽管我国已经实行了20多年的计划生育政策,人口的增长依然很快,巨大的人口压力给我国的社会、政治、经济、医疗、就业等带来了一系列的问题。

因此,研究和解决人口问题在我国显得尤为重要。

我们经常在报刊上看见关于人口增长的预报,说到本世纪末,或到下世纪中叶,全世界(或某地区)的人口将达到多少亿。

你可能注意到不同报刊对同一时间人口的预报在数字上长有较大的区别,这显然是由于用了不同的人口模型计算的结果。

人类社会进入20世纪以来,在科学技术和生产力飞速发展的同时,世界人口也以空前的规模增长。

人口每增加十亿的时间,由一百年缩短为十二三年.我们赖以生存的地球,已经携带着它的60亿子民踏入21世纪.长期以来,人类的繁殖一直在自发地进行着,只是由于人口数量的迅速膨胀和环境质量的急剧恶化,人们才猛然醒悟,开始研究人类和自然的关系、人口数量的变化规律,以及如何进行人口控制等问题本文建立两个模型(1)中国人口的指数增长模型,并用该模型进行预测,与实际人口数据进行比较。

(2)中国人口的Logistic模型,并用该模型进行预测,与实际人口数据进行比较。

而且利用MATLAB图形,标出中国人口的实际统计数据,并画出两种模型的预测曲线和两种预测模型的误差比较图,并分别标出其误差。

关键词指数增长模型Logistic模型MATLAB软件人口增长预测1 问题的提出下表列出了中国1982-1998年的人口统计数据,取1982年为起始年(0=t ),1016540=N 万人,200000=m N 万人。

要求:(1)建立中国人口的指数增长模型,并用该模型进行预测,与实际人口数据进行比较。

(2)建立中国人口的Logistic 模型,并用该模型进行预测,与实际人口数据进行比较。

(3)利用MATLAB 图形,标出中国人口的实际统计数据,并画出两种模型的预测曲线。

数学建模人口预测模型

数学建模人口预测模型

• 生育率, [i1 , i2 ] 为育龄区间, ki (t ) 为第t 年 i 岁人口 的女性比, 则第t 年的出生人数为
f (t ) bi (t )ki (t ) xi (t )
i i1
i2
(2)
• 记 d00 (t ) 为第t 年婴儿死亡率,即第t 年出生但未活到 人口统计时刻的婴儿比例 (婴儿死亡率通常较高, 在人 口统计和建模中一般都不能忽略),
• 于是
f (t ) x0 (t ) d 00 (t ) f (t )
x0 (t ) (1 d00 (t )) f (t )
(3)
对于i=0将(2),(3)代入(1)得:
x1 (t 1) (1 d00 (t ))( 1 d0 (t )) bi (t )ki (t ) xi (t )
• 人口发展方程 时间以年为单位,年龄按周岁计算,设最 大年龄为 m岁,记 xi (t ) 为第t 年i岁(满 i 周岁而不到i+1 周岁)的人数, t 0,1,2,, i 0,1,2,, m .只考虑由 于生育, 老化和死亡引起的人口演变,而不计迁移等社会 因素的影响. 记 d i (t ) 为第 t年 i 岁人口的死亡率,即
• 的增长率, 不涉及年龄结构. 但在实际上, 在人口预测 这人口按年龄分布状况是十分重要的,因为不同年龄人 的生育率和死亡率有着很大的差别. 两个国家或地区目 前人口总数一样,如果一个国家或地区年青人的比例高 于另一个国家或地区,那么两者人口的发展状况将大不 一样. 因此考虑人口按年龄的分布, 除了时间是一个变 量, 年龄也是一个变量. • 如果用连续性模型来描述它, 就要用偏微分方程来 描述. 但在实际应用中连续模型很不方便, 需要建立 相应的离散模型. 因为作为已知的输入数据是离散的, 要得到的输出数据也是离散的, 再者对连续模型求解也 是非常困难的.因此我们选择建立一个离散性模型来描 述, 用差分方程来实现它. •

数学建模上海人口预测2050

数学建模上海人口预测2050

数学建模上海人口预测2050
目录
1.引言
2.数学建模方法
3.上海人口现状
4.上海人口预测
5.结论
正文
【引言】
随着科技的发展,数学建模被广泛应用于各个领域,如经济学、社会学等,以解决实际问题。

本文旨在探讨如何运用数学建模方法对上海 2050 年的人口进行预测。

【数学建模方法】
数学建模是一种通过建立数学模型来描述现实问题的方法,通常包括以下几个步骤:确定问题、收集数据、建立模型、求解模型和验证模型。

在本文中,我们将采用时间序列分析和回归分析等方法进行人口预测。

【上海人口现状】
根据最近的人口普查数据,上海市的人口约为 2400 万。

然而,这个数字在未来几十年可能会发生变化。

因此,预测上海未来的人口变化具有重要意义。

【上海人口预测】
为了预测上海 2050 年的人口,我们首先需要收集相关数据,如上海市的出生率、死亡率和迁移率等。

然后,我们可以使用时间序列分析方法
对这些数据进行分析,以找出人口变化的趋势。

接下来,我们可以使用回归分析方法建立一个数学模型,用于预测未来的人口变化。

最后,我们可以通过验证模型的准确性来评估我们的预测结果。

【结论】
通过数学建模方法,我们可以有效地预测上海 2050 年的人口。

这将有助于政府和企业制定相应的政策和计划,以应对未来可能出现的问题。

数学建模人口预测

数学建模人口预测

摘 要中国是一个人口大国,人口问题与我国的经济发展等方面息息相关。

随着我国人口数量的不断变化,人口的老龄化问题也日益突显,政策的调整不可或缺。

从当初实行计划生育政策到逐步放开生育政策再到全面实行二孩政策,我国人口发展呈现了一些新特点。

本文旨在通过多种预测方法对“全面二孩政策”下的人口数量及其结构进行预测,筛选出了经济发展的指标,并分人口结构对经济发展的影响,结论如下:针对问题一,本文参考中国国家统计局等官方资料的数据统计出各年人口总数、自然增长率等数据,建立了logistic 模型,得出人口总数的变化公式,然后建立GM(1,1)预测模型,预测2016年的人口总数,再利用SPSS 进行回归、曲线估计,得出最为符合的方程式,再利用MATLAB 函数拟合工具箱对所得数据进行拟合。

预测出2017-2030年间人口先增后减,在2021年达到峰值。

针对问题二,通过建立BP 神经网络模型,利用GM(1,1)灰色预测处理人口结构数据得到训练及测试数据集,将数据BP 神经网络算法进行多次训练,最终得到具有相当精度的稳定预测结果。

提取相当数量的经济指标并对其进行主成分分析降维处理,之后对主要经济指标及人口结构指标进行多元回归分析得到2020-2030年人口结构对经济发展的影响。

针对问题三,关键词:灰色预测 BP 神经网络 Leslie 人口结构预测模型问题假设1.将我国看做一个封闭系统,没有人口的迁入和迁出2.人口增长只与人口基数、生育率、死亡率等有关3.没有大规模战争及瘟疫等传染性疾病4.假设短期内没有外来物种对人类生存造成影响5.假设所有数据均为准确数据6.假设2050年前医疗水平和科学技术不会对人类的死亡率、出生率造成影响模型符号说明: r : 人口自然增长率 x :总人口数0x :初始年份的人口数量t :时间)()0(k x :灰色预测的原始序列 )(ˆ)0(k x:灰色预测的原始数列预测值 ij x :第i 个指标的第j 个数据i d :第i 岁的死亡率i b :第i 岁的生育率问题一 模型建立首先,我们建立了logistics 模型,具体如下)0(x x rxdtdx == 其次,建立GM(1,1)预测模型GM(1,1)是一阶微分方程模型,其形式为:u ax dtdx=+ 离散形式:u k x a k x =+++∆))1(())1(()1()1(预测公式:a u e a u x k xka ˆˆˆˆ)1()1(ˆˆ)1()1(+⎥⎦⎤⎢⎣⎡-=+- 由导数可知:tt x t t x dt dx t ∆-∆+=→∆)()(lim0 当t ∆很小并且取很小的1单位时,则近似的有:txt x t x ∆∆=-+)()1( 写成离散形式:))1(()()1()1(+∆=-+=∆∆k x k x k x tx由于tx ∆∆)1(涉及到累加列)1(x 的两个时刻的数值,因此,)()1(i x 取前后两个时刻的平均代替更为合理,即将)()(i x i 替换为)]()1([21)1().,...,3,2()],1()([21).,...,3,2()],1()([21)1()1()1()()()()()(k x k x k x n i i x i x x n i i x i x i i i i i ++=+=-+==-+))1(()()1()1(+∆=-+=∆∆k x k x k x txu k x a k x =+++∆))1(())1(()1()1()]()1([21)1()1()1()1(k x k x k x ++=+整理可得 u k x k x a k x+++-=+))]1()((21[)1()1()1()0(表示为矩阵形式:⎥⎦⎤⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡⋯-+-⋯+-+-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⋯u a n x n x x x x x n x x x 111)]1()([21)]2()3([21)]1()2([21)()3()2()1()1()1()1()1()1()0()0()0( 不妨令T n x x xy ))(),3(),2(()0()0()0(,⋯=令⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡⋯-+-⋯+-+-=u a U n x n x x x x x B ,111)]1()([21)]2()3([21)]1()2([21)1()1()1()1()1()1( 则y B B B ua U BU Y T T 1)(ˆˆˆ-=⎥⎦⎤⎢⎣⎡==,模型求解1.对logistics 模型进行求解 得到总人口变化公式:rte x x 0= (0x 为初始年份人口数,21≥t )2.利用GM (1,1)模型,根据1996-2015年中国总人口数据,对2016年总人口数进行预测。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关键字
人口预测; matlab 软件;人口指数增长模型;阻滞增长模型; 年龄 结构;生 育模式;优化模型
1
一、问题重述
人口的数量和结构是影响经济社会发展的重要因素。 从 20 世纪 70 年代后期 以来,我国鼓励晚婚晚育,提倡一对夫妻生育一个孩子。该政策实施 30 多年来, 有效地控制了我国人口的过快增长, 对经济发展和人民生活的改善做出了积极的 贡献。但另一方面,其负面影响也开始显现。如小学招生人数(1995 年以来) 、 高校报名人数(2009 年以来)逐年下降,劳动人口绝对数量开始步入下降通道, 人口抚养比的相变时刻即将到来,这些对经济社会健康、可持续发展将产生一系 列影响,引起了中央和社会各界的重视。
河南理工大学 2014 年数学建模竞赛论文
答卷编号(竞赛组委会填写) :
题目编号: ( 论文题目:
E
中国人口预测

参赛队员信息(必填):
姓 队员 1 队员 2 队员 3 名 专业班级 电气 12-06 电气 12-06 / 联系电话 18300609766 18300609985 /
刘兵 常自杰 /
实际人口 指数模型 2006 13.1448 13.1209 12.5786 12.6253 2007 13.2129 13.1932 12.6743 12.6949 2008 13.2802 13.2660 12.7627 12.7649 2009 13.3450 13.3391 12.8453 12.8353 2010 13.4091 13.4127 12.9227 12.9061 2011 13.4735 13.4867 12.9988 12.9773 2012 13.5404 13.5611 13.0756 13.0489 2013 13.6072 13.6359
查权威数据可知,我国最大的人口容量是 15--16 亿,上表中的数据大于 16 亿,并有继续上升的趋势,因此,此模型误差较大,究其原因,主要在于没有资 源、环境的限制。
5.2 阻滞增长模型 5.2.1 模型建立 人口增长到一定数量后增长率下降的主要原因中,自然资源、环境条件等因 素对人口的增长起着阻滞作用,并且随着人口的增加,阻滞作用越来越大。阻滞 增长模型就是考虑了这些因素,对指数增长的基本假设进行修改后得到的。 阻滞增长作用主要是体现在对人口增长率 r 的影响上,使得随着 r 的增长人 口数量 P(t)的增长而下降。 则可以把 r 表示为 P 的函数 r(P),且它应是减函数。 于是方程应该改写为 dP (1) rP ,P(0)=P0 dt 假设 r(P)是一个关于 P 的线性函数,即 r(P)=r-Ps(r>=0,s>0) (2) 其中这里的 r 为固有增长率,表示人口很少是(理论上是 x=0)的增长率。引入 自然资源和环境条件能容纳的最大人口数量 Pm(t)当 P(t)= Pm(t)时,人口不再增
人口数的变化规律.根据结果(5)作出 P~t 曲线,见图 1-2,由该图可看出人口数 随时间的变化规律.
图 1-1
(d y/d t 即为 d p/d t)
7
图 1-2
5.2.2 结果分析与模型检验 据中国科学院国情研究中心公布的资料,中国的整个自然环境最多能容纳 15~16 亿人口,做保守估计,取 r=0.0405, Pm=1500 百万. 将 r=0.0405, Pm=1500 代入公式(5)则有:
答卷编号(竞赛组委会填写) :
评阅情况(学校评阅专家填写) :
评阅 1.
评阅 2.
评阅 3.
中国人口预测
摘要
我国是一个人口大国, 人口问题是关系到我国经济发展,社会进步的重要问 题。因此,认识人口数量的变化规律,作出较准确的预报,不仅具有实际意义, 也是有效控制人口增长的前提。 本文采用由浅到深,由简单到复杂的建模原则,依次介绍了三个预测人口的 模型,即指数增长模型,阻滞增长模型和考虑年龄结构和生育模式的人口模型, 并利用我国 1999 年至 2013 年人口统计数据,对模型中的参数进行求解,最后用 它预测未来 30 年我国人口数量,并分析比较“单独二孩”政策对人口变化的影 响 模型一: 建立了指数增长模型。 根据规律建立模型公式——年增长率 r 不变。 我们要验证该模型是否适用。 取题目中给出的数据 1999 年至 2006 年的,数据拟 合用 MATLAB 软件计算的增长率 r 以及初始人口数。将以上两参数带入公式,算 的人口数量, 将之与实际人口数相比较画出对比图形, 发现比较相符。 又取 1999 至 2013 年的数据,重复刚才步骤。发现算出数据前半部分相符,但后半部分不 太符合。所以,Malthus 人口模型只适用于短期,并不适用于长期的人口预测。 因为人口在增长到一定程度时, 由于资源和环境对人口增长的阻滞作用使增长率 下降。 模型二: 建立了阻滞增长人口阻滞增长模型。根据查到的数据和公式做出人 口的时间变化率与人口容量的关系图,以及人口与时间的关系图。用 MATLAB 软 件计算出增长率和人口容量。根据得到的数据带入公式,计算人口数量。可以看 出这个模型的吻合度较好。 于是阻滞增长人口模型,有效的预测在以后一段时间 人口增长。 模型三:对模型进行了进一步的修正。最后,考虑年龄结构和生育模式对人 口数量的影响。由此构造的模型是我们讨论的重点 最后,对第三个模型进行优缺点评价与改进。
4
图 1 指数增长模型拟合图形(1999~2006)
图 2 指数增长模型拟合图形(1999~2013) 可以看出, 用这个模型基本上能够描述二十世纪以前中国人口的增长,但是
5
进入 21 世纪以后,中国人口增长率变慢,这个模型就不合适了。 显然,用它作短期人口预测也可以得到较好的结果。即在这种情况下:模型 的基本假设----人口增长率是常数----大致成立。 但是从长期来看,任何地区的人口都不可能无限增长,即指数模型不能描述 也不能预测较长时期的人口演变过程。排除灾难、战争等特殊时期,一般来说, 当人口较少时,增长较快,即增长率较大;人数增长到一定数量以后,增长就会 慢下来,即增长率减小。 预测未来 30 年中国人口的数量: P(t)= 1262.6*exp(0.0055*t) (百万) 以下表格中的数据单位为 (亿)
2
3.模型三 1)基于模型一和二,对模型二进行了进一步的修正,得到考虑年龄相关性和生 育模式的人口增长预测模型; 2)只考虑自然的出生与死亡,不计迁移等社会因素的影响; 3)在社会安定的局面下和不太长的时间内,死亡率大致与时间无关,于是可近 似的假设μ(r,t)=μ(r); 4)在稳定环境下可近似认为 H(r,t)=H(r)。
五、模型的建立
5.1 指数增长模型 5.1.1 模型建立 记时刻 t 的人口数为 P(t),当考察我国的人口时,P(t)是一个很大的整数。 利用微积分知识, 将 P(t)视为关于 t 连续可微。 记初始时刻 (t=0) 的认可为 P0.。 加上假设人口增长率为常数 r,即单位时间内 P(t)的增量等于 r 乘以 P(t)。当 考虑 t 到 t+△t 时间内人口的增量,则有 P(t+△t)- P(t)= r P△t (1)
6
长,即增长率 r(P)=0,代入得到 s=
P ,于是有 Pm P P(t)=r(1) Pm
(3)
将(3)代入方程得
dP P rP(1 ) ,P(0)=P0 dt Pm
解方程(4)可得:
(4)
P(t )
Pm P 1 ( m 1)e rt P0
(5)
根据方程(4)作出
dp
dt
~ P 曲线图,见图 1-1,由该图可看出人口增长率随
三、模型假设
1.模型一 人口指数增长模型(马尔萨斯 Malthus,1766--1834) 1)时刻 t 人口增长的速率与当时人口数成正比,增长率为常数 r。 2)以 P(t)表示时刻 t 我国的人口数,设人口数 P(t)足够大,可以视作连续函数处 理,且 P(t)关于 t 连续可微。 2.模型二 阻滞增长模型(Logistic) 1) 地球上的资源有限, 不妨设为 1; 而一个人的正常生存需要占用资源 1/ Pm(t) ; 2) 在时刻 t,人口增长的速率与当时人口数成正比,为简单起见也假设与当时剩 m 余资源 s 1 P / P 成正比;比例系数表示人口的固有增长率 ; 3)设人口数 P(t)足够大,可以视作连续变量处理,且 P(t)关于 t 连续可微。
[2]
5.1.2 结果分析与模型检验 将(5)、(6)式的计算结果与实际数据作比较,表二中人口 P1 是用 1999 年至 2006 年的数据拟合的结果,P2 是用 1999 年至 2013 年的数据拟合的结果,图 1、 图 2 是它们的图形表示(*是实际数据,曲线是计算结果)。(程序见附录 1) 表一 中国实际人口与按指数增长模型计算的比较(单位:亿) 1999 2000 2001 2002 2003 2004 2005 年份
3
令△t
0,得到 P(t)满足微分方程 dP (2) rP dt 由这个方程可以解出 rt P(t)=P0e (3) r>0 时,表示人口将按指数规律随时间无限增长。 [3] 利用线性最小二乘法 ,将(3)式取对数,得到 y=rt+a,y=ln P ,a=ln P0 (4) [4] 运用Matlab编程 (程序见附录1),以1999-2006年至的数据对(4)进行数据 拟合,得到相关的参数 a=lnP0=7.1385; r=0.0063,得到 P0=exp(a)=1259.5 (百万) 。 因此可以得到指数增长模型的方程为: P(t)=1259.5 *exp(0.0063*t) (5) 同理可得:若以全部数据拟合对(4)进行数据拟合,得到指数增长模型的方 程为: P(t)= 1262.6*exp(0.0055*t) (6)
年份 指数模型 2021 14.329 2029 14.973 2037 15.647 2014 13.787 2022 14.408 2030 15.056 2038 15.733 2015 13.863 2023 14.487 2031 15.139 2039 15.820 2016 13.940 2024 14.567 2032 15.222 2040 15.907 2017 14.017 2025 14.647 2033 15.360 2041 15.995 2018 14.094 2026 14.728 2034 15.391 2042 16.083 2019 14.172 2027 14.809 2035 150476 2043 16.172 2020 14.250 2028 14.891 2036 15.5, 因此对人口的预测与控制也就十分复 杂,很难在一个模型中综合考虑到各个因素的影响。为了更好的解决此问题, 我 [1] 们先建立两个简单的,粗糙的模型,然后,不断的改进得到最终的优化模型 。 1.先拟合出指数增长模型中的参数,再检验实际人口增长是否相符。由于经 历的时间比较长,所以我们分为长期和短期分别检验。就会发现规律,短期的符 合该模型,而长期误差较大。对于这个问题我们认为。由于资源、环境问题, 使 人口增加到一定数量时,增长率会减慢。据此改进,我们就得到了第二个模型。 2.得到第二个模型后,先找出增长率随时间的变化规律以及人口容量值。 分 析人口随时间的变化率与人口容量的关系。然后得出人口与时间的关系。最后检 验计算值与实际值是否相符,结果显示符和较好。 3.分析两模型的优缺点,进而,得到最终的优化模型,用它预测未来三十年 中国人口数量并借它讨论分析“单独二孩”政策对人口变化的影响。
相关文档
最新文档