空间解析几何-第2章 习题1

合集下载

解析几何第四版吕林根课后习题答案一至三章

解析几何第四版吕林根课后习题答案一至三章

第一章向量与坐标§1.1 向量的概念1.下列情形中的向量终点各构成什么图形?(1)把空间中一切单位向量归结到共同的始点;(2)把平行于某一平面的一切单位向量归结到共同的始点;(3)把平行于某一直线的一切向量归结到共同的始点;(4)把平行于某一直线的一切单位向量归结到共同的始点.[解]:(1)单位球面;(2)单位圆(3)直线;(4)相距为2的两点2. 设点O是正六边形ABCDEF的中心,在向量OA、、OC、、、OF、、BC、CD、、EF和FA中,哪些向量是相等的?[解]:如图1-1,在正六边形ABCDEF中,相等的向量对是:图1-1.DEOFCDOEABOCFAOBEFOA和;和;和;和;和3. 设在平面上给了一个四边形ABCD,点K、L、M、N分别是边AB、BC、CD、DA的中点,求证:KL=. 当ABCD是空间四边形时,这等式是否也成立?[证明]:如图1-2,连结AC, 则在∆BAC中,21AC. KL与AC方向相同;在∆DAC中,21AC. NM与AC方向相同,从而KL=NM且KL与NM方向相同,所以KL=.4. 如图1-3,设ABCD-EFGH是一个平行六面体,在下列各对向量中,找出相等的向量和互为相反向量的向量:(1) AB、; (2) AE、; (3) 、;(4) AD、; (5) BE、.[解]:相等的向量对是(2)、(3)和(5);互为反向量的向量对是(1)和(4)。

§1.2 向量的加法1.要使下列各式成立,向量ba,应满足什么条件?(1-=+(2+=+(3-=+(4+=-E(5=[解]:(1),-=+(2),+=+(3≥且,=+ (4),+=-(5),≥-=-§1.3 数量乘向量1 试解下列各题.⑴ 化简)()()()(→→→→-⋅+--⋅-b a y x b a y x .⑵ 已知→→→→-+=3212e e e a ,→→→→+-=321223e e e b ,求→→+b a ,→→-b a 和→→+b a 23.⑶ 从向量方程组⎪⎩⎪⎨⎧=-=+→→→→→→by x ay x 3243,解出向量→x ,→y . 解 ⑴→→→→→→→→→→→→→→-=+-+---+=-⋅+--⋅-ay b x b y a y b x a x b y a y b x a x b a y x b a y x 22)()()()(⑵ →→→→→→→→→→+=+-+-+=+3132132142232e e e e e e e e b a ,→→→→→→→→→→→-+-=+---+=-321321321342)223(2e e e e e e e e e b a , →→→→→→→→→→→-+-=+---+=-3213213217103)223(2)2(323e e e e e e e e e b a . 2 已知四边形ABCD 中,→→→-=c a AB 2,→→→→-+=c b a CD 865,对角线→AC 、→BD 的中点分别为E 、F ,求→EF .解 →→→→→→→→→→→-+=-+-+=+=c b a c a c b a AB CD EF 533)2(21)865(212121.3 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线. 证明 ∵→→→→→→→→→→=+=-++-=+=AB b a b a b a CD BC BD 5)(382∴→AB 与→BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线.4 在四边形ABCD 中,→→→+=b a AB 2,→→→--=b a BC 4,→→→--=b a CD 35,证明ABCD 为梯形.证明∵→→→→→→→→→→→→→=--=-+--++=++=BC b a b a b a b a CD BC AB AD 2)4(2)35()4()2( ∴→AD ∥→BC ,∴ABCD 为梯形.6. 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线向量AL , BM ,可 以构成一个三角形.[证明]: )(21+=)(21BC BA BM +=)(21+=0)(21=+++++=++∴CB CA BC BA AC AB CN BM AL从而三中线向量CN BM AL ,,构成一个三角形。

空间解析几何习题

空间解析几何习题

空间解析几何习题习题0—11.在空间直角坐标系中,画出下列各点:)2,1,2(),4,3,0(),4,0,0(-。

2.求点),,(c b a 关于(1)各坐标面,(2)各坐标轴,(3)坐标原点的对称点的坐标。

3.自点),,(0000z y x P 分别作各坐标面和各坐标轴的垂线,写出各垂足的坐标。

4.一边长为a 的立方体放置在xOy 面上,其底面的中心在坐标原点,底面的顶点在x 轴和y 轴上,求它各顶点的坐标。

5.求点)5,3,4(-P 到各坐标轴的距离。

6.在yOz 面上,求与三个已知点)2,1,3(A ,)2,2,4(--B 和)1,5,0(C 等距离的点。

7.证明:以三点)9,1,4(A ,)6,1,10(-B ,)3,4,2(C 为顶点的三角形是等腰三角形。

习题0—21.设向量a 与x 同和y 轴的夹角相等,而与z 同的夹角是前者的两倍,求向量a 的方向余弦。

2.设向量的方向余弦分别满足下列条件,试问这些向量与坐标轴、坐标面的关系如何?(1)0cos =α;(2)1cos =β;(3)0cos cos ==βα3.分别求出向量)5,3,2(),1,1,1(-==b a 及)2,1,2(--=c 的模,并写出单位向量000,,c b a 。

4.设向量)1,0,0(),0,1,0(),0,0,1(===k j i ,证明k j i ,,两两正交。

习题0—31.设b a ,为非零向量,问它们分别满足什么条件时,下列等式成立?(1)||||b a b a -=+;(2)||||b ba a =。

2.设c b a v c b a u -+=+-=3,2,试用c b a ,,表示v u 32-。

3.在A B C ?中,设M ,N ,P 分别为BC ,CA AB 的中点,试用AB CA BC ===c b a ,,表示向量AM ,N B ,CP 。

4.设MB AM =,证明:对任意一点O ,有)(21+=。

空间解析几何,李养成(新版),第二章_第二节

空间解析几何,李养成(新版),第二章_第二节

x 3y z 0, 例2.2.3 求与直线 l0 : 平行且与下列两 x y z 4 0
l1 : x x1 y y1 z z1 , X1 Y1 Z1 x x2 y y2 z z2 l2 : . X2 Y2 Z2
l1 与 l2 的相关 从图上易见, 两直线 位置 取决于三个向量 M1M 2 , v1, v2 的 相互关系.
(1) l1 与 l2 异面 M1M 2 , v1, v2 不共面;
A1 x B1 y C1 z D 1 0, 若给定直线的一般方程 A2 x B2 y C2 z D2 0. 则它的方向向量可取为
重点知识
B1 v B2
C1 C1 , C2 C 2
A1 A1 , A2 A2
B1 B2
.
例2.2.1 化直线 l 的一般方程
1 : A1 x B1 y C1 z D 1 0, 2 : A2 x B2 y C2 z D2 0.
那么 (1) 1 与 2 相交的充要条件是 A1 : B1 : C1 A2 : B2 : C2 ;
A1 B1 C1 D1 (2) 1 与 2 平行的充要条件是 A B C D ; 2 2 2 2 A1 B1 C1 D1 (3) 1 与 2 重合的充要条件是 A B C D . 2 2 2 2
口答: 研究以下各组里两平面的位置关系:
(1) x 2 y z 1 0, y 3z 1 0
(2) 2 x y z 1 0,
(3) 2 x y z 1 0,
4x 2 y 2z 1 0
4x 2 y 2z 2 0

《解析几何》知识点总结:第2章-平面与直线

《解析几何》知识点总结:第2章-平面与直线

第二章平面与直线一、直角坐标系、放射坐标系以及直角坐标系中的向量计算1.直角坐标系和放射坐标系(1)定义5.1:i ,j ,k 以O 为起点,为单位向量且两两垂直,则O ;i ,j ,k 为空间的一个以O 为原点的直角标架或直角坐标系,记为{O ;i ,j ,k }。

如果向量形成右手系,则成为右手直角标架或右手直角坐标系。

i ,j ,k 称为该直角坐标系的基向量。

(2)定义5.2:不要求i ,j ,k 为单位向量且两两垂直,只要求不共面,则称为仿射标架或放射坐标系。

(3)定理5.1:v =x i +y j +z k ,称(x ,y ,z )为向量v 在该坐标系{O ;i ,j ,k }下的坐标,记为v =(x ,y ,z )。

(4)定义5.3:规定P 的坐标为向量→OP 的坐标,向量→OP 称为P 点的定位向量或矢径。

(5)8个卦限(逆时针,上层,右下角),x 轴为一半长。

2.直角坐标系中的向量运算(1)线性运算(仿射可)①a ±b =(a 1±b 1,a 2±b 2,a 3±b 3);②λa =(λa 1,λa 2,λa 3);(2)内积(仿射不可)①a ·b =a 1b 1+a 2b 2+a 3b 3;②|a |=232221a a a ++;③cos∠(a ,b )=232221232221332211b b b a a a b a b a b a +++++++;cosα=2322211a a a a ++;cos 2α+cos 2β+cos 2γ=1;·向量a 与x、y、z 轴的夹角称为向量a 的方向角,其余弦称为a 的方向余弦。

·把与三个方向余弦成比例的三个数(该向量的坐标),称为该向量的一组方向数。

(3)外积(仿射不可)a ×b =(a 2b 3-a 3b 2)i +(a 3b 1-a 1b 3)j +(a 1b 2-a 2b 1)k (4)混合积(仿射不可)(a ,b ,c )=321212131313232c b b a a c b b a a c b b a a ++3.距离公式和定比分点公式(1)距离公式21221221221z -z y -y x -x )()()(++=P P (2)定比分点公式(坐标形式):P 1P=λPP 2λλλλλλ++=++=++=1z 1y y 1x 212121z z y x x ;;·中点公式:⎪⎭⎫⎝⎛+++2a ,2a ,2a 332211b b b ·重心公式:⎪⎭⎫⎝⎛++++++3c a ,3c a ,3c a 333222111b b b 4.题型①向量运算二、平面方程1.平面方程(1)平面的向量形式的点法式方程:N ·(P -P 0)=0平面的坐标形式的点法式方程:A (x-x 0)+B (y-y 0)+C (z-z 0)=0——平面法向量[垂直]N =(A ,B ,C )(2)平面的一般式方程(普通方程):Ax+By+Cz+D=0(A ,B ,C 不能同时为0)平面的一般式方程(向量形式):N ·P+D=0定理6.1:平面方程是三元一次方程,反之三元一次方程必表示平面。

中国人民大学附属中学必修二第二章《解析几何初步》测试题(含答案解析)

中国人民大学附属中学必修二第二章《解析几何初步》测试题(含答案解析)

一、选择题1.设两条直线的方程分别为0x y a ++=,0x y b ++=,已知,a b 是方程20x x c ++=的两个实根,且108c ≤≤,则这两条直线之间的距离的最大值和最小值分别为( ) A3, B13, C.122, D.23, 2.已知点(,0)A m -,(,0)B m ,R m ∈,若圆22:(3)(3)2C x y -+-=上存在点P ,满足PA PB ⊥,则m 最大值是( )A.B.C.D.3.已知圆()()2295x a y a -+=>上存在点M ,使2OM MQ =(O 为原点)成立,()2,0Q ,则实数a 的取值范围是( )A .7a >B .57a <<C .1373a ≤≤ D .57a <≤4.已知直线:20()l kx y k R +-=∈是圆22:6260C x y x y +-++=的一条对称轴,若点(2,)A k ,B 为圆C 上任意的一点,则线段AB 长度的最小值为( ) A2B .2CD25.已知M 、N 分别是圆()()22:161C x y ++-=和圆()()22:261D x y -+-=上的两个动点,点P 在直线:l y x =上,则PM PN +的最小值是( ) A.2B .10C2D .126.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则PA PB ⋅的最大值是( ) A .4B .10C .5D7.在正方体1111ABCD A B C D -中,点,E F 分别是梭BC ,CD 的中点,则1A F 与1C E 所成角的余弦值为( ) ABC.15D.158.现有一个三棱锥形状的工艺品P ABC -,点P 在底面ABC 的投影为Q ,满足12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△,22222213QA QB QC AB BC CA ++=++,ABCS =品放入一个球形容器(不计此球形容器的厚度)中,则该球形容器的表面积的最小值为( )A .42πB .44πC .48πD .49π9.如图,在Rt ABC △中,1AC =,BC x =,D 是斜边AB 的中点,将BCD △沿直线CD 翻折,若在翻折过程中存在某个位置,使得CB AD ⊥,则x 的取值范围是( )A .(0,3⎤⎦B .2,22⎛⎤⎥ ⎝⎦C .3,23D .(]2,410.如图,圆形纸片的圆心为O ,半径为6cm ,该纸片上的正方形ABCD 的中心为O .E ,F ,G ,H 为圆O 上的点,ABE △,BCF △,CDG ,ADH 分别是以AB ,BC ,CD ,DA 为底边的等腰三角形.沿虚线剪开后,分别以AB ,BC ,CD ,DA 为折痕折起ABE △,BCF △,CDG ,ADH ,使得E ,F ,G ,H 重合得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的表面积为( )A .163πB .253πC .643πD .1003π11.已知平面图形PABCD ,ABCD 为矩形,4AB =,是以P 为顶点的等腰直角三角形,如图所示,将PAD △沿着AD 翻折至P AD '△,当四棱锥P ABCD '-体积的最大值为163,此时四棱锥P ABCD '-外接球的表面积为( )A .12πB .16πC .24πD .32π12.如图,在矩形ABCD 中,1AB =,3BC =,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥A BCD -正视图和俯视图如图,则三棱锥A BCD -中AC 长为( )A .32B 3C .102D .2二、填空题13.已知直线1:210l x my ++=与2:310l x y --=平行,则m 的值为__________. 14.已知直线l :230ax y a --+=与圆C :()()22124x y -+-=相交于P ,Q 两点,则PQ 的最小值为______.15.经点()2,3P -,作圆2220x y +=的弦AB ,使得P 平分AB ,则弦AB 所在直线方程是______.16.若双曲线C :22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,双曲线C 的离心率为______.17.若直线30ax by +-=与圆22410x y x ++-=相切于点()1,2P -,则a b +=________.18.将一张坐标纸折叠一次,使点(10,0)与点(6,8)-重合,则与点(4,2)-重合的点是______.19.已知H 是球O 的直径AB 上一点,:1:3AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为__________.20.如图,在一个底面面积为4,侧棱长为10的正四棱锥P ABCD -中,大球1O 内切于该四棱锥,小球2O 与大球1O 及四棱锥的四个侧面相切,则小球2O 的体积为___________.21.如图,四边形ABCD 是矩形,且有2AB BC =,沿AC 将ADC 翻折成AD C ',当二面角D AC B '--的大小为3π时,则异面直线D C '与AB 所成角余弦值是______.22.如图,在正方体1111ABCD A B C D -中,E ,F ,G 分别是棱11A B ,1BB ,11B C 的中点,则下列结论中:①FG BD ⊥; ②1B D ⊥面EFG ;③面//EFG 面11ACC A ; ④//EF 面11CDD C . 正确结论的序号是________.23.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40︒,则晷针与点A 处的水平面所成角的大小为_________.24.在三棱锥-P ABC 中,侧面PBC 和底面ABC 都是边长为2的正三角形,若3PA =,则侧棱PA 与底面ABC 所成的角的大小是___________.三、解答题25.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,E 为PD 的中点.(1)证明://PB 平面AEC ; (2)设1AP =,3AD =,四棱锥P ABCD -的体积为1,求证:平面PAC ⊥平面PBD .26.如图,在长方体1111ABCD A B C D -中,12AB BC AA ==,1O 是底面1111D C B A 的中心.(Ⅰ)求证:1//O B 平面1ACD ;(Ⅱ)求二面角1D AC D --的平面角的余弦值. 27.如图,在三棱锥A BCD -中,2,22,23,BCBD AB CD AC AB BD =====⊥(1)证明:平面ABC ⊥平面ABD .(2)在侧面ACD 内求作一点H ,使得BH ⊥平面ACD ,写出作法(无需证明),并求线段AH 的长.28.如图,四边形ABCD 为矩形,且4=AD ,22AB =,PA ⊥平面ABCD ,2PA =,E 为BC 的中点.(1)求证:PC DE ⊥;(2)若M 为PC 的中点,求三棱锥M PAB -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由韦达定理求出1,a b ab c +=-=,然后求出2||()4a b a b ab -=+-两平行线间的距离范围. 【详解】由已知得两条直线的距离是d =, 因为,a b 是方程20x x c ++=的两个根,所以1,a b ab c +=-=,则||a b -=, 因为108c ≤≤,所以12222,即1222d . 故选:C 【点睛】本题考查平行线间的距离公式,韦达定理和不等式,属于基础题.2.C解析:C 【分析】首先设点(),P x y ,利用0AP BP ⋅=,转化为m =m 的最大值. 【详解】由圆的方程可知,圆的圆心()3,3C ,设(),P x y 则(),AP x m y =+,(),BP x m y =-,()()20AP BP x m x m y ⋅=+-+=,即222m x y m =+⇒=m 的最大值就是圆上的点到原点的距离的最大值,即圆心到原点的距离加半径,即OC r +== 故选:C 【点睛】结论点睛:与圆的几何性质有关的最值,具体结论如下:(1)设O 为圆的圆心,半径为r ,圆外一点A 到圆上的距离的最小值为AO r -,最大值为AO r -;(2)过圆内一点的最长弦为圆的直径,最短弦是以该点为中点的弦;(3)记圆的半径为r ,圆心到直线的距离为d ,直线与圆相离,则圆上的点到直线的最大距离为d r +,最小值为d r -;3.D解析:D 【分析】根据2OM MQ =可得M 的轨迹方程.由点M 在圆()()2295x a y a -+=>上,可得M的轨迹方程与圆()()2295x a y a -+=>有公共点,即可由其位置关系求解. 【详解】 由题意,设(),M x y则由2OM MQ =,()2,0Q =化简变形可得2281639x y ⎛⎫-+= ⎪⎝⎭ 所以M 的轨迹为以8,03⎛⎫ ⎪⎝⎭为圆心,以43为半径的圆 由题意可知M 为2281639x y ⎛⎫-+= ⎪⎝⎭与()()2295x a y a -+=>的公共点即两个圆有公共点,由圆与圆的位置关系可知48433333a -≤-≤+ 解得1373a ≤≤ 又因为5a >所以57a <≤ 故选:D 【点睛】本题考查了点的轨迹方程求法,圆与圆位置关系式的应用,属于中档题.4.D解析:D 【分析】由直线l 是圆C 的一条对称轴,求得1k =,得到点(2,1)A ,再结合圆的性质,即可求解. 【详解】由题意,圆22:6260C x y x y +-++=,可得圆心(3,1)C -,半径为2r因为直线:20l kx y +-=是圆22:6260C x y x y +-++=的一条对称轴, 则(3,1)C -在直线l 上,即3120k --=,解得1k =,所以(2,1)A ,则AC ==所以线段AB 长度的最小值为min ||||2AB AC r =-=.2. 【点睛】本题主要考查了直线与圆的位置关系及其应用,其中解答中熟练应用直线与圆的位置关系求得k 的值,转化为点与圆的位置关系,结合圆的性质求解是解得关键,着重考查转化思想,以及计算能力.5.C解析:C 【分析】计算圆心()1,6-关于直线:l y x =的对称点为()16,1C -,计算1C D =. 【详解】圆()()22:161C x y ++-=的圆心为()1,6-,圆()()22:261D x y -+-=的圆心为()2,6,()1,6-关于直线:l y x =的对称点为()16,1C -,1C D ==故PM PN +的最小值是1122C D r r --=. 故选:C. 【点睛】本题考查了点关于直线对称,与圆相关的距离的最值,意在考查学生的计算能力和应用能力,转化能力.6.C解析:C 【分析】由题意结合直线位置关系的判断可得两直线互相垂直,由直线过定点可得定点A 与定点B ,进而可得22210PA PB AB +==,再利用基本不等式,即可得解.【详解】由题意直线0x my +=过定点(0,0)A ,直线30mx y m --+=可变为(1)30m x y --+=,所以该直线过定点()1,3B , 所以2221310AB =+=,又()110m m ⨯+⨯-=,所以直线0x my +=与直线30mx y m --+=互相垂直, 所以22210PA PB AB +==,所以22102PA PB PA PB =+≥⋅即5PA PB ⋅≤,当且仅当=PA PB , 所以PA PB ⋅的最大值为5. 故选:C. 【点睛】本题考查了直线位置关系的判断及直线过定点的应用,考查了基本不等式的应用,合理转化条件是解题关键,属于中档题.7.D解析:D【分析】延长DA 至G ,使AG CE =,可证11//A G C E ,得1GA F ∠是异面直线1A F 与1C E 所成的角(或其补角).在1AGF △中,由余弦定理可得结论. 【详解】延长DA 至G ,使AG CE =,连接1,GE GA ,GF ,11,AC A C , 又//AG CE 所以AGEC 是平行四边形,//,GE AC GE AC =, 又正方体中1111//,AC AC AC AC =, 所以1111//,AC DE AC DE =,所以11AC EG 是平行四边形,则11//A G C E ,所以1GA F ∠是异面直线1A F 与1C E 所成的角(或其补角). 设正方体棱长为2,在正方体中易得15AG =,10GF =,22222112(21)3A F AA AF =+=++=,1AGF △中,2221111125cos 215253AG A F GF GA F AG A F +-∠===⋅⨯⨯. 故选:D .【点睛】方法点睛:本题考查空间向量法求异面直线所成的角,求异面直线所成角的方法: (1)定义法:根据定义作出异面直线所成的角并证明,然后解三角形得结论; (2)建立空间直角坐标系,由两异面直线的方向向量的夹角得异面直线所成的角.8.D解析:D 【分析】作QM AB ⊥,连接PM ,易证AB PM ⊥,由112122QAB PABABQMS S AB PM ⨯⨯==⨯⨯△△,得到2PM QM =,再根据12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△,由对称性得到AB BC AC ==,然后根据22222213QA QB QC AB BC CA ++=++,93ABCS =,求得6,23AB AQ ==,在AOQ△中,由222AO OQ AQ =+求解半径即可.【详解】 如图所示:作QM AB ⊥与M ,连接PM , 因为PQ ⊥平面ABC ,所以PQ AB ⊥,又QM PQ Q ⋂=, 所以AB ⊥平面PQM , 所以AB PM ⊥,所以112122QAB PABAB QM S S AB PM ⨯⨯==⨯⨯△△, 2PM QM =,因为12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△, 由对称性得AB BC AC ==,又因为22222213QA QB QC AB BC CA ++=++,93ABCS =所以21sin 60932ABCSAB =⨯⨯=解得6,23AB AQ ==,所以3,23,3QM PM PQ ===,设外接球的半径为r ,在AOQ △中,222AO OQ AQ =+,即()()222323r r =-+, 解得72r =, 所以外接球的表面积为2449S r ππ==, 即该球形容器的表面积的最小值为49π. 故选:D 【点睛】关键点点睛:本题关键是由12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△得到三棱锥是正棱锥,从而找到外接球球心的位置而得解..9.A解析:A 【分析】取BC 中点E ,连接DE ,AE ,若CB AD ⊥,则可证明出BC ⊥平面ADE ,则可得BC AE ⊥. 根据题目中各边长的关系可得出AE ,AD 关于x 的表达式,然后在ADE 中,利用三边关系求解即可. 【详解】由题意得BC x =,则21x AD CD BD +===,如图所示,取BC 中点E ,翻折前,在图1中,连接DE ,CD ,则1122DE AC ==, 翻折后,在图2中,若CB AD ⊥,则有:∵BC DE ⊥,BC AD ⊥,AD DE D ⋂=,且,AD DE 平面ADE ,∴BC ⊥平面ADE ,∴BC AE ⊥,又BC AE ⊥,E 为BC 中点,∴1AB AC ==∴AE =AD =,在ADE 中,由三边关系得:①122+>②122<+③0x >;由①②③可得0x <<.故选:A. 【点睛】本题考查折叠性问题,考查线面垂直的判定及性质在解题中的运用,解答本题的主要思路分析在于将异面直线间的垂直转化为线面垂直关系,即作出辅助线DE 与AE ,根据题目条件确定出BC ⊥平面ADE ,得到BC AE ⊥,从而通过几何条件求解.10.D解析:D 【分析】连接OE 交AB 于点I ,设E ,F ,G ,H 重合于点P ,正方形的边长为x (0x >)cm ,则2x OI =,62xIE =-,求出x 的值,再利用勾股定理求R ,代入球的表面积公式,即可得答案. 【详解】连接OE 交AB 于点I ,设E ,F ,G ,H 重合于点P ,正方形的边长为x (0x >)cm ,则2x OI =,62x IE =-, 因为该四棱锥的侧面积是底面积的2倍, 所以246222x x x ⎛⎫⨯⨯-= ⎪⎝⎭,解得4x =. 设该四棱锥的外接球的球心为Q ,半径为R ,如图,则QP QC R ==,22OC =16423OP =-= 所以()(22232R R =+,解得3R =所以外接球的表面积为2100433S ππ==(2cm ).故选:D . 【点睛】关键点点睛:本题考查平面图形的折叠,四棱锥外接球的半径,解题关键在于平面图形折叠成立体图形后,要明确变化的量和没有变的量,以及线线的位置,线面的位置关系,对于几何体的外接球的问题,关键在于确定外接球的球心的位置.11.C解析:C 【分析】分析出当平面P AD '⊥平面ABCD 时,四棱锥P ABCD '-的体积取最大值,求出AD 、P A '的长,然后将四棱锥P ABCD '-补成长方体P AMD QBNC '-,计算出该长方体的体对角线长,即为外接球的直径,进而可求得外接球的表面积. 【详解】取AD 的中点E ,连接P E ',由于P AD '△是以P '为顶点的等腰直角三角形,则P E AD '⊥,设AD x =,则1122P E AD x '==, 设二面角P AD B '--的平面角为θ,则四棱锥P ABCD '-的高为1sin 2h x θ=, 当90θ=时,max 12h x =,矩形ABCD 的面积为4S AB AD x =⋅=,2111216433233P ABCD V Sh x x x '-=≤⨯⨯==,解得22x =.将四棱锥P ABCD '-补成长方体P AMD QBNC '-, 所以,四棱锥P ABCD '-的外接球直径为22222226R P N P A P D P Q AD AB ''''==++=+=,则6R =,因此,四棱锥P ABCD '-的外接球的表面积为2424R ππ=. 故选:C.【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.12.C解析:C 【分析】先由正视图、俯视图及题意还原三棱锥,过A 作AM ⊥BD 于点M ,连结MC ,把AC 放在直角三角形AMC 中解AC . 【详解】根据三棱锥A BCD -正视图和俯视图,还原后得到三棱锥的直观图如图示,由图可知:平面ABD ⊥平面CBD ,过A 作AM ⊥BD 于点M ,连结MC ,则AM ⊥平面CBD , ∴△MCA 为直角三角形. 过C 作CN ⊥BD 于点N ,在直角三角形ABD 中,AB =1,AD ,∴2BD ==所以∠ABD=60°,∠ADB=30°,则在直角三角形ABM 中,AB =1,∠ABM=60°,∴1,22BM AM ==.同理,在直角三角形CBD 中,1,22DN CN ==. ∴MN =BD -BM -DN =112122--=,∴2CM ===在直角三角形AMC 中,2AC === 故选:C 【点睛】(1)根据三视图画直观图,可以按下面步骤进行:①、首先看俯视图,根据俯视图画出几何体地面的直观图 ;②、观察正视图和侧视图找到几何体前、后、左、右的高度;③、画出整体,让后再根据三视图进行调整.(2)立体几何中求线段长度:①、把线段放在特殊三角形中,解三角形;②、用等体积法求线段.二、填空题13.【分析】解方程即得解【详解】由题得当时两直线不重合故答案为:【点睛】结论点睛:直线和直线平行则且两直线不重合解析:23-【分析】解方程230m ⨯⨯=(-1)-即得解. 【详解】由题得2230,3m m ⨯⨯=∴=-(-1)-. 当23m =-时,两直线不重合.故答案为:23-. 【点睛】结论点睛:直线1111:0l a x b y c ++=和直线2222:0l a x b y c ++=平行,则12210a b a b -=且两直线不重合.14.【分析】首先求出直线所过定点的坐标当时取得最小再根据弦长公式计算可得;【详解】解:因为所以令所以故直线恒过定点又因为故点在圆内当时取得最小因为所以故答案为:【点睛】本题考查直线和圆的位置关系弦长公式解析:【分析】首先求出直线所过定点M 的坐标,当PQ MC ⊥时,PQ 取得最小,再根据弦长公式计算可得; 【详解】解:因为230ax y a --+=,所以()()230x a y -+-=,令2030x y -=⎧⎨-=⎩,所以23x y =⎧⎨=⎩,故直线恒过定点()2,3M ,又因为()()22213224-+-=<,故点()2,3M 在圆内,当PQ MC ⊥时,PQ 取得最小,因为MC ==所以minPQ ===故答案为:【点睛】本题考查直线和圆的位置关系,弦长公式、两点间的距离公式的应用,关键是掌握直线与圆的位置关系以及应用,属于中档题.15.【分析】由题意知圆的圆心从而可求出由从而可求出弦所在直线的斜率是由直线的点斜式可写出弦所在直线方程【详解】解:设圆的圆心为则由是的中点知因为所以点在圆内且所以弦所在直线的斜率是则弦所在的直线方程是整解析:23130x y --=. 【分析】由题意知圆2220x y +=的圆心()0,0O ,从而可求出32OP k =-,由AB OP ⊥,从而可求出弦AB 所在直线的斜率是123AB OP k k =-=,由直线的点斜式,可写出弦AB 所在直线方程.解:设圆2220x y +=的圆心为O ,则()0,0O .由P 是AB 的中点,知AB OP ⊥.因为()22231320+-=<,所以点P 在圆O 内,且303202OP k --==--. 所以弦AB 所在直线的斜率是123AB OP k k =-=,则弦AB 所在的直线方程是23(2)3y x +=-, 整理可得,23130x y --=. 故答案为:23130x y --=. 【点睛】本题考查了直线的点斜式方程,考查了两直线垂直的应用.本题的关键是分析出AB OP ⊥,进而求出弦所在直线的斜率.16.2【分析】求得双曲线的一条渐近线方程求得圆心和半径运用点到直线的距离公式和弦长公式可得ab 的关系即可得到所求离心率公式【详解】双曲线C :的一条渐近线方程设为圆的圆心为半径可得圆心到渐近线的距离为则化解析:2 【分析】求得双曲线的一条渐近线方程,求得圆心和半径,运用点到直线的距离公式和弦长公式,可得a ,b 的关系,即可得到所求离心率公式. 【详解】双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线方程设为0bx ay -=,圆22(2)4x y -+=的圆心为(2,0),半径2r ,可得圆心到渐近线的距离为d =则2=,化为22223a b c a ==-, 即224a c =,1ce a=>,解得2e =. 故答案为:2. 【点睛】本题考查圆与圆锥曲线的综合,解题关键是点到直线距离公式及弦长公式建立a ,b 的等量关系,即可求解a 、c 关系,属于中等题.17.3【分析】根据题意先由圆的方程求出圆心为根据直线和圆相切的性质列出方程组求出即得解【详解】根据题意的圆心为:若直线与圆相切于则有故答案为:3【点睛】本题考查了直线和圆的位置关系考查了学生转化与划归数【分析】根据题意,先由圆的方程求出圆心为()2,0-,根据直线和圆相切的性质列出方程组,求出,a b ,即得解.【详解】根据题意22410x y x ++-=的圆心为:()2,0-,若直线30ax by +-=与圆22410x y x ++-=相切于()1,2P -,则有2301,2302()1(2)(1)a b a b a b a b -+-=⎧⎪∴==∴+=-⎨⨯-=-⎪---⎩故答案为:3 【点睛】本题考查了直线和圆的位置关系,考查了学生转化与划归,数学运算的能力,属于中档题.18.【分析】先求得点的垂直平分线的方程然后根据点关于直线对称点的求法求得的对称点由此得出结论【详解】已知点点可得中点则∴线段AB 的垂直平分线为:化为设点关于直线的对称点为则解得∴与点重合的点是故答案为: 解析:()4,2-【分析】先求得点()()10,0,6,8-的垂直平分线的方程,然后根据点关于直线对称点的求法,求得()4,2-的对称点,由此得出结论.【详解】已知点(10,0)A ,点(6,8)B -,可得中点(2,4)M . 则816102AB k ==---.∴线段AB 的垂直平分线为:42(2)y x -=-, 化为20x y -=.设点()4,2-关于直线20x y -=的对称点为(,)P a b ,则2214422022baa b -⎧⨯=-⎪⎪--⎨-++⎪⨯-=⎪⎩,解得42a b =⎧⎨=-⎩. ∴与点()4,2-重合的点是()4,2-. 故答案为:()4,2-. 【点睛】本小题主要考查线段垂直平分线方程的求法,考查点关于直线对称点的坐标的求法,属于19.【分析】求出截面圆的半径设可得出从而可知球的半径为根据勾股定理求出的值可得出球的半径进而可求得球的表面积【详解】如下图所示设可得出则球的直径为球的半径为设截面圆的半径为可得由勾股定理可得即即所以球的 解析:163π【分析】求出截面圆H 的半径,设AH x =,可得出3HB x =,从而可知,球O 的半径为2x ,根据勾股定理求出x 的值,可得出球O 的半径,进而可求得球O 的表面积. 【详解】如下图所示,设AH x =,可得出3HB x =,则球O 的直径为4AB x =,球O 的半径为2x ,设截面圆H 的半径为r ,可得2r ππ=,1r ∴=,由勾股定理可得()2222OH r x +=,即()22214x AH x -+=,即2214x x +=,33x ∴=, 所以,球O 的半径为232x =,则球O 的表面积为22316433S ππ⎛⎫=⨯= ⎪ ⎪⎝⎭. 故答案为:163π. 【点睛】方法点睛:在求解有关球的截面圆的问题时,一般利用球的半径、截面圆的半径以及球心到截面圆的距离三者之间满足勾股定理来求解.20.【分析】设为正方形的中心的中点为连接求出如图分别可求得大球与小球半径分别为和进而可得小球的体积【详解】解:由题中条件知底面四边形是边长为2的正方形设O 为正方形的中心的中点为M 连接则如图在截面中设N 为解析:224π 【分析】设O 为正方形ABCD 的中心,AB 的中点为M ,连接PM ,OM ,PO,求出OM ,PM ,PO ,如图,分别可求得大球1O 与小球2O 半径分别为22和24,进而可得小球的体积. 【详解】解:由题中条件知底面四边形ABCD 是边长为2的正方形.设O 为正方形ABCD 的中心,AB 的中点为M ,连接PM ,OM ,PO ,则1OM =,221013PM PA AM =-=-=,9122PO =-=,如图,在截面PMO 中,设N为球1O 与平面PAB 的切点,则N 在PM 上,且1O N PM ⊥,设球1O 的半径为R ,则1O N R =,∵1sin 3OM MPO PM ∠==,∴1113NO PO =,则13PO R =,11422PO PO OO R =+==,∴2R =,设球1O 与球2O 相切于点Q ,则22PQ PO R R =-=,设球2O 的半径为r ,同理可得4PQ r =,∴22R r ==,故小球2O 的体积342324V r ππ==.故答案为:224π.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.21.【分析】作于于可得等于二面角的平面角从而可得然后求得而因此可得是异面直线与所成角(或补角)这样在求解可得【详解】如图作于于则连接根据二面角平面角的定义知与的夹角等于二面角的平面角所以因为所以设则在矩解析:12. 【分析】作DM AC ⊥于M ,BN AC ⊥于N ,可得,MD NB '<>等于二面角D AC B '--的平面角,从而可得DMD '∠,然后求得DD ',而//AB CD ,因此可得D CD '∠是异面直线D C '与AB 所成角(或补角).这样在DCD '求解可得.【详解】如图,作DM AC ⊥于M ,BN AC ⊥于N ,则//DM BN ,连接,D M DD '', 根据二面角平面角的定义知MD '与NB 的夹角等于二面角D AC B '--的平面角, 所以,3MD NB π'<>=,因为//DM BN ,所以23DMD π'∠=, 设1BC =,则22AB BC ==,在矩形ABCD 中,3AC =,12633DM ⨯==, 6D M DM '==, 则222222666612cos 2232DD DM D M DM D M π⎛⎫⎛⎫⎛⎫'''=+-⋅=+-⨯⨯⨯-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以2DD '=,因为//AB CD ,所以D CD '∠是异面直线D C '与AB 所成角(或补角).DCD '是正三角形,3D CD π'∠=,1cos 2D CD '∠=. 所以异面直线D C '与AB 所成角余弦值是12. 故答案为:12.【点睛】关键点点睛:本题考查求异面直线所成的角,解题方法根据异面直线所成角定义作出它们所成的角,然后解三角形可得,解题关键是利用图中MD '与NB 的夹角等于二面角D AC B '--的平面角,从而求得DMD '∠,只要设1BC =,可求得DD ',从而求得结论.22.②④【分析】由是正三角形可判断①;判断出平面平面平面可判断②;假设面面则可以推出可判断③;由平面平面平面可判断④【详解】连接分别是的中点对于①因方是正三角形所以与不垂直;对于②连接因为且所以平面平面解析:②④. 【分析】由1//FG BC ,1BDC 是正三角形,可判断①;判断出1DB ⊥平面11A C B ,平面11//AC B 平面EFG ,可判断②;假设面//EFG 面11ACC A ,则可以推出1//AA EF 可判断③;由平面11//ABB A 平面11DCC D ,EF ⊂平面11ABB A ,可判断④. 【详解】连接11A C ,1A B ,1BC ,BD ,1B D ,E ,F ,G 分别是1A B ,1BB ,11B C 的中点. 对于①,因方1//FG BC ,1BDC 是正三角形,所以FG 与BD 不垂直; 对于②,连接11D B ,因为1111111AC B D ,AC BB ⊥⊥,且1111B D BB B ⋂=,所以11A C ⊥平面11BDD B ,1DB ⊂平面11BDD B ,所以111AC DB ⊥,同理11BC DB ⊥,且1111A C BC C ,所以1DB ⊥平面11A C B ,因为1//A B EF ,11//AC EG ,且111A B AC A ⋂=,EF EG E =,所以平面11//AC B 平面EFG ,所以1B D ⊥平面EFG .正确;对于③,如果面//EFG 面11ACC A ,由平面EFG 平面11ABB A EF =,平面11CC A A平面111BB A A A A =,则1//AA EF ,显然不正确;对于④,因为平面11//ABB A 平面11DCC D ,EF ⊂平面11ABB A ,所以//EF 平面11CDD C ,正确故选:②④. 【点睛】方法点睛:本题主要考查了正方体中垂直与平行关系,考查了线线垂直、线面垂直的判定、线面平行的判断、面面平行的判断与性质,对于证明线线关系、线面关系,面面关系等方面的问题,必须在熟练掌握有关的定理和性质的前提下,再利用已知来进行证明, 属于中档题.23.40°【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图根据面面平行的性质定理和线面垂直的定义判定有关截线的关系根据点处的纬度计算出晷针与点处的水平面所成角【详解】画出截面图如下图所示其中是赤解析:40° 【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定义判定有关截线的关系,根据点A 处的纬度,计算出晷针与点A 处的水平面所成角. 【详解】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥.. 由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒, 由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒. 故答案为:40°.【点睛】本小题主要考查中国古代数学文化,解题的关键是将稳文中的数据建立平面图形,属于中档题.24.【分析】先画出直观图证明平面平面然后侧棱与底面ABC 所成的角即为根据题目中的数据算出即可【详解】如图作的中点连结因为侧面PBC 和底面ABC 都是边长为2的正三角形而为的中点所以又所以平面同时平面所以平解析:o 60. 【分析】先画出直观图,证明平面PAD ⊥平面ABC ,然后侧棱PA 与底面ABC 所成的角即为PAD ∠,根据题目中的数据算出即可. 【详解】如图,作BC 的中点D ,连结AD 、PD 因为侧面PBC 和底面ABC 都是边长为2的正三角形 而D 为BC 的中点,所以BC PD ⊥,BC AD ⊥,又PD AD D ⋂=,所以BC ⊥平面PAD ,同时BC ⊂平面ABC 所以平面PAD ⊥平面ABC ,所以PAD ∠即为侧棱PA 与底面ABC 所成的角 由侧面PBC 和底面ABC 都是边长为2的正三角形得3AD PD ==3PA =所以PAD ∆为等边三角形,则=PAD ∠o 60 即侧棱PA 与底面ABC 所成的角为o 60 故答案为:o 60 【点睛】本题主要考查空间直线与平面所成角的计算,较简单.三、解答题25.(1)证明见解析;(2)证明见解析. 【分析】( 1)设BD 与AC 的交点为O ,连接EO ,通过直线与平面平行的判定定理证明//PB 平面AEC ;( 2)通过体积得到底面为正方形,再由线面垂直得到面面垂直即可. 【详解】(1)连接BD 交AC 于点O ,连结EO , 因为ABCD 为矩形,所以O 为BD 的中点, 又E 为PD 的中点,所以//EO PB ,EO ⊂平面AEC ,PB ⊄平面AEC ,所以//PB 平面AEC .(2)因为113P ABCD V AB AD AP -=⨯⨯⨯=, 所以3AB =ABCD 为正方形,所以BD AC ⊥,因为PA ABCD ⊥,所以BD PA ⊥,且AC PA A ⋂=,所以BD ⊥平面PAC , 又BD ⊂平面PBD ,所以平面PAC ⊥平面PBD .【点睛】本题主要考查了立体几何及其运算,要证明线面平行先证明线线平行,要证明面面垂直,先证明线面垂直,考查了学生的基础知识、空间想象力. 26.(Ⅰ)证明见解析;(Ⅱ)63. 【分析】(Ⅰ)连接BD 交AC 于点O ,连接1D O ,连接11B D ,可证11//O B D O ,即可得证; (Ⅱ)依题意可得1D OD ∠是二面角1D AC D --的平面角,再根据锐角三角函数计算可得; 【详解】(Ⅰ)证明:连接BD 交AC 于点O ,连接1D O ,连接11B D , 由长方体的性质知11BO O D =,且11//BO O D , 故四边形11BO D O 是平行四边形, 所以11//O B D O .又因为1D O ⊂平面1ACD ,1O B ⊄平面1ACD , 所以1//O B 平面1ACD .(Ⅱ)解:设122AB BC AA ===,由长方体底面ABCD 是正方形,得DO AC ⊥. 因为11D A D C =,O 是AC 的中点,所以1D O AC ⊥, 所以1D OD ∠是二面角1D AC D --的平面角.。

空间解析几何-第2章 习题1

空间解析几何-第2章 习题1
= i, OO , OA, OO




ห้องสมุดไป่ตู้
b a AB BA a b
OO a b cos i a b sin j OA b cos i b sin j OA a b cos b cos i a b sin b sin j
第2习题课
习题 2.1-9 习题 2.4-8
• 习题2.1 • 9.当一圆沿着一个定圆的外部作无滑动地滚 动时,动圆上一点的轨迹叫做外旋轮线, 如果我们用a,b分别表示定圆和动圆的半径 ,试导出其参数方程(当a=b时,曲线叫做 心脏线) OA=OO OA • 解:
• 化简得
ab x a b cos b cos b ab y a b sin b sin b
• 习题2.4 • 8.有一质点,沿着已知圆锥面的一条直母线 自圆锥的顶点起,作等速直线运动,另一 方面这一条母线在圆锥面上,过圆锥的顶 点绕圆锥的轴(旋转轴)作等速的转动, 这时质点在圆锥面上的轨迹叫做圆锥螺线 ,试建立圆锥螺线的方程。

2021年高中数学第二章解析几何初步2.3.3空间两点间的距离公式学案北师大版必修2

2021年高中数学第二章解析几何初步2.3.3空间两点间的距离公式学案北师大版必修2

3.3 空间两点间的距离公式知识点 空间两点间的距离[填一填]1.用公式计算空间两点的距离一般地,如果长方体的长、宽、高分别为a ,b ,c ,那么对角线长d =a 2+b 2+c 2. 2.空间两点间的距离公式空间中点P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2)之间的距离是|P 1P 2|=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2.[答一答]1.已知点P (x ,y ,z ),如果r 为定值,那么x 2+y 2+z 2=r 2表示什么图形?提示:由x 2+y 2+z 2为点P 到坐标原点的距离,结合x 2+y 2+z 2=r 2知点P 到原点的距离为定值|r |,因此r ≠0时,x 2+y 2+z 2=r 2表示以原点为球心,|r |为半径的球面;r =0时,x 2+y 2+z 2=r 2表示坐标原点.2.平面几何中线段的中点坐标公式可以推广到空间中吗?提示:可以.空间线段的中点坐标公式可以类比平面中的结论得到:已知空间中两点A (x 1,y 1,z 1),B (x 2,y 2,z 2),则AB 的中点P 的坐标为(x 1+x 22,y 1+y 22,z 1+z 22).空间两点间的距离公式的注意点(1)空间两点间的距离公式是平面上两点间距离公式的推广,它可以求空间直角坐标系下任意两点间的距离,其推导过程体现了化空间为平面的转化思想.(2)若已知两点坐标求距离,则直接代入公式即可;若已知两点间距离求参数或点的坐标时,应利用公式建立相应方程求解.类型一 空间两点间的距离公式的应用 【例1】 已知点P (1,-1,2),求: (1)P 到原点O 的距离; (2)P 到y 轴的距离; (3)P 到平面xOy 的距离.【思路探究】 (1)可直接运用两点间距离公式,(2)(3)中所求距离需要转化为两点间的距离.【解】 (1)点P (1,-1,2)到原点O 的距离为d (O ,P )=12+(-1)2+22= 6. (2)∵点P 在y 轴上的投影为P y (0,-1,0),∴P 到y 轴的距离为d (P ,P y )=(1-0)2+(-1+1)2+(2-0)2= 5.(3)∵点P 在平面xOy 上的投影为P 1(1,-1,0), ∴P 到平面xOy 的距离为d (P ,P 1)=(1-1)2+(-1+1)2+(2-0)2=2.规律方法 一个点到坐标轴的距离等于该点与其在这条坐标轴上的投影间的距离,一个点到坐标平面的距离等于该点与其在这个平面内的投影间的距离.求以下两点间的距离. (1)A (1,0,-1),B (0,1,2); (2)A (10,-1,6),B (4,1,9).解:(1)|AB |=(1-0)2+(0-1)2+(-1-2)2=11. (2)|AB |=(10-4)2+(-1-1)2+(6-9)2=49 =7.类型二 求点的坐标【例2】 (1)在x 轴上求一点P ,使它与点A (3,1,-2)的距离为41;(2)在xOy 平面内的直线x -y =1上确定一点M ,使它到点B (-1,3,1)的距离最小. 【思路探究】 根据点的位置特征,设出其坐标,利用两点间的距离公式,结合代数知识求解.【解】 (1)设点P (x,0,0).由题意,得|P A |=(x -3)2+1+4=41, 解得x =9或x =-3.所以点P 的坐标为(9,0,0)或(-3,0,0).(2)由条件,可设M (x ,x -1,0),则|MB |=(x +1)2+(x -1-3)2+(0-1)2=2⎝⎛⎭⎫x -322+272. 所以当x =32时,|MB |min =362,此时点M 的坐标为⎝⎛⎭⎫32,12,0.规律方法 利用两点间的距离公式确定点的坐标,若能巧妙地设出点的坐标,则坐标易求.例如,在x 轴上的点的坐标可设为(x,0,0),在y 轴上的点的坐标可设为(0,y,0),在xOy 平面上的点的坐标可设为(x ,y,0).设点A 在x 轴上,它到点P (0,2,3)的距离等于到点Q (0,1,-1)的距离的两倍,那么点A 的坐标是( A )A .(1,0,0)或(-1,0,0)B .(2,0,0)或(-2,0,0) C.⎝⎛⎭⎫12,0,0或⎝⎛⎭⎫-12,0,0 D.⎝⎛⎭⎫-22,0,0或⎝⎛⎭⎫22,0,0解析:设点A 的坐标为(x,0,0).根据题意有|AP |=2|AQ |,则(x -0)2+(0-2)2+(0-3)2=2(x -0)2+(0-1)2+(0+1)2,解得x =±1,故点A 的坐标为(1,0,0)或(-1,0,0). 类型三 求空间中线段的长度【例3】 长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,D 1D =3,点M 是B 1C 1的中点,点N 是AB 的中点.建立如图所示空间直角坐标系.(1)写出点D ,N ,M 的坐标; (2)求线段MD ,MN 的长度;(3)设点P 是线段DN 上的动点,求|MP |的最小值.【思路探究】 (1)D 是原点,先写出A ,B ,B 1,C 1的坐标,再由中点坐标公式得M ,N 的坐标;(2)代入公式即可;(3)设出P 的坐标,得到|MP |的表达式,转化为求二次函数的最小值.【解】 (1)∵A (2,0,0),B (2,2,0),N 是AB 的中点,∴N (2,1,0).同理可得M (1,2,3),又D 是原点,则D (0,0,0).(2)|MD |=(1-0)2+(2-0)2+(3-0)2=14, |MN |=(1-2)2+(2-1)2+(3-0)2=11.(3)点P 在xDy 平面上,设点P 的坐标为(2y ,y,0),则 |MP |=(2y -1)2+(y -2)2+(0-3)2 =5y 2-8y +14=5(y -45)2+545.∵y ∈[0,1],0<45<1,∴当y =45时,|MP |取最小值545,即3305. ∴|MP |的最小值为3305.规律方法 解决空间中的距离问题就是把点的坐标代入距离公式计算,其中确定点的坐标或合理设出点的坐标是关键.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,且E 是棱DD 1的中点,求BE ,A 1E 的长.解:以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,依题意,得B (1,0,0),E (0,1,12),A 1(0,0,1),所以|BE |=(1-0)2+(0-1)2+(0-12)2=32,|A 1E |=(0-0)2+(0-1)2+(1-12)2=52.——多维探究系列—— 建立空间直角坐标系解决几何问题【例4】 正方体ABCD -A 1B 1C 1D 1中,P 为平面A 1B 1C 1D 1的中心,求证:AP ⊥B 1P . 【思路分析】 建立空间直角坐标系,利用直角三角形中两直角边互相垂直来证明. 【精解详析】 建立如图所示的空间直角坐标系D -xyz ,设棱长为1,则A (1,0,0),B 1(1,1,1),P (12,12,1),由空间两点间的距离公式得|AP |=(1-12)2+(0-12)2+(0-1)2=62,|B 1P |=(1-12)2+(1-12)2+(1-1)2=22,|AB 1|=(1-1)2+(0-1)2+(0-1)2=2, ∴|AP |2+|B 1P |2=|AB 1|2,∴AP ⊥B 1P .【解后反思】 已知立体几何中点、线、面间的位置关系及线段长度间的数量关系,判断两条相交直线或线段垂直时,可建立适当的空间直角坐标系,构造三角形,利用空间两点间的距离公式求边长,判断该三角形为直角三角形.已知点A (0,1,0)、B (-1,0,-1)、C (2,1,1),若点P (x,0,z )满足P A ⊥AB ,P A ⊥AC ,试求点P 的坐标.解:∵P A ⊥AB ,∴△P AB 为直角三角形,∴|PB |2=|P A |2+|AB |2,即(x +1)2+(z +1)2=x 2+1+z 2+1+1+1,即x +z =1,① 又∵P A ⊥AC ,∴△P AC 为直角三角形,∴|PC |2=|P A |2+|AC |2,即(x -2)2+1+(z -1)2=x 2+1+z 2+4+0+1,即2x +z =0,②由①②得⎩⎪⎨⎪⎧x =-1,z =2,∴点P 的坐标为P (-1,0,2).一、选择题1.点A (-1,0,1)与坐标原点O 的距离是( A ) A.2 B.3 C .1 D .2 2.已知点A (2,3,5),B (-2,1,3),则|AB |等于( B ) A. 6 B .2 6 C. 2 D .2 2解析:代入两点间的距离公式得|AB |=2 6. 3.M (4,-3,5)到x 轴的距离为( B ) A .4 B.34 C .5 2 D.41解析:如图所示,MA⊥平面xOy,AB⊥x轴,则|MB|=52+(-3)2=34.二、填空题4.在Rt△ABC中,∠BAC=90°,已知A(2,1,1),B(1,1,2),C(x,0,1),则x=2.解析:|AB|2=(1-2)2+(1-1)2+(2-1)2=2,|BC|2=(x-1)2+(0-1)2+(1-2)2=x2-2x+3,|AC|2=(x-2)2+(0-1)2+(1-1)2=x2-4x+5,根据题意,得|AB|2+|AC|2=|BC|2,所以2+x2-4x+5=x2-2x+3,解得x=2.5.已知点P在z轴上,且满足|PO|=1(O为坐标原点),则点P到点A(1,1,1)的距离是2或 6.解析:由题意得P(0,0,1)或P(0,0,-1),所以|P A|=2或 6.三、解答题6.已知A(1,-2,11),B(4,2,3),C(6,-1,4),试判断△ABC的形状.解:d(A,B)=(4-1)2+(2+2)2+(3-11)2=89,d(A,C)=(6-1)2+(-1+2)2+(4-11)2=75,d(B,C)=(6-4)2+(-1-2)2+(4-3)2=14.∴d2(A,B)=d2(A,C)+d2(B,C),且d(A,B),d(A,C),d(B,C)两两不等.∴△ABC 为直角三角形.。

大学高数空间解析几何2.

大学高数空间解析几何2.

曲西方程;F (xj,z )=O空同解祈/L 何一・曲面方程的概念定义:如果曲面s 与三元方程F (x,j,z) = O 满足:(1)曲面s 上任一点的坐标都满足方程F (xj^z) =O(2)不在曲面S 上的点的坐标都不满足方程.二、平面及其方程例1设有点A (1,2,3)与B (2,-1,4),求与线段AB垂直平分的平面方程・所求平面就是与A和B等距离的动点的轨迹设平面上任一点为A/(x,j,z)AM\ = \MnI (X・ 1)2 + (y ・ 2)2 + (z - 3)2 = V(x-2y+6 + iy +(z-4)2化简得2x-6j + 2z-7 = 0 —所求平面方程Ax + By+ Cz + D = O平面的一般方程■特殊半廁XOYlfri z = 0YOZ 而x =()zox 而y=o适合下列条件的平面方程Ax + B\+Cz^D = 0仃什么特征?I.过原点0 = 02•平行于他标轴 3 •包含坐标轴平行于X4 = 0包含X4 = 0Q = 0v/? = o>^B = 0 D = 02C = 0zC = 0Q = ()4•平行于坐标平面平行于XOY面4=0 B=Q zox®4=0C=0YOZifii B = 0 C = 04例2作Z-2的图形.三、球面及其方程例3建立球心在点Mo (myo, z…)半径为R的球而的方程.设是球面上的任一点\M A M = RJ (X-Xo) 2 + Cv-几)'+ (z・zj 承(尤-X J+ (y - y 0 y+ (z - z J=j 11+ZH OXZ ——HA THP GWOZZ XHXZ(o n )吕舍sHJ+X•I \7 卜 乙——K \—/ 丟逗迂膜低丫OHd +Xz IJ+ wZ = JQ■宀b上半部例5求与原点O及M❶(2,3,4)的距离之比为1:2 点的全体所组成的曲面方程•解设M (兀jsz)是曲面上任一点根据题意有-=1恨俯惣恵月IMMJ 2J(X・2), + (y - 3)2 +(Z - 4), 2所求方程为卜+I卜0+1)并+寻」四•旋转曲面定义以一条平曲线纟翹平面上的一条直线旋黔一周所成的曲面称为旋转曲面.这条定直线叫旋转曲面的轴.旋转面的方程曲线C卩(”Z)=0lx = 0曲线C〔八”乙)二。

解析几何尤承业前四章部分习题答案

解析几何尤承业前四章部分习题答案

解析几何(尤承业)前四章部分习题答案第一章:平面几何基础1.证明:若两条直线的斜率相等,则它们平行。

证明:设直线l1的斜率为k1,直线l2的斜率为k2。

若k1=k2,则有k1x+b1=k2x+b2,即(k1-k2)x=b2-b1。

由于k1-k2=0,所以方程化简为0x=b2-b1。

由于任何实数乘以0都等于0,所以此方程有解,即二者平行。

2.已知直线l1的斜率为k1,直线l2经过点A(a,b)且与l1垂直,求直线l2的方程。

解:由直线l1的斜率为k1,可知l1的斜率为k1的直线上任意一点(x1,y1)与原点(0,0)的斜率为k1,即有y1/x1=k1,即y1=k1x1。

由于直线l2经过点A(a,b)且与l1垂直,所以直线l2的斜率为-1/k1。

设直线l2的方程为y=-1/k1 x + c,代入点A(a,b)可得b=-1/k1*a+c,即c=b+a/k1。

所以直线l2的方程为y=-1/k1 x + b+a/k1。

3.已知直线l1过点A(a,b)和点B(c,d),求直线l1的方程。

解:由于直线l1过点A(a,b)和点B(c,d),所以直线l1的斜率为直线AB的斜率。

设直线l1的方程为y=kx+m,代入点A(a,b)和点B(c,d)可得方程组: b=ka+m d=kc+m将第一个方程乘以k,得到bk=ka^2+km,再用第二个方程减去这个等式,可得d-b = kc-ka^2+km-km,即d-b=k(c-a)。

所以直线l1的方程为y=(d-b)/(c-a)x + (ad-bc)/(c-a)。

第二章:直线与圆1.已知直线l的方程为y=ax+b,圆C的圆心为O(h,k),半径为r,求直线l与圆C的交点坐标。

解:设直线l与圆C的交点为点P(x,y),代入直线l的方程可得y=ax+b。

将这个方程代入圆C的方程(x-h)^2+(y-k)^2=r^2中,得到(x-h)^2+(ax+b-k)^2=r^2。

展开后整理得到一个二次方程,即x^2+(a^2+1)x-2ah+(b-k)^2-r^2=0。

解析几何第二章第一二节

解析几何第二章第一二节
规定: 0 r ,
0 2,
z
( M ( x, y, z )) M (r, , z )
z .
x
o

r
P(r , )

y
如图,三坐标面分别为
圆柱面; 为常数 半平面; z 为常数 平 面. 柱面坐标与直 角坐标的关系为 x r cos , y r sin , z z.
y
y
作业:P52
3,5,7
§2 平面的方程
1.1平面的参数方程和一般方程 1.2 两平面的相关位置 1.3三平面恰交于一点的条件
M 0 ( x0 , y0 , z 0 ) ,向量 1 ( X 1 ,Y1 , Z1 ) 和向量 ) 2( X 2 ,Y2 , Z 2,其中 1 与 2 不共线, 求由点 M 0 和 1 2 确定的平面 的方程。 z M x , y , z 在平面上 点 2 M M0 M 0 M 与v1 ,v2 共面 e3 e 2 1 v1 // v2 o y e1 M 0 M , v1 , v2共面,则存在唯一的一对实数 x , 使得: M 0 M v1 v2 .
三元二次方程:Ax By Cz Dxy Eyz Fzx Gx Hy Kz L 0 若A B C 0, D E F 0,整理得:
2 2 2
x y z 2b1 x 2b2 y 2b3 z c 0;
2 2 2
( x b1 ) ( y b2 ) ( z b3 ) b1 b2 b3 c .
2. 如果取u, v (a≤u≤b, c≤v≤d)的一切可能 取值,向量 r ( u, v ) x( u, v )e1 y( u, v )e2 z(u, v )e3 的终点 M 总在一个曲面上;反过来, 在这个曲面上的任意点M总对应着以它为 终点的向量, 且该向量可由u, v的值通过 (a≤u≤b, c≤v≤d)完全决定; 那么我们就把上式叫做曲面的向量式参 数方程,其中u, v为参数.

(完整版)高等数学空间解析几何练习

(完整版)高等数学空间解析几何练习

向量代数与空间解析几何第一部分 向量代数___线性运算[内容要点]:1. 向量的概念.2. 向量的线性运算.3. 向量的坐标,利用坐标作向量的线性运算.[本部分习题]1. 指出下列各点所在的坐标轴、坐标面或哪个卦限。

(2,3,5);(0,4,3);(0,3,0)A B C ---2. 求点(1,3,2)--关于点(1,2,1)-的对称点坐标。

3. 求点(4,3,5)M --到各坐标轴的距离。

4. 一向量的起点为(1,4,2)A -,终点为(1,5,0)B -,求AB →在x 轴、y 轴、z 轴上的投影,并求||AB →。

5. 已知两点1M 和2(3,0,2)M ,计算向量12M M −−→的模、方向余弦和方向角。

6. 已知{3,5,4},{6,1,2},{0,3,4},a b c →→→==-=--求234a b c →→→-+及其单位向量.7.设358,247,54,a i j k b i j k c i j k →→→→→→→→→→→→=++=--=--求向量43l a b c →→→→=+-在x 轴上的投影以及在y 轴上的分向量.第二部分 向量代数___向量的“积"[内容要点]:1。

向量的数量积、向量积的概念、坐标表示式及其运算规律。

2。

向量的混合积的概念、坐标表示式及其几何意义。

3.向量垂直、平行、共面的条件.[本部分习题]1. 设{3,1,2},{1,2,1},a b →→=--=-求: (1);(2);(3)cos(,);(4)Pr ;(5)Pr .a b a b a b a b j b j a →→→→→→→→⋅⨯2. 设{2,3,1},{1,1,3},{1,2,0},a b c →→→=-=-=-求: (1)();(2)();(3)();a b c a b c a b c →→→→→→→→→⨯⋅⨯⨯⨯⨯3. 利用向量证明不等式112233a b a b a b ≥++ 其中,(1,2,3)i i a b i =均为实数,并指出等号成立的条件.4.设{3,5,2},{2,1,9},a b →→=-=试求λ的值,使得:(1)a b λ→→+与z 轴垂直;(2)a b λ→→+与a →垂直,并证明此时||a b λ→→+取最大值。

空间解析几何课后习题答案

空间解析几何课后习题答案

30平面曲线弧长(1) 曲线:()x f y = b x a ≤≤ ()dx x f 1s b a 2⎰+= (2) ()()⎩⎨⎧==t y y t x x βα≤≤t ()()dt t y t x s 22⎰+'=βα(3) ()θr r = βθα≤≤ ()()θθθβαd r r s 22⎰'+=例 求下类平面曲线的弧长 1. 曲线()2x 1ln y -=相应于21x 0≤≤的一段 2. 心形线()θcos 1a r +=的全长 ()0a > 3.摆线⎩⎨⎧-=-=t sin t y tcos 1x π2t 0≤≤的一拱解:1. 2x1x 2y --=' 222x 1x 1y 1-+='+dx x1x 1s 2122⎰-+=dx x 11x 111210⎰⎪⎭⎫ ⎝⎛-+++-=21x 1x1ln21-++-= 3ln 21+-=2. ()θθsin a r -='()()θθθθθθd sin a cos a cos a 2a r r 22222222+++='+ 2cos a 2cos 1a 2θθ=+=⎰=πθθ20d 2cos a 2S⎰⎰-=πππθθθθ20d 2cos d 2cos a 2 ⎥⎥⎦⎤⎢⎢⎣⎡-=πππθθ202sin22sin 2a 2a 8=4.()()()()dt t cos 1t sin dt t y t x S 20222022⎰⎰-+='+'=ππ⎰=π20dt 2t sin2 ⎰=π20dt 2t sin2 π202t cos 4⎪⎭⎫ ⎝⎛-=8=40向变力沿直线作功,液体的水压力 P137空间解析几何10向量及其线性运算 P149—P152 向量的坐标表达式及其运算 P153—P15420向量的数量积的向量积{}z y x z y x a ,a ,a k a j a i a a =++=(1)向量积 {}z y x z y x b ,b ,b k b j b i b b b ,a cos b a b a =++=⎪⎪⎭⎫ ⎝⎛=⋅∧()()2z 2y 2x baa a a a ab ba ++===性质:P155z z y y x x b a b a b a b a ++=⋅应用:(i ) b a b a arccos b a ⋅-=⎪⎪⎭⎫ ⎝⎛⋅∧ (ii ) 2a a a a=⋅=(iii )0b a b a =⋅↔⊥例1、习题4,1选择题(1)(2)(3) 2 填空题(3)(4)(5)例2、设192b 3a 2则,3πb a 2,b 5,a =-=⎪⎪⎭⎫ ⎝⎛⋅==∧解:()()76b 9b a 2a 4b 3a 2b 3a 2b 3a 2222=+⋅-=-⋅-=-∴ 192b 3a 2=-(2)向量积c b a =⨯()∧=⨯=b ,a sin b a b a c ,b b a ,a b a b c ,a c ⊥⨯⊥⨯⊥⊥即右手定则即()()0b b a 0,a b a =⋅⨯=⋅⨯性质P155 注意a b b a⨯-=⨯zy xz y xb b b a a a k j i b a=⨯应用(i)S ABC Δ=(ii )0b a b //a =⨯↔(iii )如()b a //c 则,c b ,c a⨯⊥⊥即利用向量积求出同时垂直两个已知矢量的矢量。

高中数学第二章平面解析几何初步2.4.2空间两点的距离公式练习(含解析)新人教B版必修2

高中数学第二章平面解析几何初步2.4.2空间两点的距离公式练习(含解析)新人教B版必修2

对应学生用书P75知识点一空间两点间的距离高中数学第二章平面解析几何初步2.4.2空间两点的距离公式练习(含解析)新人教B版必修21.在空间直角坐标系中,点A(3,2,-5)到x轴的距离d等于( )A.32+22 B.22+-52C.32+-52 D.32+22+-52答案 B解析过点A作AB⊥x轴于点B,则B(3,0,0),所以点A到x轴的距离d=|AB|=22+-52.2.如图,在空间直角坐标系中,有一棱长为a的正方体ABCO-A′B′C′O′,则A′C 的中点E与AB的中点F的距离为( )A.2aB.22aC.aD.12a答案 B解析A′(a,0,a),C(0,a,0),点E的坐标为a2,a2,a2,而F⎝⎛⎭⎪⎫a,a2,0,∴|EF|=a24+02+a24=22a,故选B.知识点二空间两点间距离公式的应用3.点P(x ,y ,z)满足x -12+y -12+z +12=2,则点P 在( )A .以点(1,1,-1)为球心,以2为半径的球面上 B .以点(1,1,-1)为中心,以2为棱长的正方体内 C .以点(1,1,-1)为球心,以2为半径的球面上 D .以上都不正确 答案 C 解析x -12+y -12+z +12表示P(x ,y ,z)到点M(1,1,-1)的距离,即|PM|=2为定值.故点P 在以点(1,1,-1)为球心,以2为半径的球面上.4.如图所示,PA ,AB ,AD 两两垂直,四边形ABCD 为矩形,M ,N 分别为AB ,PC 的中点.求证:MN⊥AB.证明 如图所示,以A 为坐标原点,分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则A(0,0,0),设B(a ,0,0),D(0,b ,0),C(a ,b ,0),P(0,0,c),连接AN .因为M ,N 分别是AB ,PC 的中点,所以M ⎝ ⎛⎭⎪⎫a 2,0,0,N ⎝ ⎛⎭⎪⎫a 2,b 2,c 2,则|AM|2=a 24,|MN|2=b 2+c 24,|AN|2=a 2+b 2+c24,所以|AN|2=|MN|2+|AM|2,所以MN⊥AB.对应学生用书P75一、选择题1.在空间直角坐标系中,一定点P 到三个坐标轴的距离都是1,则该点到原点的距离是( )A .62 B . 3 C .32 D .63答案 A解析 如图所示,在正方体OABC -O 1A 1B 1C 1中,设正方体的棱长为a(a >0),则点P 在顶点B 1处,建立分别以OA ,OC ,OO 1所在直线为x 轴,y 轴,z 轴的空间直角坐标系,则点P 的坐标为(a ,a ,a),由题意得a 2+a 2=1,∴a 2=12,∴|OP|=3a 2=3×12=62. 2.与两点A(3,4,5),B(-2,3,0)距离相等的点M(x ,y ,z)满足的条件是( ) A .10x +2y +10z -37=0 B .5x -y +5z -37=0 C .10x -y +10z +37=0 D .10x -2y +10z +37=0 答案 A解析 由|MA|=|MB|,即(x -3)2+(y -4)2+(z -5)2=(x +2)2+(y -3)2+z 2,化简得10x +2y +10z -37=0,故选A .3.到定点(1,0,0)的距离小于或等于2的点的集合是( ) A .{(x ,y ,z)|(x -1)2+y 2+z 2≤2} B .{(x ,y ,z)|(x -1)2+y 2+z 2≤4} C .{(x ,y ,z)|(x -1)2+y 2+z 2≥4}D .{(x ,y ,z)|x 2+y 2+z 2≤4} 答案 B解析 由空间两点间的距离公式可得,点P(x ,y ,z)到定点(1,0,0)的距离应满足x -12+y 2+z 2≤2,即(x -1)2+y 2+z 2≤4.4.△ABC 的顶点坐标是A(3,1,1),B(-5,2,1),C ⎝ ⎛⎭⎪⎫-83,2,3,则它在yOz 平面上射影的面积是( )A .4B .3C .2D .1 答案 D解析 △ABC 的顶点在yOz 平面上的射影点的坐标分别为A′(0,1,1),B′(0,2,1),C′(0,2,3),∵|A′B′|=0-02+1-22+1-12=1,|B′C′|=0-02+2-22+3-12=2, |A′C′|=0-02+2-12+3-12=5,∴|A′B′|2+|B′C′|2=|A′C′|2,∴△ABC 在yOz 平面上的射影△A′B′C′是一个直角三角形,它的面积为1.5.已知A(x ,5-x ,2x -1),B(1,x +2,2-x),当|AB|取最小值时,x 的值为( ) A .19 B .-87 C .87 D .1914答案 C 解析 |AB|=x -12+3-2x2+3x -32=14x 2-32x +19=14⎝ ⎛⎭⎪⎫x -872+57, ∴当x =87时,|AB|最小.二、填空题6.在空间直角坐标系中,设A(m ,1,3),B(1,-1,1),且|AB|=22,则m =________. 答案 1 解析 |AB|=m -12+[1--1]2+3-12=22,解得m =1.7.已知点P 32,52,z 到线段AB 中点的距离为3,其中A(3,5,-7),B(-2,4,3),则z =________.答案 0或-4解析 由中点坐标公式,得线段AB 中点的坐标为12,92,-2.又点P 到线段AB 中点的距离为3,所以32-122+52-922+[z--2]2=3,解得z=0或-4.8.点B(3,0,0)是点A(m,2,5)在x轴上的射影,则点A到原点的距离为________.答案4 2解析由点B(3,0,0)是点A(m,2,5)在x轴上的射影,得m=3,所以点A到原点的距离为d=32+22+52=32=42.三、解答题9.如图所示,直三棱柱ABC-A1B1C1中,|C1C|=|CB|=|CA|=2,AC⊥CB,D,E,F分别是棱AB,B1C1,AC的中点,求|DE|,|EF|.解以点C为坐标原点,CA,CB,CC1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.∵|CC1|=|CB|=|CA|=2,∴C(0,0,0),A(2,0,0),B(0,2,0),C1(0,0,2),B1(0,2,2),由空间直角坐标系中的中点坐标公式可得D(1,1,0),E(0,1,2),F(1,0,0),∴|DE|=1-02+1-12+0-22=5,|EF|=0-12+1-02+2-02=6.10.如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD,ABEF互相垂直.点M在AC上移动,点N在BF上移动,若CM=BN=a(0<a<2),(1)求MN的长;(2)当a为何值时,MN的长最小.解由于平面ABCD、ABEF互相垂直,其交线为AB,且CB⊥AB,所以CB⊥平面ABEF,故以B为原点O,BC所在直线为z轴正半轴,BA所在直线为x轴正半轴,BE所在直线为y轴正半轴,建立空间直角坐标系.由于N点在对角线BF上,且BN=a,N点到x轴和到y轴的距离相等,所以N点坐标为2 2a,22a,0.同理M点的坐标为M22a,0,1-22a.于是:(1)MN=22a-22a2+22a-02+22a-12=a-222+12,0<a<2.(2)由(1)知MN=a-222+12,故当a=22时,MN有最小值,且最小值为22.。

空间解析几何-第2章 空间的平面与直线

空间解析几何-第2章 空间的平面与直线
由平面过点(6,3, 2) 知 6 A 3 B 2C 0
n{4,1,2},
4 A B 2C 0
2 A B C, 3 所求平面方程为 2 x 2 y 3 z 0.

例5 求通过点M(2,-1,1)与N(3,-2,1),且平行于 z轴的平面的方程

4. 过点M(3,2,-4)且在x轴和y轴上截距分别为-2 和-3的平面 5. 已知两点M1(3,-1,2)和M2(4,-2,-1) ,通过 M1且垂直于M1M2的平面 6. 已知平面上三点A(3,-1,2) B (4,-2,-1) C(3,2,-4),求平面方程。 求通过直线 截距相等的平面方程 ,且在y轴与z轴上
类似地可讨论 A C 0, B C 0 情形.
(4) A B D 0,
有z 0,即xoy面.
例 4 设平面过原点及点( 6,3, 2) ,且与平面
4 x y 2 z 8 垂直,求此平面方程.
解 设平面为 Ax By Cz D 0, 由平面过原点知 D 0,
代入体积式
1 1 1 1 1 1 t , 6 6t t 6 t 6
a 1, b 6, c 1,
所求平面方程为 6 x y 6 z 6. 或
6 x y 6z 6.
已知平面上一点和不共线两个向量, 求通过该点与两向量平行的平面 ——点位式/坐标式参数方程
例 3 一直线过点 A( 2,3,4 ),且和 y 轴垂直 . . 相交,求其方程

因为直线和y 轴垂直相交,
所以交点为 B(0,3, 0),
取 s BA ( 2, 0, 4),
x2 y3 z4 所求直线方程 . 2 0 4

空间解析几何第二章作业答案

空间解析几何第二章作业答案

第二章 向量代数参考答案6.(1)a b ⊥ ; (2)a b 与同向 ; (3),,2a b ππ⎛⎤<>∈ ⎥⎝⎦;(4),0,2a b π⎡⎫<>∈⎪⎢⎣⎭; (5),a b 反向,且 ||||a b ≥ ; (6),a b 反向12.解: 1360cos 31291=⨯⨯⨯++==o 760cos 31291=⨯⨯⨯-+==o15.求证:由三角形两边中点做成的线段(中位线)平行于第三边且等于第三边的一半。

证明:由题意可知BC BA AC =+,21)(21=+=+= 故BC DE BC DE 21//=且得证。

17.证明三角形的三条中线共点。

证明:设两中线AM 和BM 交于点G ,只要证第三条中线CP 通过点G ,也就是证C ,G ,P三点共线,或证//CG CPCG AG AC =-()12(1)AM AC AB AC AC λλλλ=-=+-++22(1)2(1)AB AC λλλλ+=-++又()1CG CB BG AB AC BN μμ=+=-++()1AB AC AN AB μμ=-+-+1()12AB AC AC AB μμ=-+-+1112(1)AB AC μμμμ⎛⎫⎛⎫=-+- ⎪ ⎪++⎝⎭⎝⎭//AB AC ,所以比较上面两式得12(1)1212(1)2(1)λμλμλμλμ⎧=-⎪++⎪⎨+⎪-=-⎪++⎩ 于是得2λμ==所以1233CG AB AC =- 而12CP AP AC AB AC =-=-从而有23CG CP =,所以//CG CP 因此三点C ,G ,P 共线,即三直线共点。

18.已知向量32132132126,,32e e e c e e e b e e e a +-=++=+-=其中321,,e e e 不共面,求++,+-。

解:12312312313236242a b c e e e e e e e e e e e +-=-++++-+-=-+1231231231232362644a b c e e e e e e e e e e e e -+=-+---+-+=-+19. 已知向量313221,,e e e e e e +=+=+=求---,,并判断是否共面?为什么? 解:132132, , a b e e b c e e c a e e -=--=--=- 假设存在μλ,使)()a c c b b a -=-=-μλ(解得1,1-=-=μλ 所以存在唯一的μλ,,故a c c b b a ---,,三个向量共面。

解析几何第四版第二章答案

解析几何第四版第二章答案

解析几何第四版第二章答案【篇一:解析几何答案-第二章】txt>2.1 曲面的方程1、一动点移动时,与a(4,0,0)及xoy平面等距离,求该动点的轨迹方程。

解:设在给定的坐标系下,动点m(x,y,z),所求的轨迹为c,则m(x,y,z)?c22?2?z?z亦即(x?4)?y?z?(x?4)2?y2?0由于上述变形为同解变形,从而所求的轨迹方程为(x?4)2?y2?02(1(2(3(4解:(1常数为mm(x,y,z),m(x,y,z亦即(x?0 (2)建立坐标系如(1),但设两定点的距离为2c,距离之和常数为2a。

设动点m(x,y,z),要求的轨迹为c,则m(x,y,z)?c?(x?c)2?y2?z2?(x?c)2?y2?z2?2a222222亦即(x?c)?y?z?2a?(x?c)?y?z两边平方且整理后,得:(a?c)x?ay?az?a(a?c) (1)2222222222?a?c?令b2?a2?c2从而(1)为bx?ay?az?ab22222222即:b2x2?a2y2?a2z2?a2b2由于上述过程为同解变形,所以(3)即为所求的轨迹方程。

(3)建立如(2)的坐标系,设动点m(x,y,z),所求的轨迹为c,则m(x,y,z)?c?(x?c)2?y2?z2?(x?c)2?y2?z2??2ax2y2z2类似于(2),上式经同解变形为:2?2?2?1abc其中b2?c2?a2(c?a) (*)(*)即为所求的轨迹的方程。

(4)取定平面为xoy面,并让定点在z轴上,从而定点的坐标为(0,0,c)m。

设动点m (*)(*2、(1)中心(2(3(4解:(1(x?2)2?(y?1)2?(z?3)2?36(2)由已知,球面半径r?所以类似上题,得球面方程为62?(?2)2?32?7x2?y2?z2?49(3)由已知,球面的球心坐标a?2?4?3?15?3?3,b???1,c??1,球的半径222r?1(4?2)2?(1?3)2?(5?3)2?,所以球面方程为: 2(x?3)2?(y?1)2?(z?1)2?21(4)设所求的球面方程为:x2?y2?z2?2gx?2hy?2kz?l?0 因该球面经过点(0,0,0),(4,0,0),(1,3,0),(0,0,?4),所以?l?0?16?8g?0?(1) ??10?2g?6h?0??16?8k?0解(1)有?l?0?h??1??g??2?1(1)4x2(1)4x22.3空间曲线的方程1、平面x?c与x?y?2x?0的公共点组成怎样的轨迹。

空间解析几何练习2答案

空间解析几何练习2答案

空间解析几何练习2解答1. 求过点M 0(2, 9, -6)且与连接坐标原点及点M 0的线段OM 0垂直的平面方程. 解 所求平面的法线向量为n =(2, 9, -6), 所求平面的方程为2(x -2)+9(y -9)-6(z -6)=0, 即2x +9y -6z -121=0.2. 求点(1, 2, 1)到平面x +2y +2z -10=0的距离.解 点(1, 2, 1)到平面x +2y +2z -10=0的距离为1221|1012221|222=++-⨯+⨯+=d . 3. 求过点(2, 0, -3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程. 解 所求平面的法线向量n 可取为直线⎩⎨⎧=+-+=-+-012530742z y x z y x 的方向向量, 即 k j i k j i n 111416253421)2 ,5 ,3()4 ,2 ,1(++-=--=-⨯-=. 所平面的方程为-16(x -2)+14(y -0)+11(z +3)=0, 即16x -14y -11z -65=0.4. 证明直线⎩⎨⎧=++-=-+7272z y x z y x 与直线⎩⎨⎧=--=-+028363z y x z y x 平行. 解 直线⎩⎨⎧=++-=-+7272z y x z y x 与⎩⎨⎧=--=-+028363z y x z y x 的方向向量分别为 k j i k j i s 531121211++=--=, k j i k j i s 15391123632---=---=. 因为s 2=-3s 1, 所以这两个直线是平行的.5. 设M 0是直线L 外一点, M 是直线L 上任意一点, 且直线的方向向量为s , 试证: 点M 0到直线L 的距离→||||0s s ⨯=M M d . 解 设点M 0到直线L 的距离为d , L 的方向向量→MN =s , 根据向量积的几何意义, 以→M M 0和→MN 为邻边的平行四边形的面积为 →→→||||00s ⨯=⨯M M MN M M ,又以→M M 0和→MN 为邻边的平行四边形的面积为→||||s ⋅=⋅d MN d . 因此→||||0s s ⨯=⋅M M d , →||||0s s ⨯=M M d . 6. 已知动点M (x ,y ,z )到xOy 平面的距离与点M 到点(1, -1, 2)的距离相等, 求点M 的轨迹方程. 解 根据题意, 有222)2()1()1(||-+++-=z y x z ,或 z 2=(x -1)2+(y +1)2+(z -2)2,化简得(x -1)2+(y +1)2=4(z -1),这就是点M 的轨迹方程.7. 已知点A (1, 0, 0)及点B (0, 2, 1), 试在z 轴上求一点C , 使∆ABC 的面积最小.解 设所求的点为C (0, 0, z ), 则→) ,0 ,1(z AC -=, →)1 ,2 ,0(--=z BC .因为 →→k j i k j i 2)1(212001+-+=---=⨯z z z z BC AC , 所以∆ABC 的面积为→→4)1(421||2122+-+=⨯=z z BC AC S . 令04)1(4)1(284122=+-+-+⋅=z z z z dz dS , 得51=z , 所求点为)51 ,0 ,0(C . 设|a |=4, |b |=3, 6) ,(^π=b a , 求以a +2b 和a -3b 为边的平行四边形的面积. 解 (a +2b )⨯(a -3b )=-3a ⨯b +2b ⨯a =5b ⨯a .以a +2b 和a -3b 为边的平行四边形的面积为3021435) ,sin(||||5||5|)3()2(|^=⋅⋅⋅=⋅=⨯=-⨯+b a a b a b b a b a。

解析几何,吕林根,课后习题解答一到五

解析几何,吕林根,课后习题解答一到五
2
(3) (a 2b) (b 2a)
解:
2. 证明:
(1)( a b )2≤a 2 b 2, 并说明在什么情形下等号成立.
(2) 如果 a + b + c = 0 ,那么 a b = b c = c a ,并说明它的几何意义.
(3) 如果 a b c d , a c b d .那么 a d 与 b c 共线.
第一章 矢量与坐标
§1.1 矢量的概念
1.下列情形中的矢量终点各构成什么图形? (1)把空间中一切单位矢量归结到共同的始点; (2)把平行于某一平面的一切单位矢量归结到共同的始点; (3)把平行于某一直线的一切矢量归结到共同的始点; (4)把平行于某一直线的一切单位矢量归结到共同的始点.
解:
2. 设点 O 是正六边形 ABCDEF 的中心,
[证明]:
图 1-1
.
4. 如图 1-3,设 ABCD-EFGH 是一个平行六面体, 在下列各对矢量中,找出相等的矢量和互为相
反矢量的矢量:
(1) AB 、CD ; (2) AE 、CG ; (3) AC 、
EG ;
(4) AD 、 GF ; 解:
(5) BE 、 CH .
图 1—3
§1.2 矢量的加法
4. 已 知 : a 2, 3,1 , b 1, 2,3, 求 与 a , b 都 垂 直 , 且 满 足 下 列 条 件 的 矢 量 c :
(1) c 为 单 位 矢 量
解:
(2) c d 10 , 其 中 d 2,1, 7 .
5. 在 直 角 坐 标 系 内 已 知 三 点 A(5,1, 1), B(0, 4,3), C(1, 3, 7) , 试 求 :
10.证明:四面体每一个顶点与对面重心所连的线段共点,且这点到顶点的距离是它到对面 重心距离的三倍. 用四面体的顶点坐标把交点坐标表示出来. [证明] ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 化简得
ab x a b cos b cos b ab y a b sin b sin b
• 习题2.4 • 8.有一质点,沿着已知圆锥面的一条直母线 自圆锥的顶点起,作等速直线运动,另一 方面这一条母线在圆锥面上,过圆锥的顶 点绕圆锥的轴(旋转轴)作等速的转动, 这时质点在圆锥面上的轨迹叫做圆锥螺线 ,试建立圆锥螺线的方程。
第2习题课
习题 2.1-9 习题 2.4-8
• 习题2.1 • 9.当一圆沿着一个定圆的外部作无滑动地滚 动时,动圆上一点的轨迹叫做外旋轮线, 如果我们用a,b分别表示定圆和动圆的半径 ,试导出其参数方程(当a=b时,曲线叫做 心脏线) OA=OO OA • 解:
= i, OO , OA, OO




b a AB BA a b
OO a b cos i a b sin j OA b cos i b sin j OA a b cos b cos i a b sin b sin
相关文档
最新文档