概率论与数理统计复习笔记.
概率论与数理统计笔记
概率论与数理统计笔记第一章概率论的基本概念1 随机试验1.对随机现象的观察、记录、试验统称为随机试验.2.随机试验E 的所有结果构成的集合称为E 的样本空间,记为{}S e =,称S 中的元素e 为基本事件或样本点.3.可以在相同的条件下进行相同的实验;每次实验的可能结果不止一个,并且能事先明确试验的所有可能结果;进行一次试验之前不能确定哪一个结果会实现.2.样本空间、随机事件1.对于随机试验,尽管在每次试验之前不能预知试验结果,但试验的所有可能结果组成的集合是已知的.我们将随机试验E 的所有可能结果组成的集合称为E 的样本空间,记为S 样本空间的元素,即E 的每个结果称为样本点.2.一般我们称S 的子集A 为E 的随机事件A ,当且仅当A 所包含的一个样本点发生称事件A 发生.如果将S 亦视作事件,则每次试验S 总是发生,故又称S 为必然事件。
为方便起见,记φ为不可能事件,φ不包含任何样本点.3.若A B ?,则称事件B 包含事件A ,这指的是事件A 发生必导致事件的发生。
若A B ?且B A ?,即A B =,则称事件A 与事件B 相等.4.和事件{}AB x x A x A A B =∈∈或:与至少有一发生.5.当AB φ=时,称事件A 与B 不相容的,或互斥的.这指事件A 与事件B 不能同时发生.基本事件是两两互不相容的. ,{,{,,AA S AA S A A AB AA AB ===?=?的逆事件记为若则称互逆,互斥.6.,A B A B AB AB 当且仅当同时发生时,事件发生.也记作.,A B AB AB AB 当且仅当同时发生时,事件发生,也记作.7. 事件 A 的对立事件:设 A 表示事件“A 出现”, 则“事件 A 不出现”称为事件 A 的对立事件或逆事件. 事件间的运算规律:,,, A B C 设为事件则有,A B B A AB BA ==(1)交换律:()(),A B C A B C =(2)结合律:()()AB C A BC = ()()()A B C A C B C ACBC ==(3)分配律:,de Morgan AB AB AB AB ==(4)律:3.频率和概率1.记()An n f A n=()A n A f A A n --其中n 发生的次数(频数);n 总试验次数.称为在这次试验中发生的频率.频率反映了事件A 发生的频繁程度. 2.频率的性质:10()12()1n n kkf A f S ≤≤=。
概率论与数理统计总复习知识点归纳
概率论与数理统计总复习知识点归纳1.概率论的基础概念-随机事件、样本空间和事件的关系。
-频率和概率的关系,概率的基本性质。
-古典概型和几何概型的概念。
-条件概率和乘法定理。
-全概率公式和贝叶斯公式。
-随机变量和概率分布函数的概念。
-离散型随机变量和连续型随机变量的定义、概率质量函数和概率密度函数的性质。
2.随机变量的数字特征-随机变量的数学期望、方差、标准差和切比雪夫不等式。
-协方差、相关系数和线性变换的数学期望和方差公式。
-两个随机变量的和、差、积的数学期望和方差公式。
3.大数定律和中心极限定理-大数定律的概念和三级强大数定律。
-中心极限定理的概念和中心极限定理的两种形式。
4.数理统计的基本概念和方法-总体、样本和抽样方法的概念。
-样本统计量和抽样分布的概念。
-点估计和区间估计的概念。
-假设检验的基本思想和步骤。
-正态总体的参数的假设检验和区间估计。
5.参数估计和假设检验的方法和推广-极大似然估计的原理和方法。
-矩估计的原理和方法。
-最小二乘估计的原理和方法。
-一般参数的假设检验和区间估计。
6.相关分析和回归分析-相关系数和线性相关的概念和性质。
-回归分析的一般原理。
-简单线性回归的估计和检验。
7.非参数统计方法-秩和检验和符号检验的基本思想和应用。
-秩相关系数的计算和检验。
8.分布拟合检验和贝叶斯统计-卡方拟合检验的原理和方法。
-正态总体参数的拟合优度检验。
-贝叶斯估计的基本思想和方法。
9.时间序列分析和质量控制-时间序列的基本性质和分析方法。
-时间序列预测的方法和模型。
-质量控制的基本概念和控制图的应用。
以上是概率论与数理统计总复习知识点的归纳,希望对你的复习有所帮助。
概率论与数理统计重点笔记
概率论与数理统计重点笔记
概率论与数理统计是数学中的重要分支,它涉及到随机现象的
规律性和统计规律的研究。
在学习概率论与数理统计时,重点笔记
可以包括以下内容:
1. 概率论的基本概念,包括样本空间、随机事件、事件的概率、事件的运算规律等内容。
重点理解事件的概率定义、概率的性质和
概率的运算法则。
2. 随机变量及其分布,重点掌握随机变量的定义、离散随机变
量和连续随机变量的概念,以及它们的分布律、密度函数、分布函
数等。
还要重点理解常见的离散分布(如二项分布、泊松分布)和
连续分布(如正态分布、指数分布)。
3. 大数定律和中心极限定理,重点掌握大数定律和中心极限定
理的表述和应用,理解随机变量序列的收敛性质,以及大样本时样
本均值的渐近正态性质。
4. 参数估计,包括点估计和区间估计的基本概念和方法,重点
理解最大似然估计、矩估计等常用的参数估计方法。
5. 假设检验,理解假设检验的基本思想、原理和步骤,掌握显著性水平、拒绝域、接受域等相关概念,重点理解假设检验的错误类别和势函数的概念。
6. 相关性和回归分析,重点理解相关系数、回归方程、残差分析等内容,掌握相关性和回归分析的基本原理和方法。
总之,在学习概率论与数理统计的过程中,重点笔记应该围绕着基本概念、常用分布、极限定理、参数估计、假设检验和回归分析展开,全面理解这些内容并掌握其应用是十分重要的。
希望以上内容能够帮助你更好地理解概率论与数理统计。
概率论与数理统计笔记
AB = A ∪ B
设 A1, A2, …, An 是样本空间 Ω 的一个划分, B 是任意一 个事件,且 p(B)>0,则 P(Ai|B)=
P ( AB ) . P ( A)
P( Ai ) P( B | Ai) P( Ai ) P( B | Ai) = n , i=1,..,n P(B) P( Ak ) P( B | Ak)
k 1
概率的乘法公式: 当 P(A)>0 时,P(AB)= P(A)P(B|A) 当 P(B)>0 时,P(AB)= P(B)P(A|B) 乘法公式还可以推广到 n 个事件的情况:
n 重贝努利(Bernoulli)试验: Pn(k) =
C
k n
pk(1-p)n-k, k=0, 1, 2, …, n.(q=1-p)
k 1
Ak) =
k 1
P(Ak)
性质: (1) 0 ≤ P(A) ≤ 1, P (Φ) = 0 (2) P(A∪B) = P(A) + P(B)-P(AB) 特别地,当 A 与 B 互不相容时,P(A∪B) = P(A) + P(B) 推广: 对于任意事件 A, B, C 有 P(A∪B∪C) = P(A) + P(B)
当 0 < P(A) < 1 时,A 与 A 就是 Ω 的一个划分,又设 B 为任一事件, 则全概率公式的最简单形式为 P(B)=P(A) P(B|A)+ P( A ) P(B| A ) 运算律: 交换律:A∪B = B∪A, A∩B = B∩A 结合律:A∪(B∪C) = (A∪B)∪C, A∩(B∩C) = (A∩B)∩C 分配律:A∪(B∩C) = (A∪B)∩(A∪C), A∩(B∪C) = (A∩B)∪(A∩C)
统计学复习资料概率论与数理统计重点知识点整理
统计学复习资料概率论与数理统计重点知识点整理概率论与数理统计是统计学的基础课程之一,也是应用最为广泛的数学工具之一。
下面将对概率论与数理统计的重点知识点进行整理,以供复习使用。
一、概率论的基本概念1. 样本空间和事件:样本空间是指随机试验的所有可能结果构成的集合,事件是样本空间的子集。
2. 古典概型和几何概型:古典概型是指样本空间中的每个结果具有相同的概率,几何概型是指采用几何方法进行分析的概率模型。
3. 概率公理和条件概率:概率公理是概率论的基本公理,条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
4. 独立事件和全概率公式:独立事件是指两个事件的发生与否互不影响,全概率公式是用于计算复杂事件的概率的公式。
5. 随机变量和概率分布函数:随机变量是对样本空间中的每个结果赋予一个数值,概率分布函数是随机变量的分布情况。
二、概率分布的基本类型1. 离散型概率分布:包括二项分布、泊松分布和几何分布等。
2. 连续型概率分布:包括正态分布、指数分布和均匀分布等。
三、多维随机变量及其分布1. 边缘分布和条件分布:边缘分布是指多维随机变量中的某一个或几个变量的分布,条件分布是指在已知某些变量取值的条件下,其他变量的分布。
2. 二维随机变量的相关系数:相关系数用于刻画两个随机变量之间的线性关系的强度和方向。
3. 多维随机变量的独立性:多维随机变量中的各个分量独立时,称为多维随机变量相互独立。
四、参数估计与假设检验1. 参数估计方法:包括点估计和区间估计,点估计是通过样本数据得到参数的估计值,区间估计是对参数进行一个范围的估计。
2. 假设检验的基本概念:假设检验是用于对统计推断的一种方法,通过与某个假设进行比较来得出结论。
3. 假设检验的步骤:包括建立原假设和备择假设、选择显著性水平、计算检验统计量和做出统计决策等步骤。
五、回归分析与方差分析1. 简单线性回归分析:简单线性回归分析是研究两个变量之间的线性关系的方法,通过建立回归方程来拟合数据。
《概率论与数理统计》学习笔记
《概率论与数理统计》(19)电子科技大学应用数学学院,徐全智吕恕主编。
2004版第6章数理统计的基本概念概率论与数理统计是两个紧密联系的姊妹学科,概率论是数理统计学的理论基础,而数理统计学则是概率论的重要应用.数理统计学是使用概率论和数学的方法,研究如何用有效的方式收集带有随机误差的数据,并在设定的模型下,对收集的数据进行分析,提取数据中的有用信息,形成统计结论,为决策提供依据. 这就不难理解,数理统计应用的广泛性,几乎渗透到人类活动的一切领域! 如:农业、生物和医学领域的“生物统计”,教育心理学领域的“教育统计”,管理领域的“计量经济”,金融领域的“保险统计”等等,这些统计方法的共同基础都是数理统计.数理统计学的内容十分丰富,概括起来可以分为两大类:其一是研究如何用有效的方式去收集随机数据,即抽样理论和试验设计;其二是研究如何有效地使用随机数据对所关心的问题做出合理的、尽可能精确和可靠的结论,即统计推断.本书主要介绍统计推断的基本内容和基本方法. 在这一章中先给出数理统计中一些必要的基本概念,然后给出正态总体抽样分布的一些重要结论.6.1总体、样本与统计量一、总体在数理统计中,我们将研究对象的全体称为总体或母体,而把组成总体的每个基本元素称为个体.二、样本样本是按一定的规定从总体中抽出的一部分个体" 这里的“按一定的规定”,是指为保证总体中的每一个个体有同等的被抽出的机会而采取的一些措施" 取得样本的过程,称为抽样.三、统计量6.2抽样分布统计量是我们对总体的分布规律或数字特征进行推断的基础. 由于统计量是随机变量,所以在使用统计量进行统计推断时必须要知道它的分布. 统计量的分布称为抽样分布.一、三个重要分布二、抽样分布定理6.3应用一、顺序统计量及其应用二、极值的分布及其应用。
《概率论与数理统计》期末复习重点总结
概率论与数理统计第一章:掌握概率的性质、条件概率公式、全概率公式和贝叶斯公式,会用全概率公式和贝叶斯公式计算问题。
第二章:一维随机变量包括离散型和连续型;离散型随机变量分布律的性质;连续性随机变量密度函数的性质;常见的三种离散型分布及连续型分布;会计算一维随机变量函数的分布(可以出大题);第三章:多维随机变量掌握离散型和连续型变量的边缘分布;条件分布及两个变量独立的定义;重点掌握两个随机变量函数的分布(掌握两个随机变量和、差的密度函数的求法;了解两个随机变量乘、除的分布;掌握多个随机变量最大、最小的分布的密度函数的求法);第四章:重点掌握期望、方差、协方差的计算公式、性质;了解协方差矩阵的构成;第六章:掌握统计量的定义、三大分布的定义和性质;教材142页的四个定理及式3.19、3.20务必记住;第七章:未知参数的矩估计法和最大似然估计法是考点,还要掌握估计量的无偏性、有效性的定义;教材的例题及习题:19页例5;26页19、23、24、36;43页例1;51页例2;53页例5;58页25、36;63页例2;66页例2;77页例1、例2;87页22;99页例12;114页6;147页4、6;151页例2、例3;153页例4、例5;173页5、11样题一、填空1. 设A ,B 相互独立,且2.0)(,8.0)(==A P B A P ,则=)(B P __________.2. 已知),2(~2σN X ,且3.0}42{=<<X P ,则=<}0{X P __________.3.已知B A ,两个事件满足条件()()B A P AB P =,且()p A P =,则()=B P _________.4.设随机变量X 的密度函数为()2,01,0,x x f x <<⎧=⎨⎩其他,用Y 表示对X 的3次独立重复观察中事件⎭⎬⎫⎩⎨⎧≤21X 出现的次数,则()2P Y == . 5、设连续型随机变量X 的分布函数为 , ,则A=B= ;X 的密度函数为 。
概率论与数理统计笔记
第一章 概率论的基本概念随机试验:1.可以在相同的条件下重复进行2.每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果3.进行一次试验之前不能确定哪个结果会出现样本空间:随机试验E 的所有可能结果组成的集合称为E 的样本空间,记为S 随机事件:试验E 的样本空间S 的子集,简称事件基本事件:由一个样本点(E 的每个结果)组成的单点集 频率:事件A 发生次数和试验次数的比值n A /n ,记作f n (A)概率:对事件A 赋予实数,P(A) 非负性,规范性,可列可加性性质i P(∅)=0.性质ii(有限可加性) 若A1,A2,…,An 是两两互不相容的事件,则有P(A 1⋃A 2⋃…⋃A n )=P (A 1)+P (A 2)+⋯+P(A n ).性质iii 设A,B 是两个事件,若A ⊂B,则有P(B-A)=P(B)-P(A);P(B)≥P(A). 性质iv 对于任一事件A,P(A)≤1.性质v(逆事件的概率) 对于任一事件A,有P(A )=1-P(A).性质vi(加法公式) 对于任意两事件 A,B 有P(A ⋃B)=P(A)+P(B)-P(AB). 古典概型:样本空间只包含有限个元素,每个基本事件可能性相同A 的对立事件A̅及其概率:也称逆事件 两个互不相容事件的和事件的概率:两事件不能同时发生,概率的有限可加性 概率的加法定理:P(A ⋃B )=P(A)+P(B)-P(AB)条件概率:在事件A 发生的条件下事件B 发生的P(B|A)=P(AB)P(A).概率的乘法公式:P(ABC)=P(C|AB)P(B|A)P(A) 全概率公式:P (A )=∑P (A |B i )n i=1P(B i ) B i 是试验E 的S 的划分,A 为E 的事件 贝叶斯公式:P (B i |A )=P(A|B i )P(B i )∑P(A|B j )P(B j )nj=1,i=1,2,…,n.事件的独立性:P(AB)=P(A)P(B),互相独立与互不相容不能同时成立设n 个事件,如果对于其中任意2个,任意3个,…,任意n 个事件的积事件的概率都等于各事件概率之积,则称n 个事件相互独立实际推断原理:概率很小的事件在一次实验中实际上几乎是不发生的第二章 随机变量及其分布随机变量:设E 的样本空间S={e},X=X(e)是定义在样本空间S 上的单值函数,称随机变量分布函数:X 是随机变量,x 是任意实数,F (x )=P {X ≤x },−∞<x <∞称为X 的分布函数任意实数x 1,x 2(x 1<x 2),有 P {x 1<X ≤x 2}=P {X ≤x 2}−P {X ≤x 1}=F (x 2)−F(x 1) 基本性质:不减函数,0≤F(x)≤1且F(-∞)=0,F(∞)=1离散型随机变量:全部可能取到的值是有限个或可列无限多个其分布律: P {X =x k }=p k ,k =1,2,… 连续性随机变量:F (x )=∫f(t)dt x−∞ 非负可积函数f (x )概率密度:f(x)性质:f (x )≥0;∫f (x )dx ∞−∞=1伯努利试验:试验E 只有两个可能结果:A 及A(0−1)分布: P {X =k }=p k (1−p)1−k ,k =0,1 (0<p <1) 记为X ~b(1,p) n 重伯努利试验:将伯努利试验E 独立重复地进行n 次,以C i 为A 或A ,i=1,2,…,n.独立:P (C 1C 2…C n )=P (C 1)P (C 2)…P(C n )二项分布:P {X =k }=(n k )p k (1−p)n−k ,k =0,1,2,…,n. 记为X ~b(n,p) 泊松分布:P {X =k }=λk e −λk!,k =0,1,2,…,λ是常数,记为X ~π(λ)指数分布:f (x )={1θe −xθ,x >00,otherwise,记为X ~η(θ)均匀分布:f (x )={1b−a ,a <x <b,0,otherwise.,记为X ~U(a,b)正态分布:f (x )=√2πσ−(x−μ)22σ2,-∞<x<∞,其中μ,σ(σ>0)是常数,记作X ~N (μ,σ2)标准正态分布:X ~N(0,1),概率密度为φ(x),分布函数为Φ(x) 引理:若X ~N(μ,σ2),则Z =X−μσ~N(0,1)随机变量函数的分布:Y=g(X),分布函数法(先求分布函数,再对分布函数求导)第三章 多维随机变量及其分布二维随机变量(X ,Y ):设X=X(e),Y=Y(e)是定义在样本空间S 上的随机变量构成的向量 (X ,Y )的分布函数:联合分布函数:F (x,y )=P {(X ≤x )∩(Y ≤y )}≝P{X ≤x,Y ≤y}边缘分布函数:F X (x )=P {X ≤x }=P {X ≤x,Y <∞}=F(x,∞),F Y (y )=F(∞,y) 离散型随机变量(X ,Y )的分布律:P{X =x i ,Y =y j }=p ij ,i,j =1,2,… 联合分布律 连续型随机变量(X ,Y )的概率密度:f(x,y) 联合概率密度1. f (x,y )≥02. ∫∫f(x,y)dxdy ∞−∞=F (∞,∞)=1∞−∞3. 设G 是xOy 平面上的区域,点(X,Y)落在G 内的概率为∬f(x,y)dxdyG . 4. 若f(x,y)在点(x,y)连续,则有∂2yF(x,y)∂x ∂y=f(x,y)离散型随机变量(X ,Y )的边缘分布律:P {X =x i }=∑p ij ∞i=0,i =1,2,…, Y 一样 连续型随机变量(X ,Y )的边缘概率密度:f X (x )=∫f(x,y)dy ∞−∞,Y 一样 条件分布函数:F X|Y (x |y )=P {X ≤x |Y =y }=∫f(x,y)f X (x)dy y −∞ 在Y=y 条件下X 的条件分布函数条件分布律:P {X =x i |Y =y i }=P{X=x i ,Y=y i }P{Y=y i }=p ij p .j,i =1,2,… 在Y=y j 条件下X 的条件分布律条件概率密度:f X|Y (x |y )=f(x,y)f Y (y)在Y=y 的条件下X 的条件概率密度两个随机变量X ,Y 的独立性:F (x,y )=F X (x)F Y (y)对二维正态随机变量变量(X,Y),X 和Y 相互独立的充要条件是参数ρ=0 Z=X+Y 、Z=Y/X 、Z=XY 的概率密度:Z=X+Y:f X+Y (z )={∫f X (z −y)f Y (y)dy∞−∞∫f X (x)f Y (z −x)dx∞−∞ Z=Y/X:f Y X(z )=∫|x|f(x,xz)dx ∞−∞=∫|x|f X (x)f Y (xz)dx ∞−∞Z=XY:f XY (z )=∫1|x|f(x,z x)dx ∞−∞=∫1|x|f X (x)f Y (zx)dx ∞−∞M=max{X ,Y},N=min{X ,Y}的概率密度:分布函数:F max (z)=P{M≤z}=P{X≤z,Y≤z}=P{X≤z}P{Y≤z}=F X (z)F Y (z).F min (z)=P{N≤z}=1-P(N>z)=1-P{X>z,Y>z}=1-P{X>z}∙P{Y>z}=1-[1-F X (z)][1-F Y (z)].第四章 随机变量的数字特征数学期望:E (X )=∑x k p k ∞k=1E (X )=∫xf(x)∞−∞dx (积分绝对收敛)随机变量函数的数学期望:Y=g(X)(g 是连续函数)E(Y)=E[g(X)]=∑g(x k )∞k=1p k E(Y)=E[g(X)]=∫g(x)f(x)dx ∞−∞E(Z)=E[g(X,Y)]=∑∑g(x i ,y j )p ij ∞i=1∞j=1E(Z)=E[g(X,Y)]=∫∫g(x,y)f(x,y)∞−∞dxdy ∞−∞数学期望的性质:1.设C 是常数,则有E(C)=C.2.设X 是一个随机变量,C 是常数,则有E(CX)=CE(X).3.设X,Y 是两个随机变量,则有E(X+Y)=E(X)+E(Y).(可推广到任意有限个随机变量之和)4.设X,Y 是相互独立的随机变量,则有E(XY)=E(X)+E(Y).(可推广到任意有限个相互独立随机变量之积)方差:D(X)=Var(X)=E{[X-E(X)]2}. 标准差:σ(x)=√D(X)方差的性质:1.设C 是常数,则D(C)=0.2.设X 是随机变量,C 是常数,则有D(CX)=C 2D(X),D(X+C)=D(X).3.设X,Y 是两个随机变量,则有D(X+Y)=D(X)+D(Y)+2E{(X-E(X))(Y-E(X))}. 若X,Y 相互独立,则有D(X+Y)=D(X)+D(Y).4.D(X)=0的充要条件是X 以概率1取常数E(X),即P{X=E(X)}=1. 标准化的随机变量:X ∗=X−μσ.(数学期望为0,方差为1)协方差:Cov(X,Y)=E{[X-E(X)][Y-E(Y)]}. 相关系数:ρXY =√D(X)D(Y)相关系数的性质:1.|ρXY |≤1.2.|ρXY |=1的充要条件是,存在常数a,b 使P{Y=a+bX}=1. X ,Y 不相关:当ρXY =0时.切比雪夫不等式:设随机变量X 具有E(X)=μ,方差D(X)=σ2,则对任意正数ε,不等式 P{|X −μ|≥ε}≤σ2ε2成立几种重要分布的数学期望和方差:(推导)矩:k 阶原点矩:E(X k ),k=1,2,…k 阶中心矩:E([X-E(X)]k ),k=2,3,… k+l 阶混合矩:E(X k Y l ),k,l=1,2,…k+l 阶混合中心矩:E([X-E(X)]k [Y-E(Y)]l ),k,l=1,2,…协方差矩阵:C =(c ij )=(Cov(X i ,Y j ))=E{[X i -E(X i )][X j -E(X j )]},i,j=1,2,…,n.第五章 大数定律及中心极限定理依概率收敛:设Y 1,Y 2,…,Y n ,…是一个随机变量序列,a 是一个常数.若对于任意正数ε,有lim n→∞P {|Y n −a |<ε}=1,则称序列Y 1,Y 2,…,Y n ,…依概率收敛于a,记为Y n P→a.伯努利大数定理:P(A)=P,频率nA n(n 次重复独立试验),对∀ε>0,lim n→∞P {|n A n−P|<ε}=1.辛钦大数定理:已知R.V . X 1,X 2,…,X n ,…相互独立且E(X i )=μ.(i=1,2,…)则∀ε>0,lim n→∞P {|1n ∑X k −μn k=1|<ε}=1.独立同分布的中心极限定理:设R.V .序列:X 1,X 2,…,X n ,…相互独立,并且E(X k )=μ, D(X k )=σ2,k=1,2,…则k n k=1√nσ2̃N(0,1) 标准正态分布(高斯分布)近似计算 李雅普诺夫中心极限定理:棣莫弗-拉普拉斯中心极限定理:设R.V. ηn ~B(n,p),则对任意x 有{η−np √np (1−p )≤x}≈Φ(x) 二项分布(n→∞)→ 正态分布第六章 样本及抽样分布总体:试验的全部可能的观察值.简单随机样本:设X 是具有分布函数F 的随机变量,若X 1,X 2,…,X n 是具有同一分布函数F 的、相互独立的随机变量,则称X 1,X 2,…,X n 为从分布函数F 得到的容量为n 的简单随机样本,简称样本.统计量:不含未知参数的样本的函数g(X 1,X 2,…,X n ).样本平均值:X̅=1n∑X i ni=1 样本方差:S 2=1n −1∑(X i −X ̅)2n i=1=1n −1(∑X i 2ni=1−nX̅2) 样本k 阶原点矩:A k =1n∑X i k ni=1,k =1,2,…样本k 阶中心矩:B k =1n∑(X i −X̅)k ni=1,k =1,2,… χ2分布:χ2=X 12+X 22+⋯+X n 2,服从自由度为n 的χ2分布,记为χ2~χ2(n).χ2(n)分布的概率密度为f (y )={12n 2Γ(n 2)yn 2−1e −y 2,y >0 0, otℎerwiseGamma 函数:Γ(x )=∫e −t t x−1dt +∞0,(x >0)t 分布:设X ~N(0,1),Y ~χ2(n),且X,Y 相互独立随机变量t=√n,服从自由度为n 的t 分布.记为t ~t(n).t(n)分布的概率密度函数为h (t )=Γ(n +12)√πnΓ(n 2)(1+t 2n )−n+12F 分布:设U ~χ2(n 1),V ~χ2(n 2),且U,V 相互独立随机变量F=Un 1V n 2,服从自由度为(n 1,n 2)的F 分布,记为F ~F(n 1,n 2). 密度函数为ψ(y).密度函数图形轮廓:χ2分布,F 分布类似,t 分布对称上α分位点:χα2(n),t α(n),F α(n 1,n 2) F 1-α(n 1,n 2)=1Fα(n 1,n 2):F 分布上分位点的重要性质,用来求表中未列出的常用上α分位点.关于样本均值、样本方差的重要结果1.设X 1,X 2,…,X n 是来自总体X(不管服从什么分布,只要它的均值和方差存在)的样本,且有E(X)=μ,D(X)=σ2n .2.设总体X~N(μ,σ2),X1,X2,…,X n是来自X的样本,则有);1)X̅~N(μ,σ2n~χ2(n−1);2)(n−1)S2σ23)X̅与S2相互独立;~t(n−1);4)X̅−μS√n3.对于两个正态总体X~N(μ1,σ12),Y~N(μ2,σ22),有定理四的重要结果.第七章 参数估计矩估计量:θ̂i =θi(A 1,A 2,…,A k ),i=1,2,…,k 作为θi 的估计量,A i 是样本矩. 最大似然估计量:θ̂(X 1,X 2,…,X n ),使L(x 1,x 2,…x n ;θ̂)=max θ∈ΘL(x 1,x 2,…,x n ;θ) 估计量的评选标准:无偏性:若估计量θ̂=θ̂(X 1,X 2,…,X n )的数学期望E(θ̂)存在,且对于任意θ∈~Θ有E(θ̂)=θ. 有效性:θ̂1=θ̂1(X 1,X 2,…,X n )与 θ̂2=θ̂2(X 1,X 2,…,X n )都是θ的无偏估计量,若对于任意θ∈Θ,有D(θ̂1)≤D(θ̂2)且至少对于某一个θ∈Θ上式中的不等号成立. 相合性:设θ̂(X 1,X 2,…,X n )为参数θ的估计量,若对与任意θ∈Θ,当n →∞时θ̂(X 1,X 2,…,X n )依概率收敛于θ.参数θ的置信水平为1-α的置信区间:θ的两个矩估计量θ=θ(X 1,X 2,…,X n )θ=θ(X 1,X 2,…,X n )给定的值α(0<α<1)有 P{θ<θ<θ}=1-α. 称(θ,θ)为置信水平为(1-α)的置信区间.枢轴量:一个样本和参数的函数W(X 1,X 2,…,X n ;θ),W 的分布不依赖于θ及其它未知参数. 参数θ的单侧置信上限和单侧置信下限P{θ>θ}≥1-α,即(θ,+∞)为θ的单侧置信区间,θ为单侧置信下限. P{θ<θ}≥1-α,即(θ,+∞)为θ的单侧置信区间,θ为单侧置信上限. 单个正态总体均值置信区间:若σ2已知,找U=X−μσ√n~N(0,1),得到μ的一个置信水平为1-α的置信区间为(X √nz α2)若σ2未知,E(S 2)=σ2,将σ换成S=√S 2找T=X−μS √n~t(n −1),得到μ的一个置信水平为1-α的置信区间为(X ±√nt α2(n −1))单个正态总体方差置信区间:σ2的无偏估计为S 2,(n −1)S 2σ2~χ2(n −1) P{χ1−α22(n −1)<(n −1)S 2σ2<χα22(n −1)}=1−α P {(n −1)S 2χα22(n −1)<σ2<(n −1)S 2χ1−α22(n −1)}=1−α 得到σ2的一个置信水平为1-α的置信区间为((n −1)S 2χα22(n −1),(n −1)S 2χ1−α22(n −1)) 单侧置信上限与单侧置信下限σ2已知,关于μ的单侧置信区间选U=X−μσ√n~N(0,1)单侧置信上限为μ=X √n α单侧置信下限为μ=X√nασ2未知,选T=X−μS√n~t(n−1)单侧置信上限为μ=X√nα(n−1)单侧置信下限为μ=X√nα(n−1)关于σ2,选(n−1)S 2σ2~χ2(n−1)单侧置信上限为σ2=(n−1)S 2χ1−α2(n−1)单侧置信下限为σ2=(n−1)S 2χα2(n−1)两个正态总体均值差、方差比的置信区间、单侧置信上限与单侧置信下限第八章 假设检验原假设:H 0:μ=μ0备择假设:H 1:μ≠μ0(原假设被拒绝后可供选择的假设) 检验统计量:Z =X−μ0σ√n单边检验:(右边检验)H 0:μ=μ0,H 1:μ>μ0(左边检验)H 0:μ=μ0,H 1:μ<μ0 双边检验:形如H 0:μ=μ0, H 1:μ≠μ0的检验显著性水平:关于x 与μ0有无差异的判断是在显著性水平α之下作出的. 拒绝域:区域C 中取某个值时拒绝原假设,如|z|>z α2.显著性检验:只对犯第I 类错误的概率加以控制,而不考虑犯第II 类错误的概率的检验. 一个正态总体的参数的检验:μ的检验σ2已知:利用统计量Z=X−μ0σ√n~N(0,1)确定拒绝域|Z|≥z α2σ2未知:|t|=|X−μ0S √n|~t(n-1)σ2的检验:χ2分布χ2=(n−1)S 2σ02~χ2(n −1)k 1=χ1−α22(n −1),k 2=χα22(n −1) 拒绝域为(n−1)S 2σ02≤k 1 或(n−1)S 2σ02≥k 2。
概率论与数理统计总复习知识点归纳
D( X ) E( X 2 ) E 2 ( X ), Cov( X ,Y ) E( XY ) EXEY
XY Cov( X ,Y ) / D( X )D(Y )
⑴ E(aX+b)=aE(X)+b,D(aX+b)=a2D(X)
⑵ E(∑iλi Xi)=∑i λi E(Xi)
(3) D(λ1X±λ2Y)=λ12D(X)+λ22D(Y) ±2λ1λ2Cov(X,Y)
0.587
法二 用Bayes公式:
P (C) = 0.1, P(C ) 0.9;
P (D/C) = 0.3*0.8+0.7*0.2,
P(D / C ) 0.3*0.2.
C
C
于是有
D
P(C / D)
P(C ) P(D / C )
P(C) P(D / C) P(C ) P(D / C )
i 1
i 1
i 1
例3 已知X~ f(x),求Y= -X2的概率密度。 解 用分布函数法。
y<0 时,FY(y) = P(Y≤y) = P(-X2 ≤y) P(X y) P(X y)
FX ( y ) [1 FX ( y )] y≥0 时, FY(y) = P(Y≤y) =1
于是Y的概率密度为
fY ( y) fX (
y)
1 2
( y)1/ 2
fX
(
y ) 1 ( y)1/2 2
1 2
(
y)1/ 2[
fX
(
y) fX (
y )] , y 0
fY (y) 0 , y 0
例4 设二维随机变量(X,Y )的联合密度函数为:
f
( x,
y)
概率论与数理统计复习资料知识点总结
《概率论与数理统计》第一章 随机事件与概率1.事件的关系 φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则 (1)BA AB A B B A =⋃=⋃(2))()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃(3)))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃ (4)B A AB B A B A ⋃==⋃3.概率)(A P 满足的三条公理及性质: (1)1)(0≤≤A P (2)1)(=ΩP(3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()((n 可以取∞)(4) 0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤ (7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃ 4.古典概型:基本事件有限且等可能5.几何概率 6.条件概率(1) 定义:若0)(>B P ,则)()()|(B P AB P B A P =(2) 乘法公式:)|()()(B A P B P AB P = 若n B B B ,,21为完备事件组,0)(>i B P ,则有 (3) 全概率公式: ∑==ni iiB A P B P A P 1)|()()((4) Bayes 公式: ∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性: B A ,独立)()()(B P A P AB P =⇔ (注意独立性的应用)第二章 随机变量与概率分布1. 离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2. 连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P4. 分布函数 )()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续; (4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>; (5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5. 正态分布的概率计算 以)(x Φ记标准正态分布)1,0(N 的分布函数,则有 (1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则)()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==> 6. 随机变量的函数 )(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。
概率论与数理统计笔记
第一章 概率论的基本概念1 随机试验1.对随机现象的观察、记录、试验统称为随机试验.2.随机试验E 的所有结果构成的集合称为E 的样本空间,记为{}S e =, 称S 中的元素e 为基本事件或样本点.3.可以在相同的条件下进行相同的实验;每次实验的可能结果不止一个,并且能事先明确试验的所有可能结果;进行一次试验之前不能确定哪一个结果会实现.2.样本空间、随机事件1.对于随机试验,尽管在每次试验之前不能预知试验结果,但试验的所有可能结果组成的集合是已知的.我们将随机试验E 的所有可能结果组成的集合称为E 的样本空间,记为S 样本空间的元素,即E 的每个结果称为样本点.2.一般我们称S 的子集A 为E 的随机事件A ,当且仅当A 所包含的一个样本点发生称事件A 发生.如果将S 亦视作事件,则每次试验S 总是发生,故又称S 为必然事件。
为方便起见,记φ为不可能事件,φ不包含任何样本点.3.若A B ⊂,则称事件B 包含事件A ,这指的是事件A 发生必导致事件的发生。
若A B ⊂且B A ⊂,即A B =,则称事件A 与事件B 相等.4.和事件{}AB x x A x A A B =∈∈或:与至少有一发生.5.当AB φ=时,称事件A 与B 不相容的,或互斥的.这指事件A 与事件B 不能同时发生.基本事件是两两互不相容的.,{,{,,A A S A A SA A AB AA AB ===∅=∅的逆事件记为若则称互逆,互斥.6.,A B A B A B AB 当且仅当同时发生时,事件发生.也记作.,A B A B A B AB 当且仅当同时发生时,事件发生,也记作.7. 事件 A 的对立事件:设 A 表示事件 “A 出现”, 则“事件 A 不出现”称为事件 A 的对立事件或逆事件. 事件间的运算规律:,,, A B C 设为事件则有,A B B A AB BA ==(1)交换律:()(),A B C A B C =(2)结合律:()()AB C A BC = ()()()A B C A C B C ACBC ==(3)分配律:,de Morgan AB AB AB AB ==(4)律:3.频率和概率1.记()An n f A n=()A n A f A A n --其中n 发生的次数(频数);n 总试验次数.称为在这次试验中发生的频率.频率 反映了事件A 发生的频繁程度. 2.频率的性质:10()12()1n n kkf A f S ≤≤=。
考研数学概率论与数理统计笔记知识点(全)
三 二二维连续型随机变量量(积分积出来的就是连续的)
1.定义:概率密度积分(二二重积分)
2.联合概率密度
1)性质:1.非非负性;2.规范性
2)应用用:求P,就是求二二重积分
在f(x,y)的连续点上,分布求二二阶倒数就是概率密度
步骤:1)画图(为了了解不不等式)
2)讨论
3)代入入(注意端点)
第三章 多维随机变量量及其分布
知识点:一一 二二维随机变量量及其分布函数 二二 二二维离散型随机变量量 三 二二维连续型随机变量量 四 二二维随 机变量量函数的分布
一一 二二维随机变量量及其分布函数
1.二二维随机变量量就是一一个(X,Y)向量量
要注意是一一维的(是用用一一个变量量表示)
4.离散+连续(一一定是使用用全概率公式的)
定义:X为离散型,Y为连续型,且相互独立立
六 全概率公式与⻉贝叶斯公式(关键在于完备事件组)
1.完备事件组:互斥是对立立的前提条件
2.全概率公式:由因到果(推导,画图)(全部路路径)
3.⻉贝叶斯公式:由果到因(推导,画图)(所占的比比例例)
Note:关键是1.完备事件组必须完备;2.要画图3注意抽签原理理
题型一一:概率的基本计算
1.事件决定概率,但是概率推不不出事件
3.边缘概率密度
1)具体就是边缘分布函数求导(详⻅见笔记)
Note:注意边缘的公式,在求时,注意取值范围,以及上下限(一一根直线传过去)(类似于 二二重积分的先积部分——后积先定限,限内画条线)
2)G是从几几何看出来的,不不要死记公式,要结合图像(G为非非零区域)
Note:1.在写公式之前要先保证分⺟母不不为0,即要先确定范围
《概率论与数理统计》笔记
《概率论与数理统计》笔记一、课程导读“概率论与数理统计”是研究随机现象的规律性的一门学科在自然界,在人们的实践活动中,所遇到的现象一般可以分为两类:确定性现象随机现象➢确定性现象在一定的条件下,必然会出现某种确定的结果.例如,向上抛一枚硬币,由于受到地心引力的作用,硬币上升到某一高度后必定会下落.我们把这类现象称为确定性现象(或必然现象).同样,任何物体没有受到外力作用时,必定保持其原有的静止或等速运动状态;导线通电后,必定会发热;等等也都是确定性现象.➢随机现象在一定的条件下,可能会出现各种不同的结果,也就是说,在完全相同的条件下,进行一系列观测或实验,却未必出现相同的结果.例如,抛掷一枚硬币,当硬币落在地面上时,可能是正面(有国徽的一面)朝上,也可能是反面朝上,在硬币落地前我们不能预知究竟哪一面朝上.我们把这类现象称为随机现象(或偶然现象).同样,自动机床加工制造一个零件,可能是合格品,也可能是不合格品;射击运动员一次射击,可能击中10环,也可能击中9环8环……甚至脱靶;等等也都是随机现象.➢统计规律性对随机现象,从表面上看,由于人们事先不能知道会出现哪一种结果,似乎是不可捉摸的;其实不然.人们通过实践观察到并且证明了,在相同的条件下,对随机现象进行大量的重复试验(观测),其结果总能呈现出某种规律性.例如,多次重复抛一枚硬币,正面朝上和反面朝上的次数几乎相等;对某个靶进行多次射击,虽然各次弹着点不完全相同,但这些点却按一定的规律分布;等等.我们把随机现象的这种规律性称为统计规律性.●应用例子➢摸球游戏中谁是真正的赢家在街头巷尾常见一类“摸球游戏”.游戏是这样的:一袋中装有16个大小、形状相同,光滑程度一致的玻璃球.其中8个红色、8个白色.游戏者从中一次摸出8个,8个球中.当红白两种颜色出现以下比数时.摸球者可得到相应的“奖励”或“处罚”:注:表中“-2”表示受罚2元解: 此游戏(实为赌博),从表面上看非常有吸引力,5种可能出现的结果.有4种可得奖.且最高奖达10元.而只有一种情况受罚.罚金只是2元.因此就吸引了许多人特别是好奇的青少年参加.结果却是受罚的多,何以如此呢?其实.这就是概率知识的具体应用:现在是从16个球中任取8个.所有可能的取法为816C 种.即基本事件总数有限.又因为是任意抽取.保证了等可能性.是典型的古典概型问题.由古典概率计算公式.很容易得到上述5种结果.其对应的概率分别是:3807048730121800099460000155404848385828681878.C C C P(E);.C C 2C P(D);.C C 2C P(C);.C C 2C P(B);.C 2P(A)816816816816816==========假设进行了1000次摸球试验, 5种情况平均出现的次数分别为:0、10、122、487、381次,经营游戏者预期可得2×381-(10×0+1×10+0.5×122+0.2×487) =593.6(元). 这个例子的结论可能会使我们大吃一惊,然而正是在这一惊之中.获得了对古典概率更具体、更生动的知识.➢ 戏院设座问题乙两戏院在竞争500名观众,假设每个观众完全随意地选择一个戏院,且观众之间选择戏院是彼此独立的,问每个戏院至少应该设多少个座位才能保证观众因缺少座位而离开的概率小于5%?解 由于两个戏院的情况相同,故只需考虑甲戏院即可。
概率论与数理统计知识点总结
概率论与数理统计知识点总结1. 概率论基础- 随机事件:一个事件是随机的,如果它可能发生也可能不发生。
- 样本空间:所有可能事件发生的集合。
- 事件的概率:事件发生的可能性的度量,满足0≤P(A)≤1。
- 条件概率:在另一个事件发生的条件下,一个事件发生的概率。
- 贝叶斯定理:描述了随机事件A和B的条件概率和边缘概率之间的关系。
- 独立事件:两个事件A和B是独立的,如果P(A∩B) = P(A)P(B)。
- 互斥事件:两个事件A和B是互斥的,如果它们不能同时发生,即P(A∩B) = 0。
2. 随机变量及其分布- 随机变量:将随机事件映射到实数的函数。
- 离散随机变量:取值为有限或可数无限的随机变量。
- 连续随机变量:可以在某个区间内取任意值的随机变量。
- 概率分布函数:描述随机变量取值的概率。
- 概率密度函数:连续随机变量的概率分布函数的导数。
- 累积分布函数:随机变量取小于或等于某个值的概率。
- 期望值:随机变量的长期平均值。
- 方差:衡量随机变量取值的离散程度。
3. 多维随机变量及其分布- 联合分布:描述两个或多个随机变量同时取特定值的概率。
- 边缘分布:通过联合分布求得的单个随机变量的分布。
- 条件分布:给定一个随机变量的值时,另一个随机变量的分布。
- 协方差:衡量两个随机变量之间的线性关系。
- 相关系数:协方差标准化后的值,表示变量间的线性相关程度。
4. 大数定律和中心极限定理- 大数定律:随着试验次数的增加,样本均值以概率1收敛于总体均值。
- 中心极限定理:独立同分布的随机变量之和,在适当的标准化后,其分布趋近于正态分布。
5. 数理统计基础- 样本:从总体中抽取的一部分个体。
- 总体:研究对象的全体。
- 参数估计:用样本统计量来估计总体参数。
- 点估计:给出总体参数的一个具体估计值。
- 区间估计:给出一个包含总体参数可能值的区间。
- 假设检验:对总体分布的某些假设进行检验。
- 显著性水平:拒绝正确假设的最大概率。
概率论与数理统计重点笔记
概率论与数理统计复习第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果.随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件.二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德•摩根律 B A B A = B A B A =三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率.(1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+…2.性质(1) P(Φ) = 0 , 注意: A P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理)(3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) .(4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) .对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=n k j i k j i n j i j i n i i n A A A P A A P A P A A A P 11121 …+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数.五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0)3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则当P(B i )>0时,有全概率公式 P(A)=()()i ni i B A P B P ∑=1当P(A)>0, P(B i )>0时,有贝叶斯公式P (B i |A)=()()()()()()∑==n i i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件.(1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .(2)若A 与B ,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立.2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()k k i i i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2).(3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1).二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为:(1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()k n k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1) (3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0) 三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 .3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << . (2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx e x f 00≤>x x 若若 (θ>0). (3)X~N (μ,σ2 )参数为μ,σ的正态分布 222)(21)(σμσπ--=x e x f -∞<x<∞, σ>0.特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--x t dt e x 2221)(π , Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(z α)=1-α , z 1- α= -z α.四.随机变量X 的函数Y= g (X)的分布1.离散型随机变量的函数若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律.2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法:(1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f k y X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y 其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数.2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) .(4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质 (1)非负性 0≤p i j ≤1 .(2)归一性 ∑∑=i j ij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x y y ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-y xdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度.2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f . (3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2 (4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) .(X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=•j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dyy f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立.六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称 },{j i j i p y Y x X P ==P{X=x i |Y=y j }为在Y= y j 条件下随机变量X 的条件分布律.同样,对于固定的i,若P{X=x i }>0,则称P{Y=y j |X=x i } 为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X离散型随机变量 连续型随机变量 分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛) 方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2 =E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛) 函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) .二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0 ⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X)1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p),}{},{•=====i j i i j i p p x X P y Y x X P2.X~ b (n,p) (0<p<1) n p n p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/125.X 服从参数为θ的指数分布 θ θ26.X~ N (μ,σ2) μ σ2四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,…随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如: 样本均值∑==n i i X n X 11 样本方差()∑--==n i i X X n S 12211 样本标准差S 样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==n i k i k X X n B 1)(1( k=1,2,…) 二.抽样分布 即统计量的分布 1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n .特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2 /n) . 2.χ2分布 (1)定义 若X ~N (0,1 ) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2).③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点.3. t 分布(1)定义 若X~N (0,1 ),Y~ χ2(n),且X,Y 相互独立,则t=n Y X ~t(n)自由度为n 的t 分布. (2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2 )时,n S X μ-~ t (n-1) . ③两个正态总体 相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1 X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w (3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点.注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③) 22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111kk k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值.2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21 ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由似然方程组 0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iL θ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效.(3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量.二.区间估计1.求参数θ的置信水平为1-α的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,θ),其中只有一个待估参数θ未知,且其分布完全确定.(2)利用双侧α分位点找出W 的区间(a,b),使P{a<W <b}=1-α.(3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求.2.单个正态总体待估参数 其它参数 W 及其分布 置信区间 μ σ2已知 n X σμ-~N (0,1) (2/ασz n X ±) μ σ2未知n S X μ-~ t (n-1) )1((2/-±n t n S X α σ2 μ未知22)1(σS n -~ χ2(n-1) ))1()1(,)1()1((22/1222/2-----n S n n S n ααχχ 3.两个正态总体(1)均值差μ 1-μ 2 其它参数 W 及其分布 置信区间已知2221,σσ 22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±-未知22221σσσ== 212111)(n n S Y X w +---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w +-+±-α 其中S w 等符号的意义见第六章二. 3 (2)③. (2) μ 1,μ 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比σ12/σ22的置信区间为 ))1,1(1,)1,1(1(212/12221212/2221----⋅-n n F S S n n F S S αα 注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标α/2改为α,另外的下(上)限取为-∞ (∞)即可.。
最新概率论与数理统计笔记资料
精品文档第一章概率论的基本概念1随机试验1. 对随机现象的观察、记录、试验统称为随机试验.2. 随机试验E的所有结果构成的集合称为E的样本空间,记为,称S中的元素e为基本事件或样本点.3. 可以在相同的条件下进行相同的实验;每次实验的可能结果不止一个,并且能事先明确试验的所有可能结果;进行一次试验之前不能确定哪一个结果会实现.2. 样本空间、随机事件1. 对于随机试验,尽管在每次试验之前不能预知试验结果,但试验的所有可能结果组成的集合是已知的.我们将随机试验E的所有可能结果组成的集合称为E的样本空间,记为S样本空间的元素,即E的每个结果称为样本点.2. 一般我们称S的子集A为E的随机事件A,当且仅当A所包含的一个样本点发生称事件A发生.如果将S亦视作事件,则每次试验S总是发生,故又称S为必然事件。
为方便起见,记 '为不可能事件,••不包含任何样本点.3. 若A B,则称事件B包含事件A,这指的是事件A发生必导致事件的发精品文档生。
若A B且B A,即A二B,则称事件A与事件B相等.精品文档4. 和事件AUB={X |X ^A 或x^A}: A 与B 至少有一发生.5•当AB- '时,称事件A 与B 不相容的,或互斥的.这指事件A 与事 件B 不能同时发生.基本事件是两两互不相容的.A 的逆事件记为 A,{ A A = S ,若{ AU A = S ,则称A ,B 互逆,互斥 AA =0 AB =0 6. 当且仅当A ,B 同时发生时,事件 A^B 发生.A "B 也记作AB . 当且仅当A , B 同时发生时,事件 A n B 发生,A" B 也记作AB .7. 事件A 的对立事件:设A 表示事件 “A 出现”,贝“事件 A不出现”称为事件 A 的对立事件或逆事件. 事件间的运算规律: 设A , B ,C 为事件,则有(1)交换律: A U B 二 B U A , AB 二 BA(2)结合律:(A U B )U C 二 A U (B U C ),(AB )C 二 A (BC )(3)分配律:(A UB) Oc =(APlC)U(BnC)二 ACUBC(4) deMorga n 律: A U B 二 A“B, A“B 二 A U B3. 频率和概率其中n A - A 发生的次数(频数);n -总试验次数. 称f n (A)为A 在这n 次试验中发生的频率.频率f n (A)反映了事件A 发生的频繁程度.2. 频率的性质: 1 O ^fn(A)乞 12。
概率论与数理统计 笔记
概率论与数理统计笔记概率论的公理化定义1. 相关基本概念:我们首先定义以下概念:至此,我们将试验、事件等概念与集合的概念相联系,显然,我们会有以下的运算性质:2. 事件之间的关系以及运算(本质为集合运算)经过简单的推导可以得出以下运算性质:3. 事件的运算性质经过以上铺垫,我们可以引出频率、概率的定义:4. 频率 (frequency)定义:设随机事件a在n次重复试验中发生了m次,则称比值为事件a在n次重复试验中发生的「频率」。
频率越大,事件a发生就越频繁,可以用频率来预测事件a的发生的可能性大小。
当重复试验次数越多,n越大时,频率越逐渐趋于稳定于某个常数。
5. 概率的公理化定义(前苏联柯尔莫哥洛夫首次提出)设是随机试验的样本空间,对于每个事件,赋予一个实数,记为,称为事件a的「概率」,如果集合函数满足一下三个条件:理解:概率的本质一种映射,是一种将每个事件映射给一个实数的映射。
并且满足以上三个性质。
另外,注意一个常记的技巧:由以上概率的公理化定义推导出的性质:1.不可能事件的概率为02.有限可加性3.逆事件有4.减法公式5.单调性6.容斥原理,可推广至多个事件古典概型与几何概型古典概型是概率论的经典研究内容。
古典概型是指,如果一个随机试验,其中包含有限个样本点,并且所有样本点的概率都相等,那么我们就称该随机试验为古典概型。
而几何概型与以上定义基本相同,只不过包含了无限个样本点(对于几何图形来说,一块区域也包含了无穷个点)我们很容易就能够得到古典概型的计算公式(由可列可加性)关于古典概型的具体例题与技巧在此不再赘述。
如何定性认识古典概型的概率?我们可以认为,这种概率代表了一个试验中事件发生的可能性,可以认为是“ 进行无穷次试验之后事件发生频率的趋近值”。
利用这种可能性,我们可以最优化实际的决策。
条件概率与乘法公式条件概率的引入,是为了解决在某事件已经发生(或者指定某条件)的情况下具体事件的概率。
《概率论与数理统计》复习资料要点总结
《概率论与数理统计》复习提要第一章随机事件与概率1.事件的关系φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则(1)BAAB A B B A =⋃=⋃ (2))()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃(3)))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃(4)BA AB B A B A ⋃==⋃ 3.概率)(A P 满足的三条公理及性质:(1)1)(0≤≤A P (2)1)(=ΩP (3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()( (n 可以取∞)(4)0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤(7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃4.古典概型:基本事件有限且等可能5.几何概率6.条件概率(1)定义:若0)(>B P ,则)()()|(B P AB P B A P =(2)乘法公式:)|()()(B A P B P AB P =若n B B B ,,21为完备事件组,0)(>i B P ,则有(3)全概率公式:∑==ni iiB A P B P A P 1)|()()((4)Bayes 公式:∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性:B A ,独立)()()(B P A P AB P =⇔(注意独立性的应用)第二章随机变量与概率分布1.离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2.连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P 3.几个常用随机变量名称与记号分布列或密度数学期望方差两点分布),1(p B p X P ==)1(,pq X P -===1)0(p pq 二项式分布),(p n B n k q p C k X P kn k k n ,2,1,0,)(===-,npnpqPoisson 分布)(λP,2,1,0,!)(===-k k e k X P kλλλλ几何分布)(p G,2,1 ,)(1===-k p qk X P k p 12p q 均匀分布),(b a U b x a a b x f ≤≤-= ,1)(,2b a +12)(2a b -指数分布)(λE 0,)(≥=-x e x f x λλλ121λ正态分布),(2σμN 222)(21)(σμσπ--=x ex f μ2σ4.分布函数)()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续;(4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>;(5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5.正态分布的概率计算以)(x Φ记标准正态分布)1,0(N 的分布函数,则有(1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==>6.随机变量的函数)(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。