2019届中考数学总复习实数ppt课件
中考数学复习讲义课件 第1单元 第2讲 实数的运算
(2)0 的平方根是 0 ; 根或二次方根
(3)负数没有平方根
若正数 x 的平方等 算术平 于 a,即 x2=a,那
记作 a 方根 么正数 x 叫做 a 的
算术平方根 若 x3=a,那么 x 叫 立方根 做 a 的立方根或三 记作3 a 次方根
20170-|1- 2|+(13)-1+2cos45°.
解:原式=1-
2+1+3+2×
2 2
=5.
8.(2016·达州)计算:
8-(-2016)0+|-3|-4cos45°.
解:原大小常用 B,KB,MB,GB 等作为单位,其中 1GB=210MB,
(1)0 的算术平方根是 0 ; (2)双重非负性: ①被开方数 a ≥ 0; ②式子 a ≥ 0 (1)正数的立方根是正数; (2)负数的立方根是负数; (3)0 的立方根是 0
1.16 的平方根是 ±4 ,算术平方根是 4 ; 16的算术平方根是 2 . 2.8 的立方根是 2 ,-8 的立方根是 -2 .
4.除法 (1)两数相除,同号得正,异号得负,并把绝对值相除. (2)除以一个不为 0 的数等于乘这个数的倒数. (3)0 除以任何一个不等于 0 的数,都得 0 .
5.乘方 (1)求 n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂.在 an 中,a 叫 做底数,n 叫做指数. (2)正数的任何次幂得正;负数的奇次幂得负,负数的偶次幂得正;0 的正整 数次幂得 0 .
C.3
D.±3
实数的混合运算(必考) 3.(2021·达州)计算: -12+(π-2021)0+2sin60°-|1- 3|. 解:原式=-1+1+2× 23-( 3-1) =-1+1+ 3- 3+1 =1.
中考数学总复习 第1课时 实数的有关概念课件
考点4 平方根、算术平方根、立方根及非负数
1. 平方根、算术平方根 若x2=a,则 x 是a的一个平方根,记作±a.我们 把a的正平方根叫做a的算术平方根.一个正数 有两个平方根,它们互为相反数,0的平方 根是0,负数没有平方根.
失分点3 混淆算术平方根与平方根 0的平方根为0,-4的平方根为-2,2的算术平 方根为± 2 ,以上说正确吗?为什么? 错_误__,__-_4_没__有__平__方__根__,__因__为__负__数__没__有__平__方__根__;__ 2的__算__术__平__方__根__为_______,__因2__为__算__术__平__方__根__为____ 正_数_______
(3)常见的非负数题目的四种类型 A.若|a|+|b|=0,则a=0,b=0; B.若a+b=0, 则a=0,b=0; C.若a2+|b|=0,则a=0,b=0; D.若a2+b=0,则a=0,b=0.
如何巧用绝对值的非负性求值
常考类型剖析
典例精讲
类型一 实数的相关概念
例1 -2015的倒数是_-_2_0_1_5_,绝对值是_2_0_1_5__,
2. 实数的分类 (1)按定义分类
整数
有理数
实数
分数
正整数 零 负整数 正分数
负分数
有限小数或无 限循环小数
正无理数 无理数 负无理数
无限不循 环小数
(2)按正负分类 实数可分为正实数,零和负实数.
考点3 科学记数法(高频考点) 定义:把一个绝对值大于10的数记作a×10n的 形式,其中a是整数位只有一位的数(即1≤|a| <10),这种记数法叫做科学记数法.
(3)初中阶段常见的几种无理数:
(沪科版)中考数学总复习课件【第1讲】实数的有关概念
3 , y 2 2
是抛物线上的两点,则y1>y2.其中结论正确的
是(
A.①②③
B.①③④
C.①②④ D.②③④
思路分析:观察各选择支,发现同一结论在不同的选择
支中出现,所以如果判断出一个结论是错误的,便可以排除
有该结论的选择支,而不必一个结论一个结论地去判断,从 而提高解题速度.解题前浏览各结论时,易发现结论②错误, 故较复杂的结论③和结论④不必再花时间去判断. 解:根据抛物线的对称性可知,抛物线与x轴的另一交点 为(-4,0),
A.2 B.-2 C.±2 D. 2
[解析] 负数的绝对值等于它的相反数. 所以-2 的绝对值是 它的相反数 2.即|-2|=2.
第1讲┃实数的有关概念
(2)[2013²安徽] -2的倒数是( A ) 1 A.- 2 1 B. 2
C.2 D.-2
[解析 ] 如果两个数的积为 1 , 那么这两个数互为倒数, 所以 直接找哪一个数与原数的乘积为 1 即可. 也可直接由 1 除以一个 1 数求得该数的倒数.所以-2 的倒数为 1÷(-2)=- . 2
倒数
1 实数a(a≠0)的倒数是 a .
1 0 没有倒数) 若a,b互为倒数,则ab=______(______
定义:在数轴上,表示数a的点到原点的距离,叫做数a的
绝对值 绝对值.|a|=
第1讲┃实数的有关概念
经典示例
例 2 (1)[2014²淮南模拟] -2 的值等于( A )
第1讲┃实数的有关概念
7.[ 2014²威海] 若 a3=-8,则 a 的绝对值是( A )
A.2
1 1 B.-2 C . D.- 2 2
法一起应用,能提高解选择题的正确率或解题的速度.
中考复习 第1讲__实数的有关概念
C.支出80元
D.收入80元
4.(2016自贡)将0.000 25用科学记数法表示为( C ) A.2.5×104 C.2.5×10-4 B.0.25×10-4 D.25×10-5
真题再现
5.(2016福州)A,B是数轴上两点,线段AB上的点表示 的数中,有互为相反数的是如下图中的( B )
2 . 6.(2016河北)8的立方根为________ 5 . 7.(2016乐山)计算:|-5|=_____ - 0.3 . 8.(2016巴中)|-0.3|的相反数等于________
1.(2016宁波)6的相反数是( A )
A.-6
B.6
1 C.- 6 1 C. 6
1 D. 6 1 D.- 6
2.(2016河北二模)-6的绝对值是( A )
A.6
B.-6
题型训练
题型二 实数的有关概念
3.(2016深圳模拟)若|x|=2,则x的值为( C ) A.2 B.-2 C.±2
1 D. 2
a(a>0), |a|= 0(a 0), a(a<0).
知识清单
考点三
科学计数法及近似数
1.科学记数法
a×10n 的形 把一个绝对值大于0且小于1或大于10的实数记为_________
式,其中1≤|a|<10,n为整数,这样的记数方法叫做科学记数
法. 2.近似数
(1)近似数:一个与实际数值很接近的数.
2.(2016长沙模拟)陆地上最高处是珠穆朗玛峰峰顶,
高出海平面8 844 m,记为+8 844 m;陆地上最低
处是地处亚洲西部的死海,低于海平面约415 m, 记为( B )
A.+415 m
C.±415 m
中考数学考点总复习课件:第1节 实 数
20.(导学号 65244002)(2016·枣阳)一列数 a1,a2,a3,…满足条件:a1=12,an=1-1an-1(n≥2,且 n 为整数),
a(a≥0), (2)|a|=-a(a<0)即,正数的绝对值是____它__本__身,0的绝对值是____0_,负数的 绝对值是它的____相__反__数_; (3)一个数的绝对值是 ____非__负__数_,即|a| ____≥__ 0.
6.倒数:(1)若两个非零数 a,b 的积为 1,即___a_·b_=__1___, 则 a 与 b 互为倒数,反之亦然;
【对应训练 4】(2017·苏州)小亮用天平称得一个罐头的质量为 2.026 kg, 用四舍五入法将 2.026 精确到 0.01 的近似值为( D ) A.2 B.2.0 C.2.02 D.2.03 【对应训练 5】(2017·十堰)某颗粒物的直径是 0.000 002 5,把 0.000 002 5 用科学记数法表示为___2__.5_×__1_0_-__6___.
2
2
6.-2的绝对值的相反数是( D ) 3
A.32 B.-32 C.23 D.-23
7.(2017·乌鲁木齐)如图,数轴上点 A 表示数 a,则|a|是( A )
A.2 B.1 C.-1 D.-2 8.(2017·天门)北京时间 5 月 27 日,蛟龙号载人潜水器在太平洋马里亚纳海沟作业区开展了
若|a-b|=2 016,且 AO=2BO,则 a+b 的值为___-__6_7__2____.
中考数学(湘教版全国通用)复习课件:第1课时 实数的有关概念
考点聚焦
归类探究
回归教材
第1课时┃ 实数的有关概念
探究四 非负数的性质的运用
命题角度: 根据非负数的性质求值.
例4 (1)[2012·长沙] 若实数a,b满足|3a-1|+b2=0, 则ab的值为_____1___.
解析
依题意a=13,b=0,∴ab=130=1.
依题意a=13,b=0,∴ab=130=1.
第1课时 实数的有关概念
第1课时┃ 实数的有关概念
考点聚焦
考点1 实数的概念及分类
1. 按定义分类:
实数
有理数
整数
分数
正整数 零
负整数
正分数 有限小数或 负分数 无限循环小数
无理数
正 负无 无理 理数 数无限不循环小数
考点聚焦
归类探究
回归教材
第1课时┃ 实数的有关概念
2. 按正负分类:
正有理数
正实数
正整数 正分数
实数
正无理数 零
负有理数
负实数
负整数 负分数
负无理数
[注意] 0既不是正数,也不是负数,但0是自然数.
考点聚焦
归类探究
回归教材
第1课时┃ 实数的有关概念
考点2 实数的有关概念 1. 数轴的三个要素是__原__点____、_正__方__向___、_单___位__长__度___.
归类探究
回归教材
第1课时┃ 实数的有关概念
(2)[2014·岳阳] 实数2的倒数是( D )
A. -12
B. ±12
C. 2
1 D.2
解析
∵2×12=1,∴实数2的倒数是12.故选D.
(3)[2014·株洲] 下列各数中,绝对值最大的数是( A )
中考数学实数的运算与大小比较复习共时PPT学习教案
第2课时 实数的运算与大小比较
考点三 比较实数大小的常用方 法
3.商值比较法 4.设绝对a,值比b较是法两正实数,则 设 |a|a>,|bb|是>⇔两1a⇔<负b;实a|数>a|,b=;则|b|⇔a==b1;⇔|aa|<=|b|b⇔;a>b.
<1⇔a<b.
第2页/共8页
第2课时 实数的运算与大小比较
第7页/共8页
________.
中考数学实数的运算与大小比较复习共 时
会计学
1
第2课时 实数的运算与大小比较
考点三 比较实数大小的常用方 法
1.数轴比较法: 2设.a差,将值b是比两任较意实法两”数实数分,别则a表-b示>0⇔在a>数b;轴上, a-右b<边0⇔的a<b数;a总-b比=0左⇔a边=b的. 数大,两数
表示在同一点则相等.第5源自/共8页第2课时 实数的运算与大小比较
类型之四 探索实数中的规律 命题角度: 1.探究实数运算规律 2.实数运算中阅读理解问题
第6页/共8页
第2课时 实数的运算与大小比较
例4 [2010·中山] 阅读下列材料: 1×2= (1×2×3-0×1×2), 2×3= (2×3×4-1×2×3), 3×4= (3×4×5-2×3×4), 由以上三个等式相加,可得 1×2+2×3+3×4= ×3×4×5=20. 读完以上材料,请你计算下列各题: (1)1×2+2×3+3×4+…+10×11(写出过程); (2)1×2+2×3+3×4+…+n×(n+1)=________; (3)1×2×3+2×3×4+3×4×5+…+7×8×9=
类型之一 实数的运算 命题角度: 1.实数的加减乘除乘方开方运算 2.实数的运算在实际生活中的应用
中考数学第一轮复习精品课件第一章 第1讲实数
C.4.5×105
D.0.45×106
2.数轴上的点 A 到原点的距离是 3,则点 A 表示的数为 ( A ) A.3 或-3 C.-3
B.3
D.6 或-6
3.如果规定收入为正,支出为负.收入 500 元记作+500 元,那么支出 237 元应记作( B ) A.-500 元 C.237 元 B.-237 元 D.500 元
第一章
数与式
第1讲 实数
1.了解无理数和实数的概念,理解实数的意义,能用数轴 上的点表示实数,会比较实数的大小.知道实数与数轴上的点 一一对应. 2.借助数轴理解相反数和绝对值的意义,会求实数的相反 数与绝对值(绝对值符号内不含字母). 3.理解乘方的意义,会用科学记数法表示数,掌握实数的 加、减、乘、除、乘方及简单的混合运算(以三步为主).
4.0 的特殊性.
0 (1)0 的相反数是__________ .
0 (2)0 的绝对值是__________ .
倒 (3)0 没有________ 数.
【学有奇招】 1.对于实数的概念,关键记住无理数的概念.在实数中只 有无限不循环小数是无理数,其他都是有理数.常见的无理数 有三种:①有规律但不循环的数,例如:0.101 001 000 100
π 001…;②π 及其衍生出来的数,例如:3π,2等;③含有根号 2 但开不尽方的数,例如: 2, 5, 2 等. 3
2.有理数的加法运算口诀:同号相加一边倒;异号相加 “大”减“小”,符号跟着大的跑;绝对值相等“零”正好. 注意:“大”减“小”是指绝对值的大小.
1.5 月的某一天,参观上海世博会的人数达到 450 000, 用科学记数法表示这个数为( C ) A.45×104 B. 4.5×106
中考数学复习课件2-3实数的运算+整式
【解析】因为每一个循环节可以看作是ABCDCB,共6个数,∴数到 12时所对应的字母是B,又201- ×6+3=603, ∴2n+1-1 ×6+3=6n+3.
【点悟】寻找题目的变化规律,要善于从简单的数与字母位置对应关 系入手,从一系列运动的过程中寻觅变化周期,发现规律,并运用它 解决实际问题.
类型之四 乘法公式 [2011·预测题]已知x+y=-5,xy=6,求x2+y2的值. 【解析】将x2+y2配成完全平方式. 解:原式=(x+y)2-2xy=(-5) -2×6=13. 预测理由 已知两数和与两数积求两数平方和等一系列问题,在根与 系数关系、完全平方公式的有关变形中应用广泛,应用整体和对称的 数学思想进行变形,是中考中必不可少的内容.
【解析】理解题意,求出小张、小赵一年个人所
得收益是判断他们是否需办理自行纳税申报的标准. 解:小张需办理自行纳税申报,小赵不需要办理自行纳税申报.理由 如下:
设小张股票转让总收益为x万元, 小赵股票转让总收益为y万元, 小张个人年所得为W1万元, 小赵个人年所得为W2万元. 则x=8+1.5-5=4.5,y=-2+2-6+1+4=-1<0. ∴W1=8+4.5=12.5(万元),W2=9+0=9(万元). ∵W1=12.5万元>12万元,W2=9万元<12万元, ∴根据规定小张需要办理自行纳税申报,小赵不需要申报. 【点悟】实际生活中的问题,常转化为有理数的加减来解决.理解题 目中着重注意的词语的含义是解此类题的关键.
第2课时实数的运算
复习指南
本课时复习主要解决下列问题.
1.实数的加、减、乘、除、乘方、开方运算及简单的混合运算 此内容为本课时的重点.为此设计了[归类探究]中的例1;[限时集 训]中的第1,2,3,4,6,7,9,10,15,16,17,18题.
人教版初中数学中考复习专题复习 数与式(37张PPT)
知识回顾
五、实数的运算 1.包括加法、减法、乘法、除法、乘方、开方共六种,
运算时先确定___符__号___,再运算. 2.实数的运算顺序:先算乘方、开方,再算__乘__除____,
最后算_加__减_____;如果有括号,先算__括__号____里面的; 同级运算按照_从__左__到__右_的顺序依次计算. 六、整式的有关概念 1.整式:__单__项__式__和_多__项__式__统称为整式. 单项式中的_数__字__因__数_叫作单项式的系数,所有字母的 __指__数__和__叫作单项式的次数. 组成多项式的每一个单项式叫作多项式的__项______,多 项式的每一项都要带着前面的符号.
中考·数学
2020版
第一部分 系统复习
第一讲 数与式
知识回顾
一.按实数的定义分类:
负整数
分数
正分数
负无理数
知识回顾
二、实数的基本概念和性质 1.数轴 (1)定义:规定了 _原__点____ 、 _正__方__向__ 、 _单__位__长__度__的直
线叫作数轴. (2)性质: _实___数___和数轴上的点是一一对应的. 2.相反数 (1)定义:a的相反数是___-a____ ,0的相反数是__0___ . (2)性质:a,b互为相反数⇔ __a_+_ b_=__0__ .
2.整式的乘法
知识回顾
(1)单项式乘单项式:把它们的系数、相同字母分别 ___相__乘___,对于只在一个单项式里含有的字母,则连同 它的__指__数____作为积的一个因式.
(2)单项式乘多项式:பைடு நூலகம்单项式去乘多项式的每一项,再 把所得的积__相__加____.
即m(a+b+c)=___m__a_+_m_b_+_m__c__.
专题01 实数(课件)-2023年中考数学一轮复习(全国通用)
①掌握实数的加、减、乘、
除、乘方及简单的混合运算( 运算法则、运算顺序的理解、运用
实数的混合 以三步为主);②理解实数的 和计算的准确性、迅速性.
5
运算
运算律,能运用运算律简化 以选择题、填空题为主,有时也以
运算,并能运用实数的运算 简单解答题的形式命题.
解决简单的问题.
思维导图
知识点1 :实数的有关概念
2
2
故选:A.
知识点1 :实数的有关概念
典型例题
【例6】(3分)(2021•天津6/25)估计 17 的值在( ) A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
【考点】估算无理数的大小 【分析】本题需先根据 17 的整数部分是多少,即可求出它的范围. 【解答】解:∵ 17 4.12 , ∴ 17 的值在4和5之间. 故选:C. 【点评】本题主要考查了估算无理数的大小,在解题时确定无理数的整数部分即 可解决问题.
a<b .
知识点梳理
知识点1 :实数的有关概念
7.非负数:
非负数:正数和 0 统称非负数. 若几个非负数的和等于0,则这几个非负数都等于 0 , 即若A≥0,B≥0,C≥0,A+B+C=0, 则A=B=C=0.
典型例题
知识点1 :实数的有关概念
【例1】(2022•桂林)在东西向的马路上,把出发点记为0,向东与向西意义
知识点梳理
知识点1 :实数的有关概念
4.绝对值:
数轴上表示数a的点与原点的距离,记作|a|,离原点越远的数的绝对值越大.
|a|=
a , a ,
a≥0 , a 0.
5.倒数:
当a≠0时,a与
1 a
互为倒数,即a、b互为倒数⇔ab=1.
中考数学复习第二节 实数的运算及大小比较
第二节实数的运算及大小比较本节知识导图河北中考命题规律考什么怎么考考点年份题号题型考查方式考频命题趋势实数的大小比较2017 19 填空题与新定义结合,考查比较大小,一元二次方程5年2考实数的运算中常考0次幂和-1次幂,与运算结合的简便运算考查2次,形式新颖灵活;而实数的大小比较常与其他知识结合考查,不单独考查.预计2020年实数的运算及大小比较仍会继续考查2016 11 选择题结合数轴比较两数的大小,并判断代数式的正负实数的运算2019 20 解答题填运算符号并计算,比较结果的大小5年5考2018 10④选择题涉及2的0次幂2016 17 填空题8的立方根2015 2C选择题1的立方根河北中考考题试做实数的大小比较1.(2016·河北中考)点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b-a<0; 乙:a+b>0;丙:|a|<|b|; 丁:b a>0.其中正确的是(C)A.甲乙B.丙丁C.甲丙D.乙丁2.(2017·河北中考)对于实数p,q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1. 因此,min{-2,-3}=__-3__;若min{(x-1)2,x2}=1,则__-1或2__.实数的运算类型一纯运算3.(2017·河北中考)下列运算结果为正数的是(A)A.(-3)2B.-3÷2C.0×(-2 017) D.2-34.(2016·河北中考)计算:-(-1)=(D)A.±1 B.-2 C.-1 D.15.(2015·河北中考)计算:3-2×(-1)=(A)A.5 B.1 C.-1 D.66.(2017·河北中考)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是(D) A.4+4-4=6B.4+40+40=6C.4+34+4=6D.4-1÷4+4=67.(2019·河北中考)有个填写运算符号的游戏:在“1269”中的每个内,填入+,-,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2-6-9;(2)若1÷2×69=-6,请推算内的符号;(3)在“126-9”的内填入符号后,使计算所得数最小,直接写出这个最小数.解:(1)原式=3-6-9=-12;(2)∵1÷2×6=3,∴39=-6.∴内的符号是“-”;(3)-20.类型二与规律结合8.(2018·河北中考)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和;发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.解:尝试(1)-5-2+1+9=3;(2)由题意,得-5-2+1+9=-2+1+9+x.解得x=-5;应用与(2)同理,得第6个到第8个台阶上的数依次是-2,1,9,可见台阶上的数从下到上按-5,-2,1,9四个数依次循环排列.∵31=7×4+3,∴前31个台阶上数的和为7×3+(-5-2+1)=15; 发现 4k -1.类型三 与数轴结合 9.(2019·唐山路南区模拟)已知有理数-3,1.(1)在如图所示的数轴上,标出表示这两个数的点,并分别用A ,B 表示;(2)若|m|=2,在数轴上表示数m 的点介于点A ,B 之间;表示数n 的点在点A 右侧且到点B 距离为6. ①计算m +n -mn ;②解关于x 的不等式mx +3<n ,并把解集表示在所给数轴上.解析:本题考查数轴与不等式的应用.(1)在数轴上表示出两点;(2)根据题目条件确定m ,n 的值.①代入m ,n 的值计算代数式的值;②代入m ,n 的值解不等式,并把解集在数轴上表示出来.解:(1)如图所示; (2)∵|m|=2,∴m =±2.∵数m 的点介于点A ,B 之间,∴m =-2. ∵数n 在点A 右侧且到点B 距离为6,∴n =7. ①m +n -mn =-2+7-(-2)×7=5+14=19; ②由-2x +3<7,解得x >-2.在数轴上表示:类型四 根据已知方法进行运算 10.(2016·河北中考)利用运算律有时能进行简便计算.例1 98×12=(100-2)×12=1 200-24 =1 176;例2 -16×233+17×233=(-16+17)×233 =233.请你参考黑板中老师的讲解,用运算律简便计算: (1)999×(-15);(2)999×11845+999×⎝⎛⎭⎫-15-999×1835. 解:(1)原式=(1 000-1)×(-15) =-15 000+15=-14 985;(2)原式=999×⎣⎡⎦⎤11845+⎝⎛⎭⎫-15-1835 =999×100=99 900.平方根与立方根11.(2013·河北中考)下列运算中,正确的是( D )A .9=±3B .3-8=2C .(-2)0=0D .2-1=1212.(2016·河北中考)8的立方根为__2__.中考考点清单实数的运算1.加法:同号两数相加,取__相同__的符号,并把绝对值__相加__.异号两数相加,绝对值相等时和为__0__;绝对值不相等时,取__绝对值较大加数__的符号,并用较大的绝对值__减去__较小的绝对值.一个数同0相加,__仍得这个数__.2.减法:减去一个数,等于加上这个数的__相反数__.3.乘法:两数相乘,同号得__正__,异号得__负__,并把绝对值相乘.任何数同0相乘,仍得0. 4.除法:除以一个数(不等于0)等于乘这个数的__倒数__. 5.乘方:求n 个__相同因数__的积的运算叫做乘方.6.混合运算的顺序:有括号的先算__括号里面的__,无括号则先算__乘方或开方__,再算__乘除__,最后算__加减__,同级运算则按__从左到右__顺序依次计算.7.有理数的一切运算性质和运算律都适用于__实数__运算. 8.运算律(1)加法交换律:a +b =b +a ;(2)加法结合律:a +b +c =(a +b)+c =a +(b +c); (3)乘法交换律:ab =ba ;(4)乘法结合律:(ab)c =a(bc);(5)(乘法对加法的)分配律:a(b +c)=ab +ac.【方法点拨】实数运算四步:(1)观察运算种类;(2)确定运算顺序;(3)把握每个小单元的运算法则及符号;(4)灵活运用运算律.零次幂、负整数指数幂9.若a ≠0,则a 0=__1__;若a ≠0,n 为正整数,则a -n =__1an __.【易错警示】(1)防止出现以下类似的错误:①3-2=-19;②2a -2=12a 2;(2)负数的奇次幂是负数,负数的偶次幂是正数.特别地,-1的奇次幂为-1,偶次幂为1,如(-1)3=-1,(-1)2=1.实数的大小比较与非负数的性质10.实数的大小比较(1)数轴比较法:在数轴上表示的两个数,右边的数总比左边的数大.(2)性质比较法:①正数>0>负数;②两个负数比较大小,绝对值大的数反而小.在一组数中,求最大的数时,一般在正数中找,求最小的数时,一般在负数中找.(3)差值比较法:a -b >0⇔a >b ;a -b <0⇔a <b ;a -b =0⇔a =b.(4)平方比较法:a 2>b ⇔a >b(a >0,b >0)(主要应用于无理数估算及含有无理数的大小比较). (5)立方比较法:a 3>b ⇔a >3b.11.非负数:常见的非负数有a 2,|a|,a(a ≥0),最小的非负数是0. 若几个非负数的和为0,则每个非负数都为0.例如a 2+|b|+c =0,则a 2=|b|=c =0,有a =0,b =0,c =0,反之亦然.平方根、算术平方根、立方根及其性质12.平方根、算术平方根、立方根⎩⎪⎨⎪⎧a 的平方根为⎩⎨⎧±a (a ≥0),其中 a 为a 的算术平方根无意义(a<0)a 的立方根为3a (a 为任意实数)13.平方根的性质:(1)正数有两个平方根,它们互为相反数;(2)0的平方根是0;(3)负数没有平方根.14.立方根的性质:任意一实数都有立方根,且立方根与该实数符号相同;3a3=__a__,(3a)3=__a__,3-a=__-3a__.典题精讲精练实数的运算【例1】(2019·陕西中考)计算:-2×3-27+|1-3|-(12)-2.【解析】本题考查实数的混合运算.先求立方根,根据绝对值的概念去掉绝对值符号,写出负整数指数幂,再进行实数的混合运算.【解答】解:原式=-2×(-3)+(3-1)-4=6+3-5=1+ 3.1.(2019·淄博中考)比-2小1的数是(A)A.-3 B.3 C.-1 D.12.(2019·石家庄内四区模拟)下列运算结果是负数的是(D)A.(-2)×(-3) B.(-3+2)2C.2-3D.-(-2)+(-3)实数的大小比较【例2】(2019·扬州中考)下列各数中,小于-2的数是(A)A.- 5 B.- 3C.- 2 D.-1【解析】本题考查实数的大小比较.比-2小的数应该是负数,且绝对值大于2的数,分析各选项可得-5<-2<-3<-2<-1.3.在-2,-1,0,1这四个数中,最小的数是(A)A.-2 B.-1 C.0 D.14.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是(B)A.|a|>4 B.c-b>0 C.ac>0 D.a+c>0与数轴有关的运算【例3】如图,已知A,B两点在数轴上,点A表示的数为-10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动,点N以每秒2个单位长度的速度从点O向右运动(点M,N同时出发).(1)数轴上点B对应的数是________;(2)经过几秒,点M,N到原点O的距离相等?【解析】(1)根据点A 表示的数及OB =3OA 可得点B 表示的数;(2)设运动时间为t s .根据“路程=速度×时间”可得点M ,N 在数轴上表示的数,分两种情况求出t 的值.【解答】解:(1)30;[∵点A 表示的数为-10,∴OA =10.∵OB =3OA ,∴OB =30.∴点B 对应的数是30.] (2)设运动时间为t s ,则点M 在数轴上表示的数为-10+3t ,点N 在数轴上表示的数为2t.当M ,N 分别位于原点两侧时,由点M ,N 到原点的距离相等可得-10+3t +2t =0,解得t =2; 当M ,N 位于原点同侧,即在原点右侧M ,N 两点重合时,-10+3t =2t ,解得t =10. ∴经过2 s 或10 s ,点M ,N 到原点O 的距离相等.5.如图,数轴上a ,b ,c 三个数所对应的点分别为A ,B ,C ,已知b 是最小的正整数,且a ,c 满足(c -6)2+|a +2|=0.(1)求代数式a 2+c 2-2ac 的值;(2)若将数轴折叠,使得点A 与点B 重合,则与点C 重合的点表示的数是________; (3)请在数轴上确定一点D ,使得AD =2BD ,则点D 表示的数是________.解:(1)∵(c -6)2+|a +2|=0,∴a +2=0,c -6=0,解得a =-2,c =6. ∴a 2+c 2-2ac =4+36+24=64;(2)-7;[∵b 是最小的正整数,∴b =1. ∵(-2+1)÷2=-0.5,∴6-(-0.5)=6.5,-0.5-6.5=-7.∴点C 与数-7表示的点重合.](3)0 或4.[设点D 表示的数为x.若点D 在点A 的左侧,则-2-x =2(1-x),解得x =4(舍去);若点D 在A ,B 之间,则x -(-2)=2(1-x),解得x =0;若点D 在点B 的右侧,则x -(-2)=2(x -1),解得x =4.综上所述,点D 表示的数是0或4.]平方根、算术平方根与立方根【例4】(1)4的平方根是±2; (2)3-27的绝对值是3; (3)|-9|的平方根是±3.【解析】根据平方根、立方根的定义和绝对值的性质求解填空.6.-18的立方根是-12.请完成限时训练A 本P A 3,选做B 本P B 2~B 3。
2019年中考数学专题复习第1讲《实数及有关概念》(含详细参考答案)
2019年中考数学精品专题复习第一章 数与式第一讲 实数及有关概念★★★核心知识回顾★★★知识点一、实数的分类 1.按实数的定义分类:⎧⎧⎧⎫⎪⎪⎪⎪⎪⎪⎪⎪⎨⎬⎪⎨⎪⎪⎨⎪⎪⎪⎩⎭⎪⎪⎪⎩⎪⎩整数有限小数或无限循环小数有理数实数:无限不循环小数 2.按实数的正负分类:⎧⎧⎪⎪⎨⎪⎪⎩⎪⎨⎪⎧⎪⎪⎨⎪⎪⎩⎩正实数正无理数实数零负有理数负实数知识点二、实数的基本概念和性质1.数轴:规定了 、 、 的直线叫做数轴,实数和数轴上的点是一一对应的。
2.相反数:(1)只有 不同的两个数叫做互为相反数,a 的相反数是 ,0的相反数是 ; (2)a+b=0⇔a 、b 互为 ;(3)在数轴上,表示相反数的两个点位于原点两侧,且到原点的距离 。
3.倒数:(1)乘积为 的两个数互为倒数,用数学语言表述为:1ab =,则a ,b 互为 ; (2)1和 的倒数还是它本身, 没有倒数。
4.绝对值:(1)一般地,数轴上表示数a 的点与原点的 叫做数a 的绝对值。
(2)(0)||0(0)(0)a a a a >⎧⎪==⎨⎪<⎩(3)因为绝对值表示的是距离,所以一个数的绝对值是 数,我们学过的非负数有三个: 、 和 。
知识点三、平方根、算术平方根、立方根 1.平方根: (1)一般地,如果一个数的 等于a ,那么这个数就叫做a 的平方根或二次方根,记作 ; (2)正数的平方根有两个,它们互为 ,0的平方根为 , 没有平方根。
2.算术平方根:(1)一般地,如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根,记作 ;(2)正数的算术平方根为 ,0的算术平方根为 。
3.立方根: (1)一般地,如果一个数的立方等于a ,那么这个数就叫做a 的立方根或三次方根,记作 ; (2)正数的立方根为 , 0的立方根为 ,负数立方根为 ;每个实数有且只有一个立方根。
知识点四、科学记数法科学记数法:把一个较大或较小的数写成写成10na ⨯的形式(其中a 大于或等于1且小于10,n 是正整数),使用的是科学记数法。
中考数学总复习课件(完整版)
第2讲┃ 归类示例
请解答下列问题:
(1)按以上规律列出第5个等式:a5=__9×_1_1_1___=
___12_×__19_-_1_11_______;
(2)用含n的代数式表示第n个等式:an= (_2n_-__1_)_×_1_(__2_n+__1_)__=_12_×__2_n_1-_1_-__2_n_1+_1___(n为正整数);
第1讲 实数的有关概念 第2讲 实数的运算与实数的大小比较 第3讲 整式及因式分解 第4讲 分式 第5讲 数的开方及二次根式
第1讲┃ 实数的有关概念
第1讲┃ 考点聚焦
考点聚焦
考点1 实数的概念及分类
1.按定义分类:
实数
有理数
整数
分数
正整数 零 负整数
正分数 有限小数或 负分数 无限循环小数
________2.
图1-2
第1讲┃ 回归教材
2.[2011·贵阳] 如图1-3,矩形OABC的边OA长为2,
边 AB 长为1,OA 在数轴上,以原点 O 为圆心,对角线 OB
的长为半径画弧,交正半轴于一点,则这个点表示的实数是
( D) A . 2.5
B . 2√2
C.√3
D.√5
图1-3 [解析] 由勾股定理得 OB= OA2+AB2= 22+12= 5.
而应从最后结果去判断.一般来说,用根号表示
的数不一定就是无理数,如
是有理数,
用三角函数符号表示的数也不一定就是无理数,
如sin30°、tan45°也不是无理数,一个数是不
是无理数关键在于不同形式表示的数的最终结果
是不是无限不循环小数.
第1讲┃ 归类示例
► 类型之二 实数的有关概念
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
约为0.000 007 7 m,将0.000 007 7用科学记数法表示为
.
解析:∵0.000 007 7第一个不是0的数前面有6个0,
∴0.000 007 7用科学记数法表示为7.7×10-6.
答案:7.7×10-6
命题点1
命题点2
命题点3
命题点4
命题点5
规律方法探究
命题点6 命题点7
命题点1 实数及分类 【例1】 如果零上2 ℃记作+2 ℃,那么零下3 ℃记作 ( ) A.-3 ℃ B.-2 ℃ C.+3 ℃ D.+2 ℃ 解析:若零上用正数表示,则零下用负数表示. 因为零上2 ℃记作+2 ℃,所以零下3 ℃记作-3 ℃. 故答案选A. 答案:A
的算术平方根,a 的算术平方根记作 ������.0 的算术平方根是 0,即 0=0.
(2)算术平方根都是非负数,即 ������ ≥0(a≥0).
(3)(
������)2=a(a≥0),
������2=|a|=
������,������ ≥ 0, -������,������ < 0.
考点梳理 自主测试
命题点1
命题点2
命题点3
命题点4
命题点5
规律方法探究
命题点6 命题点7
命题点2 相反数、倒数、绝对值与数轴
【例 3】
(1)
-
1 3
的相反数的倒数是(
)
A.
1 3
B.-13
C.3
D.-3
(2)如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,
那么点A表示的数是( )
A.-4 B.-2 C.0 D.4
把一个数N表示成 a×10n(1≤|a|<10,n是整数)的形式叫科学记
数法.当|N|>10时,n等于原数N的整数位数减1;当0<|N|<1时,n是一 个负整数,它的绝对值等于原数中左起第一个非零数字前零的个数 (含整数位上的零).
2.近似数与精确度 一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位, 这时,用精确度来表示,例如:0.312 5精确到百分位为0.31,精确到千 分位为0.313.
命题点1
命题点2
命题点3
命题点4
命题点5
规律方法探究
命题点6 命题点7
基础自主导学
3.立方根 (1)定义:如果一个数x的立方等于a,即x3=a,那么这个数x叫做a的 立方根(也叫三次方根),数a的立方根记作 3 ������ . (2)一个正数有一个正的立方根,一个负数有一个负的立方根,0的 立方根是0.
考点梳理 自主测试
基础自主导学
考点四 科学记数法、近似数、精确度 1.科学记数法
负整数
负有理数
负实数
负分数
负无理数
基础自主导学
考点梳理 自主测试
考点二 实数的有关概念
1.数轴
(1)数轴的三要素:原点、正方向、单位长度;
(2)实数与数轴上的点是一一对应的.
2.相反数
(1)实数a的相反数是-a,0的相反数是0;
(2)a与b互为相反数⇔a+b=0.
3.倒数
(1)实数a的倒数是
1 ������
·
是有理数;0.23是无限循环小数,属于有理数;cos
60°=12是有理数;272
是有理数;0.303 003 000 3…(相邻两个 3 之间 0 的个数加 1)是无理数;
因为在 1- 2中 2是无理数,所以 1- 2是无理数.
答案:B
命题点1
命题点2
命题点3
命题点4
命题点5
规律方法探究
命题点6 命题点7
命题点7 实数的大小比较
【例 8】 比较 2.5,-3, 7的大小,正确的是( ) A.-3<2.5< 7 B.2.5<-3< 7 C.-3< 7<2.5 D. 7<2.5<-3
解析:由负数小于正数可得-3 最小,故只要比较 2.5 和 7的大小 即可,由 2.52<( 7)2,得 2.5< 7.
所以-3<2.5< 7. 答案:A
考点梳理 自主测试
基础自主导学
考点五 非负数的性质 1.非负数概念 正数和零统称为非负数,常见的非负数有|a|≥0,a2≥0, ������ ≥0 (a≥0,a可代表一个数或代数式). 2.非负数的性质 (1)非负数的最小值是零;(2)任意几个非负数的和仍为非负数;(3) 几个非负数的和为0,则每个非负数都等于0.
60 m表示“向北走60 m”,那么-40 m表示“向南走40 m”.故选B.
答案:B
3.-34的倒数是( )
A.
4 3
B.
3 4
C.-34
D.-43
答案:D
考点梳理 自主测试
基础自主导学
4.下列运算正确的是( )
A.-|-3|=3
B.
1 3
-1
=-3
C. 9=±3
3
D. -27=-3
答案:D
5.若 x,y 为实数,且|x+2|+
基础自主导学
考点梳理 自主测试
考点七 实数的大小比较 1.在数轴上表示两个数的点,右边的点表示的数总比左边的点表 示的数大. 2.正数大于零,负数小于零,正数大于一切负数;两个负数比较大 小,绝对值大的数反而小. 3.作差比较法 (1)a-b>0⇔a>b; (2)a-b=0⇔a=b; (3)a-b<0⇔a<b. 4.倒数比较法 若 a>0,b>0,1������ > 1������,则 a<b. 5.平方法 因为由 a>b>0,可得 ������ > ������,所以我们可以把 ������与 ������的大小 问题转化成比较 a 和 b 的大小问题.
命题点1
命题点2
命题点3
命题点4
命题点5
规律方法探究
命题点6 命题点7
命题点5 非负数性质的应用
【例 6】 若实数 x,y 满足 2������-1+2(y-1)2=0,则 x+y 的值等于
()
A.1
B.
3 2
C.2
D.
5 2
解析:由二次根式和完全平方式的非负性可知,2x-1=0,y-1=0, 则 x=12,y=1,所以 x+y=32.故选 B.
命题点3
命题点4
命题点5
规律方法探究
命题点6 命题点7
规律方法探究
命题点1 命题点2 命题点3 命题点4 命题点5 命题点6 命题点7
命题点3 平方根、算术平方根与立方根
【例 4】 (1)(-1.44)2 的算术平方根为
;
81的平方根为
; 0.04=
.
(2)(-2)-3 的立方根是
;立方等于-216 的数是
考点梳理 自主测试
基础自主导学
考点六 实数的运算 1.基本运算 加法、减法、乘法、除法、乘方、开方. 2.基本法则 加法法则、减法法则、乘法法则、除法法则、乘方的符号法则. 3.运算律 加法交换律、加法结合律、乘法交换律、乘法结合律、乘法对 加法的分配律. 4.运算顺序 (1)先算乘方、开方,再算乘除,最后算加减;(2)同级运算,按照从 左至右的顺序进行;(3)如果有括号,就先算小括号里的,再算中括号 里的,最后算大括号里的,计算时,可以结合运算律,使问题简单化.
第1课时 实数
考点梳理 自主测试
基础自主导学
考点一 实数的分类
1.按实数的定义分类
正整数
整数 零
有理数
有限小数或无 负整数
限循环小数
正分数
实数
分数 负分数
无理数 正无理数 无限不循环小数 负无理数
考点梳理 自主测试基础自主Βιβλιοθήκη 学2.按正负分类正整数
正有理数
正实数
正分数
正无理数
实数 零(既不是正数也不是负数)
答案:(1)1.44 ±3 0.2 (2)-12 -6 125
命题点1
命题点2
命题点3
命题点4
命题点5
规律方法探究
命题点6 命题点7
命题点1
命题点2
命题点3
命题点4
命题点5
规律方法探究
命题点6 命题点7
命题点4 科学记数法、近似数、精确度 【例5】 一年之中地球与太阳之间的距离随时间变化而变化,1 个天文单位是地球与太阳之间的平均距离,即1.496 0亿km,用科学 记数法表示1个天文单位应是( )
考点梳理 自主测试
基础自主导学
1.在-1,0,1,2这四个数中,既不是正数也不是负数的是 ( )
A.-1 B.0 C.1 D.2 答案:B
2.如果60 m表示“向北走60 m”,那么“向南走40 m”可以表示为( )
A.-20 m B.-40 m
C.20 m D.40 m
解析:“向北走60 m”和“向南走40 m”是一对具有相反意义的量,如果
;
(3 125)3=
.
解析:(1)(-1.44)2 的算术平方根,即 (-1.44)2=|-1.44|=1.44;
81=9,9 的平方根是±3; 0.04=0.2.
(2)∵(-2)-3=(-21)3,
∴(-2)-3
的立方根是 3
(1-2)3=-12.
∵(-6)3=-216,∴ 3 -216=-6.
(3 125)3=125.
答案:B
命题点1
命题点2
命题点3
命题点4
命题点5
规律方法探究
命题点6 命题点7
命题点6 实数的运算 【例 7】 计算:|-3|+ 3tan 30°- 12-(2 017-π)0. 解:原式=3+ 3 × 33-2 3-1=3-2 3.