电磁干扰现象-基本概念

合集下载

电子仪器仪表受到电磁干扰的解决措施

电子仪器仪表受到电磁干扰的解决措施

电子仪器仪表受到电磁干扰的解决措施摘要:目前我国和全球经济的不断发展也在推动着科技水平的快速前进,更多行业中都运用了电子仪器仪表这一物品,并且由于电子仪器仪表的种类多样,其主要的功能内容也各不相同,每一种应对电磁干扰的方式也各不相同,那么就需要根据其自身的特点进行针对性抗电磁干扰方法的设计和研究。

本文旨在探讨当电子仪器仪表遭受到外部电磁干扰时应当如何进行应对及处理对策。

关键词:电子;仪器仪表;电磁干扰1电磁干扰概述如果想要对有关电子仪器的仪表产生电磁干扰,首先需要有三个基本的环境构成要素,也就是干扰源、传播途径以及设备,只有同时具备上述的三要素,才会产生电磁干扰设备仪表的情况。

1.1干扰源的分类当前在各种电子仪器的仪表工作运转的时候,仪表会受到不同形式电磁的干扰,这也是导致仪表产生电磁干扰现象的主要原因,因此就可以根据产生电磁干扰的根本因素进行分析研究,便于设备抗电磁干扰的后续设计。

对电子仪表产生干扰的因素主要可以分为外部因素和仪器内部的干扰[1]。

仪器自身产生干扰的情况主要是指其内在的各个部件之间会出现互相影响的情况,比如仪器内部的工作电路之间可能会由于线路缠绕等因素产生漏电的情况而造成电磁的干扰;又或者是因为设备信号在接收时受到线路、电源以及传输线等组成间相互的阻碍、并且线路之间的相互感应也会导致电磁干扰的出现;电子仪器的内部组成在运行中可能会出现发热等现象,那么就会对其他的组件造成一定的影响,从而造成仪器运行的不稳定;又或者是由于电路的功率过大而产生的电磁场也会对有关设备仪器的稳定带来一定影响,造成部件的干扰。

仪器发生电磁干扰的外部因素主要是指外界因素对设备仪器以及电路等带来的干扰。

主要可以包含外界的高压电、线路漏电等都会对仪器的工作线路造成干扰;外界其他大功率的电器在运行时也会产生非常强的电磁干扰;当然还包括外界环境的不稳定,都会引起一起自身电路的不稳定,导致仪表受到电磁的干扰等多种因素。

机械振动学中的振动与电磁干扰分析

机械振动学中的振动与电磁干扰分析

机械振动学中的振动与电磁干扰分析机械振动学是研究物体在受到外力作用时的振动运动规律的一个重要学科领域。

振动作为机械系统中常见的一种现象,在实际工程应用中经常会受到电磁干扰的影响,因此对振动与电磁干扰之间的关系进行深入分析具有重要的意义。

本文将针对机械振动学中的振动与电磁干扰进行详细分析,探讨其相互作用机制与影响因素。

一、振动与电磁干扰的基本概念在机械系统中,振动是指物体围绕某一平衡位置周期性运动的现象。

而电磁干扰则是指外部电磁场对系统正常工作产生的干扰,可能导致系统的异常运行或故障。

振动与电磁干扰之间存在着复杂的相互作用关系,振动信号可能会受到电磁场的影响而产生变化,反之亦然。

因此,深入了解振动与电磁干扰之间的关系对于有效防范系统故障具有重要意义。

二、振动信号的特点与电磁干扰的影响振动信号具有频率、幅度、相位等特征,可以通过加速度传感器等设备进行监测和分析。

然而,由于电磁场的存在,振动信号可能会被干扰和扭曲,进而影响对系统状态的准确监测。

电磁干扰源可以是来自于系统内部的电子设备,也可以是外部电磁场通过导线等途径引入系统中产生的干扰。

这些干扰信号会与振动信号叠加在一起,导致信号的失真和难以正常解析。

三、振动与电磁干扰的分析方法为了有效地对机械系统中的振动与电磁干扰进行分析,可以采用以下方法:1. 信号处理技术:通过信号处理算法和滤波器等技术手段对振动信号和电磁干扰信号进行解耦和提取,从而准确地获取振动信号的特征参数。

2. 数值模拟方法:利用有限元分析等数值模拟方法,对机械系统在受到不同干扰条件下的振动响应进行模拟和预测,评估系统的稳定性和工作状态。

3. 实验验证手段:通过搭建实验台架和传感器系统,对机械系统在实际工作中受到电磁干扰时的振动响应进行实时监测和验证,验证分析结果的准确性和可靠性。

四、振动与电磁干扰的防范措施为了有效防范机械系统中振动与电磁干扰带来的问题,可以采取以下措施:1. 优化系统设计:在系统设计阶段采用电磁兼容性设计原则,避免对振动信号的影响,降低电磁干扰对系统运行的不利影响。

开关电源EM必须掌握的概念

开关电源EM必须掌握的概念

1.电磁干扰的产生与传输电磁干扰传输有两种方式:一种是传导传输方式,另一种则是辐射传输方式。

传导传输是在干扰源和敏感设备之间有完整的电路连接,干扰信号沿着连接电路传递到接收器而发生电磁干扰现象。

辐射传输是干扰信号通过介质以电磁波的形式向外传播的干扰形式。

常见的辐射耦合有三种:1)一个天线发射的电磁波被另一个天线意外地接收,称为天线对天线的耦合;2)空间电磁场经导线感应而耦合,称为场对线的耦合。

3)两根平等导线之间的高频信号相互感应而形成的耦合,称为线对线的感应耦合。

2.电磁干扰的产生机理从被干扰的敏感设备角度来说,干扰耦合又可分为传导耦合和辐射耦合两类。

● 传导耦合模型传导耦合按其原理可分为电阻性耦合、电容性耦合和电感性耦合三种基本耦合方式。

● 辐射耦合模型辐射耦合是干扰耦合的另一种方式,除了从干扰源发出的有意辐射外,还有大量的无意辐射。

同时,PCB板上的走线无论是电源线、信号线、时钟线、数据线或者控制线等,都能起到天线的效果,即可辐射出干扰波,又可起到接收作用。

3.电磁干扰控制技术①传输通道抑制● 滤波:在设计和选用滤波器时应注意频率特性、耐压性能、额定电流、阻抗特性、屏蔽和可靠性。

滤波器的安装正确与否对其插入损耗特性影响很大,只有安装位置恰当,安装方法正确,才能对干扰起到预期的滤波作用。

在安装滤波器时应考虑安装位置,输入输出侧的配线必须屏蔽隔离,以及高频接地和搭接方法。

● 屏蔽:电磁屏蔽按原理可分为电场屏蔽、磁场屏蔽和电磁场屏蔽三种。

电场屏蔽包含静电屏蔽和交变电场屏蔽;磁场屏蔽包含低频磁场屏蔽和高频磁场屏蔽。

不同类型的电磁屏蔽对屏蔽体的要求不同。

在实际的屏蔽中,电磁屏蔽效能更大程度上依赖于屏蔽体的结构,即导电的连续性。

实际的屏蔽体由于制造、装配、维修、散热、观察及接口连接要求,其上面一般都开有形状各异、尺寸不同的孔缝,这些孔缝对于屏蔽体的屏蔽效能起着重要的影响作用,因此必须采取措施来抑制孔缝的电磁泄漏。

电气设备工程中的电磁兼容性规范要求

电气设备工程中的电磁兼容性规范要求

电气设备工程中的电磁兼容性规范要求在电气设备工程中,电磁兼容性是一个非常重要的问题。

电磁兼容性(Electromagnetic Compatibility, EMC)是指电子设备在电磁环境中正常工作,同时不对其他设备造成干扰的能力。

为了确保电气设备的安全运行和正常功能的实现,制定了一系列的电磁兼容性规范要求。

一、电磁兼容性基本概念电磁兼容性主要包括电磁干扰和抗干扰两个方面。

电磁干扰是指电磁场对其他设备的不希望影响,而抗干扰则是指设备能够抵抗外界电磁场的能力。

在电磁兼容性规范要求中,需要对这两个方面进行考虑。

二、电磁辐射规范要求电磁辐射是指电气设备在工作时产生的电磁场向周围空间传播的现象。

为了防止电磁辐射对其他设备造成干扰,电气设备工程中需要满足一定的辐射规范要求。

辐射规范要求涉及到电气设备的电磁辐射限值、电磁辐射测试方法等方面。

三、电磁抗扰性规范要求电磁抗扰性是指电气设备在外界电磁场的干扰下,能够正常工作的能力。

为了确保设备的可靠性和稳定性,需要满足一系列的电磁抗扰性规范要求。

抗扰性规范要求包括电磁抗扰性测试方法、电磁抗扰性水平等方面。

四、电磁接地规范要求电磁接地是指将设备或部件与大地或其他导电体相连接,以降低电磁干扰和提高设备的抗干扰能力。

在电气设备工程中,电磁接地规范要求包括设备接地电阻的限值范围、接地方式等。

电磁接地规范要求的满足可以降低设备之间的互相干扰。

五、电磁屏蔽规范要求电磁屏蔽是指采取屏蔽措施,防止设备内部的电磁辐射向外传播或阻止外界电磁场对设备的干扰。

电磁屏蔽规范要求包括设备的屏蔽效能、屏蔽材料的选择和使用等。

通过满足电磁屏蔽规范要求,可以有效保护设备的正常工作。

六、电磁兼容性测试要求为了验证设备是否满足电磁兼容性规范要求,需要进行相应的测试。

电磁兼容性测试要求包括辐射测试、抗扰性测试、接地测试等多个方面。

通过合理的测试方法和准确的测试结果,可以评估设备的电磁兼容性性能。

七、电磁兼容性管理要求在电气设备工程中,电磁兼容性的管理是非常重要的。

EMC专业术语

EMC专业术语

一)基本概念1.1电磁环境electromagnetic environment存在于给定场所的所有电磁现象的总和。

1.2电磁噪声electromagnetic noise一种明显不传送信息的时变电磁现象,它可能与有用信号叠加或组合。

1.3无用信号unwanted signal,undesired signal可能损害有用信号接收的信号。

1.4干扰信号interfering signal损害有用信号接收的信号。

1.5电磁骚扰electromagnetic disturbance任何可能引起装置、设备或系统性能降低或者对有生命或无生命物质产生损害作用的电磁现象。

注:电磁骚扰可能是电磁噪声、无用信号或传播媒介自身的变化。

1.6电磁干扰electromagnetic interference(EMI)电磁骚扰引起的设备、传输通道或系统性能的下降。

1.7电磁兼容性electromagnetic compatibility(EMC)设备或系统在其电磁环境中能正常工作且不对该环境中任何事物构成不能承受的电磁骚扰的能力。

1.8(电磁)发射(electromagnet1c)em1ss1on从源向外发出电磁能的现象。

1.9(无线电通信中的)发射emission(in radiocommunication)由无线电发射台产生并向外发出无线电波或信号的现象。

1.10(电磁)辐射(electromagnetic)radiationa.能量以电磁波形式由源发射到空间的现象。

b.能量以电磁波形式在空间传播。

注:“电磁辐射”一词的含义有时也可引申,将电磁感应现象也包括在内。

1.11无线电环境radio environment国家技术监督局19 9 5-0 8-2 5批准19 9 6-0 3-01实施a.无线电频率范围内的电磁环境。

b.在给定场所内所有处于工作状态的无线电发射机产生的电磁场总和。

1.12无线电(频率)噪声radio (frequency) noise具有无线电频率分量的电磁噪声。

电磁干扰屏蔽方法

电磁干扰屏蔽方法

电磁干扰屏蔽方法电磁干扰是指由于电磁场的影响而影响电子设备系统的正常运行的电磁现象,它是一种大的电磁污染源。

电磁干扰可以影响电子设备的性能,也可以影响信号传输的正确性,造成数据传输出现错误,降低系统的运行精度。

因此,需要建立一种电磁干扰屏蔽系统,利用合理的屏蔽结构和材料,来有效地减少或避免干扰。

电磁干扰屏蔽有三种基本方法:屏蔽材料以及屏蔽结构、加电子屏蔽、加功率屏蔽(EMI)。

1、屏蔽材料和结构电磁屏蔽材料的作用是利用它的导电性及对磁场的影响来吸收、重组或反射作用于外界的电磁波,以起到电磁屏蔽的作用。

一般来说,电磁屏蔽材料是指金属结构体或含金属颗粒的绝缘材料以及金属网络或夹层结构体,根据耦合信号传导器的不同,一般来说,应选择合适的抗电磁波的屏蔽材料,如纤维布屏蔽材料、金属布屏蔽材料、全铝箔屏蔽材料、涤纶布屏蔽材料等。

2、电子屏蔽加电子屏蔽的方法有三种:首先是放置就近的设备,应该用来放置重置电容器,其次是添加陷波电路,用来抑制能量密集的脉冲,最后是利用继电器来进行转换。

加电子屏蔽后,可以大大减小外界干扰信号对电子设备的影响。

3、功率屏蔽功率屏蔽(EMI)是电气系统中最常用的一种屏蔽方法,它通过在设备之间添加一个额外的低电阻的电磁屏蔽层来减少电磁波的传播,从而有效地减少电磁干扰。

通常情况下,使用功率屏蔽的设备应被放置在屏蔽物体的外壳内,以避免外部电磁波的干扰。

在以上三种电磁干扰屏蔽方法当中,屏蔽材料最容易使用,且成本较低,但是效果有限。

而在某些现场环境中,有非常强烈的电磁干扰,那么屏蔽材料无法有效地抵消外界电磁干扰,只能使用电子或功率屏蔽。

此外,使用不同类型的屏蔽材料也有一定的要求,必须使用具有足够高的屏蔽效率的材料,以便提高电磁屏蔽的效果。

电磁干扰的屏蔽是一项非常重要的工作,由于外环境的干扰不断变化,在设计电磁干扰屏蔽系统时,应重点考虑合理的屏蔽结构、合适的屏蔽材料和有效的屏蔽方法。

总之,利用合理的电磁屏蔽技术和系统,可以有效地减少外界电磁干扰对设备的影响,从而提高系统的工作精度和可靠性。

地球与宇宙中的电磁现象

地球与宇宙中的电磁现象

地球与宇宙中的电磁现象电磁现象是我们生活中常见的物理现象,它是指物质间相互作用中最基本的一种现象。

而地球与宇宙中的电磁现象更是独具魅力,让我们不禁惊叹于自然的神奇与美妙。

本文将带您一起探索这些神秘的电磁现象,了解它们的由来、特点和意义。

一、地球上的电磁现象1.1 显微镜下的电磁现象显微镜是一个神奇的器具,可以让我们观察到肉眼无法看见的微小世界。

在显微镜下,我们可以看到各种各样的电磁现象,比如静电引力、静电斥力、磁力、电磁波等等。

这些现象不仅令人叹为观止,更是帮助人类理解物理学中的基本概念。

1.2 大自然中的电磁现象除了显微镜下的电磁现象,我们生活的大自然中也充满了各种各样的电磁现象。

例如,闪电、雷声、放电现象、地磁现象等等。

在这些现象中,有些是我们能够轻易解释的,而有些则让人类困惑了很长时间,直到科学技术的飞速发展才得以解答。

1.3 电磁干扰电磁干扰是指电子设备受到外部电磁波影响而出现故障或失效的现象。

这种现象在现代社会中已经非常普遍,例如手机信号受阻、电视信号不稳定等等。

虽然电磁干扰会给我们的生活带来不便,但同时也是人类从事无线通信、电磁防护等方面的重要测试工具。

二、宇宙中的电磁现象2.1 太阳辐射太阳辐射是指太阳释放出的电磁波能量,包括短波辐射和长波辐射。

太阳辐射是地球上最主要的能源来源之一,它使植物能够进行光合作用、陆地和海洋得以加热,生命得以存活。

同时,太阳辐射也是产生极光和太阳风等现象的原因。

2.2 星际物质我们所处的宇宙空间中,充满着各种各样的星际物质,它们中许多都有着电磁特性。

比如,尘埃和气体中的电离层、星际磁场、星际射线等等。

这些电磁现象既可以帮助我们了解宇宙空间中的物理现象,也可以回答我们对于宇宙的某些基本问题的疑惑。

2.3 宇宙微波背景辐射宇宙微波背景辐射是一种具有电磁波特性的宇宙辐射,它是宇宙大爆炸之后演化的结果。

这种辐射极为稀薄,但却对研究宇宙的起源和演化有着非常重要的意义。

电磁干扰原理

电磁干扰原理

电磁干扰原理电磁干扰是指在电磁环境中,电磁波的传播与转换中,因为电磁辐射、电磁感应或者电磁信号传播过程中的其他非期望的电磁效应而引起的问题。

电磁干扰的原理主要涉及到电磁波的传播特性、电磁辐射和电磁感应等基本理论。

一、电磁波的传播特性电磁波是一种由电场和磁场相互作用而产生的波动现象。

在电磁场中,电场和磁场通过一定的关系进行相互转换传播。

电磁波具有频率、波长和传播速度等基本特性。

电磁波的频率决定了其能在空间中传播的距离,高频电磁波具有较短的传播距离,而低频电磁波则可以覆盖较大的区域。

电磁波的波长和频率之间存在反比关系,即波长越长,频率越低。

二、电磁辐射电磁辐射是指电磁波通过空间传播时,以无线电、微波、红外线、可见光、紫外线、X射线和γ射线等形式向周围环境发射或传播的现象。

电磁辐射的强度与辐射源的功率、辐射场的传播距离以及辐射场的方向性等因素相关。

辐射源的辐射功率越大,辐射场的传播距离越远,辐射场的方向性越高,电磁辐射引起的干扰问题就会更加严重。

三、电磁感应电磁感应是指当电磁波通过导线或者电路时,由于电磁场和导线或电路产生相互作用,导致电流的产生或者电势的变化。

根据法拉第电磁感应定律,当导线或电路中存在变化的磁场时,就会在导线或电路中产生感应电动势。

电磁感应产生的电流或电势变化会对周围的电子器件和电路造成干扰。

例如,当手机在通话时,会产生辐射电磁波,这些辐射电磁波会感应到附近的导线或电路,从而干扰到其他电子设备的正常工作。

四、电磁屏蔽和抑制为了减少电磁干扰,人们采用了电磁屏蔽和抑制的方法。

电磁屏蔽是指在设备或系统周围引入屏蔽材料,阻断电磁辐射的传播路径,减少干扰成分的辐射或感应。

常见的电磁屏蔽材料包括金属网、金属薄膜、电磁屏蔽漆等。

电磁抑制则是指利用电磁吸收材料,在电磁波传播路径上吸收、衰减电磁波。

电磁抑制材料可以通过吸收电磁波的能量,减少干扰传输路径上的电磁辐射或感应。

综上所述,电磁干扰的原理涉及电磁波的传播特性、电磁辐射和电磁感应等基本理论。

接地基本知识

接地基本知识

接地的目的:
1、为使整个系统有一个公共的零电位基准面,并给高频干扰电压 提供低阻抗通路,达到系统稳定的工作的目的; 2、为使系统的屏蔽接地,取得良好的电磁屏蔽效果,达到抑制 电磁干扰的目的; 3、为了防止雷击危及系统和人体,防止电荷累积引起的火花放 电,以防止高电压与外壳相接引起的危险。
接地的分类:
电磁干扰(EMI, ElectroMagnetic Interference ):是电磁骚扰引起的设备、 传输通道或系统性能的下降。
电磁干扰的三要素:1 电磁干扰源;2 耦合路径(传输通道);3 敏感设备。
电磁骚扰是电磁现象,是一种客观存在的物理现象,可能会引起装置、设备 或系统性能降级,但不一定会形成后果,即电磁干扰。
接地基本知识
接地基本知识
主要内容
1、为什么要接地? 2、接地的概念
1、为什么要接地
为什么要接地,需要我们了解一些概念: 电磁骚扰(EMD, ElectroMagnetic Disturbance):任何可能引起装置、设备 或系统性能降级或对有生命或无生命物质产生作用的电磁现象。电磁骚扰可 能是电磁噪声、无用信号或传播媒介自身的变化。
电磁兼容(EMC, ElectroMagnetic Compatibility )一般指电气及电子设备 在共同的电磁环境中能执行各自功能的共存状态,正常工作而互不干扰,达 到“兼容”。
实现系统电磁兼容的措施:
1、抑制干扰源,减少不希望的发射; 2、消除或减弱干扰耦合; 3、增加敏感设备的抗干扰能力,削弱不希望的响应。如接地、屏蔽、 滤波限幅等。
一般的方法为安全接地和信号接地。 安全接地:设备安全接地、接零保护接地和防雷接地; 信号接地:单点接地(串连和并联)、多点接地、混合接地和悬浮接地。

瞬态电磁干扰测试方法

瞬态电磁干扰测试方法

瞬态电磁干扰测试方法一、电磁干扰基本概念在复杂的电磁环境中,任何电子及电气产品除了本身能够承受一定的外来电磁干扰(Electromagnetic InterferenceEMI)而保持正常工作外,还不会对其他电子及电气设备产生不可承受的电磁干扰,该产品即具有电磁兼容性(Electromagnetic CompatibilityEMC)21世纪将是信息爆炸的时代,信息的产生、传递、接收、处理和储存等都需要依赖电磁波作为载体。

广义地说,声波、无线电波、光波均可作为信息载体,因此,广义的电磁兼容性概念也应拓展到声、光、电的广阔领域。

1、电子及电气产品的电磁干扰发射或受到电磁干扰的侵害都是通过产品的外壳、交/直流电源端口、信号线、控制线及地线而形成的。

按照EMI的传播方式,可将其分为电磁辐射干扰和电磁传导干扰两大类。

通常,辐射干扰出现在产品周围的媒体中,传导干扰则出现在各种导体中。

一般来说,通过外壳发射的电磁干扰,或通过外壳侵入的干扰都是辐射干扰,而通过其它导体发射和入侵的干扰属于传导干扰。

2 人类必须关注电磁兼容问题20世纪中叶以来,电子技术的迅猛发展,使人类社会的进步和文明上了一个新的台阶,但是也给人们带来了一系列社会问题和环境问题。

家用电器、通信、计算机及信息设备、电动工具、航空、航天等工业、科技、医学等各个领域的自动控制、测量仪器以及电力电子系统等的广泛普及、应用,深入千家万户之中,使得电磁污染问题日益突出,而电子设备的高频化、数字化,干扰信号的能量密度增大,使有限空间内的电磁环境更为恶化。

二、用于检测电磁干扰的仪器有什么?用于检测电磁干扰的仪器是: 电磁干扰检测仪。

电磁干扰测试仪插在现场电源口,能自动捕捉电磁骚扰,满记录4000个。

在电脑上使用“电磁骚扰分析软件”便可显示出:电磁骚扰发生的时间、瞬态的电压和频率的极值,为制定抗干扰措施提供真实依据;也可用来检验抗干扰措施的真实效果。

它清0后又可继续使用。

《电磁兼容和测试技术》课件2-电磁兼容基础知识

《电磁兼容和测试技术》课件2-电磁兼容基础知识

4.电磁骚扰源分类及特性
雷电 NEMP
脉冲电路
无线通信
ESD
直流电机、变频调速器 感性负载通断
4.电磁骚扰源分类及特性
大气干扰
雷电干扰
宇宙干扰
自然 干扰源
热噪声 电气化铁路
无线电广播
电磁 干扰源
无线通信
功能性
人为 干扰源
非功能性
电视 雷达 导航
办公设备
输电线
点火系统
家用电器
工业、 医疗设备
4.电磁骚扰源分类及特性
电磁兼容性控制技术
传输通道抑制 空间分离 时间分隔 频谱管理 电气隔离 其他技术
6 电磁兼容的工程方法
电磁兼容性预测分析
电磁兼容性预测分析是采用计算机数字仿真技术,将各种 电磁干扰特性、传输特性和敏感度特性用数学模型描述,并编制 成程序对潜在的电磁干扰进行计算。
• 数学模型
干扰源模型、传输损耗模型、接受器模型
• 系统法
从电子设备或系统设计开始就进行电磁兼容性设计的方法。它在设备或 系统设计的全过程中贯彻始终,全面综合电磁耦合因素,不断进行电磁兼容 性分析、预测,对各阶段设计进行评估,提出修改措施。
6 电磁兼容的工程方法 EMC措施与费效比
6 电磁兼容的工程方法
为了实现系统内外的电磁兼容,需要技术上和组织上两方面采取措施。
Ea , Ha ;Eb , Hb
S
Va
V
J
a
,
J
m a
Sa
Va
J
b
,
J
m b
Sb
2. 传导耦合的基本原理
传导耦合按其耦合方式可以划分为三种基本方式: ①电路性耦合 ②电容性耦合 ③电感性耦合 实际工程中,这三种耦合方式同时存在、互相联系。

EMC_基础知识的介绍

EMC_基础知识的介绍

EMC_基础知识的介绍EMC的重要性:随着现代科技的发展,电子设备在我们的日常生活中扮演着越来越重要的角色。

而电子设备之间的互相影响和电磁干扰问题也成为了一个非常关键的问题。

一方面,电磁干扰可能会导致设备的异常工作、功能失效甚至是损坏;另一方面,设备对周围环境的电磁干扰也可能干扰到其他设备的正常工作。

因此,保证电子设备的电磁兼容性,对于维护设备正常工作、保障通信网络的稳定运行以及保护人类身体健康都至关重要。

EMC的基本概念:1.电磁兼容性(EMC)是指电子设备在同一电磁环境下相互协调共存,相互不干扰的能力。

2.电磁干扰(EMI)是指电子设备互相之间和与周围环境之间发生的电磁能量的传导、辐射和耦合等干扰现象。

3.电磁感应(EMF)是指电磁场对设备内部电子器件或电路的作用。

4.电磁辐射(EMR)是指电子设备产生的电磁波通过传播介质向外辐射。

5.电磁敏感性(EMS)是指设备对电磁干扰的敏感程度,即设备能否正常工作且不受干扰。

EMC的影响因素:1.设备本身的电磁辐射:电子设备本身会发出电磁辐射。

这些辐射源可以是设备内部的电源、逻辑电路、高速时钟、天线等。

2.设备与外部环境的电磁耦合:电子设备与周围环境之间会通过导线、电磁场耦合、电磁辐射等方式相互影响。

3.设备受到外部电磁干扰:外部电磁干扰可能来自其他设备、电力线、雷电等。

这些干扰可能通过电磁辐射、电磁感应、电磁耦合等方式影响设备的正常工作。

EMC的解决方法:1.设备设计中的EMC:在电子设备的设计阶段,可以采取一些措施来减小设备的电磁辐射和提高设备的抗干扰能力。

例如,减小信号线的长度、增加电磁屏蔽、降低电源线、时钟线和信号线等的串扰。

2.屏蔽与隔离:通过在设备内部或外围添加屏蔽材料和屏蔽结构,来减小设备的电磁辐射和避免干扰。

同时,对重要设备进行隔离,使其对外界的电磁干扰不敏感。

3.地线设计:合理设计设备的地线系统,包括单点接地、分布式接地、有效屏蔽等方法,可以有效降低电磁干扰和提高设备的抗干扰性能。

电磁兼容(EMC)基础知识全面详解

电磁兼容(EMC)基础知识全面详解

电磁兼容(EMC)基础知识全⾯详解⼀、电磁兼容概念电磁兼容EMC(Electromagnetic compatibility) 对于设备或系统的性能指标来说,直译为“电磁兼容性” ;但作为⼀门学科来说,应该译为“电磁兼容”。

国家标准GB/T4365-1995《电磁兼容术语》对电磁兼容所下的定义为“设备或系统在其电磁环境中能正常⼯作且不对该环境中任何事物构成不能承受的电磁骚扰的能⼒。

” 简单的说,就是抗⼲扰的能⼒和对外骚扰的程度。

电磁兼容是研究在有限的空间、有限的时间、有限的频谱资源条件下,各种⽤电设备(分系统、系统;⼴义的还包括⽣物体)可以共存并不致引起降级的⼀门科学。

⼆、基本概念Electromagnetic compatibility(EMC)电磁相容—电⼦产品能够在⼀电磁环境中⼯作⽽不会降低功能或损害之能⼒;Electromagnetic interference(EMI)电磁⼲扰—电⼦产品之电磁能量经由传导或辐射之⽅式传播出去的过程;由⼲扰源、耦合通道及被⼲扰接收机三要素组成。

Radio frequency(RF)⽆线电频率,射頻—通訊所⽤的频率范围,⼤约是10kHz 到100GHz。

这些能量可以是有意产⽣的,如⽆限电传发射器,或者是被电⼦产品⽆意产⽣的;RF能量经由两种模式传播: Radiated emissions(RE)—此种RF 能量的电磁场经由媒介⽽传输;RF 能量⼀般在⾃由空间(free space)內传播,然⽽,其他种类也有可能发⽣。

Conducted emissions(CE)—此种RF 能量的电磁场经由道题媒介⽽传播,⼀般是经由电线或内部连接电缆;Line Conducted interference(LCI)指的是在电源线上的RF 能量。

Susceptibility 容忍度,耐受性—相对的测量产品暴露在EMI环境中混乱或损害的程度。

Immunity 免疫⼒—⼀相对的测量产品承受EMI的能⼒;Electrical overstress(EOS)电⼦过度⾼压—当遇到⾼压突波产品承受到的损坏或只是功能丧失;EOS包括雷击以及静电放电的事件。

电磁屏蔽名词解释

电磁屏蔽名词解释

电磁屏蔽电气或电子设备在正常运行时,往往会向外发射电磁能量,这些能量可能会影响其它设备的正常工作,称为电磁干扰(Electromagnetic Interference,EMI),这时就需要采用一定的技术和手段来抑制电磁干扰,称为电磁屏蔽(Electromagnetic Shielding,EMS)。

电磁屏蔽原理所谓电磁屏蔽就是利用导电或导磁材料来将电磁辐射限制在某一规定的空间范围内。

其目的是采用屏蔽体包围电磁干扰源,抑制电磁干扰源对周围空间的接收器的干扰,或者采用屏蔽体包围接收器,以避免干扰源对其造成干扰。

电磁屏蔽类型电磁屏蔽按其屏蔽原理可以分为电场屏蔽、磁场屏蔽和电磁场屏蔽。

其中,电场屏蔽包括静电场和交变电场屏蔽,磁场屏蔽包括恒定磁场和交变磁场屏蔽,而对于静电屏蔽,又可分为外电场屏蔽和内电场屏蔽两种情况。

无论何种屏蔽,从其实质来说都是研究电磁场在各种具体的局部空间如何分布的问题。

实际应用中要根据场源的不同选用不同的屏蔽方法。

电磁兼容性EMC概述电磁兼容性EMC(Electro Magnetic Compatibility),是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁干扰的能力。

因此,EMC包括两个方面的要求:一方面是指设备在正常运行过程中对所在环境产生的电磁干扰不能超过一定的限值;另一方面是指器具对所在环境中存在的电磁干扰具有一定程度的抗扰度,即电磁敏感性。

EMC定义国际电工委员会标准IEC对电磁兼容的定义是:系统或设备在所处的电磁环境中能正常工作,同时不对其他系统和设备造成干扰。

EMC历史各种运行的电力设备之间以电磁传导、电磁感应和电磁辐射三种方式彼此关联并相互影响,在一定的条件下会对运行的设备和人员造成干扰、影响和危害。

20世纪80年代兴起的电磁兼容EMC学科以研究和解决这一问题为宗旨,主要是研究和解决干扰的产生、传播、接收、抑制机理及其相应的测量和计量技术,并在此基础上根据技术经济最合理的原则,对产生的干扰水平、抗干扰水平和抑制措施做出明确的规定,使处于同一电磁环境的设备都是兼容的,同时又不向该环境中的任何实体引入不能允许的电磁扰动。

电磁兼容技术报告

电磁兼容技术报告

电磁兼容技术报告一、引言电磁兼容是指各种电子设备在正常工作时不相互干扰,也不受外界电磁环境的干扰。

电磁干扰对电子设备的正常工作和通信质量有着重要影响,因此电磁兼容技术的研究和应用备受关注。

本报告将重点介绍电磁兼容技术的基本概念、原理和应用。

二、电磁兼容基本概念1.电磁辐射:电子设备在工作过程中会产生电磁辐射,即电磁波信号。

这些辐射会扩散到周围环境中,可能会对附近的其他电子设备产生干扰。

2.电磁敏感度:电子设备对外界电磁辐射的敏感程度。

敏感度高的设备容易受到干扰,从而影响设备的正常工作。

3.电磁兼容性:指电子设备在正常工作时既不干扰其他设备,也不受其他设备的干扰。

4.电磁干扰:当设备的电磁辐射使周围的其他设备产生异常行为时,称为电磁干扰。

三、电磁兼容技术原理1.屏蔽技术:通过在设备内部或外部加上屏蔽材料,阻止电磁辐射传播或外界电磁辐射的进入,减少干扰。

2.滤波技术:通过使用滤波器,选择性地通过或抑制特定频段的电磁辐射,减少干扰。

3.接地技术:合理的接地设计可以降低设备的电磁干扰,提高设备的抗干扰能力。

4.电磁兼容设计:通过电磁兼容设计,合理安排设备之间的布局和连接方式,减少干扰机会。

四、电磁兼容技术应用1.军事领域:在军事通信、雷达等设备中,电磁兼容技术的应用非常重要。

军事设备的高度敏感性和可靠性要求,对电磁干扰的抵抗能力有很大挑战。

2.汽车电子设备:随着汽车电子化的发展,汽车内部的各种电子设备相互之间的干扰也成为重要问题。

电磁兼容技术可以减少由于车载电子设备干扰引发的故障和安全隐患。

3.通信设备:移动通信设备的快速发展,对电磁兼容技术的要求提出了更高的要求。

提高通信设备的兼容性,可以更好地保证通信的质量和稳定性。

五、电磁兼容技术挑战与展望1.多频段和宽带通信对电磁兼容技术提出了更高要求,如何在不同频段和大范围的带宽内实现兼容性是一个挑战。

2.电子设备的小型化和集成化使得兼容性设计更加困难。

如何在有限的空间内有效地控制电磁干扰,是未来的技术发展方向。

电磁波的干涉与产生

电磁波的干涉与产生

电磁波的干涉与产生电磁波是一种能量以波动形式传播的电磁场。

它们是由振动的电荷或电流在空间中传播而形成的,并且以高频的方式随着时间的推移而振荡。

电磁波的干涉是指两个或多个电磁波相互叠加产生的结果。

干涉现象是物质波的性质,它包括波的相位和振幅。

想要理解电磁波的干涉现象,就需要先了解一些基础知识。

波动是一种能够传导能量的过程。

当两个或多个波让时,它们会相互干涉。

这种干涉可以是构造性干涉或破坏性干涉。

构造性干涉是指波的峰值与峰值或者波的谷值与谷值相遇,形成更大的振幅。

破坏性干涉则是指波的峰值与谷值相遇,产生相互抵消或减小的效果。

具体来说,电磁波的干涉可以通过光的干涉来解释。

光的干涉是指两束光在相互作用时产生的干涉效应。

这种干涉可以通过多种方式实现,例如杨氏双缝实验、反射干涉等。

杨氏双缝实验是理解光的干涉的一种常见方法。

当一束光通过一个狭缝或者是两个紧邻的狭缝时,它会扩散成一束波。

这两束波会相互干涉,形成交替出现的亮纹和暗纹,即干涉条纹。

亮纹表示波的振幅增强,暗纹表示波的相互抵消。

动手实验也可以更直观地理解电磁波的干涉现象。

通过使用两根发射器发射同频率的电磁波,并且保持相位一致,你会观察到一定的干涉条纹。

这是由于两个电磁波在空间中的干涉造成的。

如果改变其中一个发射器的相位,或者改变它们之间的距离,你会看到干涉条纹发生变化。

这是因为相位差的改变导致了波的叠加效果的改变。

干涉现象也出现在其他电磁波的传播中,除了光波外,无线电波和微波等也会发生干涉。

这些干涉现象在工程和科学领域中有着广泛的应用。

例如,在无线通信中,干涉现象被用于改善信号质量和增加信号覆盖范围。

值得注意的是,干涉现象依赖于电磁波的波长和频率。

波长是波峰之间的距离,频率是波动周期的倒数。

波长越短,频率越高,电磁波的干涉效应越明显。

这是因为波长短的电磁波具有更快的振动频率,相位差变化更快。

总结来说,电磁波的干涉现象是电磁场振动的结果。

通过观察和实验,我们可以理解电磁波的干涉机制,并且利用这些原理应用于各个领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常见干扰源
雷电 NEMP
脉冲电路
无线通信 ESD
直流电机、变频调速器 感性负载通断
电磁兼容标准的内容
电磁兼容标准
干扰发射
敏感度
/
传导 电信天 源号线 线控端
制口 线
辐射
传导
电 磁 电源线/信号线
场 场射 瞬 频态
天 线 端 口
辐射
电磁 静 电
场场 放 电
电磁兼容标准体系
电磁兼容标准
基础标准
通用标准
VCCI GB - GJB -
电磁兼容试验场地
开阔场(民用标准)
电磁发射试验
屏蔽暗室
可在普通环境中,但
敏感度或抗扰度试验: 是注意对周围设备的
影响
辐射发射测试
旋转找最大面
EUT
1、3、10、30 米
0.8m 1 ~ 4m
屏蔽墙
测试仪
浪涌(模拟雷电干扰)试验装置
接辅助设备 接电网
信号电缆用的 耦合解耦网络
EUT发生器或耦合器之 间的电缆小于2米
保护地线要能够 承受浪涌电流
浪涌敏感度试验波形
电压
0.5s 10s
t
电压 1.2s
电流
8s
50s
20s
t
t
电快速脉冲试验装置
连辅助设 备与端接
容性卡钳距参考地 100mm,轮流卡每根电缆
脉冲群 信号源
分贝(dB) 的概念
分贝的定义:分贝数

10lg
P2 P1
P1、P2 是两个功率数值,对于电流或电压,定义如下:
电压增益的分贝数 = 20lg
V2 V1
电流增益的分贝数 = 20lg I2 I2
用分贝表示的物理量
电压:用1V、1mV、1V 为参考(例如:1V = 0dBV) 则单位为:dBV、dBmV、dBV 等,
第一章 基本概念
电磁干扰现象 电磁兼容标准 电磁兼容试验 频域与时域 分贝的概念
电磁干扰现象
220AC
数字脉冲电路
数 字 视 频 设 备
开关电源
产生电磁干扰的条件
1.突然变化的电压或电流,即dV/dt 或 dI/dt 很大 2.辐射天线或传导导体
设计中,遇到电压、电流的突然变化,千 万要考虑潜在的电磁干扰问题
1 测试修改法 可采取的措施
电路 结构封装
屏蔽 滤波 软件
措施 概念 设计
2 系统设计法 成本
产品 市场 阶段
EUT与发生器或 卡钳之间的电源 线或信号线长度 小于1米
参考地平面的每个边 要超出EUT100mm并 与大地相连
EUT与参考地平面 之间的距离大于 100mm
电快速脉冲试验波形(模拟感性负载断开)
双指数脉冲
15ms脉冲串
(5kHz)
脉冲串间隔是 300ms
静电放电现象
+ +++++++++++++++++
频谱分析仪
幅度
分辨带宽
扫描速率 (时间)
频率范围
频率
脉冲信号的频谱
谐波幅度
tr
d
(电压或电流)
T
-20dB/dec
-40dB/dec
A
V( or I) = 2A(d+tr)/T V( or I) = 0.64A/Tf V( or I) = 0.2A/Ttrf2
1/d
1/tr
频率(对数)
电磁兼容的工程方法
电流:用1A、1mA、1A 为参考,则:dBA、dBmA、dBA 场强:用1V/m、1V/m 为参考,则:dBV/m、dBV/m 等,
功率:用1W、1mW 为参考,则:dBW、dBm等,
频域分析
时域波形 示波器观察
付立叶级数(周期)
频谱分量
付立叶变换(非周 期)
频谱分析仪观察
EMC分析更多是在频域中进行,并且不 考虑相位因素。
I
放电电流 I
1ns
t 100ns
静电放电试验装置
水平耦合板 >1.60.8m
EUT绝缘垫
直接对EUT放电
水平板间接放电
垂直耦合板 500mm正方形,距EUT100mm
垂直板间接 放电
参考地板 > 1m2 边沿比耦合板外延 > 设备,水平耦合板=垂直耦合板,EUT放在100mm厚的绝缘板上
被引用到 被引用到
产品标准
标准编号的识别
国家或组织 制订单位
标准编号
IEC IEC 欧共体 美国
日本 中国
CISPR TC77 CENELEC FCC,DOD
VCCI
质量技术监督 局, 国防部门
CISPR Pub. IEC EN
FCC Part , MIL-STD.
相关文档
最新文档