高分子材料性能测试方法

合集下载

高分子材料性能测试力学性能

高分子材料性能测试力学性能

3.1.2 高分子经典应力-应变曲线 I
3.1 拉伸性能
(c)旳特点是硬而强。拉伸强度和弹性模量大,且有合适旳伸长率,如硬聚氯乙烯等。(d)旳特点是软而韧。断裂伸长率大,拉伸强度也较高,但弹性模量低,如天然橡胶、顺丁橡胶等。
3.1 拉伸性能
3.1.2 高分子经典应力-应变曲线 III
(e)旳特点是硬而韧。弹性模量大、拉伸强度和断裂伸长率也大,如聚对苯二甲酸乙二醇酯、尼龙等
塑性(Plasticity):外力作用下,材料发生不可逆旳永久性变形而不破坏旳能力。
Mechanical properties of materials
应 力
应 变
Mechanical properties of materials
3.1 拉伸性能
3.1.1 应力-应变曲线
Байду номын сангаас
高分子应力-应变过程
3.1 拉伸性能
电子万能试验机
3.1 拉伸性能
3.1 拉伸性能
3.1.5 拉伸性能测试原理 拉伸试验是对试样延期纵轴方向施加静态拉伸负荷,使其破坏,经过测量试样旳屈服力、破坏力和试样标距间旳伸长来求得试样旳屈服强度拉伸强度和伸长率。
3.1 拉伸性能
3.1.6 测量方法即实验环节 ①试样旳状态调节和试验环境按国家原则规定。②在试样中间平行部分做标线,示明标距。③测量试样中间平行部分旳厚度和宽度,精确到0.01mm,II型试样中间平行部分旳宽度,精确到0.05mm,测3点,取算术平均值。④夹具夹持试样时,要使试样纵轴与上下夹具中心连线重合,且松紧适宜。⑤选定试验速度,进行试验。⑥记录屈服时负荷,或断裂负荷及标距间伸长。试样断裂在中间平行部分之外时,此试样作废,另取试样补做。

常用高分子材料性能检测国家标准

常用高分子材料性能检测国家标准

常用高分子材料性能检测国家标准1 GB/T 1033-1986 塑料密度和相对密度试验方法2 GB/T 1034-1998 塑料吸水性试验方法3 GB/T 1036-1989 塑料线膨胀系数测定方法4 GB/T 1037-1988 塑料薄膜和片材透水蒸气性试验方法杯式法5 GB/T 1038-2000 塑料薄膜和薄片气体透过性试验方法压差法6 GB/T 1039-1992 塑料力学性能试验方法总则7 GB/T 1040-1992 塑料拉伸性能试验方法8 GB/T 1041-1992 塑料压缩性能试验方法9 GB/T 1043-1993 硬质塑料简支梁冲击试验方法11 GB/T 固体绝缘材料电气强度试验方法工频下的试验13 GB/T 1409-1988 固体绝缘材料在工频、音频、高频(包括米波长在内)下相对介电常数和介质损耗因数的试验方法14 GB/T 1410-1989 固体绝缘材料体积电阻率和表面电阻率试验方法15 GB/T 1411-2002 干固体绝缘材料耐高电压、小电流电弧放电的试验16 GB/T 1446-2005 纤维增强塑料性能试验方法总则17 GB/T 1447-2005 纤维增强塑料拉伸性能试验方法18 GB/T 1448-2005 纤维增强塑料压缩性能试验方法19 GB/T 1449-2005 纤维增强塑料弯曲性能试验方法20 GB/T 纤维增强塑料层间剪切强度试验方法21 GB/T 纤维增强塑料冲压式剪切强度试验方法22 GB/T 1451-2005 纤维增强塑料简支梁式冲击韧性试验方法23 GB/T 1458-1988 纤维缠绕增强塑料环形试样拉伸试验方法24 GB/T 1461-1988 纤维缠绕增强塑料环形试样剪切试验方法25 GB/T 1462-2005 纤维增强塑料吸水性试验方法26 GB/T 1463-2005 纤维增强塑料密度和相对密度试验方法27 GB/T 1633-2000 热塑性塑料维卡软化温度(VST)的测定28 GB/T 塑料负荷变形温度的测定第1部分:通用试验方法29 GB/T 塑料负荷变形温度的测定第2部分:塑料、硬橡胶和长纤维增强复合材料30 GB/T 塑料负荷变形温度的测定第3部分:高强度热固性层压材料31 GB/T 1636-1979 模塑料表观密度试验方法32 GB/T 1843-1996 塑料悬臂梁冲击试验方法33 GB/T 塑料及树脂缩写代号第一部分:基础聚合物及其特征性能34 GB/T 塑料及树脂缩写代号第二部分:填充及增强材料35 GB/T 塑料及树脂缩写代号第三部分:增塑剂36 GB/T 2035-1996 塑料术语及其定义37 GB/T 2406-1993 塑料燃烧性能试验方法氧指数法38 GB/T 2407-1980 塑料燃烧性能试验方法炽热棒法39 GB/T 2408-1996 塑料燃烧性能试验方法水平法和垂直法40 GB/T 2409-1980 塑料黄色指数试验方法41 GB/T 2410-1980 透明塑料透光率和雾度试验方法42 GB/T 2411-1980 塑料邵氏硬度试验方法43 GB/T 塑料聚丙烯(PP)模塑和挤出材料第2部分:试样制备和性能测定44 GB/T 2547-1981 塑料树脂取样方法45 GB/T 2572-2005 纤维增强塑料平均线膨胀系数试验方法46 GB/T 2573-1989 玻璃纤维增强塑料大气暴露试验方法47 GB/T 2574-1989 玻璃纤维增强塑料湿热试验方法48 GB/T 2575-1989 玻璃纤维增强塑料耐水性试验方法49 GB/T 2576-2005 纤维增强塑料树脂不可溶分含量试验方法50 GB/T 2577-2005 玻璃纤维增强塑料树脂含量试验方法51 GB/T 2578-1989 纤维缠绕增强塑料环形试样制作方法52 GB/T 2913-1982 塑料白度试验方法53 GB/T 2914-1999 塑料氯乙烯均聚和共聚树脂挥发物(包括水)的测定54 GB/T 2916-1997 塑料氯乙烯均聚和共聚树脂用空气喷射筛装置的筛分析55 GB/T 2918-1998 塑料试样状态调节和试验的标准环境56 GB/T 3139-2005 纤维增强塑料导热系数试验方法57 GB/T 3140-2005 纤维增强塑料平均比热容试验方法58 GB/T 3354-1999 定向纤维增强塑料拉伸性能试验方法59 GB/T 3355-2005 纤维增强塑料纵横剪切试验方法60 GB/T 3356-1999 单向纤维增强塑料弯曲性能试验方法61 GB/T 3365-1982 碳纤维增强塑料孔隙含量检验方法(显微镜法)62 GB/T 3366-1996 碳纤维增强塑料纤维体积含量试验方法63 GB/T 3398-1982 塑料球压痕硬度试验方法64 GB/T 3399-1982 塑料导热系数试验方法护热平板法65 GB/T 3400-2002 塑料通用型氯乙烯均聚和共聚树脂室温下增塑剂吸收量的测定66 GB/T 塑料氯乙烯均聚和共聚树脂第1部分:命名体系和规范基础67 GB/T 3403-1982 氨基模塑料命名68 GB/T 3681-2000 塑料大气暴露试验方法69 GB/T 3682-2000 热塑性塑料熔体质量流动速率和熔体体积流动速率的测定70 GB/T 3807-1994 聚氯乙烯微孔塑料拖鞋71 GB/T 3854-2005 增强塑料巴柯尔硬度试验方法72 GB/T 3855-2005 碳纤维增强塑料树脂含量试验方法73 GB/T 3856-2005 单向纤维增强塑料平板压缩性能试验方法74 GB/T 3857-2005 玻璃纤维增强热固性塑料耐化学介质性能试验方法75 GB/T 3960-1983 塑料滑动摩擦磨损试验方法76 GB/T 3961-1993 纤维增强塑料术语77 GB/T 4170-1984 塑料注射模具零件技术条件78 GB/T 4217-2001 流体输送用热塑性塑料管材公称外径和公称压力79 GB/T 4550-2005 试验用单向纤维增强塑料平板的制备80 GB/T 4610-1984 塑料燃烧性能试验方法点着温度的测定81 GB/T 4616-1984 酚醛模塑料丙酮可溶物(未模塑态材料的表观树脂含量)的测定82 GB/T 4944-2005 玻璃纤维增强塑料层合板层间拉伸强度试验方法83 GB/T 5258-1995 纤维增强塑料薄层板压缩性能试验方法84 GB/T 5349-2005 纤维增强热固性塑料管轴向拉伸性能试验方法85 GB/T 5350-2005 纤维增强热固性塑料管轴向压缩性能试验方法86 GB/T 5351-2005 纤维增强热固性塑料管短时水压失效压力试验方法87 GB/T 5352-2005 纤维增强热固性塑料管平行板外载性能试验方法88 GB/T 5470-1985 塑料冲击脆化温度试验方法89 GB/T 5471-1985 热固性模塑料压塑试样制备方法90 GB/T 5472-1985 热固性模塑料矩道流动固化性试验方法91 GB/T 5478-1985 塑料滚动磨损试验方法92 GB/T 5563-1994 橡胶、塑料软管及软管组合件液压试验方法93 GB/T 5564-1994 橡胶、塑料软管低温曲挠试验94 GB/T 5565-1994 橡胶或塑料软管及纯胶管弯曲试验95 GB/T 5566-2003 橡胶或塑料软管耐压扁试验方法96 GB/T 5567-1994 橡胶、塑料软管及软管组合件真空性能的测定97 GB/T 5568-1994 橡胶、塑料软管及软管组合件无屈挠液压脉冲试验98 GB/T 6011-2005 纤维增强塑料燃烧性能试验方法炽热棒法99 GB/T 6111-2003 流体输送用热塑性塑料管材耐内压试验方法100 GB/T 6342-1996 泡沫塑料与橡胶线性尺寸的测定101 GB/T 6343-1995 泡沫塑料和橡胶表观(体积)密度的测定102 GB/T 塑料聚苯乙烯(PS)模塑和挤出材料第2部分: 试样制备和性能测定103 GB/T 6670-1997 软质聚氨酯泡沫塑料回弹性能的测定104 GB/T 6671-2001 热塑性塑料管材纵向回缩率的测定105 GB/T 6672-2001 塑料薄膜和薄片厚度测定机械测量法106 GB/T 6673-2001 塑料薄膜和薄片长度和宽度的测定107 GB/T 7129-2001 橡胶或塑料软管容积膨胀的测定108 GB/T 7139-2002 塑料氯乙烯均聚物和共聚物氯含量的测定109 GB/T 7141-1992 塑料热空气暴露试验方法110 GB/T 7142-2002 塑料长期热暴露后时间-温度极限的测定111 GB/T 玻璃纤维增强塑料冷却塔第1部分:中小型玻璃纤维增强塑料冷却塔112 GB/T 玻璃纤维增强塑料冷却塔第2部分:大型玻璃纤维增强塑料冷却塔113 GB/T 7559-2005 纤维增强塑料层合板螺栓连接挤压强度试验方法114 GB/T 7948-1987 塑料轴承极限PV试验方法115 GB/T 8323-1987 塑料燃烧性能试验方法烟密度法116 GB/T 8324-1987 模塑料体积系数试验方法117 GB/T 8332-1987 泡沫塑料燃烧性能试验方法水平燃烧法118 GB/T 8333-1987 硬泡沫塑料燃烧性能试验方法垂直燃烧法119 GB/T 8802-2001 热塑性塑料管材、管件维卡软化温度的测定120 GB/T 热塑性塑料管材拉伸性能测定第1部分:试验方法总则121 GB/T 热塑性塑料管材拉伸性能测定第2部分: 硬聚氯乙烯(PVC-U)、氯化聚氯乙烯(PVC-C)和高抗冲聚氯乙烯(PVC-HI)管材122 GB/T 热塑性塑料管材拉伸性能测定第3部分:聚烯烃管材123 GB/T 8805-1988 硬质塑料管材弯曲度测量方法124 GB/T 8806-1988 塑料管材尺寸测量方法125 GB/T 8807-1988 塑料镜面光泽试验方法126 GB/T 8808-1988 软质复合塑料材料剥离试验方法127 GB/T 8809-1988 塑料薄膜抗摆锤冲击试验方法128 GB/T 8810-1988 硬质泡沫塑料吸水率试验方法129 GB/T 8810-2005 硬质泡沫塑料吸水率的测定130 GB/T 8811-1988 硬质泡沫塑料尺寸稳定性试验方法131 GB/T 8812-1988 硬质泡沫塑料弯曲试验方法132 GB/T 8813-1988 硬质泡沫塑料压缩试验方法133 GB/T 8815-2002 电线电缆用软聚氯乙烯塑料134 GB/T 8846-1988 塑料成型模具术语135 GB/T 8846-2005 塑料成型模术语136 GB/T 8924-2005 纤维增强塑料燃烧性能试验方法氧指数法137 GB/T 9341-2000 塑料弯曲性能试验方法138 GB/T 9342-1988 塑料洛氏硬度试验方法139 GB/T 9343-1988 塑料燃烧性能试验方法闪点和自燃点的测定140 GB/T 9345-1988 塑料灰分通用测定方法141 GB/T 9350-2003 塑料氯乙烯均聚和共聚树脂水萃取液pH值的测定142 GB/T 9352-1988 热塑性塑料压缩试样的制备143 GB/T 9572-2001 橡胶和塑料软管及软管组合件电阻的测定144 GB/T 9573-2003 橡胶、塑料软管及软管组合件尺寸测量方法145 GB/T 9575-2003 工业通用橡胶和塑料软管内径尺寸及公差和长度公差146 GB/T 9639-1988 塑料薄膜和薄片抗冲击性能试验方法自由落镖法147 GB/T 9641-1988 硬质泡沫塑料拉伸性能试验方法148 GB/T 9647-2003 热塑性塑料管材环刚度的测定149 GB/T 9979-2005 纤维增强塑料高低温力学性能试验准则150 GB/T 10006-1988 塑料薄膜和薄片摩擦系数测定方法151 GB/T 10007-1988 硬质泡沫塑料剪切强度试验方法152 GB/T 10009-1988 丙烯腈-丁二烯-苯乙烯(ABS)塑料挤出板材153 GB/T 10703-1989 玻璃纤维增强塑料耐水性加速试验方法154 GB/T 10798-2001 热塑性塑料管材通用壁厚表155 GB/T 10799-1989 硬质泡沫塑料开孔与闭孔体积百分率试验方法156 GB/T 10802-1989 软质聚氨酯泡沫塑料157 GB/T 10808-1989 软质泡沫塑料撕裂性能试验方法158 GB/T 11546-1989 塑料拉伸蠕变测定方法159 GB/T 11547-1989 塑料耐液体化学药品(包括水)性能测定方法160 GB/T 11548-1989 硬质塑料板材耐冲击性能试验方法(落锤法)161 GB/T PVC 塑料窗力学性能、耐候性技术条件162 GB/T PVC 塑料窗力学性能、耐候性试验方法163 GB/T 11997-1989 塑料多用途试样的制备和使用164 GB/T 11998-1989 塑料玻璃化温度测定方法热机械分析法165 GB/T 11999-1989 塑料薄膜和薄片耐撕裂性试验方法埃莱门多夫法166 GB/T 12000-2003 塑料暴露于湿热、水喷雾和盐雾中影响的测定167 GB/T 未增塑聚氯乙烯窗用模塑料第3部分:性能试验方法168 GB/T 12003-1989 塑料窗基本尺寸公差169 GB/T 12027-2004 塑料薄膜和薄片加热尺寸变化率试验方法170 GB/T 12584-2001 橡胶或塑料涂覆织物低温冲击试验171 GB/T 12586-2003 橡胶或塑料涂覆织物耐屈挠破坏性的测定172 GB/T 12587-2003 橡胶或塑料涂覆织物抗压裂性的测定173 GB/T 12588-2003 塑料涂覆织物聚氯乙烯涂覆层融合程度快速检验法174 GB/T 12600-2005 金属覆盖层塑料上镍+铬电镀层175 GB/T 12722-1991 橡胶和塑料软管组合件屈挠液压脉冲试验(半Ω试验)176 GB/T 12811-1991 硬质泡沫塑料平均泡孔尺寸试验方法177 GB/T 12812-1991 硬质泡沫塑料滚动磨损试验方法178 GB/T 12833-1991 橡胶和塑料撕裂强度及粘合强度多峰曲线的分析方法179 GB/T 12949-1991 滑动轴承覆有减摩塑料层的双金属轴套180 GB/T 13022-1991 塑料薄膜拉伸性能试验方法181 GB/T 拉挤玻璃纤维增强塑料杆拉伸性能试验方法182 GB/T 拉挤玻璃纤维增强塑料杆弯曲性能试验方法183 GB/T 拉挤玻璃纤维增强塑料杆面内剪切强度试验方法184 GB/T 拉挤玻璃纤维增强塑料杆表观水平剪切强度短梁剪切试验方法185 GB/T 13376-1992 塑料闪烁体186 GB/T 13455-1992 氨基模塑料挥发物测定方法187 GB/T 13525-1992 塑料拉伸冲击性能试验方法188 GB/T 13541-1992 电气用塑料薄膜试验方法189 GB/T 14152-2001 热塑性塑料管材耐外冲击性能试验方法时针旋转法190 GB/T 14153-1993 硬质塑料落锤冲击试验方法通则191 GB/T 14154-1993 塑料门垂直荷载试验方法192 GB/T 14155-1993 塑料门软重物体撞击试验方法193 GB/T 14205-1993 玻璃纤维增强塑料养殖船194 GB/T 14216-1993 塑料膜和片润湿张力试验方法195 GB/T 14234-1993 塑料件表面粗糙度196 GB/T 14447-1993 塑料薄膜静电性测试方法半衰期法197 GB/T 14484-1993 塑料承载强度试验方法198 GB/T 14519-1993 塑料在玻璃板过滤后的日光下间接曝露试验方法199 GB/T 14520-1993 气相色谱分析法测定不饱和聚酯树脂增强塑料中的残留苯乙烯单体含量200 GB/T 14522-1993 机械工业产品用塑料、涂料、橡胶材料人工气候加速试验方法201 GB/T 14694-1993 塑料压缩弹性模量的测定202 GB/T 14904-1994 钢丝增强的橡胶、塑料软管和软管组合件屈挠液压脉冲试验203 GB/T 14905-1994 橡胶和塑料软管各层间粘合强度测定204 GB/T 15047-1994 塑料扭转刚性试验方法205 GB/T 15048-1994 硬质泡沫塑料压缩蠕变试验方法206 GB/T 15560-1995 流体输送用塑料管材液压瞬时爆破和耐压试验方法207 GB/T 15596-1995 塑料暴露于玻璃下日光或自然气候或人工光后颜色和性能变化的测定208 GB/T 15598-1995 塑料剪切强度试验方法穿孔法209 GB/T 15662-1995 导电、防静电塑料体积电阻率测试方法210 GB/T 15738-1995 导电和抗静电纤维增强塑料电阻率试验方法211 GB/T 15907-1995 橡胶、塑料软管燃烧试验方法212 GB/T 15908-1995 织物增强液压型热塑性塑料软管和软管组合件213 GB/T 15928-1995 不饱和聚酯树脂增强塑料中残留苯乙烯单体含量测定方法214 GB/T 16276-1996 塑料薄膜粘连性试验方法215 GB/T 16419-1996 塑料弯曲性能小试样试验方法216 GB/T 16420-1996 塑料冲击性能小试样试验方法217 GB/T 16421-1996 塑料拉伸性能小试样试验方法218 GB/T 塑料实验室光源曝露试验方法第1部分:通则219 GB/T 塑料实验室光源暴露试验方法第2部分:氙弧灯220 GB/T 塑料实验室光源曝露试验方法第3部分:荧光紫外灯221 GB/T 塑料实验室光源曝露试验方法第4部分:开放式碳弧灯222 GB/T 16578-1996 塑料薄膜和薄片耐撕裂性能试验方法裤形撕裂法223 GB/T 16778-1997 纤维增强塑料结构件失效分析一般程序224 GB/T 16779-1997 纤维增强塑料层合板拉-拉疲劳性能试验方法225 GB/T 热塑性塑料材料注塑试样的制备第1部分;一般原理及多用途试样和长条试样的制备226 GB/T 塑料热塑性塑料材料注塑试样的制备第3部分: 小方试片227 GB/T 塑料热塑性塑料材料注塑试样的制备第4部分: 模塑收缩率的测定228 GB/T 17200-1997 橡胶塑料拉力、压力、弯曲试验机技术要求229 GB/T 17603-1998 光解性塑料户外暴露试验方法230 GB/T 18022-2000 声学 1~10 MHz频率范围内橡胶和塑料纵波声速与衰减系数的测量方法231 GB/T 18042-2000 热塑性塑料管材蠕变比率的试验方法232 GB/T 18252-2000 塑料管道系统用外推法对热塑性塑料管材长期静液压强度的测定233 GB/T 18422-2001 橡胶和塑料软管及软管组合件透气性的测定234 GB/T 18423-2001 橡胶和塑料软管及非增强软管液体壁透性测定235 GB/T 18424-2001 橡胶和塑料软管氙弧灯曝晒颜色和外观变化的测定236 GB/T 18426-2001 橡胶或塑料涂覆织物低温弯曲试验237 GB/T 18743-2002 流体输送用热塑性塑料管材简支梁冲击试验方法238 GB/T 18943-2003 多孔橡胶与塑料动态缓冲性能测定239 GB/T 18949-2003 橡胶和塑料软管动态条件下耐臭氧性能的评定240 GB/T 18950-2003 橡胶和塑料软管静态下耐紫外线性能测定241 GB/T 塑料抗冲击聚苯乙烯(PS-I)模塑和挤出材料第2部分:试样制备和性能测定242 GB/T 19089-2003 橡胶或塑料涂覆织物耐磨性的测定马丁代尔法243 GB/T 19280-2003 流体输送用热塑性塑料管材耐快速裂纹扩展(RCP)的测定小尺寸稳态试验(S4试验)244 GB/T 小艇艇体结构和构件尺寸第1部分:材料:热固性树脂、玻璃纤维增强塑料、基准层合板245 GB/T 塑料差示扫描量热法(DSC)第1部分:通则246 GB/T 塑料差示扫描量热法(DSC)第2部分:玻璃化转变温度的测定247 GB/T 塑料差示扫描量热法(DSC)第3部分:熔融和结晶温度及热焓的测定248 GB/T 塑料可比单点数据的获得和表示第1部分:模塑材料249 GB/T 塑料可比单点数据的获得和表示第2部分:长纤维增强材料250 GB/T 塑料管道系统硬聚氯乙烯(PVC-U)管材弹性密封圈式承口接头偏角密封试验方法251 GB/T 塑料管道系统硬聚氯乙烯(PVC-U)管材弹性密封圈式承口接头负压密封试验方法252 GB/T 19532-2004 包装材料气相防锈塑料薄膜253 GB/T 19603-2004 塑料无滴薄膜无滴性能试验方法254 GB/T 19687-2005 闭孔塑料长期热阻变化的测定实验室加速测试方法255 GB/T 19712-2005 塑料管材和管件聚乙烯(PE)鞍形旁通抗冲击试验方法256 GB/T 19789-2005 包装材料塑料薄膜和薄片氧气透过性试验库仑计检测法257 GB/T 19806-2005 塑料管材和管件聚乙烯电熔组件的挤压剥离试验258 GB/T 19808-2005 塑料管材和管件公称外径大于或等于90mm的聚乙烯电熔组件的拉伸剥离试验259 GB/T 19811-2005 在定义堆肥化中试条件下塑料材料崩解程度的测定260 GB/T 19993-2005 冷热水用热塑性塑料管道系统管材管件组合系统热循环试验方法261 GB/T 20022-2005 塑料氯乙烯均聚和共聚树脂表观密度的测定262 GB/T 20024-2005 内燃机用橡胶和塑料燃油软管可燃性试验方法263 GB/T 20026-2005 橡胶和塑料软管内衬。

高分子材料分析与测试

高分子材料分析与测试

高分子材料分析与测试引言高分子材料是一类重要的工程材料,在各个领域有着广泛的应用。

为了确保高分子材料的质量和性能,对其进行准确的分析与测试是至关重要的。

本文将介绍高分子材料分析与测试的基本原理、常用方法和技术,并对其在实际应用中的重要性进行讨论。

1. 高分子材料的特性分析高分子材料具有许多特殊的性质,如高分子链结构、长链分子的柔性和高分子材料的热性能等。

为了准确分析和测试高分子材料的特性,我们需要运用一些常用的分析方法。

下面介绍几种常用的高分子材料特性分析方法:•红外光谱分析:红外光谱是一种常见的高分子材料分析方法,通过对材料吸收、发射或散射红外辐射进行分析,可以确定材料的化学成分和结构。

•热分析:热分析是一种通过加热样品并监测其温度和质量变化来分析材料热性能的方法。

常见的热分析方法包括热重分析(TGA)和差热分析(DSC)等。

•X射线衍射(XRD):XRD是一种通过测量材料对入射X射线的衍射情况来分析其晶体结构的方法。

通过XRD可以确定高分子材料的结晶性质和晶格参数。

•核磁共振(NMR):核磁共振是一种通过测量材料中核自旋的共振现象来分析材料结构和化学环境的方法。

在高分子材料分析中,NMR可以提供关于材料分子结构、分子量和链结构等信息。

2. 高分子材料的力学性能测试高分子材料的力学性能是评价其质量和使用性能的关键指标之一。

为了准确测试高分子材料的力学性能,常用的测试方法包括:•拉伸测试:拉伸测试是一种通过施加拉伸力来测量材料在拉伸过程中的力学性能的方法。

通过拉伸测试可以确定高分子材料的强度、延展性和弹性模量等指标。

•弯曲测试:弯曲测试是一种通过施加弯曲力来测量材料在弯曲过程中的力学性能的方法。

通过弯曲测试可以确定高分子材料的弯曲强度和弯曲模量等参数。

•硬度测试:硬度测试是一种通过在材料表面施加静态或动态载荷来测量材料硬度的方法。

常用的高分子材料硬度测试方法包括巴氏硬度和洛氏硬度等。

•冲击测试:冲击测试是一种通过施加冲击载荷来测量材料抗冲击性能的方法。

高分子材料性能测-热性能试验

高分子材料性能测-热性能试验

高分子材料性能测试方法第四章热性能试验4.1材料的热稳定性4.2线膨胀系数测定4.3材料熔点的测试4.4热导率的测试4.5耐寒实验454.1材料的热稳定性4.1.1尺寸稳定性原理在测量的过程中,通过在制定温度下恒温加热试样,直至试样中分子体系达到稳定状态然后将试样从加热装置中取至试样中分子体系达到稳定状态,然后将试样从加热装置中取出,在标准环境下冷却至室温,通过测量试样尺寸的变化测量材料在尺寸的上的稳定性。

4.1材料的热稳定性2)实验装置:①精确度在2℃的恒温烘箱,一般测量时样时需要加热至200℃℃的恒温烘箱一般测量时样时需要加热至以上;②卡尺,精确度0.01毫米;③试样支撑物,按照测量规定要求针对不同的试样采用不同的③试样支撑物按照测量规定要求针对不同的试样采用不同的支撑物,常用的支撑物有钢板、铜板、石棉板、牛皮纸等等。

4.1材料的热稳定性3)操作步骤①根据产品标准的规定,将试样划好标线,在适当温度下进行①根据产品标准的规定将试样划好标线在适当温度下进行试样调节。

②根据产品标准的规定,测量试样标线之间的距离,精确至0.01毫米。

③调整预热烘箱:将烘箱升温至实验所需温度,并恒定温度15分钟。

④根据产品标准的规定,将试样放在规定的支撑物上,关上烘箱门,开始计算时间,达到实验所需时间之后,将试样取出,冷却试样至与试样调节相同的温度条件,并保持一段时间。

精冷却试样与试样节相的度条件并保持段时间精确测量式样的尺寸。

在将试样放入烘箱的过程中,动作一定要快,尽量不影响烘箱的温度。

快尽量不影响烘箱的温度4.1材料的热稳定性4)结果计算长度变化率:Sl=(L-L0))/L0*100%;宽度变化率:SW=(W-W0))/W0*100%;厚度变化率:SD=(D-D0))/D0*100%;Sl、SW、SD分别表示试样在长度,宽度和厚度上的变化率。

L代表实验后的试样长度,W表示实验后试样的宽度;D表示实验后试样的厚度。

高分子材料的质量标准及检验方法

高分子材料的质量标准及检验方法

高分子材料的质量标准及检验方法高分子材料是一类重要的材料,主要包括塑料、橡胶和纤维。

高分子材料的质量标准和检验方法对于保证产品质量的稳定性和可靠性至关重要。

本文将从材料物理性能、化学性能、耐候性能、力学性能、热性能和表面性能等方面介绍高分子材料的质量标准及检验方法。

一、材料物理性能的质量标准及检验方法高分子材料的物理性能包括密度、熔点、玻璃转化温度等。

对于高分子材料来说,密度是一个重要的物理性能,它直接影响材料的重量和成本。

检验方法一般采用浮力法或密度计进行测定。

二、材料化学性能的质量标准及检验方法高分子材料的化学性能包括与酸、碱和溶剂的耐受性、吸湿性以及电气性质等。

检验方法主要包括酸碱溶胀实验、吸湿实验和电性能测试。

三、材料耐候性能的质量标准及检验方法高分子材料的耐候性能是指材料在光、热、氧等外界环境作用下的稳定性能。

检验方法主要包括光照老化试验、热氧老化试验等。

四、材料力学性能的质量标准及检验方法高分子材料的力学性能包括拉伸强度、弯曲强度和冲击强度等。

检验方法主要包括拉伸试验机、弯曲测试仪和冲击试验机。

五、材料热性能的质量标准及检验方法高分子材料的热性能包括熔融温度、热稳定性和热导率等。

检验方法主要包括热分析仪和热导率测试仪。

六、材料表面性能的质量标准及检验方法高分子材料的表面性能包括光泽度、表面硬度和耐刮花性等。

检验方法主要包括光泽度计、硬度计和耐刮花试验机。

总之,高分子材料的质量标准及检验方法是保证材料质量的重要手段。

通过对材料的物理性能、化学性能、耐候性能、力学性能、热性能和表面性能的检测,可以有效评估材料的性能,从而保证产品的质量稳定性和可靠性。

在实际生产过程中,应根据产品的需求和使用环境来选择合适的标准和检验方法,确保高分子材料的优良性能。

七、投料和原材料的质量标准及检验方法除了对成品的质量进行检验外,对投料和原材料的质量也是非常重要的。

投料和原材料的质量直接影响着最终产品的质量稳定性和可靠性。

高分子材料测试

高分子材料测试

高分子材料测试高分子材料是一种非常重要的新材料,它具有独特的性质和广泛的应用领域。

为了确保高分子材料的质量和性能,需要进行各种测试和评估。

下面将介绍高分子材料测试的方法和意义。

首先是物理性能测试。

高分子材料的物理性能包括力学性能、热性能、表面性能等方面。

机械测试是其中最基本的测试之一,它可以评估高分子材料的强度、硬度、韧性等力学性能。

热性能测试可以评估高分子材料的热稳定性、热导率等特性。

表面性能测试可以评估高分子材料的表面粗糙度、光泽度等特性。

这些测试可以通过拉伸试验、硬度测量、热分析、光学显微镜等仪器进行。

其次是化学性能测试。

高分子材料的化学性能包括化学稳定性、化学反应性等方面。

化学稳定性测试旨在评估高分子材料在特定化学环境下的耐化学性能。

化学反应性测试可以评估高分子材料在特定条件下的化学反应性。

这些测试可以通过化学荧光分析、质谱分析、红外光谱分析等仪器进行。

最后是应用性能测试。

高分子材料的应用性能是指它在具体应用中的性能表现。

例如,聚乙烯用于制作塑料袋时需要具有一定的拉伸强度和耐撕裂性能。

聚丙烯用于制作管道时需要具有一定的耐腐蚀性能和耐热性能。

为了评估高分子材料的应用性能,需要进行特定的测试。

这些测试可以通过实际应用环境模拟、产品性能测试等方法进行。

高分子材料的测试非常重要,它可以评估材料的质量和性能,为材料的选用和设计提供依据。

测试的结果可以用于指导材料的改进和优化,以满足特定的应用需求。

此外,高分子材料的测试还可以帮助保证产品的质量和安全,确保产品符合相关的标准和法规要求。

总的来说,高分子材料的测试是一个综合性的过程,需要综合考虑材料的物理性能、化学性能和应用性能。

通过科学的测试方法和仪器设备的应用,可以对高分子材料进行全面和准确的评估,为材料的应用和开发提供支持。

高分子材料测试的结果对于材料行业和相关领域的发展具有重要意义。

高分子材料的力学性能测试及其应用研究

高分子材料的力学性能测试及其应用研究

高分子材料的力学性能测试及其应用研究高分子材料是一类重要的工程材料,主要用于纺织、建筑、电子、医药等领域。

高分子材料具有轻量、高强、高韧性、耐磨损、耐腐蚀等特点,因此广泛应用于各种领域。

在使用高分子材料的过程中,需要了解其力学性能,以便更好地设计、制造和使用。

本文将介绍高分子材料的力学性能测试方法和应用研究。

一、高分子材料的力学性能高分子材料的力学性能包括弹性性能、塑性性能和破坏性能。

其中弹性性能是指材料在受力后恢复原状的能力,主要包括弹性模量和泊松比。

塑性性能是指材料在受力后能够发生变形的能力,主要包括屈服强度和延伸率。

破坏性能是指材料在受到足够大的载荷后会发生破坏的能力,主要包括断裂韧性和破坏模式。

二、高分子材料的力学性能测试方法1、拉伸试验拉伸试验是最常用的高分子材料力学性能测试方法之一。

通过将试样拉伸至断裂点,测量其载荷与变形量的关系,可以得到材料的应力-应变曲线。

从应力-应变曲线中,可以计算出材料的弹性模量、屈服强度、断裂强度和断裂伸长率等重要参数。

拉伸试验可以使用单轴拉伸机、万能试验机等设备进行。

2、压缩试验压缩试验是评估材料抗压能力的一种方法。

该试验通常以轴向载荷进行,压缩试验结果可以用于确定材料的体积模量或多轴应力状态下的应变量。

根据材料应变分布的不同,可以得到不同的应力-应变曲线,从而得到压缩弹性模量和屈服应力等参数。

3、剪切试验剪切试验可以评估材料的剪切性能,通常使用剪切试验机进行。

在剪切试验中,试样被植入两个夹具中,夹具沿着对称面施加力,使试样发生沿切平面的剪切变形。

通过测量必要的载荷和位移,可以获得材料剪切应力和剪切应变,并从中得出剪切模量和剪切强度等重要参数。

4、冲击试验冲击试验是评估材料耐冲击能力的一种方法。

通常在低温下进行,使用冲击试验机施加冲击载荷,在断裂前测量材料的冲击强度和断裂韧性等参数。

这种试验可以评估大多数高分子材料的耐冲击性和脆性,在材料开发和制造中具有重要的应用价值。

高分子材料测试的有效方法

高分子材料测试的有效方法

高分子材料测试的有效方法高分子材料是一类重要的材料,其广泛应用于各个领域,如塑料、橡胶、纤维、涂料等。

为保证其质量和性能,对高分子材料的测试是至关重要的。

在本文中,我们将探讨高分子材料测试的有效方法,并分享一些关于这个主题的观点和理解。

1. 引言高分子材料是一类由重复的大分子基本单元组成的材料,在工程与科学领域中具有重要的应用。

为了保证高分子材料的质量和性能,需要进行各种测试,以评估其物理、化学和机械性能等关键指标。

2. 常用的高分子材料测试方法2.1 物理性能测试物理性能测试对高分子材料的力学性能、热性能、电性能等进行评估。

常用的测试方法包括:- 拉伸强度和断裂伸长率测试:用于评估材料的引伸强度和延展性。

- 硬度测试:通过测量材料表面的压痕深度或弹性模量评估材料的硬度。

- 热分析测试:如差示扫描量热法(DSC)和热重分析法(TGA),用于评估材料的热稳定性和热分解温度等指标。

- 电性能测试:如导电性、绝缘性和介电性能等检测。

2.2 化学性能测试化学性能测试用于评估高分子材料的化学稳定性、溶解性、耐腐蚀性等。

常用的测试方法包括:- 溶解度测试:通过将材料置于溶剂中,观察其是否溶解来评估其溶解性。

- 耐腐蚀性测试:将材料暴露在酸、碱等腐蚀介质中,评估其对腐蚀介质的耐受程度。

- 光学性能测试:包括透明度、折射率和发光性能等。

3. 高分子材料测试的优化方法为了提高测试效率和准确性,可以采用以下优化方法:- 样品制备:合理的样品制备方法是测试的基础,需要注意样品的纯度、尺寸和形状等因素。

- 测试条件的选择:根据具体的测试要求,选择适当的测试条件,包括温度、湿度和压力等因素。

- 仪器设备的选择:选择具有高精度和可靠性的测试仪器设备,以确保测试结果的准确性和可重复性。

- 数据分析与解释:在测试结束后,对测试数据进行合理的分析和解释,得出结论并提出改进建议。

4. 观点和理解高分子材料测试是确保材料质量和性能的重要手段之一。

高分子材料分析测试方法

高分子材料分析测试方法

质谱法
• 总结词:通过测量高分子材料的质荷比来分析其组成和结构。 • 详细描述:质谱法是一种常用的高分子材料分析方法,其原理是通过测量高分子材料的质荷比来分析其组成和
结构。该方法可以用于测定高分子材料的分子量、元素组成、支化度等参数,对于研究高分子材料的性能和加 工应用具有重要意义。 • 总结词:质谱法具有高精度、高灵敏度、无损等优点,在高分子材料分析中具有重要应用价值。 • 详细描述:质谱法通常需要使用专门的质谱仪器进行测试,测试过程中不会对高分子材料造成破坏,且具有较 高的测试精度和重复性。该方法在高分子材料研究、生产和质量控制等方面具有广泛应用前景。
总结词
通过电子显微镜观察高分子材料的表面形貌和微观结构。
详细描述
扫描电子显微镜法是一种直观的高分子材料分析测试方法,通过电子显微镜观察 高分子材料的表面形貌和微观结构,可以获得材料的形变、断裂、相分离等信息 。该方法对于研究高分子材料的性能和结构关系非常有用。
热分析法
总结词
通过测量高分子材料在不同温度下的物理性质变化,研究材料的热稳定性和热分解行为。
核磁共振法
详细描述
核磁共振法利用原子核的自旋 磁矩进行研究,适用于高分子 材料的碳-13核磁共振分析。 通过测量高分子材料中碳-13 原子核的共振频率和裂分情况 ,可以推断出高分子材料的分 子结构和序列信息。
高分子材料的物理分析案例
总结词
X射线衍射法
总结词
电子显微镜法
详细描述
X射线衍射法是一种物理分析方法,用于研究高分 子材料的晶体结构和相变行为。通过测量高分子 材料在X射线下的衍射角度和强度,可以确定其晶 体结构和晶格常数等参数。
02
化学分析方法
化学滴定法

高分子材料硬度测试

高分子材料硬度测试

高分子材料硬度测试高分子材料是一类具有广泛应用前景的材料,其硬度是评价其性能的重要指标之一。

硬度测试是对高分子材料进行性能评价的重要手段之一,本文将介绍高分子材料硬度测试的相关知识。

一、硬度测试的意义。

高分子材料的硬度是指其抵抗外部力量的能力,直接关系到材料的使用寿命和安全性。

因此,对高分子材料的硬度进行测试可以评估材料的质量和可靠性,为材料的设计和选择提供依据。

二、硬度测试方法。

1. 洛氏硬度测试。

洛氏硬度测试是一种常用的硬度测试方法,适用于各种金属和非金属材料,包括高分子材料。

测试时,利用洛氏硬度计对材料表面施加一定载荷,通过硬度计的读数来评估材料的硬度。

2. 布氏硬度测试。

布氏硬度测试也是一种常用的硬度测试方法,适用于金属和非金属材料。

测试时,利用布氏硬度计对材料表面施加一定载荷,通过硬度计的读数来评估材料的硬度。

3. 印痕硬度测试。

印痕硬度测试是一种间接测量材料硬度的方法,适用于各种金属和非金属材料。

测试时,利用洛氏硬度计、布氏硬度计等在材料表面留下一个印痕,通过印痕的尺寸来评估材料的硬度。

三、硬度测试的注意事项。

1. 硬度测试时应选择合适的测试方法,根据材料的特性和要求进行选择。

2. 在进行硬度测试前,应对硬度计进行校准,确保测试结果的准确性。

3. 硬度测试时应注意保持测试环境的稳定,避免外部因素对测试结果的影响。

4. 对于不同形状和尺寸的高分子材料,应选择合适的测试位置和方法进行硬度测试。

四、结论。

高分子材料的硬度测试是评价材料性能的重要手段,通过选择合适的测试方法和注意测试过程中的细节,可以准确评估材料的硬度,为材料的设计和选择提供依据。

在进行硬度测试时,需要根据材料的特性和要求选择合适的测试方法,并注意测试过程中的细节,以确保测试结果的准确性。

希望本文对高分子材料硬度测试有所帮助。

高分子材料性能及测试

高分子材料性能及测试
(3)分子运动的温度依赖性 oeE / RT
29
高分子材料性能学
1.2.2 高分子材料的力学状态及转变 ●线型非晶态高聚物的形变-温度曲线
形变% A B C D E Tb Tg T/℃ Tf
A-玻璃态 B-过渡区 C-高弹态 D-过渡区 E-黏流态
Tb-脆化温度;Tg-玻璃化温度;Tf-黏流温度 30
这是因为在拉伸时高分子链要断键,需要 较大的力;剪切时是层间错动,较容易实现。
26
单轴取向高分子材料
高分子材料性能学
2个杨氏模量:
El为纵向杨氏模量 Et为横向杨氏模量
2个切变模量:
Gtt为横向切变模量 Glt为纵向切变模量
1个本体模量K
2个泊松比:
对纵向力为Vtt 对横向力为Vtl
27
高分子材料性能学
特征:应变对应力的响应不是瞬时完成的,需要通过 一个驰豫过程,卸载不留残余变形;应力和应变的关系与 时间有关。
45
(3) 内耗

高分子材料性能学
而产生的附加弹性应变的性能,又称弹性后效。
弹簧 薄膜传感器
动画引自九江学院杜大明《材料科学基础》ppt
43
滞弹性示意图
高分子材料性能学
AB


e
O
a
H

c
b
d
正弹性后效
加载时应变落后于应力
反弹性后效
卸载时应变落后于应力
44
高分子材料性能学
(2) 粘弹性 定义:材料在外力作用下弹性和粘性两种变形机理 同时存在的一种力学行为 粘性:液体或溶体内质点间或流层间因相对运动而 产生的内摩擦力以反抗相对运动的性质。
39
高分子材料性能学

高分子材料测试技术(精华版)

高分子材料测试技术(精华版)

高分子材料的测试方法综述前言:高分子材料及其成品的性能与其化学,物理的组成,结构以及加工条件亲密相关;为了表征性能与组成,结构和加工参数之间的关系,分析测试技术将起到唯独的打算作用; 并为评定材料质量,改进产品性能和研制新材料供应依据;不管是基本的材料性质,仍是加工性质( 或加工参数) 以及产品性质,客观标准的评定都需要某种测试技术供应参数进行表征;摘要:DTA DSC 红外光谱1 差热分析和差示扫描量热法差热分析1,差热分析的定义差热分析是布程控温度下,测量物质和参比物之间的温度差与温度关系的技术;这种. 关系可用数学式表示为温度;TR 参比物温度;,式中Ts 为试样2,差热分析的测试原理与仪器组成根据热分析定义,全部热分析仪器,差热分析仪器也不例外,它们都是田三大部分组成:(1) 被测物质的物理性质检测装置部分;如图 1.} 虚线内组成一也称主体部分;(2) 温度程序掌握装置部分制和数据处理装置部分;;(3) 显示记录装置部分;此外,仍有气氛控差热分析仪器的组成如下列图,虚线内为其测里原理S为试样;UTC为由控温热电偶送出的微伏信一号;R 为参比吻;UT 为由试样的热电偶送出的毫伏信号;E 为电炉;U T 为由差示热散偶送出的毫伏信号l程序掌握器;2. 氛掌握;3. 差热放大器;4. 记录仪差示扫描量热法1,差示扫描量热法定义差示扫描量热法是在程控温度下,测量输入到物质和参比物之间的功率差与温度关系的技术,用数学式表示为2,外加热式的功率补偿型差示扫描量热仪器的结构组成1. 温度程序掌握器;2. 气氛掌握;3. 差热放大器;4. 功率补偿放大器;5. 记录仪由于扫描量热法是在差热分析基础上进展起来的,因此,差示扫描量热仪在仪器结构组成上与差热分析仪特别相像;热流型兼示扫描量热法,实际上就是定量差热分析;功率补偿型差示扫描量热仪与差热分析仪的主要区分是前者在试样S侧和参比物R侧/l 面分别增加一个功率补偿加热丝( 或称加热器) ,此外仍增加一个功率补偿放大器;而内加热式功率补偿型差示扫描量热仪结构组成特点是测温敏锐. 元件是用铂电阻处而不是热电偶;高分子材料讨论中的应用差热分析技术和差示扫描里热技术在高分子材料科学与工程中的详细应用;为了实际应用时到底采纳哪种技术更为有益,先将这两种技术作比较;DTA 和DSC的主要区分:DTA 测定的是试样和参比物之间的温度差; 而DAC 测定的是热流率dH/dt, 定量便利;因此,DSC主要优点是热量定里便利,辨论率高,灵敏度好;. 其缺点是使用温度低,以功率补偿型DSC为例,最高温度只能到725;对于DTA,目前超高温DTA可作到2400 C,一般高温炉也能作到1500;所以,需要用高温的矿物,冶金等领域仍只能用DTA.但是对于需要温度不高, 灵敏度要求很高的有机,高分子及生物化学领域,DSC就是一种很有用的技术,正因如此,其进展也特别快速;近年来,DTA和DSC在高分子方而的应用特殊广泛,如讨论聚合物的相转变,测定结晶温度T, 结晶度θ,熔点Tm,等温结晶动力学参数和玻璃化转变温度以及讨论聚合,同化,交联,氧化,分解等反应,并测定反应温度或反应温区,TR,反应热,反应动力学参数等;2 热重法和微商热重法热重法和微商热重法定义热重法:根据ICTAC命名,热重法是在程序掌握温度下,测量物质的质量与温度关系的一种技术;用数学表达式为W=f(T 或t )式中:W 为物质重量;T 为温度;t 为时间微商热重法: 将热重法得到的热重曲线对时间或温度一阶微商的方法;记录的曲线为微商热重曲线简称DTG曲线,纵坐标为质量变化速率,dm/dt 或dm/dT;横坐标为时间或温度;测试原理由上述TG(DTG 定)义,可知其简洁原理;粗略的说;热重分析技术就是把物质放在炉子里进行加热称量的技术;也可在降温下称量;能够进行这种测量的仪器就是热天平(Therrnobalanee} ;下图分别表示热天平简洁示意图(简易的热重分析技术的简洁原理)和近代热天平的原理图;热重法( 微商热重法) 在高分子材料讨论中的应用热重法的主要特点是定量性强,能准地测量物质的质量变化及变化的速率;然而热重法的试验结果与试验条件有关;但是,对商品化的热天平而言,只要选用相同的试验条件,同种样品的热重数据是能重现的;试验证明,热重法广泛地应用在化学及化学有关的领域中,20 世纪50 岁月,热重法曾有力地推动了无机分析化学的进展,到幼岁月,热重法又在聚合物科学领域发挥根大作用;近年来,可以说在冶金学,漆料及油墨科学,制陶学,食品工艺学,无机化学,有机化学,生物化学及地球化学等学科中,热重法都有广泛的应用,发挥重要的作用;随着高分子材料与工程的. 进展,人们广泛应用热重法来讨论其中包括评估高分子材料的热稳固性,添加剂对热稳固的影响,氧化稳固性的测定,含湿量和添加剂含量的测定,反应动力学的讨论和共聚物,共混物体系的定量分析,聚合物和共聚物的热裂解以及热老化的讨论,等等;热重法现已成为生产部门和讨论单位讨论高分子材料热变化过程的重要手段,生产中可直接用于掌握工艺过程,理论土就可讨论聚合物分子链的端基情形;通过反应动力学的讨论,可以求得降解反应的速度常数,反应级数,频率因子及活化能;由于热重法具有分析速度快,样品用量少的特点,因而在高分子材料热老化方面的讨论中也口益引人注目;3 红外吸取光谱法红外吸取光谱特点红外吸取光谱最突出的特点是具有高度的特点性,除光学异构体外,每神化合物都有自己的红外吸取光谱;因此,红外光谱法特殊适于鉴定有机物,高聚物,以及其它复杂结构的自然及人工合成产物;固态,液态,气态样品均可测定,测试过程不破坏样品,分析速度快,样品用量少,操作简便;由于红外光潜法具有这些优点,现已成为化学试验室必不行少的分析仪器;但红外光谱法在定量分析. 方面精确度不高;在对复杂的未知物进行结构鉴定上,由丁它主要的特点是供应关于官能团的结构信息;故尚须结合紫外,核磁,质谱(U V,NMR,MS)及其它理化数据. 进行综合判定;目前在我国航空二二业系统中已广泛使用红外光谱代替传统的化学分析方法,对各种非金属材料进行质量监控; 并已制定了相应的检验标准,在各单位推广应用,取得了明显的经济效益;红外光谱仪,特殊是配有衰减全反射(ATR)漫反射(DRS)和光声池(PAS)等附件的傅里叫‘变换红外光谱仪,在涂料,胶粘剂,工程塑料以及树脂基复合材料的讨论中发挥着越来越大的作用;红外光谱仪器目前生产和使用的红外光谱仪主要有两大类,即色散型红外分光光度计和于涉分光——傅里叶变换红外光谱仪;用激光做光源的激光红外光谱仪尚处于研制阶段;1,色散型双光束红外分光光度计色散型红外分光光度计是由光源,单色器,检测器和放大记录系统等几个基术部分组成的;下图是红外分光光度计的方块图2,傅里叶变换红外光谱仪( 简称FT-IR)博里叶变换红外光谱仪与上述的色散型红外光谱仪的工作原理有很大不同,FT-IR 主要是由光源,迈克尔逊干涉仪,探测器和运算机等几部分组成;其工作原理如下列图;光源发出的红外辐射,通过迈克尔逊千涉仪变成干涉图,通过祥品后即得到带有样品信息的干涉图,经放大器将信号放大,记录在磁带或穿孔卡片或纸带. 上,输入通用电子运算机处理或直接输入到专用运算机的磁芯储备体系中;当十涉图经模拟一数字转换器(A/D)) 进行运算后,再经数字模拟转换(D/A) ,由波数分析器扫描,便可由X 一Y 记录器绘出通常的透过率对应波数关系的红外光谱;R—红外. 光源;M1肯定镜:M2 一一动镜;B —光束分裂器;S—样品;D—探测器;A—放大器;F—滤光器;A/D 模数转换骼;D/A 一数模转换器3,傅里叶变换红外光谱仪与一般色散型红外分光光度计相比的优点:①具有很高的辨论力;②波数精度高;③扫描时闻快;④光谱范畴宽;⑤灵敏度高;高聚物方面的应用红外光谱是讨论高聚物的一个很有成效的工具;讨论内容也很广泛,不仅可以鉴定米知聚合物的结构,剖析各种高聚物中添加剂,助剂,定量分析共聚物的组成,而且可以考察聚合物的结构,讨论聚合反应,测定聚合物的结晶度,取向度,判别它的立休构型等;.。

高分子材料测试

高分子材料测试

高分子材料测试高分子材料是一类具有特殊结构和性能的材料,广泛应用于塑料、橡胶、纤维等领域。

在实际应用中,为了保证高分子材料的质量和性能,需要进行各种测试。

本文将介绍高分子材料测试的相关内容,包括测试方法、测试项目和测试标准等。

首先,高分子材料的测试方法主要包括物理性能测试、化学性能测试和机械性能测试。

物理性能测试包括密度测试、熔融指数测试、热变形温度测试等,用于评估材料的物理性能。

化学性能测试包括耐候性测试、耐热性测试、耐腐蚀性测试等,用于评估材料的化学稳定性。

机械性能测试包括拉伸性能测试、弯曲性能测试、冲击性能测试等,用于评估材料的机械性能。

其次,高分子材料的测试项目主要包括外观质量、尺寸精度、力学性能、热学性能、电学性能、光学性能等。

外观质量测试主要包括表面光泽、色泽一致性、无色差等项目。

尺寸精度测试主要包括尺寸精度、壁厚一致性、尺寸稳定性等项目。

力学性能测试主要包括拉伸强度、弯曲强度、冲击强度等项目。

热学性能测试主要包括热变形温度、热膨胀系数、热传导率等项目。

电学性能测试主要包括介电常数、介电损耗、体积电阻率等项目。

光学性能测试主要包括透光率、发光性能、折射率等项目。

最后,高分子材料的测试标准主要包括国际标准、行业标准和企业标准。

国际标准主要由ISO、ASTM等国际标准化组织发布,适用于全球范围内的高分子材料测试。

行业标准主要由相关行业协会或组织发布,适用于特定行业的高分子材料测试。

企业标准主要由企业自行制定,适用于企业内部的高分子材料测试。

综上所述,高分子材料测试是保证高分子材料质量和性能的重要手段,通过各种测试方法、测试项目和测试标准,可以全面评估高分子材料的质量和性能,为高分子材料的应用提供可靠的保障。

希望本文对高分子材料测试有所帮助,谢谢阅读。

高分子材料的拉伸性能测试

高分子材料的拉伸性能测试

高分子材料的拉伸性能测试《高分子材料的拉伸性能测试》实验指导书一、实验目的1、测试热塑性塑料弯曲性能。

2、掌握高分子材料的应力―应变曲线的绘制。

4、了解塑料抗张强度的实验操作。

二、实验原理拉伸试验是材料最基本的一种力学性能试验方法,可以得到材料的各种拉伸性能,包括拉伸强度、弹性模量、泊松比、伸长率、应力-应变曲线等。

拉伸试验是指在规定的温度、湿度和试验速度下,在试样上沿纵轴方向施加拉伸载荷使其破坏,此时材料的性能指标如下:1.拉伸强度为:(1)式中σ--拉伸强度,mpa;p---毁坏载荷(或最小载荷),n;b---试样宽度,cm;h---试样厚度,cm.2.拉伸破坏(或最大载荷处)的伸长率为:(2)式中ε---试样弯曲毁坏(或最小载荷处)伸长率,%;δl0-毁坏时标距内弯曲量,cm;l0---测量的标距,cm,3.弯曲弹性模量为:(3)式中et---弯曲弹性模量,mpa;δp―荷载-变形曲线上初始直线段部分载荷量,n;δl0―与载荷增量对应的标距内变形量,cm。

4.弯曲形变-快速反应曲线如果材料是理想弹性体,抗张应力与抗张应变之间的关系服从胡克定律,即:σ=eε式中:e-杨氏模量或拉伸模量;σ-应力;ε-应变聚合物材料由干本身长链分子的大分子结构持点,并使其具备多重的运动单元,因此不是理想的弹性体,在外力作用下的力学犯罪行为就是一个僵硬过程,具备显著的粘弹性质。

弯曲试验时因试验条件的相同,其弯曲犯罪行为存有非常大差别。

初始时,形变减少,快速反应也减少,在a点之前形变与快速反应成正比关系,合乎胡克定律,呈圆形理想弹性体。

a点叫作比例极限点。

少于a点后的一段,形变减小,快速反应仍减少,但二者不再成正比关系,比值逐渐增大;当达至y点时,其比值为零。

y点叫作屈服点。

此时弹性模最对数为零,这就是一个关键的材料持征点。

对塑料来说,它就是采用的音速。

如果再继续弯曲,形变维持维持不变甚至还可以上升,而快速反应可以在一个相当大的范围内减少,直到脱落。

高分子材料典型力学性能测试实验

高分子材料典型力学性能测试实验

《高分子材料典型力学性能测试实验》实验报告学号姓名专业班级实验地点指导教师实验时间在这一实验中将选取两种典型的高分子材料力学测试实验,即拉伸实验及冲击试验作为介绍。

实验一:高分子材料拉伸实验一、实验目的(1)熟悉高分子材料拉伸性能测试标准条件、测试原理及其操作,了解测试条件对测定结果的影响。

(2)通过应力—应变曲线,判断不同高分子材料的性能特征。

二、实验原理在规定的实验温度、湿度和实验速率下,在标准试样(通常为哑铃形)的两端沿轴向施加载荷直至拉断为止。

拉伸强度定义为断裂前试样承受最大载荷与试样的宽度和厚度的乘积的比值。

实验不仅可以测得拉伸强度,同时可得到断裂伸长率和拉伸模量。

玻璃态聚合物在拉伸时典型的应力-应变曲线如下:1)弹性形变。

在Y 点之前,应力随应变正比增加,从直线斜率可以求出杨(1)拉伸强度或拉伸断裂应力或拉伸屈服应力或偏置屈服应力σtσt 按式(1)计算:(1)式中σt—抗拉伸强度或拉伸断裂应力或拉伸屈服应力或偏置屈服应力,MPa;p—最大负荷或断裂负荷或屈服负荷或偏置屈服负荷,N;b—实验宽度,mm;d—试样厚度,mm。

(2)断裂伸长率εt εt 按式(2)计算:式中εt——断裂伸长率,%;G0——试样原始标距,mm;G——试样断裂时标线间距离,mm。

(3)模量:拉伸模量通常由拉伸初始阶段的应力与应变比例按式(3)计算:E=σ/ε(3)各种不同类聚合物对应不同应力-应变曲线,主要有5 种不同类型:软而弱、硬而脆、硬而强、软而韧、硬而韧。

一般判断规则:硬与软从模量比较;强与弱从屈服应力比较;脆与韧则可从断裂伸长率或断裂功比较。

实际聚合物材料通常只是典型应力-应变曲线的一部分或者变异,而且应力-应变试验所得的数据也与温度、湿度、拉伸速度有关。

三、实验材料(1)实验原料:韧性材料(HDPE 或PP 或PBS)、脆性材料(PS 或PLA)。

(2)试样的制备方法:注塑成型。

(3)试样的形状及尺寸:Ⅰ型,如图1-1 及表1-1 所示。

高分子材料性能测试方法-力学性能

高分子材料性能测试方法-力学性能

高分子材料性能测试方法3 高分子材料的力学性能3.1 拉伸性能323.2 弯曲性能3.3 压缩性能3.4 冲击性能343.5 剪切性能3.6蠕变和应力松弛363.7 硬度3.8 撕裂性能383.7硬度测试定义硬度的定义:指材料抵抗其它较硬物体压入其表面的能力。

硬度值的大小是表示材料软硬程度有条件性的定量反能力硬度值的大小是表示材料软硬程度有条件性的定量反映,本身不是一个单纯的确定的物理量,而是由材料弹性、塑性、韧性等一系列力学性能组成的综合指标.不仅取决于材料,也取决于测量条件和方法3.73.7.1测量方法分类布氏硬度测试(1)测定材料耐(球形或其它形状)顶针压入能力:布氏(Brinell)、维氏(Vickers)、努普(Knoop)、巴科尔(Barcol)、邵氏(Shore)、球压痕硬度;(2)测定材料对尖头或另一种材料的抗划痕性:比尔鲍姆测定材料对尖头或另种材料抗痕性尔姆(Bierbaum)硬度、莫氏(Mohs)硬度;(3)测定材料的回弹性:洛氏(Rockwell)硬度、邵氏反弹硬度硬度测试3.73.7.2邵氏硬度测量原理:邵氏硬度是将规定形状压针在标准弹簧压力作用下压入试样,把压入深度转换为硬度值来表示。

有100个分度,表示不同的硬度,可以直接从邵氏硬度计上读取。

国标中应用两种:A型适用于软质塑料和橡胶;D型适用于硬质塑料和橡胶。

*当A型测定读数大于90应改用D型,D型测定读数小于20时,改用A型。

3.7硬度测试373.7.2邵氏硬度3.7硬度测试2. 试样尺寸:A 型硬度:试样厚度不小于5mm ;D 型硬度:厚度不小于3mm试样允许用两层,最多不超过三层叠合成所需厚度,试样允许用两层最多不超层合成所需厚度保证各层间接触良好。

试样大小应保证每个测量点与试样边缘距离不小于12 mm ,各测量点间距不小于6mm 。

373.7.2邵氏硬度3.7硬度测试3.仪器:压力:邵氏A 为1kg邵氏D 为5 kg压头:D 型硬度计相较A 型硬度计的压针更加尖锐3.7硬度测试3.7.2邵氏硬度4. 实验步骤A 按规定调节试验环境。

高分子材料性能实验指导书

高分子材料性能实验指导书

实验一聚合物热变形温度、维卡软化点的测定一、实验目的通过实验测定高聚物维卡软化点温度,掌握维卡软化点温度测试仪的使用方法和高聚物维卡软化温度的测试方法。

二、实验原理维卡软化温度是指一个试样被置于所规定的试验条件下,在一定负载的情况下,一个一定规格的针穿透试样1mm深度的温度。

这个方法适用于许多热塑性材料,并且以此方法可用于鉴别比较热塑性软化的性质。

图1. 维卡软化点试验装置图三、实验仪器维卡软化点测试仪主要由浴槽和自动控温系统两大部分组成。

浴槽内又装有导热液体、试样支架、砝码、指示器、温度计等构件,其基本结构见图1。

(1)传热液体:一般常用的矿物油有硅油、甘油等,最常用的是硅油。

本仪器所用传热液体为硅油,它的绝缘性能好,室温下黏度较低,并使用试样在升温时不受影响。

(2)试样支架:支架是由支撑架、负载、指示器、穿透针杆等组成。

都是用同样膨胀系数的材料制成。

+0.05mm的设有毛边的圆形(3)穿透针:常用的针有两种,一种是直径为1-0。

02mm平头针,另一种为正方形平头针。

(4)砝码和指示器:常用的砝码有两种,1kg和5kg;指示器为一百分表,精确度可达0.02mm。

(5)温度计:温度计测温精确度可达0.5℃,使用范围为0~360℃。

(6)等速升温控制器:采用铂电阻作感温元件与可变电压器、恒速电动机构组成。

作不定时等速运动来调整可变电位器的阻值,以达到自动平衡(可变电位器调整阻值的变化即为铂电阻受热后的阻值),电桥输出信号经晶体管放大输出脉冲,推动可控管工作,并控制了加热器工作时间,以(5±0.5)℃/6min的速度来提高浴槽温度。

(7)加热器:一个1000W功率的电炉丝直接加热传热液体。

四、试样与测试条件(1)试样:所用的每种材料的试样最少要有2个。

一般试样的厚度必须大于3mm,面积必须大于10mm×10mm 。

(2)测试条件:保持连续升温速度为(5±0.5)℃/min,并且穿透针必须垂直地压入试样,压入载荷为5kg。

高分子材料分析测试与研究方法

高分子材料分析测试与研究方法

高分子材料分析测试与研究方法引言高分子材料是一类重要的工程材料,公认为21世纪最具潜力的材料之一。

高分子材料的性能与结构密切相关,因此对其进行分析测试与研究是非常必要的。

本文将介绍常用的高分子材料分析测试方法及其研究方法,包括物理性能测试、化学结构分析、热性能分析、力学性能测试以及相关的表征技术。

一、物理性能测试物理性能是高分子材料的基本性能之一,常用的物理性能测试包括密度测量、吸水性能测试、熔融指数测试等。

1. 密度测量密度是衡量材料物理性能的重要指标之一,可以通过比重法、浮力法或压缩气体法等方法进行测量。

其中,比重法是最常用的方法,通过称量样品质量和体积来计算密度。

2. 吸水性能测试吸水性能是衡量材料对水分的吸收能力的指标,可以通过浸泡法、浸水法或密闭测量等方法进行测试。

这些测试方法可以帮助评估材料的耐水性能及吸水后的性能变化。

3. 熔融指数测试熔融指数是衡量高分子材料熔融流动性能的指标,常用的测试方法有熔体指数法、熔体流动速率法等。

通过测量熔融材料的流动性能,可以评估材料的加工性能以及与其他材料的相溶性。

二、化学结构分析化学结构分析是研究高分子材料化学特性的重要手段,常用的化学结构分析方法包括红外光谱分析、核磁共振分析、质谱分析等。

1. 红外光谱分析红外光谱分析是研究材料化学结构的重要手段,通过研究材料在红外波段的吸收谱图,可以确定材料中的官能团、键的类型以及化学环境等信息。

2. 核磁共振分析核磁共振分析是研究材料分子结构及动力学性质的重要方法,通过测量核磁共振信号,可以获得材料中原子的化学环境、相对数量以及分子间的相互作用信息。

3. 质谱分析质谱分析是研究材料分子结构及组成的关键分析方法,通过测量不同质荷比的离子的相对丰度,可以确定材料中的化学元素、分子量以及它们的相对含量等信息。

三、热性能分析热性能是衡量材料耐热性、热膨胀性等重要性能的指标,常用的热性能分析方法包括热重分析、差示扫描量热分析等。

高分子材料性能测试

高分子材料性能测试
除了熔体质量流动速率(MFR),还可以用熔体体积流动速率 (MVR)来进行测定。
熔体流动速率仪
四,维卡软化温度
维卡软化温度(Vicat Softening Temperature)是将热塑性 塑料放于液体传热介质中,在一定的负荷和一定的等速升温条 件下,试样被1平方毫米的压针头压入1毫米时的温度,对应的 国标是GB1633-79(目前已被GB/T 1633-2000所代替);维 卡软化温度是评价材料耐热性能,反映制品在受热条件下物理 力学性能的指标之一。材料的维卡软化温度虽不能直接用于评 价材料的实际使用温度,但可以用来指导材料的质量控制。维 卡软化温度越高,表明材料受热时的尺寸稳定性越好,热变形 越小,即耐热变形能力越好,刚性越大,模量越高 。
维卡软化温度测试仪
五,灰分
灰分是指一种物质中的固体无机物的含量。可以是包含有机物的 无机物也可是不含有机物的无机物,可以是锻烧后的残留物也可 以是烘干后的剩余物。但灰分一定是某种物质中的固体部分而不 是气体或液体部分。
我们通常所说的灰分是指总灰分(即粗灰分)包含以下三类灰分: 1.水溶性灰分 可溶性的钾、钠、钙等的氧化物和盐类的量 2.水不溶性灰分 污染的泥沙和铁、铝、镁等氧化物及碱土金属的
拉伸试验一般是将材料试样两端分别夹在两个 间隔一定距离的夹具上,两夹具以一定的速度 分离并拉伸试样,测定试样上的应力变化,直 到试样破坏为止。
拉伸强度=最大力/(试样宽度×试样厚度)mm
实验数度, 延展性等力学性能
二,冲击强度
高分子材料抗冲击强度是指标准试样受高速冲击作用断 裂时,单位断面面积(或单位缺口长度)所消耗的能量。 它描述了高分子材料在高速冲击作用下抵抗冲击破坏的能 力和材料的抗冲击韧性。
碱式磷酸盐 3.机械杂质 包括加工过程中机械磨损带来的机械物质

高分子材料分析测试方法

高分子材料分析测试方法
傅立叶变换红外光谱仪的结构
光源发出的光被分束器分为两束,一束经反射到达动镜,另一束经 透射到达定镜。两束光分别经定镜和动镜反射再回到分束器,从而产生 干涉。动镜作直线运动,因而干涉条纹产生连续的变换。干涉光在分束 器会合后通过样品池,然后被检测器(傅立叶变换红外光谱仪的检测器 有TGS,DTGS,MCT等)接收,计算机处理数据并输出。
结构鉴定
傅里叶红外光谱
B.分辨率 红外光谱仪器的分辨率是指仪器对于紧密相邻的峰可分辨的最 小波长间隔,表示仪器实际分开相邻两谱线的能力,往往用仪器 的单色光带宽来表示,它是仪器最重要的性能指标之一,也是仪 器质量的综合反映。 仪器的分辨率主要取决于仪器的分光系统的性能。仪器的分辨 率主要影响光谱仪器获得测定样品光谱的质量,从而影响分析的 准确性,对于一台仪器的分辨率是否满足要求,这与待测样品的 光谱特征有关,有些物质光谱重叠、特征复杂,要得到满意的分 析结果,就要求较高的仪器分辨率。
结构鉴定
傅里叶红外光谱
(3)样品量的控制对谱图的影响: 在红外光谱实验中, 固体粉末样品不能直接压片, 必须用稀释剂稀释、
研磨后才能压片。稀释剂溴化钾与样品的比例非常重要, 样品太少不行, 样 品太多则信息太丰富而特征峰不突出, 造成分析困难或吸收峰成平顶。对于 白色样品或吸光系数小的样品, 稀释剂溴化钾与样品的比例是100:1; 对于 有色样品或吸光系数大的样品稀释剂溴化钾与样品的比例是150:1。
Raman散射与红外吸收方法机理不同,所遵守的选择定则也不同。 两种方法可以相互补充,这样对分子的问题可以更周密的研究。下图是 Nylon 66的Raman与红外光谱图
结构鉴定
激光拉曼散射光谱
品吸潮以外还有环境的潮湿和噪声。平滑是减少来自各方面因素所产生的 噪声信号, 但实际是降低了分辨率, 会影响峰位和峰强, 在定量分析时需特 别注意。 (2)基线校正:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
刚度(Stiffness):外应力作用下材料抵抗弹性变形能力。
弹性模量:E=σ/ε
强度(Strength):材料在载荷作用下抵抗塑性变形或破 坏的最大能力。
屈服强度:表示材料发生明显塑性变形的抗力 Ps或σ
抗拉强度:σb=Pb/F0 大应力 断裂前单位面积上所承受的最
Mechanical properties of materials

高分子性能测试
高分子力学性能
6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 拉伸性能 弯曲性能 压缩性能 冲击性能 剪切性能 蠕变和应力相应 硬度 撕裂性能
材料力学性能
The four types of stresses
Mechanical properties of materials
3. 测量方法即实验步骤 ①试样的状态调节和试验环境按国家标准规定。 ②在试样中间平行部分做标线,示明标距。 ③测量试样中间平行部分的厚度和宽度,精确到 0.01mm,II型试样中间平行部分的宽度,精确 到0.05mm,测3点,取算术平均值。 ④夹具夹持试样时,要使试样纵轴与上下夹具中 心连线重合,且松紧适宜。 ⑤选定试验速度,进行试验。 ⑥记录屈服时负荷,或断裂负荷及标距间伸长。 试样断裂在中间平行部分之外时,此试样作废, 另取试样补做。

(d)的特点是软而韧。断裂伸长 率大,拉伸强度也较高,但弹 性模量低,如天然橡胶、顺丁 橡胶等。
高分子典型应力-应变曲线 III

(e)的特点是硬而韧。弹性模 量大、拉伸强度和断裂伸长 率也大,如聚对苯二甲酸乙 二醇酯、尼龙等
高分子材料的典型应力-应变特征
性能 软而弱 硬而脆 硬而强 软而韧 硬而韧
t4
t2
高分子应力-应变过程
E越大,说明材料越硬,相反则 越软; σb或σy越大,说材料越强,相反 则越弱; εb或S越大,说明材料越韧,相 反则越脆。
• 弹性形变: (开始-Y)应力随应变正比地增加,直线斜率=杨氏模量E。由高分 子的键长键角变化引起的。 • 屈服应力: 应力在Y点达到极大值,这一点叫屈服点,其应力σy为屈服应力。 • 强迫高弹形变(大形变) 过了Y点应力反而降低,由于此时在大的外力帮助 下,玻璃态聚合物本来被冻结的链段开始运动,高分子链的伸展提供了材料的 大的形变。这种运动本质上与橡胶的高弹形变一样,只不过是在外力作用下发 生的,为了与普通的高弹形变相区别,通常称为强迫高弹形变。这一阶段加热 可以恢复。 • 应变硬化 继续拉伸时,由于分子链取向排列,使硬度提高,从而需要更大的 力才能形变。 • 断裂 达到B点时材料断裂,断裂时的应力σb即是抗张强度σt;断裂时的应变 εb又称为断裂伸长率。直至断裂,整条曲线所包围的面积S相当于断裂功。
塑性(Plasticity):外力作用下,材料发生不可逆的永 久性变形而不破坏的能力。
韧性(Ductility):材料从塑性变形到断裂全过程中吸收 能量的能力。 断裂韧性:KIC
Mechanical properties of materials
强度范畴

刚度范畴
韧性范畴 塑性范畴



6.1 拉伸性能
一、定义



拉伸强度:在拉伸试验中,试样直至断裂为止所承受的最大拉 伸应力。 拉伸应力:试样在计量标距范围内,单位初始横截面上承受的 拉伸负荷。 拉伸断裂应力:σt-εt曲线上断裂时的应力。 拉伸屈服应力:σt-εt曲线上屈服点处的应力。 断裂伸长率:试样断裂时,标线间距离的增加量与初始标距之 比。 弹性模量:比例极限内,材料所受应力与产生的相应应变之比。 屈服点:σt-εt曲线上σt不随εt增加的初始点。 应变:材料在应力作用下,产生的尺寸变化与原始尺寸之比。
拉伸性能
低碳钢 铝合金 铸 铁 高分子材料 符合材料
2. 高分子试样的制备和尺寸要求I :I型试样及尺寸
图 I型试样
表6-2 II II型试样尺寸要求
2.II型试样及尺寸
图 II型试样
表6-2 I I型试样尺寸要求
2. 试样的制备和尺寸要求III :III型试样及尺寸
图 III型试样
表6-2 III III型试样尺寸要求
模量 低 高 高 低 高
屈服应力 低 无 高 低 高
拉伸强度 低 中等 高 中等 高
断裂伸长 中等 低 中等 高 高
高分子材料的典型应力-应变特征
常用高分子材料的应力-应变曲线
应力 纤维 硬塑料 软塑料 橡胶 应变
6.1 拉伸性能
三、 拉伸性能测试原理及试样
参照标准——国标GB/T 1040-92 1.原理 拉伸试验是对试样延期纵轴方向施加静态拉 伸负荷,使其破坏,通过测量试样的屈服力、破 坏力和试样标距间的伸长来求得试样的屈服强度 拉伸强度和伸长率。
硬质热塑性塑料板 热固性塑料板含层压板
软质热塑性塑料及板 热固性塑料(含填充、增 强塑料) 热固性塑料板
A B C D E F G
F G H I C B C D
A:1±50%,B:2±20%,C:5±20%,D:10±20%,E:20±10%, F:50±10%,G:100±10%,H:200±10%,I:500±10%。
高分子典型应力-应变曲线 I
(a)的特点是软而弱。拉伸强度低, 弹性模量小,且伸长率也不大,如 溶胀的凝胶等。


(b)的特点是硬而脆。拉伸强度和弹 性模量较大,断裂伸长率小,如聚 苯乙烯等。
高分子典型应力-应变曲线

(c)的特点是硬而强。拉伸强度 和弹性模量大,且有适当的伸 长率,如硬聚氯乙烯等。
t1
二、应力-应变曲线
应力-应变曲线: A:脆性材料; B:具有屈服点的韧性材料; C:无屈服点的韧性材料 -拉伸强度; t1-拉伸断裂应力; t 2-拉伸屈服应力; t 3-偏置屈服应力; t 4-拉伸时的应变; t1 -断裂时的应变; t 3 -屈服பைடு நூலகம்的应变; -偏置屈服时的应变
2. 试样的制备和尺寸要求IV :IV型试样及尺寸
图 IV型试样
表6-2 IV IV型试样尺寸要求
2. 试样的制备和尺寸要求V :塑料材料选择试样类型测
试速度参考
试样材料 硬质热塑性塑 热塑性增强塑料 类型 试样制备方法 注塑 模压 Ⅰ 机械加工 Ⅱ Ⅲ Ⅳ 注塑、模压 板材机械加工 和冲切加工 注塑 模压 机械加工 2 2 最佳厚度mm 4 试验速度 B C D E F
相关文档
最新文档