《分式的乘除》教学设计【初中数学人教版八年级上册】第2课时
八年级数学上册《分式的乘除法》教案、教学设计
(三)情感态度与价值观
1.培养学生对数学学习的兴趣,激发学生的学习积极性,使学生乐于探索分式的乘除法;
2.培养学生严谨、细致的学习态度,让学生在解题过程中,养成认真审题、规范答题的良好习惯;
3.培养学生的团队协作意识,使学生学会倾听、交流、分享,提高学生的沟通能力;
三、教学重难点和教学设想
(一)教学重难点
1.重点:分式乘除法的运算法则,包括同分母分式相乘、相除,异分母分式相乘、相除的运算方法。
2.难点:理解并掌握分式乘除法的运算规律,能熟练地将实际问题转化为分式乘除运算,以及正确处理分式乘除中的符号问题。
(二)教学设想
1.创设情境,导入新课:通过生活中的实例,如购物打折、配料计算等,引出分式乘除法在实际问题中的应用,激发学生的学习兴趣,为新课的学习做好铺垫。
4.通过生活中的实例,让学生感受分式乘除法在实际问题中的应用,激发学生学习新知的兴趣。
(二)讲授新知,500字
1.教师讲解分式乘除法的概念,强调同分母分式相乘、相除的运算方法,以及异分母分式相乘、相除的运算方法。
2.通过具体的例题,演示分式乘除法的运算步骤,引导学生关注运算过程中的符号处理,特别是约分、通分等操作。
6.课堂评价,激励进步:注重课堂评价,及时反馈学生的学习情况,激发学生的学习积极性。对学生的进步给予充分肯定,培养学生的自信心。
7.课后作业,巩固成果:布置适量的课后作业,让学生在课后巩固所学知识,提高学生的自主学习能力。
8.家校合作,共同促进:加强与家长的沟通,了解学生的课后学习情况,鼓励家长参与学生的学习过程,共同促进学生数学素养的提高。
4.多元练习,巩固提高:设计不同难度的练习题,让学生在解答过程中,巩固所学知识。针对学生的个体差异,进行分层指导,提高学生的运算能力和解决问题的能力。
新人教版初中数学8年级上册15.2.1分式的乘除第2课时
15.2.1 分式的乘除(二)学教目标:1.能应用分式的乘除法法则进行乘除混合运算。
2.能灵活应用分式的乘除法法则进行分式的乘除混合运算。
3.在发展推理能力和有条理的表达能力的同时,体会学习数学的兴趣。
学教重点:掌握分式乘除法法则及其应用学教难点:掌握分子分母是多项式的分式的乘除法混合运算学教过程:一、温故知新:阅读课本P 135-1361.分式的约分:__________________________________________ 最简分式:__________________________________________下列各分式中,最简分式是( )A .()()y x y x +-8534B .y x x y +-22C .2222xy y x y x ++D .()222y x y x +- 2.分解因式:2232x y xy y -+= 3a a -= 2312x -= 220.01ab -=21222x x ++= 2242x y x y -++= 3. 计算 (1)=÷⨯4156523 (2)=⨯÷25122535 4.分数乘除法混合运算顺序是什么? 分式的乘除法混合运算与分数的乘除法混合运算类似你能猜想出分式的乘除法混合运算顺序吗?二、学教互动 :例1.计算(先把除法变乘法,把分子、分母分解因式约分,然后从左往右依次计算)注意:过程中,分子、分母一般保持分解因式的形式。
三、随堂练习1.计算(1)2224369a a a a a --÷+++ (2)(ab -b 2)÷b a b a +-222.已知2331302a b a b ⎛⎫-++-= ⎪⎝⎭.求2b b ab a b a b a b ⎡⎤⎛⎫⎛⎫÷⋅ ⎪ ⎪⎢⎥+-+⎝⎭⎝⎭⎣⎦的值四.反馈检测:1.已知:31=+x x ,则_________122=+xx 2.计算2x y y y x x ⎛⎫⎛⎫⎛⎫⋅÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的结果是( )A .2x yB .2x y -C .x yD .x y- 3. 计算(1)2222255343x y m n xym mn xy n ⋅÷ (2) 221642168282m m m m m m m ---÷⋅++++4.先化简,再求值:232282421x x x x x x x x x +--+⎛⎫÷⋅ ⎪+++⎝⎭.其中45x =-五.小结与反思:。
人教初中数学八年级上册 15.2.1 分式的乘除(第2课时)教案
分式的乘除一、教学目标:1.熟练地进行分式乘除法的混合运算.2.理解分式乘方的运算法则,熟练地进行分式乘方的运算.二、重点、难点1.熟练地进行分式乘除法的混合运算. 关键是点拨运算符号问题、变号法则.2.熟练地进行分式乘、除、乘方的混合运算.三、例、习题的意图分析1. P13例4是分式乘除法的混合运算. 分式乘除法的混合运算先把除法统一成乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的结果要是最简分式或整式.教材P13例4只把运算统一乘法,而没有把25x 2-9分解因式,就得出了最后的结果,教师在见解是不要跳步太快,以免学习有困难的学生理解不了,造成新的疑点.2. P13页例4中没有涉及到符号问题,可运算符号问题、变号法则是学生学习中重点,也是难点,故补充例题,突破符号问题.3. P14例5第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,在分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除..4.教材P14例5中象第(1)题这样的分式的乘方运算只有一题,对于初学者来说,练习的量显然少了些,故教师应作适当的补充练习.同样象第(2)题这样的分式的乘除与乘方的混合运算,也应相应的增加几题为好. 分式的乘除与乘方的混合运算是学生学习中重点,也是难点,故补充例题,强调运算顺序,不要盲目地跳步计算,提高正确率,突破这个难点.四、课堂引入 1.计算(1))(x y y x x y -⋅÷ (2) )21()3(43x y x y x -⋅-÷ 2.计算下列各题:(1)2)(b a =⋅b a b a =( ) (2) 3)(b a =⋅b a ⋅b a b a =( ) (3)4)(b a =⋅b a ⋅b a b a ba ⋅=( ) [提问]由以上计算的结果你能推出nb a)((n 为正整数)的结果吗?五、例题讲解1.(P13)例4.计算[分析] 是分式乘除法的混合运算. 分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.(补充)例.计算 (1))4(3)98(23232b x b a xy y x ab -÷-⋅ =xb b a xy y x ab 34)98(23232-⋅-⋅ (先把除法统一成乘法运算) =xb b a xy y x ab 349823232⋅⋅ (判断运算的符号) =32916axb (约分到最简分式) (2) x x x x xx x --+⋅+÷+--3)2)(3()3(444622 =x x x x x x x --+⋅+⋅+--3)2)(3(31444622 (先把除法统一成乘法运算) =x x x x x x --+⋅+⋅--3)2)(3(31)2()3(22 (分子、分母中的多项式分解因式) =)3()2)(3(31)2()3(22---+⋅+⋅--x x x x x x =22--x 2.(P14)例5.计算[分析]第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对学生强调运算顺序:先做乘方,再做乘除.六、随堂练习1.计算 (1))2(216322b a a bc a b -⋅÷ (2)103326423020)6(25b a c c ab b a c ÷-÷(3)x y y x x y y x -÷-⋅--9)()()(3432 (4)22222)(x y x xy y xy x x xy -⋅+-÷- 2. 判断下列各式是否成立,并改正.(1)23)2(a b =252a b (2)2)23(a b -=2249ab - (3)3)32(x y -=3398xy (4)2)3(b x x -=2229b x x - 七、课后练习1.计算 (1))6(4382642z y x y x y x -÷⋅- (2)9323496222-⋅+-÷-+-a a b a b a a (3)229612316244y y y y y y --÷+⋅-+- (4)xyy xy y x xy x xy x -÷+÷-+222)( 2. 计算 (1) 332)2(a b - (2) 212)(+-n ba (3)4234223)()()(c a b a c b a c ÷÷ (4) )()()(2232b a ab a ab b a -⋅--⋅- 八、答案:六.1.(1)c a 432- (2)485c- (3)3)(4y x - (4)-y 2.(1)不成立,23)2(a b =264a b (2)不成立,2)23(a b -=2249ab (3)不成立,3)32(x y -=33278x y - (4)不成立,2)3(b x x -=22229b bx x x +-七.1. (1)336y xz (2) 22-b a (3)122y - (4)x1- 2. (1) 968a b -- (2) 224+n ba (3)22a c (4)b b a + 课后反思:。
人教版数学八年级上册15.2.1分式的乘除(第2课时)教学设计
3.教师引导学生观察分式乘除法与整式乘除法之间的联系,如乘法分配律、交换律等,帮助学生更好地理解分式乘除法。
4.教师通过讲解典型例题,让学生了解分式乘除法在实际问题中的应用,培养学生将数学知识应用于解决实际问题的能力。
2.学生分享自己在学习分式乘除法过程中的收获和感悟,以及遇到的困难和问题。
3.教师针对学生的反馈,进行针对性的解答和指导,巩固学生的知识点。
4.教师布置课后作业,要求学生在课后继续巩固所学知识,为下一节课的学习做好准备。
五、作业布置
为了巩固本节课所学的分式乘除知识,培养学生的数学思维能力,特布置以下作业:
(三)学生小组讨论
1.教师将学生分成小组,每组挑选一道具有代表性的分式乘除题目进行讨论。
2.学生在小组内部分享自己的解题思路和方法,互相交流,共同探讨。
3.各小组在讨论过程中,教师巡回指导,关注学生的解题过程,及时发现问题并给予指导。
4.讨论结束后,各小组派代表进行汇报,分享本组的讨论成果和心得体会。
5.练习巩固:设计难易程度不同的练习题,让学生独立完成,巩固所学知识。针对学生的错误,教师要及时给予指导和纠正。
6.知识拓展:引导学生将分式乘除法与整式乘除法进行对比,总结它们之间的联系与区别,提高学生的数学思维能力。
7.总结反馈:在教学结束时,教师对本节课的内容进行总结,强调重点和难点。同时,鼓励学生分享自己的学习心得,以便教师了解学生的学习情况。
4.实践题:结合生活实际,设计一道与分式乘除相关的实际问题,要求学生运用所学知识解决问题,并简要说明解题思路。此举旨在培养学生的知识运用能力和创新意识。
5.小组讨论题:以小组为单位,共同探讨以下问题:“分式乘除法在生活中的应用有哪些?”并撰写一篇简要的讨论报告,培养学生的合作意识和沟通能力。
人教版八年级数学上册教案-15.2.1 分式的乘除2
分式的乘除法复习
课题:《分式的乘除法复习》
三维
目标
知识与技能
巩固分式的乘除混合运算的计算法则;温习因式分解的方法;
平方差公式和完全平方公式;
过程与方法
会运用法则进行分式的乘除混合运算,会对一个多项式分解
因式
情感态度与价值观培养学生的独立思考能力和合作交流意识
教学重点:分式的乘除混合运算
教学难点:分式的乘除混合运算
教学方法与手段:讲练结合
教学过程:
一.复习巩固:
1、计算:
二.应用新知:
分式混合运算一定要按照运算顺序
乘除混合运算统一为乘法运算
当分子分母为多项式时要因式分解
三.当堂检测:
四.巩固提高:
分式的乘除混合运算:分式的乘除法统一为乘法运算再算,每一步注意符号的确定,当分子分母为多项式时要因式分解,最后要化成最简分式。
教师小结:
今天这节课,你学到了哪些知识?有哪些收获与感受?说出来大家分享。
分式的乘除混合运算:分式的乘除法统一为乘法运算再算,每一步注意符号的确定,当分子分母为多项式时要因式分解,最后要化成最简分式。
板书设计:
一.复习巩固:
1、计算:
二.应用新知:
分式混合运算一定要按照运算顺序
乘除混合运算统一为乘法运算
当分子分母为多项式时要因式分解
三.当堂检测:
四.巩固提高:
分式的乘除混合运算:分式的乘除法统一为乘法运算再算,每一步注意符号的确定,当分子分母为多项式时要因式分解,最后要化成最简分式。
教学反思:。
人教版八年级上册数学教案:15.2.1 分式的乘除(二)
教学目标
知识与技能:能熟练、准确的进行分式乘除法和乘除混合计算, 会进行分式乘方的运算.
过程与方法:经历类比的过程,得到分式乘方的运算法则.
情感态度与价值观:在教学过程中,通过一些法则的得出过程,向学生渗透数学中类比的思想.
教学重点
分式乘除法、乘方的运算.
教学难点
分式的乘除混合运算.
教学过程
预习自学
以上节内容,即分式的乘除法练习为例,引入本课内容,使学生回顾并熟悉上节内容,为本节课的混合运算的展开做好铺垫,使学生熟悉分式的乘除法的运算法则.
合作探究
结合预习自学中的练习,本节课重点解决以下两类问题
探究一:分式的乘除法混合运算.
探究二:分式乘方的意义及其运算法则.
在以上探究之下,归纳得出相应的运算顺序及运算法则,并加以运用,最终能理解掌握.
.其中
个性化设计
教学反思
例1 计算:
(1) ; (2)
例2、(1) (2)
例3、化简求值: ,其中a= .
课堂练习
1. 2.
3.分式乘除法混合运算的应用:
(1) (2) (3)
课堂小结
1. 分式的乘除法混合运算
2. 分式的乘方运算
达标检测
(1)计算:
(2)计算:
拓展应用
计算:
布置作业
1.计算
(1) (2)
2.先化简,再求值:
分式的乘除(2)人教版八年级(初二)上册数学教案
自主学习:
例4、
思考:( )2= ( )3= ( )10=
归纳:一般的,当n是正整数时,( )n=
这就是说,分式的乘方要把
例5、(1)( )2; (2)( )3÷ ×( )2
合作展示:
1、 2、( )3
3、
拓展提升:
4、( )2÷ ×( )3
师生反思:
当堂检测:
1、已知: ,求:
2、计算:(1) ; (2) ;
(3) ; (4) ;
3、先化简,再求值: .其中
学习内容
15.2.1分式的乘除(2)
人教版八年级上册
课 型
新授
班级
初二
时 间
学习目标
1.能应用分式的乘除法法则进行分式的乘除混合运算,会进行分式的乘方运算
2.在发展推理能力和有条理的表达能力的同时,体会学习数学的兴趣。
重点
分式乘除法及乘方的混合运算单:
人教版八年级数学上册15.2.1分式的乘除2教学设计
-采用过程性评价,关注学生在学习过程中的参与度、合作态度和解决问题的能力。
-定期进行总结性评价,通过测试和作业,评估学生对分式乘除知识的掌握程度。
-鼓励学生自我评价和同伴评价,培养他们的自我反思能力和批判性思维。
4.教学环境设想:
-创设一个积极的学习氛围,鼓励学生提问和表达自己的观点。
3.提高拓展题:设计一些难度较大的题目,让学生在解决问题的过程中提高思维能力和灵活运用知识的能力。
-例如:已知$x = \frac{a}{b}$,$y = \frac{c}{d}$,求解$\frac{x^2y}{x+y}$的值。
4.小组合作研究题:鼓励学生以小组为单位,共同探讨和研究一些开放性问题,培养学生的团队合作精神和探究能力。
-拓展阶段:鼓励学生尝试解决更复杂的实际问题,将分式乘除与之前学过的知识相结合,提高综合解决问题的能力。
2.教学方法设想:
-采用启发式教学法,通过提问和引导,激发学生的思考,帮助他们理解分式乘除的本质。
-利用信息技术,如多媒体演示、在线教学平台等,提供直观的学习资源,帮助学生克服学习难点。
-实施差异化教学,针对不同学生的学习情况,提供不同难度的练习题,确保每个学生都能在原有基础上得到提高。
-例如:计算下列分式的乘积或商,并简化结果:$\frac{a}{b} \times \frac{c}{d}$,$\frac{a}{b} \div \frac{c}{d}$。
2.实际问题应用题:将分式乘除与生活实际相结合,设计一些应用题,让学生学会将数学知识应用于解决生活中的问题。
-例如:小华有一块长方形的巧克力,长为$a$厘米,宽为$b$厘米,他想将其分成大小相等的正方形小块,每块边长为$c$厘米,问最多可以分成多少块?
15.2.2分式的乘除法(二)教案 【新人教版八年级上册数学】
15.2.2分式的乘除法(二)【学习目标】1、熟练运用分式的乘除法法则进行运算.2、掌握分子、分母为多项式的分式乘除法混合运算.【学习重点】掌握分式的乘除及混合运算法则.【学习难点】掌握分子、分母为多项式的分式乘除法运算.【知识准备】1、分式的乘除法法则:两个分式相乘,把 作为积的分子,把 作为积的分母;两个分式相除,只需把除法转化为2.约分【自习自疑】一、预习导学1、计算:(1) (2) 2224369a a a a a --÷+++(x y y x x y -⋅÷ab a 24)1(2-)(2)()2(2b a a b --aba b a +-222)3())()(())()(()4(b c a c a b c a c b b a ------二、预习评估1.计算:(1) ·÷ (2) 2223x y mn 2254m n xy 53xym n21()3(43x y x y x -⋅-÷请你将预习中遇见的问题和疑问写下来,等待课堂上与同学、老师共同探究解决。
等级 组长签字【自主探究】【探究一】分式的乘除混合运算(1) (2) )4(3)98(23232b x b a xy y x ab -÷-⋅x y y x x y y x -÷-⋅--9)()()(3432(3)x x x x xx x --+⋅+÷+--3)2)(3()3(444622【探究二】“丰收1号”小麦的试验田是边长为a 米的正方形减去一个边长为1米的正方形蓄水池后余下的部分, “丰收2号”小麦的试验田是边长为(a-1)米的正方形,两块试验田的小麦都收获了500千克.(如图P137) (1)哪种小麦的单位面积产量高? (2)高的单位面积产量高是低的单位面积产量的多少倍?【自测自结】1、计算 (1) (2) 2236a b ax cd cd -÷103326423020)6(25ba c c ab b ac ÷-÷2、计算(1) (2) )6(4382642z y x y x y x -÷⋅-9323496222-⋅+-÷-+-a a b a b a a(3) (4) 229612316244y y y y y y --÷+⋅-+-xy y xy y x xy x xy x -÷+÷-+222)(通过本节课的学习,你有哪些收获?还有哪些困惑呢?。
人教版八年级数学上册《分式的乘除运算(第2课时)》教学设计
15.2.1分式的乘除运算(第2课时)一、内容和内容解析1.教学内容人教版《义务教育教科书·数学》八年级上册“15.2.1分式的乘除”(第2课时).2.内容解析本课是在学生已经能够进行分式乘除运算的基础上,进一步学习如何进行分式的乘方运算,研究如何进行分式的乘、除、乘方的混合运算.二、教学目标1.类比整式乘方的运算法则,理解分式乘方的运算法则,能根据法则进行乘方运算,体会数式通性.2.能根据混合运算法则进行分式乘除、乘方混合运算.本节课的教学重点是:分式的乘方及分式乘除、乘方混合运算.本节课的教学难点是:掌握分式的乘方法则,并能运用它进行运算.三、教学过程设计活动一、游戏竞技,回顾旧知:问题:分式乘除法法则?分式乘除法混合运算顺序是什么?师生活动:教师提出问题,学生回答,学生如出现错误或不完整,请其他学生修正或补充.教师点评:(结合学生的表现)今天学习任务:分式乘除法及乘方.【设计意图】通过提问,回顾分式乘除法运算法则,与整式的学习与分式的学内容相比较,建立完整知识体系.数学游戏内容:分式乘法,除法简单运算题形式:小组抢答,积分教学软件:希沃画板【设计意图】加强分式乘除法法则的理解,提高学生学习兴趣活动二、合作学习,探究新知(一)分式乘除法混合运算.例1 计算2x5x-3÷325x2-9·x5x+3.问题:1.这个式子中包含几种运算?本题的运算顺序是怎样的?2.运算中需要注意哪些问题学生思考完成题目,组内讨论1.同分数的混合运算方法是一致的.2.对于分子或分母中含有多项式的两个分式相乘,需要先将多项式因式分解,把多项式化成整式的积的形式,然后利用分式的乘除法法则进行运算,利用分式的基本性质进行约分,并把最后的结果化成最简分式.反思小结:分式乘除混合运算可以统一为乘法运算,按照从左至右顺序运算.加强训练:见学案相应部分(二).探究分式的乘方的法则及应用问题:整式乘法的高级运算是乘方,那么分式的乘方如何运算呢?1.思考:⎝ ⎛⎭⎪⎪⎫a b 2= ⎝ ⎛⎭⎪⎪⎫a b 3=⎝ ⎛⎭⎪⎪⎫a b 10= 小组讨论:(1)从乘方的意义去理解,⎝ ⎛⎭⎪⎪⎫a b 2、⎝ ⎛⎭⎪⎪⎫a b 3、⎝ ⎛⎭⎪⎪⎫a b 10的意义是什么?(2)请根据乘方的意义和分式乘法法则计算:⎝ ⎛⎭⎪⎪⎫a b 2=________=________ ⎝ ⎛⎭⎪⎪⎫a b 3=________=________ ⎝ ⎛⎭⎪⎪⎫a b 10=________=________ 一般地,当n 是正整数时,⎝ ⎛⎭⎪⎪⎫a b n =________=________=________,即⎝ ⎛⎭⎪⎪⎫a b n =________.小组讨论:归纳分式乘方法则推导的思路.总结:1.分式的乘方要把________、________分别乘方.2.分式乘方法则的推导,就是转化成乘方意义和分式乘法的问题.例2 计算:活动三、游戏竞技,熟练新知数学游戏内容:分式乘方形式:小组抢答,积分教学软件:希沃画板【设计意图】加强分式乘方运算,提高学生学习兴趣总结(1)根据乘方的法则,分子、分母分别乘方;(2)乘方运算,要求做到会、准、快.【设计意图】激发学习兴趣,注意运算过程中符号,字母及指数的处理.活动四、综合练习,提高能力教师引导,学生独立完成,小组成员交流方法。
人教版八年级数学上册《分式的乘除》教学设计
《分式的乘除》教学设计(选自八年级上册)【教材分析】【学情分析】【教学任务分析】一教学目标二教学重难点重点:难点:【教法学法分析】“三自一合作”读书指导法【教具】:课件PPT【教学过程设计】一、创设情景,引入新课二、展示课题(一)自定目标三、课堂小结通过本节课的学习你学到了什么?四、课堂检测五、作业布置一、观看视频(3分钟)二、讲授新课1、课题导入2、自定目标(2分钟)(是否修改?)分式的乘除。
看到这个课题,你们想学到什么?有谁愿意和大家分享一下?(板书课题)学生:学生回答(每个学生回答的回馈语)(反馈如何?)老师:同学们想学到的很多,具有很强的探究精神,求知欲望,老师根据你们的分享将今天的学习目标总结了一下,我们仔细阅读思考。
3、自主学习(4分钟)接下来让我们带着学习目标和老师给你们的自学指导,阅读课本135-136页。
待会儿会有一个自学交流展示,见证你们的自学效果。
4、自学交流(1分钟)自学时间到,同桌两人用1分钟时间交流分享你们学到的内容?5、自学交流展示(2分钟)举手展示你学到的。
学生:学生站起来回答问题(给予评价反馈)老师:老师板书(分式乘法法则,分式除法法则)分式的乘法法则、除法法则如同钥匙,让我们带着法宝一起斩妖除魔,所向披靡。
你们敢挑战自己吗?在这之前我们先收集一些技能装备,让我们一起进入例题展示。
《例题展示》(7分钟)在刚刚在例题展示中,你获得了哪些做题技巧?举手回答!(2分钟)学生:1、2、3、老师:这些就是你们刚刚总结的,你们总结的很准确,很实用,都是分式乘除中需要注意的。
给你们点赞。
三、课堂检测《我是小法官环节》(2分钟)技能装备有了,满血复活,让我们小试牛刀,每组回答问题,站起来说出你们的判断,并将错误的加以改正,回答对的小组积1分。
《砸金蛋环节》(4分钟)我们对分式的乘法法则,除法法则,已经掌握运用较为熟练,有想要挑战一下的同学吗?不要998,不要998,只要你勇敢砸开金蛋,并准确计算出结果,就又能为你的小组赢得一个积分。
2024年人教版八年级上册第十五章 分式分式的运算
15.2.1 分式的乘除 第1课时 分式的乘除课时目标1.通过类比分数的乘除法法则得出分式的乘除法法则,从中体会“数式通性”和类比转化的思想方法,发展学生的抽象能力.2.使学生经历分式的乘除运算规律的发现过程,培养学生自主探索、自主学习、自主归纳知识的意识,进一步提高学生的运算能力.3.通过运用分式的乘除法法则进行运算,解决一些与分式乘除法有关的实际问题,使学生养成理论联系实际的习惯,发展实践能力,培养应用意识. 学习重点运用分式的乘除法法则进行运算. 学习难点分子、分母为多项式的分式的乘除运算. 课时活动设计回顾引入大家之前学习过分数的乘除法法则,现在是否还有印象?师生活动:教师在黑板列出2道分数乘除法的题目,并请两位学生上台板书. 计算:(1)23×56; (2)23÷56.解:(1)23×56 = 2×53×6 = 59. (2)23÷56 = 23×65= 2×63×5 = 45.设计意图:通过回顾分数的乘除法法则引入新课,为学习分式的乘除法法则作铺垫.探究新知问题1:一个长方体容器的容积为V ,底面的长为a ,宽为b ,高为h ,当容器内的水占容积的mn 时,水高多少?解:水高=h ×mn =Vab ×m n =Vmabn.问题2:大拖拉机m 天耕地a 公顷,小拖拉机n 天耕地b 公顷,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?解:倍数=大拖拉机的工作效率小拖拉机的工作效率=a m ÷b n =a m ×n b =an bm.问题3:观察下列运算.23×45=2×43×5;57×29=5×27×9;23÷45=23×54=2×53×4;57÷92=5×27×9.猜一猜:a b ×dc =?b a ÷dc =? 解:a b ×d c =a×db×c , b a ÷d c =b a ·c d =b×ca×d.类比分数的乘除法法则,你能说出分式的乘除法法则吗?师生活动:通过教学活动1中的具体例子,引导学生回忆前面学过的分数的乘除法法则,利用类比的方法得出分式的乘除法法则.乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母. 除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 用式子表示为:a b ·c d =a·c b·d ,a b ÷c d =a b ·d c =a·db·c.设计意图:以此活动激活学生原有的知识体系,充分体现学生的学习是在原有知识的基础上自我生成的一个过程,有利于让学生更好地掌握类比的学习方法.典例精讲 例1 计算:(1)4x3y ·y2x 3; (2)ab 32c 2÷-5a 2b 24cd .解:(1)原式= 4xy6x 3y = 23x 2.(2)原式=ab 32c 2·4cd-5a 2b 2=-4ab 3cd10a 2b 2c 2=-2bd5ac .例2 计算:(1)a 2-4a+4a 2-2a+1·a -1a 2-4; (2)149−m 2÷1m 2-7m .解:(1)原式=(a -2)2(a -1)2·a -1(a -2)(a+2)=(a -2)2(a -1)(a -1)2(a -2)(a+2) =a -2(a -1)(a+2). (2)原式=1(7+m)(7-m)×m(m -7)1=-m7+m .例3 如图,“丰收1号”小麦的试验田是边长为a m 的正方形去掉一个边长为1 m 的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a -1)m 的正方形,两块试验田的小麦都收获了500 kg .(1)哪种小麦的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?解:(1)“丰收1号”小麦的试验田面积是(a 2-1)m 2,单位面积产量是500a 2-1 kg/m 2; “丰收2号”小麦的试验田面积是(a -1)2 m 2,单位面积产量是500(a -1)2 kg/m 2. ∵a >1,∴(a -1)2>0,a 2-1>0.∵(a -1)2-(a 2-1)=2-2a <0,∴(a -1)2<a 2-1. ∴500a 2-1<500(a -1)2.所以“丰收2号”小麦的单位面积产量高. (2)500(a -1)2÷500a 2-1=500(a -1)2·a 2-1500=(a+1)(a -1)(a -1)2=a+1a -1.所以“丰收2号”小麦的单位面积产量是“丰收1号”小麦的单位面积产量的a+1a -1倍.设计意图:通过例题,使学生掌握分式的乘除法法则,引导学生用分式的乘除法解决生活中的实际问题,提高“用数学”的意识,让学生感受到学以致用,体会到能够完整解决问题的喜悦,同时训练学生的书面表达能力,培养学生解决问题的能力.巩固训练 1.计算:(1)3a 5b ·2b6a 2; (2)2x5mn ÷y4x .解:(1)原式=3a·2b5b·6a 2=15a .(2)原式= 2x5mn ×4xy = 2x·4x5mn·y = 8x 25mny . 2.计算:(1)a -b2ab ·3a 2b3a 2-3b 2; (2)9y 2-x 2x 2+2x+1÷2x -6yx+1. 解:(1)原式= (a -b)·3a 2b2ab·3(a+b)(a -b) = a2a+2b . (2)原式= 9y 2-x 2x 2+2x+1·x+12x -6y=(3y -x)(3y+x)·(x+1)(x+1)2·2(x -3y)=-3y+x2x+2.设计意图:通过巩固训练,及时巩固本节课所学知识,帮助学生熟练掌握分式的乘除法法则.课堂小结1.本节课探究了分式的哪些问题?2.分式的乘法法则:a b ·c d =a·cb·d .3.分式的除法法则:a b ÷c d =a b ·d c =a·d b·c.设计意图:通过课堂小结,回顾本节课所学知识,及时查漏补缺.课堂8分钟.1.教材第138页练习第2,3题,第146页习题15.2第1,2题.2.七彩作业.第1课时 分式的乘除一、分式的乘除法法则:分式的乘除{乘法法则:a b ·cd =a·cb·d ;除法法则:a b ÷c d =a b ·d c =a·d b·c .二、例题讲解.注意:1.运用法则时注意符号的变化; 2.因式分解在分式乘除法中的应用; 3.结果要化成最简分式或整式. 三、课堂评价.教学反思第2课时 分式的乘方及乘除混合运算课时目标1.让学生经历分式的乘方法则的生成过程,培养学生自主探索、自主学习、交流合作的意识,提高学生的总结归纳能力.2.运用分式的乘除法法则、分式的乘方法则解决数学问题,让学生感受到数学知识的应用过程,培养学生的应用意识,提高学生的运算能力.3.类比分数的乘除法、乘方混合运算,进行分式的乘除法、乘方混合运算,让学生体会数与式的发展过程,感悟数与式在运算法则及运算顺序上的高度统一,培养学生的类比意识,发展学生的抽象能力. 学习重点会进行分式的乘方运算,分式的乘除法、乘方混合运算. 学习难点分式的乘除法、乘方混合运算以及运算中符号的确定. 课时活动设计回顾引入引导学生用自己的语言描述分式的乘除法法则. 教师在黑板上列出分式的乘除法法则: 分式的乘法法则:a b ·cd = a·cb·d ;分式的除法法则:a b ÷cd=a·d b·c.设计意图:通过回顾分式的乘除法法则,来确认学生是否掌握了分式的乘法、除法运算,为本节课的学习打好基础.探究新知问题1:计算:2x5x -3÷325x 2-9·x5x+3.解:原式=2x 5x -3·25x 2-93·x5x+3=2x 23.问题2:计算下列各题:(1)(a b )2; (2)(a b )3; (3)(a b )4; (4)(a b )n.(n 为正整数) 解:(1)原式=a b ·a b =a·a b·b =a 2b 2.(2)原式=a b ·a b ·a b =a·a·a b·b·b =a 3b 3.(3)原式=a b ·a b ·a b ·a b =a·a·a·a b·b·b·b =a 4b 4.师生活动:教师引导学生观察前三个小问中等式两边有怎样的联系,再根据乘方的意义和分式乘法的法则推导出分式乘方的运算法则:(a b )n =ab ×ab ×…×a b ⏟ n 个=a×a×…×a⏞ n 个b×b×…×b ⏟ n 个=a n b n,即(a b )n =a nb n .(n 为正整数) 教师引导学生用文字描述分式乘方的运算法则:分式乘方要把分子、分母分别乘方.设计意图:先引导学生观察若干特例,再归纳出分式乘方的运算法则.在这个过程中学生可以通过比较、联想、探索,从直观中归纳出理性的规律,促使学生学习从特殊到一般的认识事物的思维方法.典例精讲 例 计算: (1)(-2a 2b 3c)2; (2)(a 2b-cd 3)3÷2a d 3·(c2a)2.解:(1)原式=(-2a 2b)2(3c)2=4a 4b 29c 2.(2)原式= a 6b 3-c 3d 9 ÷2a d 3·c 24a 2 = a 6b 3-c 3d 9·d 32a ·c 24a 2= -a 3b 38cd 6.设计意图:引导学生回忆前面学过的分数的乘除法、乘方混合运算,利用类比的方法进行分式的乘除法、乘方混合运算,体会数与式的发展过程,感悟数与式在运算法则及运算顺序上的高度统一,培养学生的类比意识,提高学生的运算能力.巩固训练 1.计算:(1)2x 2-3y 2·-5y6x ÷10y-21x 2; (2)a 2-1a 2-4a+4÷a+12−a ·2+a1−a ;(3)(-x 2y )2·(-y 2x)3÷(-y x )4.解:(1)原式=2x 2-3y 2·-5y 6x ·-21x 210y =-7x 36y 2.(2)原式=(a+1)(a -1)(a -2)2·-(a -2)a+1·a+2-(a -1)=a+2a -2.(3)原式=x 4y 2·(-y 6x 3)·x 4y4=-x 5. 2.先化简,再求值:a -1a+2·a 2-4a 2-2a+1÷1a 2-1,其中a 满足a 2-a =0. 解:原式=a -1a+2·(a+2)(a -2)(a -1)2·(a +1)(a -1)=(a -2)(a +1)=a 2-a -2=-2.设计意图:通过巩固训练,让学生自主探索、充分交流,在运算的过程中使学生掌握基础知识、基本的运算方法,体会运算法则和运算顺序,内化自身的运算认知,在循序渐进的运算中,提高自己的运算能力,同时通过具体的解题步骤,让学生感受到数学的严谨性,规范解题步骤和书写格式.课堂小结1.本节课探究了分式的哪些问题?2.分式乘方的运算法则:分式乘方要把分子、分母分别乘方.3.分式的乘除混合运算.设计意图:通过课堂小结,回顾本节课所学知识,为接下来的学习打好基础.课堂8分钟.1.教材第139页练习第1,2题,第146页习题15.2第3题.2.七彩作业.第2课时 分式的乘方及乘除混合运算一、分式的乘除法运算.分式的乘除法运算归根结底是乘法运算. 二、分式的乘方:(a b )n =a nb n ,即分式乘方要把分子、分母分别乘方. 三、例题讲解. 四、课堂评价.教学反思15.2.2分式的加减第1课时分式的加减课时目标1.让学生经历分式的加减法法则的生成过程,培养学生自主探索、自主学习、自主归纳知识的意识,提高学生知识的类比迁移能力.2.运用分式的加减法法则解决数学问题,让学生感受到数学知识的应用过程,培养学生的应用意识,提高学生的运算能力.3.类比分数的加减法运算,进行分式的加减法运算,让学生体会数与式的发展过程,感悟数与式在运算法则及运算顺序上的高度统一,培养学生的类比意识,发展学生的抽象能力.学习重点运用分式的加减运算法则进行运算.学习难点异分母分式的加减运算.课时活动设计情境引入甲工程队完成一项工程需n天,乙工程队要比甲队多用3天才能完成这项工程,两队共同工作一天完成这项工程的几分之几?教师引导分析,学生思考、交流.解:甲工程队一天完成这项工程的1n ,乙工程队一天完成这项工程的1n+3,两队共同工作一天完成这项工程的(1n +1n+3).设计意图:通过具体问题情境导入新课,让学生感受到分式的加减运算是由实际需要产生的,激发学生的学习兴趣,提高学生的学习效率.探究新知问题1:2009年、2010年、2011年某地的森林面积(单位:km 2)分别是S 1,S 2,S 3,2011年与2010年相比,森林面积增长率提高了多少?学生小组讨论,选取两名学生分别列出2010年、2011年的森林面积增长率: 解:2010年的森林面积增长率是S 2-S 1S 1,2011年的森林面积增长率是S 3-S 2S 2.根据2010年、2011年的森林面积增长率,得出结论: 解:2011年与2010年相比,森林面积增长率提高了S 3-S 2S 2-S 2-S 1S 1.教学中讨论这两个问题时,重点放在列出算式,为引出分式的加减法法则做准备.问题2:请同学们先填空,再观察下列分数加减运算的过程:15+25= (35),15-25 = (-15); 12+13=(36)+(26)=(56),12-13=(36)-(26)=(16). 追问:你能根据上面的式子,类比分数加减法法则,得出分式的加减法法则吗? 师生活动:学生先观察分数加减运算的过程,然后选一名学生用符号总结前两个分数加减运算的规律:a c ±bc = a±b c;再选一名学生用符号总结后两个分数加减运算的规律:a b ±cd = ad bd ±bcbd=ad±bc bd .教师引导学生用文字表述分式的加减法法则: 同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减.设计意图:从学生已有的数学经验出发,建立新旧知识之间的联系.类比同分母与异分母分数的加减,学生很容易归纳出同分母分式与异分母分式加减的方法,培养学生交流合作能力和创新实践能力.典例精讲 例 计算: (1)m+n n+m -n n; (2)a 2a -b -b 2a -b ; (3)5x+3y x 2-y 2-2xx 2-y 2.解:(1)原式=(m+n)+(m -n)n=2mn . (2)原式=a 2-b 2a -b =(a+b)(a -b)a -b =a +b. (3)原式=3x+3yx 2-y2=3(x+y)(x+y)(x -y)=3x -y.设计意图:设置一组同分母分式的加减法运算,目的是让学生掌握同分母分式加减法法则:同分母分式相加减,分母不变,把分子相加减,同时内化运算法则,提升运算能力.巩固训练 1.计算: (1)a 2b 2ab-ab -b 2ab -a2; (2)a 2+b 2a -b-a -b ; (3)12p+3q +12p -3q.解:(1)原式=ab -b(a -b)a(b -a)=ab +b a =a 2b+ba.(2)原式=a 2+b 2-(a -b)(a+b)a -b=2b 2a -b .(3)原式=2p -3q+2p+3q(2p+3q)(2p -3q)=4p4p 2-9q 2.2.观察下列分式的加减的运算过程是否正确,如果不正确,请把正确的运算过程写下来.(1)a 2+b 2ab -a 2-b 2ab =a 2+b -a 2-b2ab =0;(2)x 2x -1-x -1=x 2x -1-x -11=x 2-(x -1)2x -1=2x -1x -1.解:(1)不正确,a 2+b 2ab -a 2-b 2ab =a 2+b -a 2+b2ab=2b 2ab =1a .(2)不正确,x 2x -1-x -1=x 2x -1-x+11=x 2-(x -1)(x+1)x -1=x 2-x 2+1x -1==1x -1.设计意图:通过设置巩固训练,巩固本节课所学知识,及时查漏补缺.课堂小结1.本节课探究了分式的哪些问题?2.分式的加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减.设计意图:通过课堂小结,回顾本节课所学知识,为接下来的学习打好基础.课堂8分钟.1.教材第141页练习第1,2题,第146页习题15.2第4,5题.2.七彩作业.第1课时分式的加减一、分式的加减法法则:同分母分式相加减,分母不变,把分子相加减,用式子表示为ac ±bc=a±bc;异分母分式相加减,先通分,变为同分母的分式,再加减,用式子表示为ab ±cd=adbd±bcbd=ad±bcbd.二、例题讲解:(1)分式加减运算的结果要化成最简分式或整式;(2)同分母分式相加减时要注意:“把分子相加减”就是把各个分式的分子“整体”相加减,在这里要注意分数线的括号作用;(3)异分母分式加减法的一般步骤:①通分;②加减;③合并;④约分;(4)整式可以看成是分母为1的分式.三、课堂评价.教学反思第2课时分式的混合运算课时目标1.通过类比分数的混合运算顺序,归纳得出分式的混合运算顺序,体会数与式的发展过程,感悟数与式在运算法则和运算顺序上的高度统一,培养学生的类比意识,发展学生的抽象能力.2.通过运用分式的混合运算解决数学问题,让学生感受到数学知识的应用过程,培养学生的应用意识,提高学生的实践能力.3.通过使学生经历分式混合运算的过程,培养学生积极思考、自主探索、合作交流和辨析提高的学习意识,提高学生的运算能力.学习重点熟练地进行分式的混合运算.学习难点熟练地进行分式的混合运算及化简求值问题.课时活动设计情境引入有一财主死后,他的两个儿子高兴地打开父亲留下的藏宝地图,看到上面有一段文字记录:计算x 2-2x+1x2-1÷x-1x2+x-x的值,就是我留给你们的全部宝物.老大拿出纸笔一算,一气之下将藏宝图一把扔了,老二连忙捡起,经过仔细思考算出后,生气地一把火烧掉了它.财主忘记了写x的值,两个儿子是怎么计算出宝物的情况的呢?财主到底留下了多少宝物呢?通过本节课的学习,你就会明白其中的道理了.设计意图:设置故事情境引入新课,让枯燥的计算问题变得更具吸引力,调动起学生学习的积极性,激发他们的求知欲.探究新知 问题1:计算:(x 2-4x+4x 2-4-x x+2)÷x -1x+2.解:原式=[(x -2)2(x -2)(x+2)-xx+2]·x+2x -1=(-2x+2)·x+2x -1=-2x -1.教师引导学生类比分数的混合运算顺序,总结分式的混合运算顺序: 先乘方,再乘除,最后算加减,有括号的先算括号里面的. 教师针对这类题目给学生提供以下建议:(1)一般按分式的运算顺序进行计算,但恰当地使用运算律会使运算更简便; (2)计算乘除时,要随时对分子、分母进行因式分解; (3)注意括号的“添”或“去”; (4)结果要化为最简分式或整式.设计意图:从学生已有的数学经验出发,建立新旧知识之间的联系.学生通过类比、思考,激活原有知识,让学生感悟自己的学习是在原有知识的基础上自我生成的过程.典例精讲 例 计算:(1)(2a b )2·1a -b -a b ÷b4; (2)(m +2+52−m )·2m -43−m ;(3)(x+2x 2-2x -x -1x 2-4x+4)÷x -4x .解:(1)原式=4a 2b 2·1a -b -a b ·4b =4a 2b 2(a -b)-4ab 2=4a 2b 2(a -b)-4a(a -b)b 2(a -b)=4a 2-4a 2+4ab b 2(a -b)=4ab b 2(a -b)=4aab -b 2.(2)原式=(m +2+52−m )·2m -43−m =9−m 22−m ·2(m -2)3−m=(3-m)(3+m)2−m·-2(2-m)3−m=-2(m +3)=-2m -6.(3)原式=[x+2x(x -2)-x -1(x -2)2]·xx -4=(x+2)(x -2)-(x -1)x x(x -2)2·xx -4 =x 2-4-x 2+x(x -2)2(x -4)=1(x -2)2.设计意图:设置这一组分式的混合运算的例题,目的是让学生进一步掌握分式混合运算时的运算顺序,培养学生良好的运算习惯,让学生在运算的过程中体会运算顺序和各项法则,内化自身的运算认知,在循序渐进的运算中,提高自己的运算能力.巩固训练 1.计算:(1)x 2x -1-x -1; (2)(1−2x+1)2÷x -1x+1;(3)2ab(a -b)(a -c)+2bc(a -b)(c -a); (4)(1x -y +1x+y )÷xyx 2-y 2.解:(1)原式=x 2x -1-(x+1)(x -1)x -1=x 2-x 2+1x -1=1x -1.(2)原式=(x+1x+1-2x+1)·x+1x -1=x -1x+1·x+1x -1=1.(3)原式=2ab -2bc(a -b)(a -c)=2b(a -c)(a -b)(a -c)=2ba -b . (4)原式=[x+y(x -y)(x+y)+x -y(x+y)(x -y)]·(x+y)(x -y)xy=2x(x+y)(x -y)]·(x+y)(x -y)xy=2y .2.先化简再求值:1x+1-1x 2-1·x 2-2x+1x+1,其中x =√2-1. 解:原式=1x+1-1(x+1)(x -1)·(x -1)2x+1 =1x+1-x -1(x+1)2=x+1−(x -1)(x+1)2=2(x+1)2.当x =√2-1时,原式=(√2-1+1)2=(√2)2=22=1. 设计意图:通过巩固训练,及时巩固本节课所学知识,帮助学生更好地掌握分式的乘除法法则,熟练地进行分式的混合运算.课堂小结1.本节课探究了分式的哪些问题?2.分式的混合运算顺序:先乘方,再乘除,最后算加减,有括号的先算括号里面的.3.进行分式的混合运算时注意的问题:(1)一般按分式的运算顺序进行计算,但恰当地使用运算律会使运算更简便;(2)计算乘除时,要随时对分子、分母进行因式分解;(3)注意括号的“添”或“去”;(4)结果要化为最简分式或整式.设计意图:通过课堂小结,回顾本节课所学知识,及时查漏补缺.课堂8分钟.1.教材第142页练习第2题,第146页习题15.2第6题.2.七彩作业.第2课时分式的混合运算一、分式的混合运算顺序:先乘方,再乘除,最后算加减,有括号的先算括号里面的.二、例题讲解:(1)一般按分式的运算顺序进行计算,但恰当地使用运算律会使运算简便;(2)计算乘除时,要随时对分子、分母进行因式分解;(3)注意括号的“添”或“去”;(4)结果要化为最简分式或整式.三、课堂评价.教学反思15.2.3整数指数幂第1课时整数指数幂的运算性质课时目标1.让学生经历负整数指数幂运算性质的得出过程,提高学生归纳、类比和抽象的能力,培养学生的创新意识.2.通过经历整数指数幂的获得过程,让学生感受到数学知识间合理的内在逻辑,培养学生的合情推理,提高学生的推理能力.3.让学生在运用整数指数幂的运算性质进行计算的过程中逐步内化自身的认知,提高学生的运算能力.学习重点掌握整数指数幂的运算性质.学习难点负整数指数的性质的理解和应用.课时活动设计复习回顾我们知道,当n是正整数时,a n=a·a·a·…·a⏟n个.回忆正整数指数幂的运算性质:(1)a m·a n=a m+n(m,n是正整数);(2)a m÷a n=a m-n(a≠0,m,n是正整数,并且m>n);(3)(a m)n=a mn(m,n是正整数);(4)(ab)n=a n b n(n是正整数);(5)(ab )n=anb n(n是正整数);(6)a 0= 1 (a ≠0).a m 中的指数m 可以是负整数吗?如果可以,那么负整数指数幂a m 表示什么? 设计意图:引导学生回忆正整数指数幂的运算性质,温故而知新,唤醒学生已有的知识体系,通过复习正整数指数幂和0指数幂的性质,引入负整数指数幂,为新知识的合理介入指明了方向,有利于学生知识的完整构建,为本节课的学习作铺垫.探究新知用正整数指数幂的运算性质(2)(将m >n 这一条件去掉)和分式的约分两种方式计算52÷55,并观察两种方式的计算结果,你能有什么发现?学生自己独立完成计算,分小组交流讨论,教师给出完整的计算过程并总结. 52÷55=52-5=5-3,52÷55=5255=153.观察这两个式子可以发现5-3=153.学生通过上面的内容可以得到a m ÷a n =a m -n 这条性质也适用于像52÷55这样的情形.一般地,当n 是正整数时,a -n =1a n (a ≠0).这就是说,a -n (a ≠0)是a n 的倒数. 引入负整数指数和0指数后,a m ·a n =a m +n (m ,n 是正整数)这条性质能否推广到m ,n 是任意整数的情形?教师通过以下计算过程引导学生发现规律,并进行总结. a 3·a -5=a3a 5=1a 2=a -2=a 3+(-5),即a 3·a -5=a 3+(-5);a -3·a -5=1a 3·1a 5=1a 8=a -8=a (-3)+(-5),即a -3·a -5=a (-3)+(-5); a 0·a -5=1·1a 5=1a 5=a -5=a 0+(-5),即a 0·a -5=a (0)+(-5). 归纳:1.a m ·a n =a m +n 这条性质对于m ,n 是任意整数的情形仍然适用; 2.随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质也推广到整数指数幂.设计意图:按照从特殊到一般、从具体到抽象的认识过程,让学生类比发现,自己总结结论,实现学生主动参与、探究新知识的目的,从而培养学生归纳、类比和抽象的能力.典例精讲例计算:(1)a-2÷a5;(2)(b 3a2)-2;(3)(a-1b2)3;(4)a-2b2·(a2b-2)-3.解:(1)a-2÷a5=a-2-5=a-7=1a7.(2)(b 3a2)-2=b-6a-4=a4b-6=a4b6.(3)(a-1b2)3=a-3b6=b 6a3 .(4)a-2b2·(a2b-2)-3=a-2b2·a-6b6=a-8b8=b 8a8.提醒:(1)解题时应直接运用这些性质,而不要急于转化为分式形式;(2)整数指数幂的运算性质也可以逆向进行;(3)通常计算的最后结果要写成分式的形式.设计意图:这是一组直接运用整数指数幂的运算性质进行计算的题目,通过例题使学生掌握指数由正整数拓展到整数后的新情形,熟练使用运算方法,掌握运算技能,提高运算能力.归纳总结根据整数指数幂的运算性质,当m,n为整数时,a m÷a n=a m-n,a m·a-n=a m+(-n)=a m-n,因此a m÷a n=a m·a-n,即同底数幂的除法a m÷a n可以转化为同底数幂的乘法a m·a-n,特别地,ab =a÷b=a·b-1,所以(ab)n=(a·b-1)n,即商的乘方(ab)n可以转化为积的乘方(a·b-1)n,这样,整数指数幂的运算性质可以归纳为:(1)a m÷a n=a m+n(m,n是整数);(2)(a m)n=a mn(m,n是整数);(3)(ab)n=a n b n(n是整数).设计意图:类比负数的引入可以使减法转化为加法,得到负指数幂的引入可以使幂的除法转化为幂的乘法、商可以转化为积这个结论,从而使分式的运算与整式的运算统一起来,将整数指数幂的运算性质进行总结.课堂8分钟.1.教材第145页练习第1,2题,第147页习题15.2第7题.2.七彩作业.第1课时整数指数幂的运算性质一、正整数指数幂的运算性质.二、负整数指数幂的运算性质.三、例题讲解.四、整数指数幂的运算性质.教学反思第2课时科学记数法课时目标1.让学生经历小于1的正数的科学记数的获得过程,感受数学知识之间的内在联系,提高学生的归纳、类比和抽象能力.2.通过对小于1的正数的科学记数的过程,让学生感受到数学知识的本质所在,培养学生观察、分析和总结的能力.学习重点会用科学记数法表示小于1的正数.学习难点知道用科学记数法表示小于1的正数时,a×10-n形式中n的取值与小数中左起第一个非0数字前0的个数的关系.课时活动设计回顾引入1.用科学记数法表示745 000,2 930 000.2.大于10的数用a ×10n 表示时,a ,n 应满足什么条件?3.负整数指数幂的公式是什么?学生自主交流,讨论.思考:我们已经学会了用科学记数法表示一些较大的数,你能用科学记数法表示较小的数吗?设计意图:引导学生完成上述问题,温故而知新,唤醒学生已有的知识体系,为本节课的学习作铺垫.同时,提出新的问题,为新知识的学习明确了方向.探究新知1.填空:10-1=110= 0.1 ;10-2=1102= 0.01 ;10-3=1103= 0.001 ;…;10-n = 110n = .反过来:0.1=110=1×10-1;0.01=1102= 1×10-2 ;0.001=1103= 1×10-3 ;…;=110n = 1×10-n .2.解决问题:(1)0.000 025=2.5× 1105 = 2.5×10-5 ;(2)0.000 000 025 7=2.57× 1108 = 2.57×10-8 .运用由特殊到一般和类比的数学思想归纳出=10-n ,让学生看到可以利用10的负整数次幂,用科学记数法表示一些小于1的正数,即将它们表示成a ×10-n 的形式,其中n 是正整数,1≤a <10.设计意图:让学生通过这种亲自参与、探索研究数学知识获得的过程,感受数学知识之间的密切联系,深化自己的认知,从而构建科学记数法的完整知识体系.典例精讲例纳米(nm)是非常小的长度单位,1 nm=10-9 m.把1 nm3的物体放到乒乓球上,就如同把乒乓球放到地球上.1 mm3的空间可以放多少个1 nm3的物体(物体之间的间隙忽略不计)?解:1 mm=10-3 m,1 nm=10-9 m.(10-3)3÷(10-9)3=10-9÷10-27=10-9-(-27)=1018.所以1 mm3的空间可以放1018个1 nm3的物体.1018是一个非常大的数,它是1亿(即108)的100亿(即1010)倍.设计意图:运用数学知识解决实际问题是学习数学的重要目标,让学生在学习知识的过程中解决实际问题,体会数学的“学以致用”.巩固训练计算(结果用科学记数法表示):(1)(3×10-5)×(5×10-3);(2)(3×10-15)÷(5×10-4);(3)(1.5×10-16)×(-1.2×10-3); (4)(-1.8×10-10)÷(9×108).解:(1)1.5×10-7;(2)6×10-12;(3)-1.8×10-19;(4)-2×10-19.设计意图:设置这类计算题,不仅是为了巩固本节课的所学知识,还为了通过做题让学生意识到用科学记数法表示数能使运算更简便.课堂小结1.如何用科学记数法表示大于10的数?2.如何用科学记数法表示小于1的正数?设计意图:让学生自己总结本节课的内容,帮助学生巩固新的知识,培养学生的总结概括能力.课堂8分钟.1.教材第145页练习第1,2题,第147页习题15.2第8,9题.2.七彩作业.第2课时科学记数法一、大于10的数的科学记数:N=a×10n(其中n是正整数,1≤a<10).二、小于1的正数的科学记数:N=a×10-n(其中n是正整数,1≤a<10).三、例题讲解.教学反思。
人教版数学八年级(上册)15.2.1《分式乘除》教案
分式的乘除(二)
【课题】:分式的乘除(二)(特色班)
【设计与执教者】:
【教学时间】:40分钟
【学情分析】:(适用于特色班)
学习本课内容前,学生已经掌握分式乘除法的法则,并且已经具备了分析归纳能力、合作探究能力,可以让学生通过练习的方式来认识和归纳分式乘除法的混合运算.
【教学目标】:
1.熟练地进行分式乘除法的混合运算.
2.培养学生观察、类比、推理的能力;通过对分式运算,培养学生分析问题的能力。
【教学重点】:熟练地进行分式乘除法的混合运算.
【教学难点】:熟练地进行分式乘除法的混合运算. 关键是点拨运算符号问题、变号法则. 【教学突破点】:利用上节课分式乘法运算的基础,达到熟练地进行分式乘除法的混合运算的目的.课堂练习以学生自己讨论为主,使学生对所做的题目作自我评价。
【教法、学法设计】:我在本节课主要采用“引导—发现教学法”,借助于计算机课件,通过“问题情境—建立模型—解释、应用与拓展”的模式展开教学。
【课前准备】:课件
【教学过程设计】:。
人教初中数学八上 《分式的乘除(第2课时)》教案 (公开课获奖)
15.2.1 分式的乘除教学目标熟练地进行分式乘除法的混合运算. 重点难点1.重点:熟练地进行分式乘除法的混合运算. 2.难点:熟练地进行分式乘除法的混合运算. 3.认知难点与突破方法:紧紧抓住分式乘除法的混合运算先统一成为乘法运算这一点,然后利用上节课分式乘法运算的基础,达到熟练地进行分式乘除法的混合运算的目的.课堂练习以学生自己讨论为主,教师可组织学生对所做的题目作自我评价,关键是点拨运算符号问题、变号法则. 教学过程一、例、习题的意图分析1.教科书例4是分式乘除法的混合运算. 分式乘除法的混合运算先把除法统一成乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的结果要是最简分式或整式.教科书例4只把运算统一乘法,而没有把25x 2-9分解因式,就得出了最后的结果,教师在讲解时不要跳步太快,以免学习有困难的学生理解不了,造成新的疑点.2. 教科书例4中没有涉及到符号问题,可运算符号问题、变号法则是学生学习中重点,也是难点,故补充例题,突破符号问题.二、课堂引入 计算:(1))(x y y x x y -⋅÷ (2) )21()3(43x y x y x -⋅-÷三、例题讲解(教科书)例4.计算[分析] 是分式乘除法的混合运算. 分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.(补充)例 计算:(1))4(3)98(23232b x b a xy y x ab -÷-⋅=x b b a xy y x ab 34)98(23232-⋅-⋅ (先把除法统一成乘法运算) =xb b a xy y x ab 349823232⋅⋅ (判断运算的符号) =32916ax b (约分到最简分式)(2) x x x x x x x --+⋅+÷+--3)2)(3()3(444622=x x x x x x x --+⋅+⋅+--3)2)(3(31444622 (先把除法统一成乘法运算)=x x x x x x --+⋅+⋅--3)2)(3(31)2()3(22(分子、分母中的多项式分解因式) =)3()2)(3(31)2()3(22---+⋅+⋅--x x x x x x =22--x 四、随堂练习计算:(1))2(216322b a a bc a b -⋅÷ (2)103326423020)6(25b a c c ab b a c ÷-÷ (3)x y y x x y y x -÷-⋅--9)()()(3432 (4)22222)(x y x xy y xy x x xy -⋅+-÷-五、课后练习计算:(1))6(4382642z yx yx y x -÷⋅- (2)9323496222-⋅+-÷-+-a a b a b a a (3)229612316244y y y y y y --÷+⋅-+- (4)xyy xyy x xy x xy x -÷+÷-+222)(六、答案:四、(1)c a 432- (2)485c - (3)3)(4y x - (4)-y五、 (1)336yxz(2) 22-b a (3)122y - (4)x 1-15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. (二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. (三)情感与价值观要求 通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备师:多媒体课件、投影仪; 生:硬纸、剪刀. 教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA ,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕. (演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).(投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC .D CA BD CABDC A B∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识. Ⅲ.随堂练习(一)课本练习 1、2、3. 练习1. 如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题. (二)1.预习课本.D CAB2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,则它的对称轴一定是( ) A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是( ) A .80° B .20° C .80°和20° D .80°或50°E DC A B P答案:1.C 2.C3. 已知等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长.解:设三角形的底边长为x cm ,则其腰长为(x+2)cm ,根据题意,得 2(x+2)+x=16.解得x=4.所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷---(3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22yx xy- (2)21-a (3)z 1 2.原式=422--a a ,当=a -1时,原式=-31.。
人教版八年级数学上册《分式的乘除》教案2
《分式的乘除》教案教学目标1.掌握分式的乘除法法则,体会类比的思想.2.熟练地进行分式的乘除混合运算,并可以解决实际问题.3.理解分式乘方的运算法则,能根据法则进行乘方运算.教学重难点熟练地进行分式的乘方及分式乘除、乘方混合运算,并解决一些实际问题. 教学过程一、课堂引入问题1:一个水平放置的长方体容器,其容积为V ,底面的长为a ,宽为b ,当容器内的水占容积的nm 时,水面的高度为多少? 长方体容器的高为V ab ,水面的高度为V m ab n ⋅ 问题2:大拖拉机m 天耕地a hm 2,小拖拉机n 天耕地b hm2,大拖拉机的工作效率是小拖拉机的工作效率的多少倍? 大拖拉机的工作效率是a mhm 2/天,小拖拉机的工作效率是b n hm 2/天,大拖拉机的工作效率是小拖拉机的工作效率的a b m n ÷倍. 从上面的问题可知,有时需要进行分式的乘除运算.我们先从分数的乘除入手,类比出分式的乘除法法则.问题3:计算(1)2938⨯;(2)2938÷. 类比分数的乘除法法则得到分式乘除法法则.二、知识应用,巩固提高分式的乘除法法则:a c a cb d b d ⋅⋅=⋅;ac ad a d b d b c b c⋅÷=⋅=⋅. 利用文字语言可表述为:乘法法则:分式乘分式,用分子的积作为积的分子,分母的积为积的分母. 除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 例1.计算:(1)3432x y y x⋅;(2)3222524ab a b c cd -÷. 例2.计算:(1)222441214a a a a a a -+-⋅-+-;(2)2211497m m m÷--. 请同学们认真仔细完成上述两个例题,要注意:对于分子与分母都是单项式的两个分式乘除,可直接利用分式的乘除法法则,再根据分式的基本性质进行约分,将最后的结果化成最简分式.而对于分子或分母中含有多项式的两个分式相乘,为了使算式简洁,也便于找出分子与分母中的公因式,需要先将多项式因式分解,把多项式化成整式的积的形式,然后利用分式的乘除法法则进行运算,利用分式的基本性质进行约分,并把最后的结果化成最简分式.例3.如图,“丰收1号”小麦的试验田是边长为a m (a >1)的正方形去掉一个边长为1m 的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a -1)m 的正方形,两块试验田的小麦都收获了500kg .(1)哪种小麦的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?同学们可以按照如下步骤完成该题:(1)先根据题意分别列出表示两个量的代数式;(2)再根据题意列出相应的算式;(3)最后通过计算解决问题.例4.计算:2235325953x x x x x ÷⋅--+ 思考:你能结合有理数乘方的概念和分式乘法的法则写出结果吗?2()a b ,3()a b ,10()a b 通过思考,可以得到:分式乘方要把分子、分母分别乘方.例5.(1)222()3a bc-;(2)232332()()2a b a ccd d a÷⋅-.第(1)题是分式的乘方运算,它与整式的乘方一样应先判断乘方的结果的符号,再分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应该注意运算顺序:先做乘方,再做乘除.三、随堂练习课本第137页的练习第1、2、3题,课本第139页的练习第1、2题.四、课堂小结这节课你学到了什么?还有什么疑惑?五、课后作业课本习题15.2的第1、2、3题.。
人教版八年级数学上第15章15.2《分式的乘除》教案
二、核心素养目标
(1)理解并掌握分式乘除法则,形成运算能力,培养逻辑推理和数学思维能力。
(2)通过分式乘除的实际应用,提高问题解决能力,增强数学在实际生活中的应用意识。
(3)在分式乘除运算过程中,培养严谨细致的学习态度,提高准确性和熟练度。
(4)通过合作交流,培养团队协作能力和语言表达能力,增强学生之间的互动交流。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了分式乘除的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对分式乘除的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(5)在学习过程中,培养学生自主学习、探究学习的习惯,激发学习兴趣,提高数学素养。
三、教学难点与重点
1.教学重点
(1)分式乘除法则:学生需掌握分式乘法与除法的基本法则,能够熟练地进行分式的乘除运算。
-乘法法则举例:$\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}$
(4)符号的理解与运用:学生在进行分式乘除时,可能会对正负号的处理感到困惑。
-难点举例:$\frac{-2}{3} \times \frac{5}{7}$,学生需要理解负号在运算中的传递规律。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《分式的乘除》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算比例或分配数量的问题?”(如购物时打折、分食物等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索分式乘除的奥秘。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《分式的乘除》教学设计
第2课时
一、教学目标
1.理解分式乘方的运算法则,能根据法则进行乘方运算.
2.能根据混合运算法则进行分式乘除、乘方混合运算.
二、教学重点及难点
重点:分式的乘方运算及乘方、乘除的混合运算.
难点:分式乘除、乘方混合运算中运算顺序以及结果符号的确定.
三、教学用具
电脑、多媒体、课件
四、相关资源
相关图片
五、教学过程
(一)复习导入
1.叙述分式的乘除法法则.
分式的乘法法则:
分式乘分式,用分子的积作为积的分子,分母的积作为积的分母. 分式的除法法则:
分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 2.说出乘方的意义.
n a a a a a =⋅⋅⋅⋅(n 为正整数).
设计意图:通过复习,学生回忆学过的知识,既巩固分式的乘除法法则和乘方的意义,也为接下来学习分式的乘方和分式乘除、乘方混合运算奠定基础.
(二)探究新知
1.计算:2310a a a b b b
(); (); (). 根据乘方的意义和分式乘法法则,可得:
2
22a a a a a a b b b b b b
()⋅=⋅==⋅; 3
33a a a a a a a a b b b b b b b b
()⋅⋅=⋅⋅==⋅⋅;
101010101010a
a
b b a a a a a a a a b b b
b b b b b
个个个()⋅⋅⋅=⋅⋅⋅==⋅⋅⋅. 2.猜想:当n 为正整数时,n a b
()?= 一般地,当n 是正整数时, n a
n n n a
n b n b a a a a a a a a b b b
b b b b b
个个个()=⋅⋅⋅⋅⋅⋅==⋅⋅⋅,即 n
n n a a b b
()=. 这就是说,分式乘方要把分子、分母分别乘方.
3.目前为止,正整数指数幂的运算法则都有哪些?
(1)m n m n a a a
+⋅=; (2)m n m n a a a
-÷=; (3)m n mn a a
=(); (4)
n n n
ab a b =(); (5)n
n n a a b b
()=. 设计意图:学生类比分数乘方的运算法则,得出分式乘方的运算法则.
(三)例题解析 【例】计算:(1)2223a b c ()-;(2)23233
22a b a c a cd d ()()÷⋅-. 解:(1)22242
222224339a b a b a b c c c ()()()==--; (2)2323322a b a c a cd d
()()÷⋅- 632
393224a b a c c d d a
=÷⋅- 633239224a b d c a c d
a =-⋅⋅
33
68a b cd
=-. 小结:(1)分式的乘方符号法则,负数的偶次方,符号为正,负数的奇次方,符号为负. (2)“式”与“数”有相同的混合运算顺序:先乘方,再乘除.
设计意图:通过例题的讲解,进一步巩固分式乘方的运算法则,掌握分式乘除、乘方混合运算的运算顺序和解题步骤.
(四)课堂练习 先化简,再求值:2221412211
a a a a a a --⋅÷+-+-,其中a 满足02=-a a . 设计意图:考查分式乘除、乘方混合运算以及化简求值的解题步骤和整体代入的解题方法.
学生独立完成后,小组交流,师生共同得出的答案: 解:2221412211
a a a a a a --⋅÷+-+- 212211211
a a a a a a a -+-+-=⋅⋅+-()()()()() 21a a =-+()()
22a a =--.
∵02
=-a a ,
∴原式22022a a =--=-=-. 六、课堂小结
1.分式乘方运算法则:
分式乘方要把分子、分母分别乘方. 式子表示:n
n n a a b b
()=. 2.分式乘除、乘方混合运算顺序:
先乘方,再乘除.
设计意图:通过小结,使学生梳理本节所学内容,掌握乘方的运算法则,熟练进行分式乘除、乘方混合运算.
七、 板书设计
15.2.1分式的乘除(2)
分式的乘方及乘方与乘除的混合运算
分式乘方的法则:分式乘方要把分子、分母分别乘方.
式子表示:
n
n
n
a a
b b
() .。