直流电机工作原理
直流电机的工作原理
直流电机的工作原理
1、直流电动机的工作原理:
在图中,线圈连着换向片,换向片固定于转轴上,随电机轴一起旋转,换向片之间及换向片与转轴之间均相互绝缘,它们构成的整体称为换向器。
电刷A、B在空间上固定不动。
在电机的两电刷端加上直流电压,由于电刷和换向器的作用将电能引入电枢线圈中,并保证了同一个极下线圈边中的电流始终是一个方向,继而保证了该极下线圈边所受的电磁力方向不变,保证了电动机能连续地旋转,以实现将电能转换成机械能以拖动生产机械,这就是直流电动机的工作原理。
留意:每个线圈边中的电流方向是交变的。
2、直流发电机的工作原理:
如图,当用原动机拖动电枢逆时针方向旋转,线圈边将切割磁力线感应出电势,电势方向可据右手定则确定。
由于电枢连续旋转,线圈边ab、cd将交替地切割N极、S极下的磁力线,每个线圈边和整个线圈中的感应电动势的方向是交变的,线圈内的感应电动势是交变电动势,但由于电刷和换向器的作用,使流过负载的电流是单方向的直流电流,这始终流电流一般是脉动的。
在图中,电刷A所引出的电动势始终是切割N极磁力线的线圈边中的电动势,它始终具有正极性;电刷B始终具有负极性。
这就是直流发电机的工作原理。
3、电机理论的可逆性原理:
从基本电磁过程看,一台直流电机既可作为电动机运行,也可作为发电机运行,只是外界条件不同而已。
当外加直流电压,可作为拖动生产机械的电动机运行,将电能变换为机械能。
若用原动机拖动电枢旋转,可输出电能,为发电机运行,将机械能变换为电能。
直流电动机实验原理
直流电动机实验原理引言直流电动机是一种将直流电能转换为机械能的电机。
它广泛应用于工业生产、交通运输、家用电器等领域。
本文将介绍直流电动机的实验原理,包括其工作原理、组成结构以及实验过程。
一、工作原理直流电动机的工作原理基于电磁感应和洛伦兹力。
当直流电流通过电动机的定子绕组时,产生的磁场与电动机的磁场相互作用,产生力矩使转子转动。
二、组成结构直流电动机主要由定子、转子和集电器三部分组成。
1. 定子:定子由绕组、磁极和铁芯构成。
绕组通电产生磁场,磁极将磁场集中在空间中。
2. 转子:转子由绕组和铁芯构成。
当定子磁场与转子绕组中的电流相互作用时,产生力矩使转子转动。
3. 集电器:集电器是连接电源和电动机绕组的部分,用于实现电流的正向传递。
三、实验过程进行直流电动机实验时,需要准备以下实验器材和材料:1. 直流电源:提供电流给电动机。
2. 直流电动机:用于转换电能为机械能。
3. 电流表和电压表:用于测量电动机的电流和电压。
4. 电阻器:用于调节电动机的负载。
5. 电线和连接器:用于连接电动机和电源。
实验步骤如下:1. 将直流电源连接到电动机的正负极。
2. 将电流表和电压表分别连接到电动机的电流和电压测量点上。
3. 打开直流电源,调节电阻器使电动机转速适中。
4. 分别记录电动机的电流和电压值。
5. 改变电阻器的阻值,观察电动机的转速变化,并记录相应的电流和电压值。
6. 分析实验结果,得出直流电动机的特性曲线。
四、实验结果与分析通过实验可以得到直流电动机的特性曲线,其中包括电流-转速曲线和电压-转速曲线。
这些曲线可以用来评估电动机的性能和效率。
在实验中,我们可以观察到当负载增加时,电动机的转速会下降,电流和电压也会相应增加。
这是因为在负载增加的情况下,电动机需要提供更大的力矩来克服负载的阻力,因此需要更多的电流和电压来保持转速稳定。
通过实验可以得出直流电动机的效率公式为:η = Pout / Pin,其中η表示效率,Pout表示输出功率,Pin表示输入功率。
直流电机的基本工作原理
直流电机的基本工作原理
直流电机是一种将直流电能转换为机械能的电动机,广泛应用于工业、交通、家电等领域。
其基本工作原理如下:
一、电磁感应原理
直流电机的核心是电枢,它由若干个线圈组成。
当电枢通电时,线圈
内会产生磁场,而周围的永磁体也会产生磁场。
这两个磁场作用在一起,产生了磁力线的相互作用。
这里的相互作用就是电磁感应原理。
二、安培定则
电枢中的电流受到洛伦兹力的作用,从而产生了强烈的转动力矩。
这
里的转动力矩是根据安培定则来描述的。
安培定则是指电流在磁场中
的受力方向受洛伦兹力的限制。
三、换向器原理
由于直流电的特性,电流方向是恒定不变的。
因此,为了保证电枢能
够顺畅地旋转,需要借助一种叫做换向器的装置。
换向器能够将电枢
的电流方向随着电机的旋转而不断地反转,从而使电机一直保持转动。
四、通用性
直流电机具有通用性,不仅可以用于直流电源,还可以在交流电路中使用。
这得益于电机内部的换向器能够将交流电源转换为直流电源,从而使得直流电机能够在交流电路中运行。
五、应用广泛
直流电机广泛应用于各种领域,例如电子游戏机、电动机车、电动汽车、家庭电器等。
由于其结构简单、制造工艺简便,因此在现代工业中也占有重要地位。
简单说明直流电机的工作原理
简单说明直流电机的工作原理
直流电机是电动机中广泛应用的机型之一,它的工作原理是将直流电能转变成机械能。
首先,电源通过正负极接入电机的定子线圈,形成电磁感应。
然后,定子线圈中的电流将
激起电磁感应的力矩,使磁合芯上的转子接受感应力矩的推动,从而形成转子的转动,这
就使电机达到了转动的目的。
直流电机同时具有传动和控制功能,并且具有速率可调和功率可控等特点。
速率可调
是指随着转子线圈的电流的改变,力矩推动转子的转速也会发生变化,可以用来满足机械
系统的不同动力要求,同时可以调节转子转速,使机械系统运转平稳可控。
功率可控表示
调整定子线圈电流强度不同时,可以调节电动机的转矩大小,从而调整所需功率和转子转速,以满足不同动力要求。
还有一个重要的特点是起励,当接入正负极后,转子即可受到激起电磁感应的力矩作用,自动开始转动,不用外加启动装置,从而大大简化了设备的控制和维护。
此外,由于直流电机的发热量较小,适合长时间工作,也因此在机器人、工业机器人、空调机器人等方面有着广泛的应用,成为工业设备的首选电机。
直流电机工作原理简述
直流电机工作原理简述1.引言1.1 概述概述直流电机是一种常见的电动机,通过直流电源提供电能,将电能转化为机械能的装置。
直流电机由电枢和磁极两部分组成,电枢通电后会产生磁场,而磁极则是通过恒定的磁场来产生转矩。
直流电机的工作原理基于洛伦兹力和摩擦力的相互作用,实现了电能到机械能的转换。
直流电机的基本构成包括电枢和磁极。
电枢由导体绕组和集电刷组成。
通常情况下,电枢绕组由许多个线圈以特定的方式绕在铁芯上,形成电枢线圈。
集电刷则是连接电源和电枢的部件,它和电枢相连,并能提供电流给电枢。
磁极由永久磁体或电磁铁构成,产生一个恒定的磁场。
当电枢通电时,电流会在电枢线圈中流动,通过洛伦兹力的作用,电流会在磁场中产生力,由于线圈在磁场中的排列方式,这些力合成后会产生一个旋转的力矩。
而由于磁极产生的恒定磁场,使得这个力矩保持持续的方向,驱动电枢绕着固定轴进行旋转。
直流电机的工作原理可以通过以下四个基本步骤进行解释:首先,当电枢通电时,电流在线圈中流动;然后,这个电流在磁场中会产生一个力;接着,这个力会产生一个力矩;最后,力矩将驱动电枢绕着轴旋转,从而将电能转化为机械能。
直流电机的应用广泛,可以用于各种场合,如机械设备、汽车、船舶等。
随着科技的进步,直流电机得到了不断的改进和发展,特别是新型材料和控制技术的应用,使得直流电机在效率、功率密度和可靠性等方面得到了显著提升。
因此,直流电机在未来的应用前景非常广阔,有望在更多领域发挥重要作用。
文章结构部分的内容如下:1.2 文章结构本文将分为引言、正文和结论三个部分来系统地介绍直流电机的工作原理。
在引言部分,首先会对直流电机进行概述,包括对直流电机的定义和重要性进行简要说明。
接着,会介绍本文的文章结构,概述各个部分所涵盖的内容,使读者能够对全文的框架有一个清晰的了解。
最后,会明确本文的目的,即对直流电机的工作原理进行简述和应用前景进行展望。
正文部分将主要分为两个小节。
首先,在2.1小节中,将介绍直流电机的基本构成,包括定子、转子、换向器等关键部件的功能和作用。
直流电机工作原理
2IN
启动转矩:
Rad
UN 2I N
Ra
0.99
Ts't
K
t
I
' st
9.55
Ke
N
I
' st
9.55 U N
I N Ra nN
I
' st
9.55
220
91 0.22 1500
2 IN
231 N
m
注意:
Tst
I st IN
TN
26
3.4 直流他励电动机的启动特性
(4)降压启动时的电源电压:
21
3.4 直流他励电动机的启动特性
1. 降压启动: U<UN→n↑、E↑→↑U→U=UN、n=nN
2.电枢回路内串接外加电阻启动: 满足启动要求:Ist=UN/(Ra+Rst) Rst (3-4级)
T1、T2的数值按照电动机的具体启动条件决 定:
T1=(1.6-2)TN T2=(1.1-1.2)TN 22
3.4 直流他励电动机的启动特性
23
3.4 直流他励电动机的启动特性
例题:一台他励直流电动机,其额定数据为: PN=17kW,UN=220V,IN=91A, nN=1500r/min, Ra=0.22Ω。试求:
(1) TN=? (2)直接启动时的Ist=? (3)如果要使启动电流不超过额定电流的两 倍,求启动电阻为多少?此时启动转矩为多少? (4)如果采用降压启动,启动电流不超过额 定电流的两倍,电源电压应为多少?
13
解: 因他励电动机的n=f(T)是一条直线,
故只要求出:(0,n0)、(TN,nN )两点 即可。
n0
UN Ke N
直流电动机工作原理
直流电动机工作原理直流电动机是一种将电能转换为机械能的装置,是现代工业中广泛应用的重要设备。
它的工作原理是利用电流在磁场中产生力矩,从而驱动电动机转动。
下面将详细介绍直流电动机的工作原理。
1. 磁场产生直流电动机通常由定子和转子两部分组成。
定子上设置有永久磁铁或电磁铁产生的磁场,而转子则由电枢和换向器组成。
当电流通过电枢时,电枢周围也会产生磁场。
这两个磁场之间会相互作用,从而产生力矩使电动机转动。
2. 电流作用当直流电源施加在电动机的电枢上时,电流会通过电枢产生磁场。
这个磁场会与定子上的磁场相互作用,产生力矩使转子开始转动。
根据洛伦兹力的原理,当电流通过导体时,导体会受到磁场力的作用,从而产生力矩。
这个力矩会使转子转动,驱动电动机的工作。
3. 换向器的作用在直流电动机中,为了使电流的方向与转子的位置相适应,通常需要使用换向器。
换向器可以改变电流的方向,使得转子在不同位置时,能够产生持续的力矩驱动转动。
换向器的设计和工作原理对于直流电动机的性能和效率有着重要的影响。
4. 转子的运动当电流通过电枢产生力矩使转子开始转动时,转子上的换向器会不断地改变电流的方向,从而使得转子能够持续地转动。
这种连续的转动使得电动机能够持续地输出机械能,从而完成各种工业生产中的任务。
5. 调速和控制直流电动机可以通过改变电枢上的电流大小来实现调速和控制。
通过改变电流的大小,可以改变电动机输出的力矩和转速,从而适应不同的工作要求。
这种调速和控制的特性使得直流电动机在工业生产中具有很大的灵活性和适用性。
总结直流电动机的工作原理是利用电流在磁场中产生力矩,从而驱动电动机转动。
通过永磁体或电磁体产生的磁场和电枢产生的磁场相互作用,使得电动机能够输出持续的机械能。
换向器的作用是使得电流的方向与转子的位置相适应,从而实现持续的转动。
直流电动机具有调速和控制的特性,适用于各种不同的工业生产需求。
直流电机的基本工作原理
直流电机的基本工作原理直流电机是一种将直流电能转化为机械能的电动机。
它的基本工作原理可以通过洛伦兹力和电磁感应的相互作用来解释。
在直流电机工作的过程中,电源通过电刷和转子之间的电刷架给定子绕组供电。
当电流通过定子绕组时,定子绕组产生磁场。
根据右手定则,这个磁场会与转子上的电流产生力的作用。
根据洛伦兹力的原理,当电流通过导体时,会在导体内部产生力,使导体受到力的作用发生运动。
当转子受到力的作用,由于转子与轴相连,会导致转子绕轴旋转。
为了保持转子继续旋转,电刷必须与电刷架上的分段接触。
当转子旋转到电刷与下一个分段断开时,电刷将接触到另一个分段,继续给定子绕组供电,从而继续产生磁场,使转子继续受到力的作用。
直流电机的转速与电压、电流和负载有关。
当电压增加时,电流增加,对应转矩也增加,从而使转子旋转更快。
但是,当电流增加或负载增加时,会引起电机发热,因为电流通过电阻会产生热量。
过大的电流或负载会导致电机损坏。
此外,直流电机还可以根据转子和定子绕组的连接方式分为分别励磁直流电机和自励磁直流电机。
分别励磁直流电机中,定子和转子分别通过独立的电源供电,使转子产生磁场。
自励磁直流电机中,定子通过电源供电,同时通过转子和定子间的连接实现转子的励磁。
总之,直流电机的基本工作原理是通过定子绕组产生磁场,使转子上的导体受到力的作用产生旋转运动。
通过电刷和电刷架的接触,保持定子绕组的供电,使电机持续工作。
直流电机是一种常见且广泛应用的电动机,被广泛应用于工业和家庭领域。
直流电动机工作原理
直流电动机工作原理
直流电动机是一种将直流电能转化为机械能的设备。
其工作原理基于由电流在磁场中产生力的基本物理原理以及楞次定律。
直流电动机主要由两部分构成:定子和转子。
定子是固定在机壳里的一组电磁线圈,称为励磁线圈。
转子则是通过轴承连接到电机轴上的一个线圈。
当直流电流通过励磁线圈时,它会产生一个恒定的磁场。
这个磁场被称为励磁磁场。
在转子的线圈中,也就是电枢,也施加了直流电流。
根据洛伦兹力的作用,电枢中的电流会与励磁磁场产生交互作用,从而产生力矩。
这个力矩会使转子开始旋转。
为了保持转子旋转的连续性,电枢的电流需要不断改变方向。
为了实现这一点,通常使用一个称为换向器或者电刷的装置。
电刷是一对导电材料制成的碳刷,通过机械摩擦与电枢的连续金属环接触。
当电枢的线圈旋转到一个特定的位置时,电刷会改变电路的连接,使电流方向改变,从而保持电枢的旋转。
直流电动机的转速与电压、电流以及负载之间有一定的关系。
当电压或电流增加时,转速也会增加。
而当负载增加时,转速则会下降。
这是由于负载的存在给电枢施加了额外的力矩,导致需要更多的电能来维持转速。
综上所述,直流电动机的工作原理是基于电流在磁场中产生力的原理。
通过在转子的电枢上施加直流电流,在与励磁磁场相互作用的力的作用下,实现了转子的旋转。
直流电机的工作原理及调速特性
直流电机的磁场
直流电机通过磁场来传递能量, 磁场由励磁绕组通电产生。
磁场的方向与电流方向有关, 改变电流方向可以改变磁场方 向,从而实现电机的旋转。
磁场强度和电流大小成正比, 改变电流大小可以改变磁场强 度,从而影响电机的转矩和转 速。
电源引入。
02
直流电机的调速特性
调速方式与特性
调速方式
直流电机可以通过改变输入电压 、电流或电枢回路电阻等方式进 行调速。
调速特性
调速过程中,电机的转速与输入 电压、电流或电枢回路电阻成正 比,因此可以通过改变这些参数 来调节电机的转速。
调速电路与控制
调速电路
调速电路主要由电源、控制器、电机和反馈装置等组成,控制器根据输入信号 和反馈信号来调节电机的输入电压或电流,从而实现对电机转速的控制。
直流电机的工作原理
当直流电流通过电枢绕组时,产生磁 场,该磁场与主磁极相互作用,产生 转矩,从而使转子转动。
直流电机具有恒定磁场和可变电枢反 应两种工作状态,其工作特性与电枢 电流的大小和方向有关。
直流电机的应用场景
直流电机广泛应用于工业自动化、交通运输、医疗器械等领域,如电动工具、电 动汽车、电梯等。
VS
智能控制技术
智能控制技术如模糊控制、神经网络控制 等在直流电机控制中得到广泛应用。这些 技术能够实现自适应控制和自主学习,提 高直流电机的智能化水平和适应性。
直流电机在新能源领域的应用
风力发电
直流电机在风力发电领域的应用逐渐增多, 特别是在直驱式风力发电机组中,直流电机 作为发电机和驱动电机得到广泛应用。其优 点在于结构简单、维护方便和可靠性高等。
直流电动机基本工作原理
直流电动机基本工作原理
直流电动机基本工作原理如下:
1. 电磁感应:直流电动机的核心是一个称为电枢的带有导线的金属线圈。
当通过这个线圈流过电流时,会在其周围产生磁场。
2. 感应磁场:当电源连接到电动机的电枢上时,电流开始流动,产生磁场。
这个磁场与电枢上的永久磁体产生作用,产生一个力矩。
3. 力矩转换:根据洛伦兹力的原理,电流通过电枢产生的磁场会与永久磁体产生的磁场相互作用,产生一个力矩。
这个力矩会使电动机开始旋转。
4. 电刷与换向器:直流电动机的电枢需要不断地改变方向来保持旋转。
为了实现这一点,电动机装有一个装置,称为电刷和换向器。
电刷是通过电流进入电枢的导线,而换向器则用来改变电流的方向,以保持电动机的旋转方向。
5. 转子与定子:直流电动机由两个主要部分组成,分别是转子和定子。
转子是电动机旋转的部分,定子是固定的部分。
电流通过电枢产生的磁场与转子上的永久磁体相互作用,产生旋转力矩。
综上所述,直流电动机的基本工作原理是通过电流在电枢产生的磁场与转子上的永久磁体相互作用,产生旋转力矩,从而驱动电动机旋转。
直流电动机的工作原理
直流电动机的工作原理直流电动机是一种将电能转换为机械能的设备,它广泛应用于工业生产、交通运输、家用电器等领域。
它的工作原理是基于电磁感应和洛伦兹力的相互作用,通过控制电流方向和大小来实现转动。
1. 电磁感应原理直流电动机的核心部件是电枢和磁场。
电枢是由导电线圈组成的转子,磁场则是由永磁体或电磁铁产生的。
当电流通过电枢时,根据安培定律,电流会在磁场中产生洛伦兹力,使电枢受到力的作用而转动。
这就是电磁感应原理在直流电动机中的应用。
2. 洛伦兹力的作用洛伦兹力是当导体带电流通过磁场时产生的一种力,它的大小和方向与电流、磁场和导体之间的关系有关。
在直流电动机中,洛伦兹力使得电枢受到转动的力,从而驱动机械装置的转动。
这种力的作用是直流电动机能够将电能转换为机械能的关键。
3. 电流的控制为了实现对直流电动机转速和转向的控制,需要对电流进行精确的控制。
这通常通过外部的电子控制系统来实现,控制电流的大小和方向,从而控制电动机的转动。
这种控制方式使得直流电动机具有灵活性和可调性,适用于各种不同的应用场景。
4. 工作原理总结综上所述,直流电动机的工作原理是基于电磁感应和洛伦兹力的相互作用,通过控制电流方向和大小来实现转动。
电流在磁场中产生洛伦兹力,使得电枢受到力的作用而转动,从而驱动机械装置的转动。
通过外部的电子控制系统,可以实现对电流的精确控制,从而实现对电动机转速和转向的控制。
总的来说,直流电动机是一种高效、灵活的电动机,它通过电磁感应和洛伦兹力的作用,将电能转换为机械能,广泛应用于各个领域。
对于直流电动机的工作原理的深入理解,有助于我们更好地应用和维护这种设备,推动工业生产和科技发展的进步。
直流电机的原理
直流电机的原理
直流电机是利用电流产生的磁场与磁场相互作用而产生转矩的一种电动机。
它
是将直流电能转化为机械能的装置,广泛应用于各种电动设备中。
直流电机的原理主要包括电磁感应原理、洛伦兹力原理和电动机转矩原理。
首先,我们来看电磁感应原理。
根据法拉第电磁感应定律,当导体在磁场中运
动或者磁场发生变化时,导体中就会产生感应电动势。
直流电机利用这一原理,通过给定的电流方向和大小,在电枢绕组中产生磁场,然后在磁场中放置永磁体或者电磁铁,当电流通过电枢绕组时,会在电枢绕组中产生一定的磁场,这个磁场会与永磁体或电磁铁产生相互作用,从而使得电机产生转矩,驱动电机转动。
其次,洛伦兹力原理也是直流电机工作原理的关键。
当导体内部有电流通过时,导体就会受到磁场力的作用。
在直流电机中,电枢绕组中的电流会受到外部磁场的作用,从而产生洛伦兹力,这个力会使得电枢绕组受到力的作用,进而产生转矩,驱动电机转动。
最后,电动机转矩原理也是直流电机工作原理的基础。
根据电动机转矩公式
T=KφIsinθ,其中T为转矩,K为比例常数,φ为磁通量,I为电流,θ为电枢绕组与磁场的夹角。
通过这个公式可以看出,当电流通过电枢绕组时,电枢绕组中就会产生一定的磁通量,而这个磁通量与电流大小和电枢绕组与磁场的夹角都有关系,从而产生一定的转矩,使得电机能够正常工作。
综上所述,直流电机的原理主要包括电磁感应原理、洛伦兹力原理和电动机转
矩原理。
通过这些原理,直流电机能够将电能转化为机械能,广泛应用于各种电动设备中。
当我们了解了这些原理,就能更好地理解直流电机的工作过程,为电机的选择、设计和应用提供理论基础。
直流电机怎么发电的原理
直流电机怎么发电的原理直流电机发电的原理是基于反电动势的产生。
根据法拉第电磁感应定律,当导体在磁场中运动时,会在导体两端产生一定大小的电动势。
而直流电机中,导体就是由线圈组成的转子,磁场则由磁极产生。
直流电机的基本构造包括了转子、定子和永磁体。
转子是由线圈和多个导体组成,而定子则是由磁极和绕制铜线圈的磁极静铁组成。
永磁体则通常是安装在转子的附近。
当直流电机通电时,电流通过转子的线圈,形成一个带电的转子。
同时,永磁体产生一个均匀的磁场。
由于转子上线圈中存在电流,根据右手定则,线圈内部会产生一个电流方向与转子运动方向相反的磁场。
这个自感磁场与永磁体产生的磁场互相作用,使得转子产生一个旋转力矩。
根据电动机的工作原理,电机需要不断输入电能以维持其运转。
为了实现机械能向电能的转变,直流电机中的反电动势起到了至关重要的作用。
当电机运转时,反电动势的大小与电机转速和磁通量有关。
具体来说,当电机转速较低时,反电动势较小,导致电流较大。
刚开始转动的时候,由于电流较大,电机所受的电动力矩也较大,使得电机得以启动。
随着电机转速逐渐增加,反电动势逐渐增大,而实际电压不变,导致电流减小。
当电机达到额定转速后,反电动势与供电电压相等,电机处于稳定工作状态。
在直流电机中,反电动势的大小与两个主要因素有关,即电流和磁场。
当电机输出功率较大时,电流较大,反电动势也较大。
而当电机磁场较强时,反电动势也会增大。
总结起来,直流电机发电的原理是通过电流在磁场中旋转产生转子运动,利用线圈所携带的电流和转子上的磁场相互作用,产生旋转力矩,实现机械能向电能的转换。
通过反电动势的存在和作用,电机能够实现稳定的运转。
直流电动机的工作原理结构及分类
直流电动机的工作原理结构及分类直流电动机是一种将直流电能转化为机械能的设备。
其工作原理基于电磁感应和洛伦兹力。
当电流通过电动机的定子(电枢)绕组时,产生的磁场与永磁体(或励磁绕组)的磁场相互作用,产生一个力矩。
这个力矩使得转子开始旋转,将电能转化为机械能。
下面将分别介绍直流电动机的工作原理、结构和分类。
工作原理:直流电动机的工作原理基于两个物理规律:电磁感应和洛伦兹力。
在直流电动机中,电流经过电动机的定子绕组时产生一个磁场。
这个磁场与转子上的永磁体或励磁绕组的磁场相互作用,产生一个力矩。
根据洛伦兹力定律,电流在磁场中受到一个力的作用。
力的方向使得转子开始旋转,并将电能转化为机械能。
结构:直流电动机主要由定子、转子和端盖组成。
定子是装有绕组的铁芯,其绕组通常是平行于转轴方向的螺线管。
绕组上连接有电源,通过电源提供电流。
转子由永磁体或励磁绕组构成。
永磁体提供一个恒定的磁场,而励磁绕组通过外部电源提供磁场。
端盖用来保护电机内部的部件,并提供安装和轴承支撑。
分类:1.按照励磁方式分类:永磁直流电动机:转子上的永磁体产生磁场,不需要额外的励磁绕组。
电枢磁场直流电动机:通过外部提供稳定的励磁磁场。
自励直流电动机:电动机的励磁由自身电机的电源提供。
2.按照电枢绕组和永磁体的连接方式分类:并励直流电动机:电枢线圈和永磁体在电路中并联,即二者共用一个电源。
串励直流电动机:电枢线圈和永磁体在电路中串联,即电枢和永磁体分别接受不同的电源。
3.按照换向器绕组的类型分类:喷刷式直流电动机:使用机械的换向器和电刷。
无刷式直流电动机:采用电子换向器和定子通电来实现换向。
此外,直流电动机还可以根据转子类型、转子连接方式和功率等因素进行分类。
总结:直流电动机是一种将电力转化为机械能的装置,其工作原理基于电磁感应和洛伦兹力。
直流电动机的结构包括定子、转子和端盖。
根据不同的励磁方式、电枢绕组和永磁体的连接方式以及换向器绕组的类型,直流电动机可以分为不同的类型。
直流电机的基本工作原理及结构
0
A
If0 I f I fN F f 0 IN
1.3.2 直流电机负载时的负载磁场
直流电机带上负载后,电枢绕组 中有电流,电枢电流产生的磁动势称 为电枢磁动势。电枢磁动势的出现使 电机的磁场发生变化。
右图为一台电刷放在几何中性 线的两极直流电机的电枢磁场分布 情况。
假设励磁电流为零,只有电枢电 流。由图可见电枢磁动势产生的气隙 磁场在空间的分布情况,电枢磁动势 为交轴磁动势。
电枢磁场磁通 密度分布曲线
主磁场的 磁通密度 分布曲线
两条曲线逐点叠加后得 到负载时气隙磁场的磁
通密度分布曲线
Bx
B0x
B ax
由图可知,电刷在几何中性线时的电枢反应的特点:
1)、使气隙磁场发生畸变
空载时电机的物理中性线与几何中性线重合。负载后由于 电枢反应的影响,每一个磁极下,一半磁场被增强,一半被削
当电枢旋转到右图所示位置时
原N极性下导体ab转到S极下, 受力方向从左向右,原S 极下 导体cd转到N极下,受力方向 从右向左。该电磁力形成逆时 针方向的电磁转矩。线圈在该 电磁力形成的电磁转矩作用下 继续逆时针方向旋转。
与直流发电机相同,实际的 直流电动机的电枢并非单一线圈, 磁极也并非一对。
直流电 动机的 工作原 理示意 图:
换向问题很复杂,换向不良会在电刷与换向片之间产生 火花。当火花大到一定程度,可能损坏电刷和换向器表面, 使电机不能正常工作。
产生火花的原因很多,除了电磁原因外,还有机械的原 因。此外换向过程还伴随着电化学和电热学等现象。
1.5.2 换向的电磁理论
换向元件中的电动势:
自感电动势 e和L 互感电动势 eM:换向元件(线圈)在换向过程
二、直流电动机工作原理
直流电机的工作原理
直流电机的工作原理直流电机是一种将直流电能转换为机械能的装置。
它采用的是电磁感应的原理,通过电流在磁场中产生力矩,使得电机运转。
下面将详细介绍直流电机的工作原理。
一、电枢和磁极直流电机的关键部件是电枢和磁极。
电枢由绕组和电刷组成,绕组通常采用导电性能较好的铜线绕制,而电刷则由导电材料制成。
磁极由磁场产生器、磁铁等组成,其作用是产生均匀的磁场。
二、电磁感应在直流电机中,电枢通常由一对相互独立的绕组组成,分别称为电枢绕组和励磁绕组。
当外加电源将电流引入电枢绕组时,电枢绕组中产生的磁场与励磁绕组产生的磁场叠加,形成一个整体的磁场。
三、力矩产生当直流电机接通电源后,电枢中的电流开始流动。
根据洛伦兹力的原理,当导体在磁场中运动时,会受到一个力的作用。
在直流电机中,这个力会产生一个力矩,使电枢开始旋转。
电枢的旋转会改变磁通量的大小和方向,从而产生电感应电动势。
根据霍尔定律,电感应电动势的方向与电流变化方向相反。
这个电感应电动势会阻碍电枢继续增大电流,形成一个反作用力。
当力矩与反作用力达到平衡时,电枢将保持旋转。
四、换向器的作用为了使电枢继续旋转,需要不断改变电枢绕组的电流方向。
这就需要通过一个特殊的装置——换向器来实现。
换向器可以使电流方向周期性地变换,从而改变磁场方向,使得电枢继续运转。
五、直流电机的应用直流电机广泛应用于工业、交通、家电等领域。
在工业领域,直流电机被用于驱动各种机械设备,如风机、水泵、制造机械等。
在交通领域,直流电机被应用于电动汽车、电动自行车等。
在家电领域,直流电机被用于冰箱、洗衣机、吸尘器等家电产品。
总结起来,直流电机的工作原理是通过电磁感应的方式,利用洛伦兹力产生力矩,使得电机转动。
电枢和磁极是直流电机的关键部件。
通过换向器的作用,改变电枢绕组的电流方向,实现电机的连续运转。
直流电机在各个领域都有广泛的应用,促进了社会的发展和进步。
直流电动机得工作原理
直流电动机得工作原理直流电动机是一种通过直流电源驱动转子旋转来实现动力输出的电机,广泛应用于工业控制、交通工具、医疗设备和家电等领域。
它由电枢、永磁体和电刷组成,以下将从电枢、永磁体和电刷三个方面分别介绍直流电动机的工作原理。
一、电枢的工作原理电枢是直流电动机的主要部分,通常由许多线圈组成,包裹在一个铁心上。
当直流电源通过电刷输入电枢时,电枢的线圈依次被激励,开始产生磁场。
这个磁场的方向与永磁体的方向相反,当电枢旋转时,磁场一直在改变方向。
这是因为电流的方向也在改变,而电流方向的变化是由于电刷对电枢上的线圈所施加的压力不断改变导致的。
电枢转动过程中,线圈中的磁场被感应到永磁体上,这会导致永磁体的磁场也随着改变。
由于磁力线的相互作用,电枢上线圈的磁场和永磁体的磁场会形成一个旋转磁场,这个旋转磁场会驱动电枢旋转,并向电枢提供动力。
在直流电动机中,永磁体负责产生一个恒定的磁场,这个磁场会作用于电枢线圈,从而形成一个旋转磁场,进而驱动电枢旋转。
永磁体通常由一种磁性材料制成,如铁磁体、铝镍钴磁体和钕铁硼磁体等。
电刷是直流电动机中起到输送电流和控制转矩的关键部分,电刷由碳块制成,贴在不导电的座子中。
当电极接通电源后,第一个电刷将依次接触电极,而第二个电刷随之断开电极。
这时电流就开始流入电枢,激活电枢上的线圈,形成旋转磁场,从而驱动电枢旋转。
这个旋转过程将持续到电刷接触电流的另一个端口,这时第二个电刷将接触电极,而第一个电刷将断开电极。
在这个变化的过程中,电枢上的线圈将被切换,从而维持电机的正常运转。
除了输送电流,电刷还负责控制直流电动机的运转速度和转矩。
当需要改变转矩或停止电动机运转时,电刷的位置将得到改变,从而改变电极之间的接触顺序,这会导致电枢上线圈的磁场大小和方向发生变化,从而改变电机的转矩和速度。
总结:直流电动机通过电枢、永磁体和电刷的相互作用来实现动力输出和控制运转。
具体而言,电枢的线圈产生的磁场和永磁体产生的磁场相互作用,从而形成一个旋转磁场,驱动电枢旋转。
直流电机的基本工作原理和结构
直流电机的基本工作原理和结构现在行驶在马路上的电动汽车越来越多了,大家考虑过电动汽车的动力源是什么呢?还有现在逐渐走进大众视野的无人机,无人机是由什么驱动的呢?想必大家心中都已经有了答案:它们都是由直流电机驱动。
其实直流电机的应用非常广泛,小到电动玩具,大到各种加工机床都有直流电机的身影。
直流电机是电机的主要类型之一,它的主要特点是使用直流电。
一、直流电机的基本工作原理直流电机是直流发电机和直流电动机的统称。
直流发电机是由原动机带动转子旋转,将机械能转换成直流电能,进而对负载供电。
直流电动机是外施直流电源在定、转子上,进而转子旋转带动同轴负载运转,将直流电能转化成机械能。
下图1是直流发电机的工作模型。
图1 直流发电机的工作模型图1中N、S是两个在空间固定不动的磁极,可以是永久磁铁,也可以是电磁铁;abcd是一个装在可以转动的铁磁圆柱体(转轴)上的线圈,合称为电枢,也就是电机的转子;线圈的首、末端分别连接到与电枢同轴旋转的两个圆弧形的铜片上,称为换向片,换向片之间及换向片与转轴之间是相互绝缘的;A和B是两个与换向片相接触,但空间上静止不动的铜片,称为电刷。
从电刷A、B引出即可对负载供电。
当原动机拖动电枢,也就是转子,以转速n恒速旋转时,导体ab和cd切割磁力线而感应电动势,其方向可用右手定则确定。
整个线圈的电势方向是e dcba,即从d到a。
此时如果在电刷之间接上负载,就有电流产生,为负载供电。
当电枢转过180°时,线圈abcd中感应电动势的方向为e abcd,即从a到d。
因为电刷的原因,因而流过外部负载的电流方向不变,所以说发电机发出的是直流电。
根据以上两个特定位置的分析,可以得出直流发电机以下几个结论:(1)在电枢线圈内的感应电动势e a及电流i a都是交流电,通过换向片及电刷的整流(交流变直流)作用才变成外部两电刷间的直流电动势,使外部电路得到方向不变的直流电流;(2)发电机电枢线圈中的感应电动势e a与其电流i a的方向始终一致;(3)虽然电枢线圈是旋转的且电枢线圈中的电流是交变的,但从空间上看N极与S极下的电枢电流的方向不变,因此由电枢电流所产生的磁场在空间上是一个恒定不变的磁场;(4)电枢绕组电流与磁场相互作用产生电磁力f。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章直流电机的基本结构和运行分析直流电机是电能和机械能相互转换的旋转电机之一。
将机械能转换为直流电能的电机称为直流发电机;将直流电能转换为机械能的电机称为直流电动机。
直流发电机可作为各种直流电源;直流电动机具有宽广的调速范围,较强的过载能力和较大的起动转矩等特点,广泛应用于对起动和调速要求较高的生产机械,如电力机车、内燃机车、工矿机车、城市电车、电梯、轧钢机等的拖动电机。
本章介绍直流电机的工作原理和基本结构;分析直流电机的磁路系统、电路系统和电磁过程;导出感应电势和电磁转矩的一般计算方法;得出直流电机在不同运行状态的各种平衡方程式和运行特性。
第一节直流电机基本工作原理直流电机是直流发电机和直流电动机的总称。
直流电机具有可逆性,既可作直流发电机使用,也可作直流电动机使用。
作直流发电机使用时,将机械能转换成直流电能输出;作直流电动机使用时,则将直流电能转换成机械能输出。
一、直流电机的模型结构图2—1所示为一台直流电机简单模型图。
N、S为定子上固定不动的两个主磁极,主磁极可以采用永久磁铁,也可以采用电磁铁,在电磁铁的励磁线圈上通以方向不变的直流电流,便形成一定极性的磁极。
图2-1 直流发电机工作原理在两个主磁极N 、S 之间装有一个可以转动的、由铁磁材料制成的圆柱体,圆柱体表面嵌有一线圈(称为电枢绕组),线圈首末两端分别连接到两个弧形钢片(称为换向片)上。
换向片之间用绝缘材料构成一整体,称为换向器,它固定在转轴上(但与转轴绝缘),随转轴一起转动,整个转动部分称为电枢。
为了接通电枢内电路和外电路,在定子上装有两个固定不动的电刷A 和B ,并压在换向器上,与其滑动接触。
二、直流发电机的工作原理1.感应电势的产生当直流发电机的电枢被原动机拖动,并以恒速v逆时针方向旋转时,如图2-2(a)所示,线圈两个有效边ab 和cd 将切割磁力线,而感应产生电势e。
其方向用右手定则确定,导体ab 位于N 极下,导体cd 位于S 极下,产生电势方向分别为b →a ,d →c 。
若接通外电路,电流从换向片1→A →负载→B →换向片2。
电流从电刷A 流出,具有正极性,用“+”表示;从电刷B 流入,具有负极性,用“一”表示。
当电枢转到90o 时,线圈有效边ab 和cd 转到N 、S 极之间的几何中心线上,此处磁密为零,故这一瞬时感应电势为零。
当电枢转到180o 时,导体ab 和cd 及换向片1、2位置互换,如图2-1(b)所示。
导体加位于S 极下,导体cd 位于N极下,线圈两个有效边产生的感应电势方向分别为a →b ,c →d ,电势方向恰与开始瞬时相反。
外电路中流过的电流从换向片2→A →负载→B →换向片1。
由此可见,电刷A(B)始终与转到N(S)极下的有效边所连接的换向片接触,故电刷极性始终不变A 为“+”,B 为“―”。
由以上分析可知,线圈内部为一交变电势,但电刷引出的电势方向始终不变,为一单方向的直流电势。
2.电势的波形根据电磁感应定律,每根导体产生的感应电势e为:Lv B e X = (V ) (2-1)式中x B ——导体所在位置的磁通密度(T );L ——导体切割磁力线的有效长度(m);v ——导体切割磁力线的线速度(m/s)。
要想知道电势的波形,先得找出磁密的波形,前已设电枢以恒速v 旋转,v=常数,L 在电机中不变,则x B e ∝,即导体电势随时间的变化规律与气隙磁密的分布规律相同。
设想将电枢从外圆某一点沿轴切开,把圆周拉成一直线作为横坐标,纵坐标表示磁密,而绘出的几分布曲线如图2-2所示,为一梯形波。
由于x B e ,电势波形与磁密波形可用同一曲线表示,只需换一坐标即可得到线圈内部交变电势波形,如图2-2所示。
通过电刷和换向器的作用,及时地将线圈内的交变电势转换成电刷两端单方向的直流电势,如图2-3所示,但它是一个大小在零和最大值之间变化的脉振电势。
对于图2-1所示的直流电机简单模型图,由于电枢上只嵌放了一个线圈,所以感应电势数值小,波动大。
为了减小电势的脉动,实际电机中,电枢上放置许多线圈组成电枢绕组,这些线圈均匀分布在电枢表面,并按一定规律连接起来。
图2-4表示一台两极直流电机,电枢上嵌有在空间互差90o 的两个线圈产生的电势波形,由图可见,其脉动程度大大减小了。
实践证明,若每极下的线圈边数大于8,电势脉动的幅值将小于1%,基本是一直流电势,如图1-5所示。
图2-2 线圈内电势波形 图2-3 电刷两端的电势波形图2-4 两个线圈换向后的电势波形 图2-5 多个线圈电刷两端的电势波形3.直流发电机产生的电磁转矩当直流发电机电刷两端获得直流电势后,若接上负载,便有一电流流过线圈,电流i 与电势e的方向相同。
同时,载流导体在磁场中必然产生一电磁力f ,其方向用左手定则确定。
电磁力对转轴形成一电磁转矩T,T与电枢旋转的方向相反,起到了阻碍作用,故称为阻转矩。
直流电机要维持发电状态,原动机就必须输入机械能克服电磁转矩T,正是这种不断的克服,实现了将机械能转换成为电能。
三、直流电动机的工作原理图2-6所示为两极直流电动机工作原理图。
直流电动机结构与直流发电机相同,不同的是电刷A、B外接一直流电源。
图示瞬时电流的流向为+→A换向片→1→a→b→c→d→换向片2→B→-。
根据电磁力定律,载流导体ab、cd都将受到电磁力f的作用,其大小为: (N)(2-2)fBLix式中i——导体中流过的电流(A)。
图2-6 直流电动机工作原理图导体所受电磁力的方向用左手定则确定,在此瞬时,ab位于N极下,受力方向从右向左,cd位于S极下,受力方向从左向右,电磁力对转轴便形成一电磁转矩T。
在T的作用下,电枢逆时针旋转起来。
当电枢转到90°,电刷不与换向片接触,而与换向片间的绝缘片相接触,此时线圈中没有电流流过,i=0,故电磁转矩T=0。
但由于机械惯性的作用,电枢仍能转过一个角度,电刷A、B又将分别与换向片2、1接触。
线圈中又有电流i流过,此时,导体ab、cd中电流改变了方向,即为b→a,d→c,,且导体ab转到S极下,ab所受的电磁力f方向从左向右,cd 转到N极下,cd所受的电磁力方向从右向左。
因此,线圈仍然受到逆时针方向电磁转矩的作用,电枢始终保持同一方向旋转。
在直流电动机中,电刷两端虽然加的是直流电源,但在电刷和换向器的作用下,线圈内部却变成了交流电,从而产生了单方向的电磁转矩,驱动电机持续旋转。
同时,旋转的线圈中也将感应产生电势e,其方向与线圈中电流方向相反,故称为反电势。
直流电动机若要维持继续旋转,外加电压就必须高于反电势,才能不断地克服反电势而流人电流,正是这种不断克服,实现了将电能转换成为机械能。
由此可见,直流电机具有可逆性,即一台直流电机既可作发电机运行,也可作电动机运行。
当输入机械转矩将机械能转换成电能时,电机作发电机运行;当输入直流电流产生电磁转矩,将电能转换成机械能时,电机作电动机运行。
例如电力机车在牵引工况时,牵引电机作电动机运行,产生牵引力;在制动工况时,牵引电机作发电机运行,将机车和列车的动能转换成电能,产生制动力对机车进行电气制动。
第二节直流电机的基本结构一、直流电机的基本结构直流电机由静止的定子和旋转的转子两大部分组成,在定子和转子之间有一定大小的间隙(称气隙),如图2-7所示。
图2-7 直流电机结构图1-直流电机总成;2-后端盖;3-通风机;4-定子总成;5-转子(电枢)总成;6-电刷装置;7-前端盖1.定子直流电机定子的作用是产生磁场和作为电机的机械支撑。
主要由机座、主磁极、换向极和电刷装置等组成。
(1)机座机座兼起机械支撑和导磁磁路两个作用。
它既用来作为安装电机所有零件的外壳,又是联系各磁极的导磁铁轭。
机座通常为铸钢件,也有采用钢板焊接而成的。
(2)主磁极主磁极是一个电磁铁,如图2-8所示,由主极铁心和主极线圈两部分组成。
主极铁心一般用1-1.5mm厚的薄钢板冲片叠压后再用铆钉铆紧成一个整体。
小型电机的主极线圈用绝缘铜线(或铝线)绕制而成,大中型电机主极线圈用扁铜线绕制,并进行绝缘处理,然后套在主极铁心外面。
整个主磁极用螺钉固定在机座内壁。
图2-8 主磁极1-机座;2-主极螺钉;3-主极铁心;4-框架;5-主极绕组;6-绝缘垫衬(3)换向极换向极又称为附加极,它装在两个主极之间,用来改善直流电机的换向。
换向极由换向极铁心和换向极线圈构成。
换向极铁心大多用整块钢加工而成。
但在整流电源供电的功率较大电机中,为了更好地改善电机换向,换向极铁心也采用叠片结构。
换向极线圈与主极线圈一样也是用圆铜线或扁铜线绕制而成,经绝缘处理后套在换向极铁心上,最后用螺钉将换向极固定在机座内壁。
(4)电刷装置电刷装置的作用是通过电刷与换向器表面的滑动接触,把转动的电枢绕组与外电路相连。
电刷装置一般由电刷、刷握、刷杆、刷杆座等部分组成,如图2-9所示。
电刷一般用石墨粉压制而成。
电刷放在刷握内,用弹簧压紧在换向器上,刷握固定在刷杆上,刷杆装在刷杆座上,成为一个整体部件。
图2-9 电刷装置1-刷杆座;2-弹簧;3-刷杆;4-电刷;5-刷握;6-绝缘杆2.转子转子又称电枢,主要由转轴、电枢铁心、电枢绕组和换向器等组成。
(1)转轴转轴的作用是用来传递转矩,一般用合金钢锻压而成。
(2)电枢铁心电枢铁心是电机磁路的一部分,也是承受电磁力作用的部件。
当电枢在磁场中旋转时,在电枢铁心中将产生涡流和磁滞损耗,为了减小这些损耗的影响,电枢铁心通常用0.5mm厚的电工钢片迭压而成,电枢铁心固定在转子支架或转轴上。
电枢铁心冲片如图2-10所示,沿铁心外圈均匀地分布有槽,在槽内嵌放电枢绕组。
图2-10 电枢铁心冲片和铁心1-电枢铁心;2-换向器;3-绕组元件;4-铁心冲片(3)电枢绕组电枢绕组的作用是产生感应电势和通过电流产生电磁转矩,实现机电能量转换。
它是直流电机的主要电路部分。
电枢绕组通常都用圆形或矩形截面的导线绕制而成,再按一定规律嵌放在电枢槽内,上下层之间以及电枢绕组与铁心之间都要妥善地绝缘。
为了防止离心力将绕组甩出槽外,槽口处需用槽楔将绕组压紧,伸出槽外的绕组端接部分用无纬玻璃丝带绑紧。
绕组端头则按一定规律嵌放在换向器钢片的升高片槽内,并用锡焊或氩弧焊焊牢。
(4)换向器换向器的作里是机械整流,即在直流电动机中,它将外加的直流电流逆变成绕组内的交流电流;在直流发电机中,它将绕组内的交流电势整流成电刷两端的直流电势。
换向器的结构如图2-11所示。
换向器由许多换向片组成,换向片间用云母片绝缘。
换向片凸起的一端称升高片,用以与电枢绕组端头相连,换向片下部作成燕尾形,利用换向器套筒、V 形压圈及螺旋压圈将换向片、云母片紧固成一个整体。
在换向片与换向器套筒、压圈之间用V 形云母环绝缘,最后将换向器压装在转轴上。