广西2019年全国中学生数学竞赛预赛试题及参考答案

合集下载

2019年全国高中数学联赛广西赛区预赛试题与参考答案

2019年全国高中数学联赛广西赛区预赛试题与参考答案

由 AD 是角平分线,可得 BAE = BAM + MAE = MAC + MCA = DME . ···········15 分
则有 BHE + BAE = DHE + DME = 180 ,从而 A, B, H , E 四点共圆.
所以 AEB = AHB = 90 . 命题得证. ····································································20 分
从而 MHC = 180 − MHD = 180 − HEC = MEH .
又由 CMH = HME 可知△CMH∽△HME . 故 MH = ME ,从而 MA = ME . ···········10 分
MC MH
MC MA
又因为 CMA = AME ,所以△CMA∽△AME . 故 MCA = MAE .
a
a
a
ห้องสมุดไป่ตู้
a
a
2019 年全国高中数学联赛广西赛区预赛试题参考答案 第1页(共 4 页)
10.(本小题满分
15
分)设
a1
= 1, an
=
n2
n−1 k =1
1 k2
(n 2) . 求证:
(1)
an +1 an+1
=
n2 (n +1)2
(n 2) ;
(2) (1+ 1 )(1+ 1 ) (1+ 1 ) 4 (n 1) .
当 n = 1时,1+ 1 = 2 4 ,不等式成立. ···································································10 分 a1

2019年全国初中数学联赛(初三组)初赛试卷及答案

2019年全国初中数学联赛(初三组)初赛试卷及答案

第2题图DACB第4题图DACB2019年全国初中数学联赛(初三组)初赛试卷(3月7日下午4:00—6:00)班级:: 姓名: 成绩:考生注意:1、本试卷共五道大题,全卷满分140分;2、用圆珠笔、签字笔或钢笔作答;3、解题书写不要超出装订线;4、不能使用计算器。

一、选择题(本题满分42分,每小题7分)本题共有6个小题,每题均给出了代号为A 、B 、C 、D 的四个答案,其中有且只有一个是正确的。

将你选择的答案的代号填在题后的括号内。

每小题选对得7分;不选、错选或选出的代号字母超过一个(不论是否写在括号内),一律得0分。

1、某件商品的标价为13200元,若以8折降价出售,仍可获利10%(相对于进货价),则该商品的进货价是( )A 、9504元B 、9600元C 、9900元D 、10000元 2、如图,在凸四边形ABCD 中,BD BC AB ==,︒=∠80ABC ,则ADC ∠等于( )A 、︒80B 、︒100C 、︒140D 、︒1603、如果方程()()0422=+--m x x x 的三根可以作为一个三角形的三边之长,那么,实数m 的取值范围是( )A 、04m <≤B 、3≥mC 、4≥mD 、34m <≤4、如图,梯形ABCD 中,CD AB //,︒=∠60BAD ,︒=∠30ABC ,6=AB 且CD AD =,那么BD 的长度是( )A 、7B 、4C 、72D 、245、如果20140a -<<,那么|2014||2014|||+-+++-a x x a x 的最小值是( ) A 、2019B 、2014+aC 、4028D 、4028+a6、方程()y x y xy x +=++322的整数解有( ) A 、3组B 、4组C 、5组D 、6组二、填空题(本大题满分28分,每小题7分)1、如图,扇形AOB 的圆心角︒=∠90AOB ,半径为5,正方形CDEF 内接于该扇形,则正方形CDEF 的边长为 .2、已知四个自然数两两的和依次从小到大的次序是:23,28,33,39,x ,y ,则____=+y x .3、已知6=-y x ,922=-+-y xy xy x ,则22y xy xy x ---的值是 .4、有质地均匀的正方体形的红白骰子各一粒,每个骰子的六个面分别写有1、2、3、4、5、6的自然数,随机掷红、白两粒骰子各一次,红色骰子掷出向上面的点数比白色骰子掷出向上面的点数小的概率是 .三、(本大题满分20分)已知0422=-+a a ,2=-b a ,求ba 211++的值。

2019年全国初中数学竞赛试题及答案

2019年全国初中数学竞赛试题及答案

中国教育学会中学数学教学专业委员会“《数学周报》杯”2019年全国初中数学竞赛试题一、选择题(共5小题,每小题7分,共35分.其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.若20 10a b b c ==,,则a b b c++的值为( ). (A )1121 (B )2111 (C )11021 (D )21011解:D 由题设得12012101111110a ab bc b c b +++===+++. 2.若实数a ,b 满足21202a ab b -++=,则a 的取值范围是 ( ). (A )a ≤2- (B )a ≥4 (C )a ≤2-或 a ≥4 (D )2-≤a ≤4 解.C因为b 是实数,所以关于b 的一元二次方程21202b ab a -++= 的判别式 21()41(2)2a a ∆--⨯⨯+=≥0,解得a ≤2-或 a ≥4.3.如图,在四边形ABCD 中,∠B =135°,∠C =120°,AB =23BC =422-CD =2AD 边的长为( ).(A )26 (B )64(C )64+ (D )622+解:D如图,过点A ,D 分别作AE ,DF 垂直于直线BC ,垂足分别为E ,F .由已知可得BE =AE 6,CF =2DF =6,于是 EF =46.过点A 作AG ⊥DF ,垂足为G .在Rt △ADG 中,根据勾股定理得 AD 222(46)(6)(224)=++=+226+4.在一列数123x x x ,,,……中,已知11=x ,且当k ≥2时,1121444k k k k x x -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭ (第3题)(第3题)(取整符号[]a 表示不超过实数a 的最大整数,例如[]2.62=,[]0.20=),则2010x 等于( ).(A) 1 (B) 2 (C) 3 (D) 4解:B由11=x 和1121444k k k k x x -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭可得 11x =,22x =,33x =,44x =,51x =,62x =,73x =,84x =,……因为2010=4×502+2,所以2010x =2.5.如图,在平面直角坐标系xOy 中,等腰梯形ABCD 的顶点坐标分别为A (1,1),B (2,-1),C (-2,-1),D (-1,1).y 轴上一点P (0,2)绕点A 旋转180°得点P 1,点P 1绕点B 旋转180°得点P 2,点P 2绕点C 旋转180°得点P 3,点P 3绕点D 旋转180°得点P 4,……,重复操作依次得到点P 1,P 2,…, 则点P 2010的坐标是( ).(A )(2010,2) (B )(2010,2-)(C )(2012,2-) (D )(0,2)解:B 由已知可以得到,点1P ,2P 的坐标分别为(2,0),(2,2-).记222 )P a b (,,其中222,2a b ==-. 根据对称关系,依次可以求得: 322(42)P a b --,--,422(2)P a b ++,4,522(2)P a b ---,,622(4)P a b +,.令662(,)P a b ,同样可以求得,点10P 的坐标为(624,a b +),即10P (2242,a b ⨯+), 由于2010=4⨯502+2,所以点2010P 的坐标为(2010,2-).二、填空题6.已知a =5-1,则2a 3+7a 2-2a -12 的值等于 .解:0由已知得 (a +1)2=5,所以a 2+2a =4,于是2a 3+7a 2-2a -12=2a 3+4a 2+3a 2-2a -12=3a 2+6a -12=0.7.一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶.在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间.过了10分钟,小轿车追上了货车;又过了5分钟,小轿(第5题)车追上了客车;再过t 分钟,货车追上了客车,则t = .解:15设在某一时刻,货车与客车、小轿车的距离均为S 千米,小轿车、货车、客车的速度分别为a b c ,, (千米/分),并设货车经x 分钟追上客车,由题意得()10a b S -=, ①()152a c S -=, ② ()x b c S -=. ③由①②,得30b c S -=(),所以,x =30. 故 3010515t =--=(分). 8.如图,在平面直角坐标系xOy 中,多边形OABCDE 的顶点坐标分别是O (0,0),A (0,6),B (4,6),C (4,4),D (6,4),E (6,0).若直线l 经过点M (2,3),且将多边形OABCDE 分割成面积相等的两部分,则直线l 的函数表达式是 .解:11133y x =-+ 如图,延长BC 交x 轴于点F ;连接OB ,AF ;连接CE ,DF ,且相交于点N .由已知得点M (2,3)是OB ,AF 的中点,即点M 为矩形ABFO 的中心,所以直线l 把矩形ABFO 分成面积相等的两部分.又因为点N (5,2)是矩形CDEF 的中心,所以,过点N (5,2)的直线把矩形CDEF 分成面积相等的两部分.于是,直线MN 即为所求的直线l .设直线l 的函数表达式为y kx b =+,则2352k b k b =⎧⎨+=⎩+,, 解得 1311.3k b ⎧=-⎪⎪⎨⎪=⎪⎩,,故所求直线l 的函数表达式为11133y x =-+. 9.如图,射线AM ,BN 都垂直于线段AB ,点E 为AM 上一点,过点A 作BE 的垂线AC 分别交BE ,BN 于点F ,C ,过点C 作AM 的垂线CD ,垂足为D .若CD =CF ,则AE AD= . (第8题) (第8题解: 215- 见题图,设,FC m AF n ==. 因为Rt △AFB ∽Rt △ABC ,所以 2AB AF AC =⋅.又因为 FC =DC =AB ,所以 2()m n n m =+,即 2()10n n m m+-=, 解得51n m -=,或51n m --=(舍去). 又Rt △AFE ∽Rt △CFB ,所以AE AE AF n AD BC FC m ====51-, 即AE AD=51-. 10.对于i =2,3,…,k ,正整数n 除以i 所得的余数为i -1.若n 的最小值0n 满足020003000n <<,则正整数k 的最小值为 .解:9 因为1n +为2 3 k ,,,的倍数,所以n 的最小值0n 满足[]012 3 n k +=,,,,其中[]2 3 k ,,,表示2 3 k ,,,的最小公倍数. 由于[][]2 3 88402 3 92520 ==,,,,,,,, [][]2 3 1025202 3 1127720==,,,,,,,, 因此满足020003000n <<的正整数k 的最小值为9.三、解答题(共4题,每题20分,共80分)11.如图,△ABC 为等腰三角形,AP 是底边BC 上的高,点D 是线段PC 上的一点,BE 和CF 分别是△ABD 和△ACD 的外接圆直径,连接EF . 求证: .tan EF PAD BC ∠=(第9题) (第11题)证明:如图,连接ED ,FD . 因为BE 和CF 都是直径,所以ED ⊥BC , FD ⊥BC ,因此D ,E ,F 三点共线. …………(5分)连接AE ,AF ,则AEF ABC ACB AFD ∠=∠=∠=∠,所以,△ABC ∽△AEF . …………(10分)作AH ⊥EF ,垂足为H ,则AH =PD . 由△ABC ∽△AEF 可得 EF AH BC AP=, 从而 EF PD BC AP=, 所以 tan PD EF PAD AP BC∠==. …………(20分) 12.如图,抛物线2y ax bx =+(a >0)与双曲线k y x=相交于点A ,B . 已知点A 的坐标为(1,4),点B 在第三象限内,且△AOB 的面积为3(O 为坐标原点).(1)求实数a ,b ,k 的值;(2)过抛物线上点A 作直线AC ∥x 轴,交抛物线于另一点C ,求所有满足△EOC ∽△AOB 的点E 的坐标.解:(1)因为点A (1,4)在双曲线k y x=上, 所以k=4. 故双曲线的函数表达式为xy 4=. 设点B (t ,4t ),0t <,AB 所在直线的函数表达式为y mx n =+,则有 44m n mt n t=+⎧⎪⎨=+⎪⎩,, 解得4m t =-,4(1)t n t +=. 于是,直线AB 与y 轴的交点坐标为4(1)0,t t +⎛⎫ ⎪⎝⎭,故 ()141132AOB t S t t∆+=⨯-=(),整理得22320t t +-=, 解得2t =-,或t =21(舍去).所以点B 的坐标为(2-,2-). 因为点A ,B 都在抛物线2y ax bx =+(a >0)上, 所以 4422a b a b +=⎧⎨-=-⎩,, 解得13.a b =⎧⎨=⎩, …(10分) (第11题)(第12题)(2)如图,因为AC ∥x 轴,所以C (4-,4),于是CO =42. 又BO =22,所以2=BO CO . 设抛物线2y ax bx =+(a >0)与x 轴负半轴相交于点D ,则点D 的坐标为(3-,0).因为∠COD =∠BOD =45︒,所以∠COB =90︒.(i )将△BOA 绕点O 顺时针旋转90︒,得到△1B OA '.这时,点B '(2-1A 的坐标为(4,1-).延长1OA 到点1E ,使得1OE =12OA ,这时点1E (8,2-)是符合条件的点.(ii )作△BOA 关于x 轴的对称图形△2B OA ',得到点2A (1,4-);延长2OA 到点2E ,使得2OE =22OA ,这时点E 2(2,8-)是符合条件的点.所以,点E 的坐标是(8,2-),或(2,8-). …………(20分)13.求满足22282p p m m ++=-的所有素数p 和正整数m .解:由题设得(21)(4)(2)p p m m +=-+,所以(4)(2)p m m -+,由于p 是素数,故(4)p m -,或(2)p m +. ……(5分)(1)若(4)p m -,令4m kp -=,k 是正整数,于是2m kp +>, 2223(21)(4)(2)p p p m m k p >+=-+>,故23k <,从而1k =.所以4221m p m p -=⎧⎨+=+⎩,,解得59.p m =⎧⎨=⎩, …………(10分) (2)若(2)p m +,令2m kp +=,k 是正整数.当5p >时,有46(1)m kp kp p p k -=->-=-,223(21)(4)(2)(1)p p p m m k k p >+=-+>-,故(1)3k k -<,从而1k =,或2.由于(21)(4)(2)p p m m +=-+是奇数,所以2k ≠,从而1k =.于是4212m p m p -=+⎧⎨+=⎩,, 这不可能.当5p =时,2263m m -=,9m =;当3p =,2229m m -=,无正整数解;当2p =时,2218m m -=,无正整数解.综上所述,所求素数p =5,正整数m =9. …………(20分)14.从1,2,…,2010这2010个正整数中,最多可以取出多少个数,使得所取出的数中任意三个数之和都能被33整除?解:首先,如下61个数:11,1133+,11233+⨯,…,116033+⨯(即1991)满足题设条件.(5分)另一方面,设12n a a a <<<是从1,2,…,2010中取出的满足题设条件的数,对于这n 个数中的任意4个数i j k m a a a a ,,,,因为33()i k m a a a ++, 33()j k m a a a ++,所以 33()j i a a -.因此,所取的数中任意两数之差都是33的倍数. …………(10分)设133i i a a d =+,i =1,2,3,…,n . 由12333()a a a ++,得12333(33333)a d d ++, 所以1333a ,111a ,即1a ≥11. …………(15分)133n n a a d -=≤2010116133-<, 故n d ≤60. 所以,n ≤61. 综上所述,n 的最大值为61. …………(20分)。

2019年全国初中数学联赛试题及详解

2019年全国初中数学联赛试题及详解

2019年全国初中数学联合竞赛试题及详解第一试一、选择题:(本题满分42分,每小题7分)1. 若,,a b c 均为整数且满足1010()()1a b a c -+-=,则||||||a b b c c a -+-+-= ( B )A .1.B .2.C .3.D .4.解: 由已知可推得011a b b c a c -=⎧⇒-=±⎨-=±⎩ 或 110a b b c a c -=±⎧⇒-=±⎨-=⎩,分别代入即得。

2.若实数,,a b c 满足等式23||6a b =,9||6a b c =,则c 可能取的最大值为 ( C )A .0.B .1.C .2.D .3.解:由已知,6492(23)15121512c a b a b b b ==-=-≤,∴2c ≤.3.若b a ,是两个正数,且,0111=+-+-ab b a 则 ( C ) A .103a b <+≤. B .113a b <+≤. C .413a b <+≤. D .423a b <+≤. 解:当a b =时,可计算得23a b ==,从而43a b +=。

观察4个选项,只能选C. 4.若方程2310x x --=的两根也是方程420x ax bx c +++=的根,则2a b c +-的值为 ( A )A .-13.B .-9.C .6.D . 0.解:由已知:42x ax bx c +++一定能被231x x --整除。

∵4222(31)(310)[(333)(10)]x ax bx c x x x x a a b x a c +++=--+++++++++∴(333)(10)0a b x a c +++++=,故3330213100a b a b c a c ++=⎧⇒+-=-⎨++=⎩5.在△ABC 中,已知︒=∠60CAB ,D ,E 分别是边AB ,AC 上的点,且︒=∠60AED ,CE DB ED =+,CDE CDB ∠=∠2,则=∠DCB ( B )A .15°.B .20°.C .25°.D .30°.解:如图,由已知,ADE 是正三角形。

2019年全国初中数学竞赛预赛试题及参考解析

2019年全国初中数学竞赛预赛试题及参考解析

2019年全国初中数学竞赛预赛试题及参考解析注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

【一】选择题〔共6小题,每题6分,共36分.以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号字母填入题后的括号里,不填、多填或错填都得0分〕1、在1,3,6,9四个数中,完全平方数、奇数、质数的个数分别是【】 〔A 〕2,3,1〔B 〕2,2,1〔C 〕1,2,1〔D 〕2,3,2 【答】A 、解:完全平方数有1,9;奇数有1,3,9;质数有3、2、一次函数(1)(1)y m x m =++-的图象经过【一】【二】三象限,那么以下判断正确的选项是【】〔A 〕1m >-〔B 〕1m <-〔C 〕1m >〔D 〕1m < 【答】C 、解:一次函数(1)(1)y m x m =++-的图象经过【一】【二】三象限,说明其图象与Y 轴的交点位于Y 轴的正半轴,且Y 随X 的增大而增大,所以10,10.m m ->⎧⎨+>⎩解得1m >、3、如图,在⊙O 中,CD DA AB ==,给出以下三个 结论:〔1〕DC =AB ;〔2〕AO ⊥BD ;〔3〕当∠BDC =30° 时,∠DAB =80°、其中正确的个数是【】 〔A 〕0〔B 〕1 〔C 〕2〔D 〕3 【答】D 、解:因为CD AB =,所以DC =AB ;因为AD AB =,AO 是半径,所以AO ⊥BD ;设∠DAB =X 度,那么由△DAB 的内角和为180°得:2(30)180x x -︒+=︒,解得80x =︒、 4.有4张全新的扑克牌,其中黑桃、红桃各2张,它们的背面都一样,将它们洗匀后,背面朝上放到桌面上,从中任意摸出2张牌,摸出的花色不一样的概率是【】〔A 〕34〔B 〕23〔C 〕13〔D 〕21第3题图【答】B 、解:从4张牌中任意摸出2张牌有6种可能,摸出的2张牌花色不一样的有4种可能,所以摸出花色不一样的概率是3264=. 5、在平面直角坐标系中,点A 的坐标是(1,0),点B 的坐标是(3,3)--,点C 是Y 轴上一动点,要使△ABC 为等腰三角形,那么符合要求的点C 的位置共有【】〔A 〕2个〔B 〕3个〔C 〕4个〔D 〕5个 【答】D 、解:由题意可求出AB =5,如图,以点A 为圆心AB的长为半径画弧,交Y 轴于C1和C2,利用勾股定理可求出OC1=OC2=,可得62,0(),62,0(21-C C 以点B 为圆心BA 的长为半径画弧,交Y 轴于点C3和C4,可得34(0,1),(0,7)C C -,AB 的中垂线交Y 轴于点C5,利用三角形相似或一次函数的知识可求出)617,0(5-C 、6、二次函数221y x bx =++〔b 为常数〕,当b 取不同的值时,其图象构成一个“抛物线系”,图中的实线型抛物线分别是B 取三个不同的值时二次函数的图象,它们的顶点在一条抛物线上〔图中虚线型抛物线〕,这条抛物线的解析式是【】〔A 〕221y x =-+〔B 〕2112y x =-+ 〔C 〕241y x =-+〔D 〕2114y x =-+【答】A 、解:221y x bx =++的顶点坐标是⎪⎪⎭⎫ ⎝⎛--88,42b b ,设4b x -=,882b y -=,由4b x -=得x b 4-=,所以222218)4(888x x b y -=--=-=、【二】填空题〔共6小题,每题6分,共36分〕7、假设2=-n m ,那么124222-+-n mn m 的值为、【答】7、解:71221)(212422222=-⨯=--=-+-n m n mn m 、 yxO第6题图第5题图8、方程112(1)(2)(2)(3)3x x x x +=++++的解是、【答】120,4x x ==-、解:11(1)(2)(2)(3)x x x x +++++11111223x x x x =-+-++++ 11213(1)(3)x x x x =-=++++.∴22(1)(3)3x x =++,解得120,4x x ==-.9、如图,在平面直角坐标系中,点B 的坐标是〔1,0〕, 假设点A 的坐标为〔A ,B 〕,将线段BA 绕点B 顺时针旋转 90°得到线段BA ',那么点A '的坐标是、 【答】(1,1)b a +-+、解:分别过点A 、A '作X 轴的垂线,垂足分别 为C 、D 、显然RT △ABC ≌RT △B A 'D 、由于点A 的坐标是(,)a b ,所以OD OB BD =+1OB AC b =+=+,1A D BC a '==-,所以点的A '坐标是(1,1)b a +-+、10、如图,矩形ABCD 中,AD =2,AB =3,AM =1,DE 是以点A 为圆心2为半径的41圆弧,NB 是以点M 为圆心2为半径的41圆弧,那么图中两段弧之间的阴影部分的面积为、【答】2、解:连接MN ,显然将扇形AED 向右平移可与扇形MBN 重合,图中阴影部分的面积等于矩形AMND 的面积,等于221=⨯、11、α、β是方程2210x x +-=的两根,那么3510αβ++的值为、【答】2-、解:∵α是方程2210x x +-=的根,∴212αα=-、第10题图 第9题图∴322(12)22(12)52αααααααααα=⋅=-=-=--=-, 又∵2,αβ+=-∴3510(52)5105()8αβαβαβ++=-++=++=5(2)82⨯-+=-、12、现有145颗棒棒糖,分给假设干小朋友,不管怎样分,都至少有1个小朋友分到5颗或5颗以上,这些小朋友的人数最多有个、【答】36、 解:利用抽屉原理分析,设最多有X 个小朋友,这相当于X 个抽屉,问题变为把145颗糖放进X 个抽屉,至少有1个抽屉放了5颗或5颗以上,那么41x +≤145,解得x ≤36,所以小朋友的人数最多有36个、【三】解答题〔第13题15分,第14题15分,第15题18分,共48分〕13、王亮的爷爷今年〔2018年〕80周岁了,今年王亮的年龄恰好是他出生年份的各位数字之和,问王亮今年可能是多少周岁?解:设王亮出生年份的十位数字为x ,个位数字为y 〔X 、Y 均为0~9的整数〕、∵王亮的爷爷今年80周岁了,∴王亮出生年份可能在2000年后,也可能是2000年前、故应分两种情况:…………………2分〔1〕假设王亮出生年份为2000年后,那么王亮的出生年份为200010x y ++,依题意,得2012(200010)20x y x y -++=+++,整理,得1011,2xy -=X 、Y 均为0~9的整数,∴0.x =此时 5.y =∴王亮的出生年份是2005年,今年7周岁、…………………8分〔2〕假设王亮出生年份在2000年前,那么王亮的出生年份为190010x y ++,依题意,得2012(190010)19x y x y -++=+++,整理,得111022x y =-,故X 为偶数,又1021110211,09,22x xy --=≤≤∴779,11x ≤≤∴8.x =此时7.y = ∴王亮的出生年份是1987年,今年25周岁、…………………14分 综上,王亮今年可能是7周岁,也可能是25周岁、……………15分14、如图,在平面直角坐标系中,直角梯形OABC 的顶点A 、B 的坐标分别是(5,0)、(3,2),点D在线段OA上,BD=BA,点Q是线段BD上一个动点,点P的坐标是(0,3),设直线PQ的解析式为y kx b =+、〔1〕求K的取值范围;〔2〕当K为取值范围内的最大整数时,假设抛物线25y ax ax=-的顶点在直线PQ、OA、AB、BC围成的四边形内部,求A的取值范围、解:〔1〕直线y kx b=+经过P(0,3),∴3b=、∵B (3,2),A(5,0),BD=BA,∴点D的坐标是(1,0),∴BD的解析式是1y x=-,1 3.x≤≤依题意,得1,3.y xy kx=-⎧⎨=+⎩,∴4,1xk=-∴41 3.1k-≤≤解得13.3k--≤≤……………………………………………7分〔2〕13,3k--≤≤且K为最大整数,∴1k=-.那么直线PQ的解析式为3y x=-+.……………………………………………9分又因为抛物线25y ax ax=-的顶点坐标是525,24a⎛⎫-⎪⎝⎭,对称轴为52x=、解方程组⎪⎩⎪⎨⎧=+-=.25,3xxy得⎪⎪⎩⎪⎪⎨⎧==.21,25yx即直线PQ与对称轴为52x=的交点坐标为51(,)22,∴125224a<-<、解得822525a-<<-、……………………………………15分15.如图,扇形OMN的半径为1,圆心角是90°、点B是MN上一动点,BA⊥OM于点A,BC⊥ON于点C,点D、E、F、G分别是线段OA、AB、BC、CO的中点,GF与CE相交于点P,DE与AG相交于点Q、〔1〕求证:四边形EPGQ是平行四边形;〔2〕探索当OA的长为何值时,四边形EPGQ是矩形;〔3〕连结PQ,试说明223PQ OA+是定值、解:〔1〕证明:如图①,∵∠AOC =90°,BA ⊥OM ,BC ⊥ON , ∴四边形OABC 是矩形、 ∴OC AB OC AB =,//、 ∵E 、G 分别是AB 、CO 的中点, ∴.,//GC AE GC AE = ∴四边形AECG 为平行四边形.∴.//AG CE ……………………………4分连接OB ,∵点D 、E 、F 、G 分别是线段OA 、AB 、BC 、CO 的中点, ∴GF ∥OB ,DE ∥OB ,∴PG ∥EQ ,∴四边形EPGQ 是平行四边形、………………………………………………6分 〔2〕如图②,当∠CED =90°时,□EPGQ 是矩形、 此时∠AED +∠CEB =90°、又∵∠DAE =∠EBC =90°,∴∠AED =∠BCE 、∴△AED ∽△BCE 、………………………………8分 ∴AD AEBE BC =、设OA =X ,AB =Y ,那么2x ∶2y =2y∶x ,得222y x =、 (10)分 又222OA AB OB +=,即2221x y +=、∴2221x x +=,解得3x =、∴当OA的长为3时,四边形EPGQ 是矩形、………………………………12分〔3〕如图③,连结GE 交PQ 于O ',那么.,E O G O Q O P O '=''='、过点P 作OC 的平行线分别交BC 、GE 于点B '、A '、由△PCF ∽△PEG 得,2,1PG PE GE PF PC FC === ∴PA '=23A B ''=13AB ,GA '=13GE =13OA ,∴1126A O GE GA OA'''=-=、AB COD E F G PQ MN图①AB CO D EF GP QMN 图②B'N M A'QP O'GF E DC BAO图③在RT △PA O ''中,222PO PA A O ''''=+,即2224936PQ AB OA =+,又221AB OA +=, ∴22133PQ AB =+,∴2222143()33OA PQ OA AB +=++=、……………………………………18分。

年全国初中数学竞赛广西赛区初赛试题及答案[下学期] 新人教版

年全国初中数学竞赛广西赛区初赛试题及答案[下学期] 新人教版

年“信利杯”全国初中数学竞赛(广西赛区)初赛试题(全卷满分120分,考试时间120分钟)题号一二三总分1--12 13---20 21 22 23 24 25 26 得分一、填空题(本大题共12题,每小题3分,满分36分。

请将正确答案填在题中的的横线上)1、计算:(1-2)(2-3)(3-4)……(-)= 。

2、方程12006x=的解为 。

3、居里夫人发现了镭这种放射性元素。

1千克镭完全衰变后,放出的热量相当于375000千克煤燃烧所放出的热量。

估计地壳内含有100亿千克镭,这些镭完全衰变后所放出的热量相当 千克煤燃烧所出的热量(用科学记数法表示)。

4、甲、乙两班各有45人,某次数学考试成绩的中位数分别是是88分和90分,若90分以上为优秀,那么甲、乙两班优秀人数较多的班级是 。

5188a a = 。

6、如图,D 、E 、F 分别是△ABC 的边AB 、AC 、BC 的中点,连结FE 并延长到点G ,使GE=FE 。

如果△ABC的面积为20cm 2,那么四边形ADEG 的面积为 cm 2.7、在平面上用18根火柴首尾相接围成等腰三角形,这样的等腰三角形一共可以围攻成 种。

8、在一次朋友家聚会上,每两个人都互相握了一次手,总共握了55次手,,则参加聚会的人数是 。

得分 评卷人第6题图GF EDCBA9、在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 所对的边长。

如果∠A=1050,∠B=450,22b =c =10、已知直线l 经过(2,0)和(0,4),把直线l 沿x 轴的反方向向左平移2个单位,得到直线'l ,则直线'l 的解析式为 。

11、边数均为偶数的两正多边形的内角和为了18000。

两个正多边形的边数分别为 。

12、如果对任意实数x ,等式: 102310012310(12)x a a x a x a x a x -=+++++都成立,那么,010203010()()()()a a a a a a a a ++++++++= 。

2019-2019年全国初中数学联赛试题30套30页word文档

2019-2019年全国初中数学联赛试题30套30页word文档

1991年年全国初中数学联赛试题第一试一、选择题本题共有8个小题,每小题都给出了(A )、(B )(C )、(D )四个答案结论,其中只有一个是正确的。

请把正确结论的代表字母写在题后的圆括号内。

1.设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是两两不同的实数,则22223yxy x y xy x +--+的值是( )。

(A )3 (B )31 (C )2 (D )35 2.如图,AB ‖EF ‖CD ,已知AB =20,CD =80,BC =100,那么EF 的值是( )。

(A )10 (B )12(C )16 (D )18。

3.方程012=--x x 的解是( )。

(A )251± (B )251±- (C )251±或251±- (D )251±-± 4.已知:)19911991(2111n n x --=(n 是自然数)。

那么n x x )1(2+-的值是( )。

(A )11991- (B )11991-- (C )1991)1(n - (D )11991)1(--n5.若M n 1210099321=⨯⨯⨯⨯⨯ ,其中M 为自然数,n 为使得等式成立的最大的自然数,则M ( )。

(A )能被2整除,但不能被3整除(B )能被3整除,但不能被2整除(C )能被4整除,但不能被3整除(D )不能被3整除,也不能被2整除6.若a ,c ,d 是整数,b 是正整数,且满足c b a =+,d c b =+,a d c =+,那么d c b a +++的最大值是( )。

(A )1- (B )5- (C )0 (D )17.如图,正方形OPQR 内接于ΔAB (C )已知ΔAOR 、ΔBOP 和ΔCRQ 的面积分别是11=S ,32=S 和13=S ,那么,正方形OPQR 的边长是( )。

2019年全国高中数学联赛广西赛区预赛试题解析(PDF)

2019年全国高中数学联赛广西赛区预赛试题解析(PDF)

2019年全国高中数学联赛广西赛区预赛试题一、填空题1.已知0≠yz ,且集合},3,2{xy z x 也可以表示为}3,2,{2xz x y ,则=x .2.如果函数)2sin(2ϕ+=x y 的图象关于)0,3π2(中心对称,那么ϕ的最小值为.3.设函数])1,0[)(11)(211()(2∈+-+-++=x x x x x y ,则)(x y 的最小值为.4.已知点)5,2(-P 在圆022:22=+--+F y x y x C 上,直线0843:=++y x l 与圆C 交于A 、B 两点,则=⋅.5.已知12=++z y xyz ,则z y x 224log log log ++的最大值为.6.从20,,2,1 中任取3个不同的数,则这3个数构成等差数列的概率为.7.棱长为6的正方体内有一个棱长为x 的正四面体,且该正四面体可以在正方体内任意转动,则x 的最大值为.8.满足201951+++=x x y 的正整数对),(y x 有对.二、解答题9.已知函数x xx a a x f -++=1ln )1()(.(1)设1>a ,讨论)(x f 在区间)1,0(上的单调性;(2)设0>a ,求)(x f 的极值.10.设11=a ,)211122≥=∑-=n k n a n k n .求证:(1))2()1(1221≥+=++n n n a a n n ;(2))1(411()1111(21≥<+++n a a a n11.如图所示,AD 、AH 分别是ABC ∆(其中AC AB >)的角平分线、高线,点M 是AD 的中点,MDH ∆的外接圆交CM 于点E ,求证:︒=∠90AEB .鉴于我平面几何水平有限,写不出好的解答,直接搬参考答案! 轻点吐槽,哈哈!12.设0>k 且1≠k ,直线1:+=kx l 与1:11+=x k y l 关于直线1+=x y 对称,直线l 与1l 分别交椭圆14:22=+y x E 于点A 、M 和A 、N .(1)求1k k ⋅的值;(2)求证:对任意的k ,直线MN 恒过定点.。

2019年广西创新杯高一数学竞赛初赛试题参考答案及评分标准

2019年广西创新杯高一数学竞赛初赛试题参考答案及评分标准

广西“创新杯”数学竞赛高一初赛试卷参考答案与评分标准一、选择题(每小题6分,共36分)1.方程224+=x x 的实数解为( )(A )-1或2 (B )1 (C )2 (D )2±答:D 。

解析:由已知得0)1)(2(,022224=+-=--x x x x 22=x 或12-=x (舍去),故有2±=x 。

2.若实数满足y y x 44|1|2=+++,则y x +的值为( )(A )-1 (B )0 (C )1 (D )2答:C 。

解析:由y y x 44|1|2=+++得0)2(|1|2=-++y x ,于是有02,01=-=+y x ,所以1=+y x 。

3.设梯形的中位线的长为l ,两对角线的长分别为y x ,,则( )(A )2y x l +< (B )2y x l += (C )2y x l +> (D )以上答案均有可能 答:A 。

解析:提示过梯形的一顶点作对角线的平行线。

4.方程组⎪⎩⎪⎨⎧=+=+1025y x x y y x 的解为( )(A )⎩⎨⎧==91y x (B )⎩⎨⎧==82y x (C )⎩⎨⎧==64y x (D )⎩⎨⎧==82y x 或⎩⎨⎧==28y x 答:D 。

解析:原方程变形为⎪⎩⎪⎨⎧=+=+1025y x xy y x ,⎩⎨⎧=+=1016y x xy 解得⎩⎨⎧==82y x 或⎩⎨⎧==28y x . 5.方程0)7()1(82=-+--m x m x 恰有一个正根和一个负根,则m 的取值范围是( )(A )7<m (B )9≤m (C )7>m (D )25≥m答:A 。

解析:由已知得2(1)48(7)0m m ∆=--⨯->,即2342250m m -+> 得9m <或25m >,由08721<-=m x x ,得7<m ,故有7<m 为所求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档